él_’A-UR- 98-2135

épp'pve_d for public release;
stribution is unlimited. .
Title: | PARALLEL IMPLICIT MONTE CARLO IN C++

CONF-9%)207 -~

Author(s): | Todd J.Urbatsch
Thomas M. Evans

Submitted to: | ISCOPE'98/Int'l Symp. on Computing in Object Oriented
Parallel Environments

Santa Fe, NM

December 8-11, 1998

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLBMITED

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of Califomia for the
U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S.
Govemment retains a nonexclusive, royalty-free license to publish or reproduce the published fonm of this contribution, or to allow
others to do so, for U.S. Govemment purposes. Los Alamos National Laboratory requests that the publisher identify this article

as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports
academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint

of a publication or guarantee its technical comrectness.

Form 836 (10/96)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any .agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

IAUR- 98-2135

Parallel Implicit Monte Carlo in C++

Todd J. Urbatsch* and Thomas M. Evans**

Los Alamos National Laboratory, Los Alamos, NM 87544, USA

Abstract. We are developing a parallel C++ Implicit Monte Carlo code
in the Draco framework. As a background and motivation for our par-
allelization strategy, we first present three basic parallelization schemes.
We use three hypothetical examples, mimicking the memory constraints
of the real world, to examine characteristics of the basic schemes. Next,
we present a two-step scheme proposed by Lawrence Livermore National
Laboratory (LLNL). The two-step parallelization scheme we develop is
based upon LLNL’s two-step scheme. Our two-step scheme appears to
have greater potential compared to the basic schemes and LLNL’s two-
step scheme. Lastly, we explain the code design and describe how the -
functionality of C++ and the Draco framework assist our development of
a parallel code.

1 Introduction

Our group at Los Alamos National Laboratory has a policy that all computer
codes be born parallel. Therefore, the decision to rewrite our Implicit Monte
Carlo (IMC) code in C++ required us to develop a parallelization strategy before
writing any code.

Our code solves time-dependent, non-linear radiative thermal transfer prob-
lems using Monte Carlo. The Monte Carlo particles represent bundles of photons
that interact with material. Material absorbs radiation, heats up, and gives off
more radiation. The physical system is highly non-linear because the charac-
teristics of the material, namely absorption and emission, are highly dependent
upon temperature. Implicit Monte Carlo, or IMC, refers to a time-implicit, lin-
earized method developed by Fleck and Cummings [1] in which, most notably,
the absorption and re-emission of radiation is represented by an effective scatter.
As with deterministic methods, an implicit time discretizion produces a more
stable algorithm.

We present three basic parallelization schemes: full replication, full domain
decomposition, and general domain decomposition/replication. Next, we present
a scheme proposed by Lawrence Livermore National Laboratory (LLNL), which
is a two-step scheme derived from the basic schemes. We then present our two-
step scheme, which is based upon LLNL’s two-step scheme, but appears to have
potential for larger speedups.

* tmonster@lanl.gov
** tme@lanl.gov

Our code is written within the Draco framework [2], making use of several
tools, such as smart pointers and communication classes. Both C++ and Draco
have facilitated our development of a parallel IMC code.

2 Parallelization Strategies

Parallel speedup is the ratio of serial run time to multiple-processor run time
for a given calculation. A calculation using 10 processors should run 10 times
faster than a calculation using one processor. Theoretically, this “linear speedup”
(linear with unity slope) is the best we can do. Unfortunately, overhead costs
make it impossible to reach full linear speedup. Our goal — the goal of any
parallelization - is to get as close to linear speedup as possible.

In our calculations, as shown in Figure 1, a host code begins the time step
and then spawns the IMC calculation, which is performed on many processors.
When the IMC is finished, it sends data back to the host code. We only consider
the host code on one processor, but it too may be on multiple processors. The
distribution of data before the IMC step and the collection of data after the
IMC step constitute pre-cycle and post-cycle overhead. These communications
are inherently serial and detract from the potential speedup.

host

-y

make parallel *
(pre-cycle communication) :

o r‘- 7 compute, Lo
mec v)| in-cycle | ime step
communication n
collapse/collect :

(post-cycle communication)

update material temperatures

Fig. 1. Overview of a time step in a parallel IMC calculation.

