

DOE/ER/14453-T1

Accurate Polyatomic Quantum Dynamics Studies of Combustion Reactions

Final Progress Report (7/1/1994-6/30/1998)

John Z.H. Zhang

Department of Chemistry, New York University, New York, NY 10003

zhang@risc.nyu.edu

prepared for

THE U.S. DEPARTMENT OF ENERGY

AGREEMENT NO. DE-FG02-94ER14453

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

RECEIVED
JAN 4 1999
OSTI

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Program scope:

This program is designed to develop accurate yet practical computational methods, primarily based on time-dependent quantum mechanics, for studying the dynamics of polyatomic reactions beyond the atom-diatom systems. Efficient computational methodologies are developed and the applications of these methods to practical chemical reactions relevant to combustion processes are carried out. The program emphasizes the practical aspects of accurate quantum dynamics calculations in order to understand, explain and predict the dynamical properties of important combustion reactions.

The aim of this research is to help provide not only qualitative dynamics information but also quantitative prediction of reaction dynamics of combustion reactions at the microscopic level. Through accurate theoretical calculations, we wish to be able to quantitatively predict reaction cross sections and rate constants of relatively small gas-phase reactions from first principles that are of direct interest to combustion. The long-term goal of this research is to develop practical computational methods that are capable of quantitatively predict dynamics of more complex polyatomic gas-phase reactions that are of interest to combustion.

Progress report:

Rigorous time-dependent (TD) quantum dynamical treatment for generic four-atom reactions of the type $AB + CD \rightarrow A + BCD$ has been developed. The three versions of the treatment, rigid-bond 5D (RB5D), potential-averaged 5D (PA5D) and the exact 6D, have been tested on the benchmark $H_2 + OH$ reaction and its isotopically substituted reaction, all capable of giving accurate results. In particular, the PA5D treatment can essentially reproduces the exact 6D result but at a fraction of the computational cost. We also developed a new scheme to calculate reaction probabilities for reactions that require a large number of basis functions. The new scheme (normalized angular quadrature scheme) enables one to obtain stable and accurate reaction probabilities without the need to store large matrices in the computer memories and to perform large

matrix multiplications. Using this scheme, the benchmark $H_2 + OH$ and its isotopic reaction $HD + OH$ can now be calculated efficiently on a medium sized workstation without the need of a large-memory supercomputer.

We successfully computed reaction probabilities, cross sections and rate constants for the $D_2 + OH$ and $HD + OH$ reactions. Our accurate TD calculation determined the branching ratio for the $HD + OH$ reaction and, in addition, provided direct insight on the steric effect in direct reactions such as $HD + OH$. Also, our enhanced TD method has been applied successfully to the $HO + CO$ reaction using the PA5D (potential averaged 5D) implementation which is essentially indistinguishable from the exact 6D treatment. Rich resonances have been found in reaction probabilities from this calculation, and previous results based on reduced-dimensionality methods have been assessed based on our new result. New development is in progress to calculate complete state-to-state reaction dynamics, and the result of our application to $H + O_2$ reaction is very encouraging.

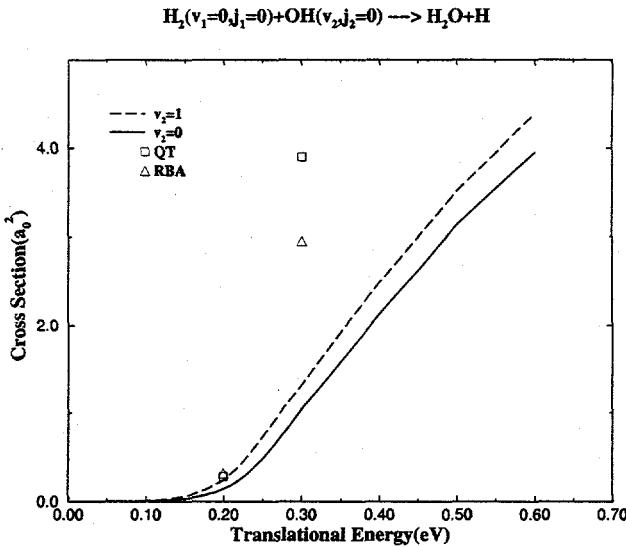


Figure 1: Calculated reaction cross sections for the $H_2 + OH$ reaction and comparisons with quasiclassical trajectory (QT) calculation and Reduced dimensionality (RBA) calculation.