To parallelize IMC, we must determine which discretized variables we want
to parallelize. Whereas deterministic calculations can be parallelized in space
(cells), angle (discrete ordinates), energy or frequency (groups), or some combi-
nation of those independent variables, Monte Carlo calculations may be paral-
lelized in space (cells), particles, possibly energy or frequency (groups), or some
combination of these. The best choice of variable to parallelize is one whose indi-
vidual elements are independent of each other so processors need not talk to each
other during the IMC step. Combine processor independence with good load bal-
ancing (where processors have the same amount of work to do), and speedups in
the IMC step, apart from pre- and post-cycle communication, will be good. We

will see that the two-step schemes allow for parallelizing in processor communi-
cation, too. Whichever variables we parallelize, we want a parallelization scheme
that scales well with both particles and processors.

3 Basic Parallelization Strategies

We consider three basic schemes: full replication (parallelization strictly in par-
ticles), full domain decomposition (parallelization strictly in space), and general
domain decomposition/replication (parallelization in both particles and space).

3.1 Full Replication

The traditional way to make a Monte Carlo code parallel is to repeat the mesh
on multiple processors, as shown in Figure 2. We refer to this scheme as full
replication. After the mesh is copied to each processor (or each processor has
access to the entire mesh) the particles are split up between the processors and
run with processor-dependent random number streams. Since particles are in-
dependent of each other, the processors need not communicate with each other
during particle tracking. After all the particles on all the processors have fin-
ished tracking, tallies and other results are accumulated from all processors. Full
replication is a simple and tremendously efficient parallelization scheme and is
why Monte Carlo is sometimes called “embarrassingly parallel.”

-

Fig. 2. Full replication, where the whole mesh is copied to each of the four processors.
Full replication is a strict parallelization in particles.

3.2 Full Domain Decomposition

Unfortunately, the resolution and size of some problems produce a mesh too
big to fit one processor. For these problems, we are constrained to parallelize
in space (cells), where a given processor will only hold a portion of the mesh.
Since cells are not typically independent of each other, in-cycle communication
between processors occurs during particle tracking.

As shown in Figure 3, full domain decomposition refers to parallelizing strictly
in space, where each processor holds a unique and exclusive portion of the mesh.
None of the cells in the problem are replicated on multiple processors. During
tracking, when a particle wants to enter a cell that is not on the processor it
is on, the particle has to be sent to the processor that contains the cell. For a
_ given mesh, the cost of this in-cycle communication between processors generally
increases with both the number of particles and the number of domains.

o e T

Fig.3. Full domain decomposition, where the mesh is broken up between all four
processors. Full domain decomposition is a strict parallelization in space, or cells.

3.3 General Domain Decomposition/Replication v

The general domain decomposition/replication scheme replicates the mesh within
the constraint of insufficient processor memory. With this general scheme, we at-
tempt to put as much of the mesh on each processor and to replicate cells as
much as possible or necessary, as shown in Figure 4. During transport, a particle
would not leave its processor until necessary. The general domain decomposi-
tion/replication scheme limits to full domain decomposition as processor capac-
ity decreases, and it limits to full replication as processor capacity increases.

-
{

Fig.4. The General Domain Decomposition/Replication scheme replicates the mesh
as much as possible and necessary.

Time-explicit load balancing in the general scheme calls for replicating a cell
based on the number of source particles it contains. A more sophisticated and
time-implicit load balancing scheme takes into account how optically close a cell
is to the source particles.

3.4 One-Dimensional Hypothetical Examples

To compare the different parallelization schemes, let us consider three different
one-dimensional problems,

— Marshak Wave, where the wave has propagated just shy of 2 cm into the
slab

— cosine temperature distribution,

— flat temperature distribution,

where the slab is divided into 8 cells, each 1 cm thick. The Marshak and cosine
problems are shown in Figure 5.

For each problem, we assume that we have four processors at our disposal,
but, unfortunately, each processor can hold no more than 4 cells. Thus, full repli-
cation is not an option. Overall speedup comes from raw parallie] speedup minus

Temperature
Temperature

x {em] X [cm]

Fig.5. Left: A Marshak Wave that has propagated almost 2 cm into an 8 cm slab.
Right: A Cosine distribution of temperature.

pre-cycle, in-cycle, and post-cycle communication costs. The raw speedup in the
full domain decomposition scheme comes from its space-parallél approach. The
raw speedup in the general domain decomposition/replication comes from par-
allelization in both space and particles. The full domain decomposition topology
(distribution of cells among the processors) is the same for all three problems
and is shown in Fig. 6. The shaded cells are those that the processor actually
contains. The general domain decomposition/replication scheme produces the
topologies shown in Fig. 7.

Full Domain Decomposition Topology

]
: ([
gl

Fig. 6. The topology for the full domain decomposition is the same for all three prob-
lems.

The first problem, a Marshak Wave [3], has a steady-state, isotropic source
of photons impinging upon a slab of cold material. The photons are distributed
according to a Planckian at temperature Tp. The incoming photons propagate
through the slab and heat the material, which, in turn, gives off more photons.
Full domain decomposition will achieve serial results at best. Apart from pre-
and post-cycle communication, the general strategy will achieve a raw speedup
of four. Both methods require pre-cycle overhead to decompose the domain, but

General Domain DecompositionfReplication Topologies

...

Marshak Cosine Flat

| W
1 =

i i
| W

Fig. 7. The topologies for the general domain decomposition/replication scheme for
the Marshak, Cosine, and Flat hypothetical problems.

the general scheme will incur larger pre-cycle overhead costs because calculating
the unique domain and boundary for each processor is more expensive.

Consider the second problem, where, instead of a Marshak Wave, our one-
dimensional slab has an external source in the middle with a subsequent cosine
distribution of temperature. Particle activity is higher in the middle of the slab
and lower near the edges. The amount of in-cycle communication will be higher
if domain boundaries are placed where particle activity is high. Compared to
the full domain decomposition scheme, which has no replication, the general
scheme replicates the interior cells more than the outer colder cells. The price
of this replication is increased communication, since each processor can talk to
all the other processors. For instance, if a particle on processor 1 needs to go
from the third cell to the fourth cell, it could go to processor 2, 3, or 4. Notice,
though, that some of the domain boundaries in the general scheme are located
where particle activity is lower. Conceivably, redundant communication could
be limited to reduce the number of communication channels.

Let us now consider the third problem, where the temperature and, hence,
particle activity are constant throughout the eight-celled slab. Here, the full
domain decomposition scheme produces the same topology as before, while the
general scheme produces alternating halves of the mesh. Full domain decomposi-
tion, due solely to parallelization in space, achieves a raw speedup of 4 since each
cell has the same amount of work to do. The general scheme, due to paralleliza-
tion in both space and particles, also obtains the full raw speedup of 4, since each
processor has half the work to do and the mesh on each processor is replicated
twice. For the full domain decomposition scheme, in-cycle communication must
occur between neighboring processors, giving a total of 6§ communication chan-
nels (back and forth across a domain counts as two communication channels).

For the general scheme, processor 1 can talk to processors 2 and 4, processor 2 to
1 and 3, and so on, for a total of 8§ communication channels. If the problem had a
large number of cells, the number of communication channels in the full domain
decomposition scheme scales with the number of processors, P, as (2P — 2) for
this one-dimensional problem. The number of communication channels in the
general scheme scales as P?/2, which means the general scheme’s in-cycle com-
munication does not scale well at all with the number of processors. (Note that,
in the general scheme, processors 1 and- 2 could be forced to talk only to each
other, and likewise processors 3 and 4, for 2 send-channels replicated twice.)

So, for the basic schemes, full replication is the best scheme if the entire
mesh will fit on a single processor or each processor can get access to the entire
mesh. Otherwise, for problems with unevenly distributed particle activity, i.e.
hot spots, the general domain decomposition/replication scheme provides more
replication than the full domain decomposition-scheme at the price of increased
in-cycle communication. Relative payoffs from the two schemes will depend on
the ratio of work required in the cells to the cost of communication across domain
boundaries.

4 Two-Step Parallelization Strategies

An advanced type of parallelization strategy is a two-step scheme where the
entire mesh is represented on a small set of processors, and then the small set is
replicated to the rest of the processors. So each processor subset is one replicate
of the mesh. Lawrence Livermore National Laboratory (LLNL) proposed a two-
step scheme, which is what our two-step scheme is based upon.

Lawrence Livermore National Laboratory proposed a two-step scheme [4]
for P processors, as shown in Figure 8. First, the entire mesh is fully domain
decomposed on a subset of P,,; processors. Second, the subset is replicated on
the remaining § — 1 subsets of processors, where S = P/P,.: is the number
of processor subsets. In-cycle communication between processors is limited to
within a processor subset. On each subset, LLNL’s two-step scheme has the same
qualities as full domain decomposition. However, all the work end communication
occurring on a subset is replicated a total of S times. In other words, for the price
of one subset of processors (plus pre- and post-cycle overhead), they get the work
of S subsets. Jim Rathkopf, of LLNL, apparently had suggested a modification
to include a small overlap of domains to handle those particles that jump back
and forth across the domain boundaries [5].

Our two-step scheme, shown in Figure 9, is based on LLNL’s step scheme.
However, our first step consists of a general domain decomposition/replication
of the entire mesh on a subset of P, processors. This subset is replicated S —1
more times. Again, communication is limited to within a processor subset. The
advantage of our two-step scheme is that “hot” cells may potentially be replicated
on all P processors. Furthermore, the poorly scaling high cost of full processor
cross-talk is limited to Ps,; processors.

Fig. 8. LLNL’s two-step parallelization scheme, where one subset of two processors
simulates a single processor in the Full Replication scheme. Each processor subset uses
Full Domain Decomposition to represent the whole mesh. ’

Fig. 9. Our two-step parallelization scheme, where one subset of prbcessors simulates
a single processor in the Full Replication scheme. Each processor subset uses General
Domain Decomposition/Replication to represent the whole mesh.

5 Conclusion

We have presented a scheme for parallelizing IMC or any other Monte Carlo cal-
culation. Full replication is the easiest way to parallelize IMC, but the meshes of
the some problems are so large they will not fit on each processor. Qur scheme
is to use General Domain Decomposition/Replication on a subset of processors,
where as much of the mesh as possible and necessary is put on each processor in
the subset. The topology of the subset is then replicated on other subsets of pro-
cessors. Our scheme is based upon a scheme proposed by the Lawrence Livermore
National Laboratory. For both IMC alone and coupled hydrodynamics-IMC, our
scheme incurs more pre-cycle communication, but it has the advantage of allow-
ing hotter cells to be replicated on all the processors. Whether the localized full
replication overcomes the extra pre-cycle communication is problem-dependent.
For instance, if cells are optically thick, they require more work than the com-
munication across domain boundaries require, and our scheme may be faster
overall.

References

1. J. A, Fleck and J. D. Cummings, An implicit Monte Carlo scheme for calculating
time and frequency dependent nonlinear radiation transport, Journal of Computa-
tional Physics, 8, 313-342, 1971.

2. Geoffrey Furnish, Contain-Free Numerical Algorithms in C++ | to be published in
Computers in Physics, May-June, 1998.

3. A. G. Petschek, R. E. Williamson, and J. K. Wooten, Jr., The penetration of
radiation with constant driving temperature, Technical Report. LAMS-2421, Los
Alamos Scientific Laboratory, 1960.

4. D. Miller and R. Procassini, private communication, Lawrence Livermore National
Laboratory, 1997.

5. J. Rathkopf, private communication, Lawrence Livermore National Laboratory,
1998.