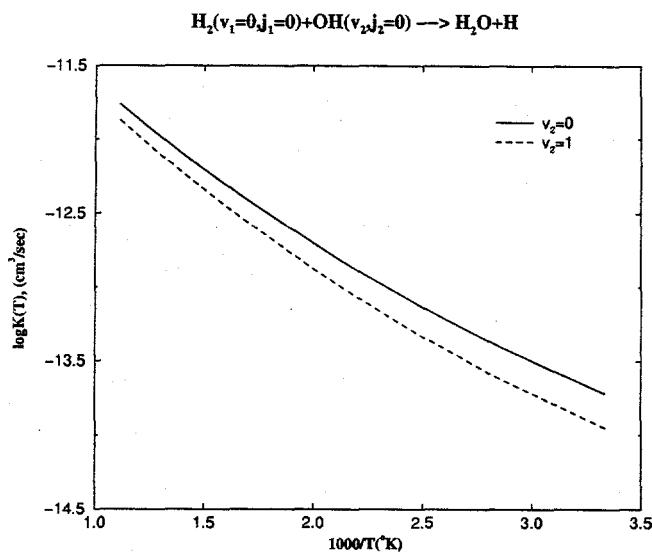


Figure 2: Calculated reaction rate constant for the $H_2 + OH$ reaction.

We recently reported state-to-state quantum dynamics study for $H_2 + OH$ reaction in full dimensions. The numerical calculations show however that the straightforward TD wavepacket method using a single set of Jacobi coordinates is inefficient for carrying out such state-to-state studies. The computational cost is at least an order of magnitude larger than our previous calculations that do not resolve final states of the product. This leads to the development of a reactant-product decoupling (RPD) approach for general state-to-state dynamics studies. In the RPD approach, the calculation of the full-wavefunction is split into that of reactant and product components. The calculation of the reactant component is independent of that of the product components through the use of absorbing potentials. The calculation of the product component is relatively straightforward because it involves only inelastic scattering calculations. This general RPD approach is efficient to apply to complex reactions with many arrangement channels and with long-range inelastic interactions. Numerical test studies of the RPD approach to three dimensional triatomic reactions demonstrated the efficiency and accuracy of the RPD approach to state-to-state dynamics studies. In particular, the RPD approach is even more efficient to ap-

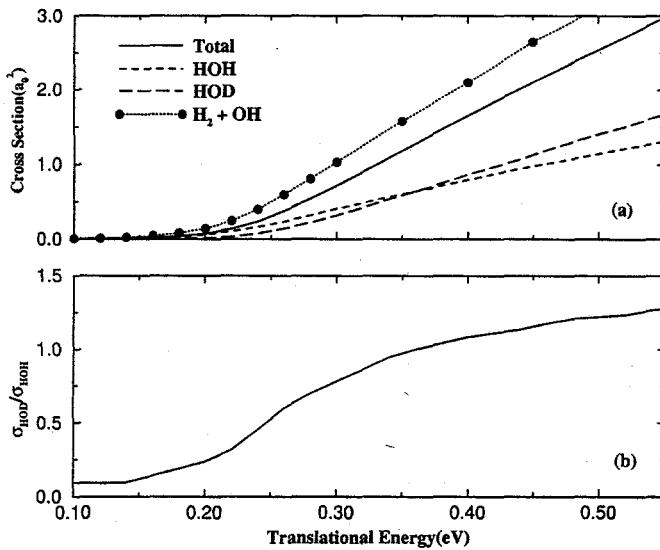


Figure 3: Calculated reaction cross sections for the reaction of $\text{HD} + \text{OH} \rightarrow \text{H} + \text{DOH}, \text{D} + \text{HOH}$.

ply to unimolecular reactions including photo fragmentation dynamics. Work in this area is in progress.

We have recently presented a first full-dimensional quantum dynamics study for the reaction $\text{H}_2 + \text{CN} \rightarrow \text{H} + \text{HCN}$ on a new *ab initio* potential energy surface of ter Horst, Schatz and Harding. Our theoretical calculation has obtained the following results.

(1) The PA5D (potential averaged 5D) treatment for the CN bond gives total (final states-summed) reaction probabilities that are indistinguishable from the exact 6D result when both reagents are at ground vibrational state. Small deviations between PA5D and exact 6D results are observed when either diatom is vibrationally excited. Thus as far as the total reaction cross section or rate constant is concerned, the CN molecule can be considered as a spectator.

(2) The vibrational excitation of CN slightly *decreases* the reaction rate while vibrational excitation of H_2 considerably *enhances* the reaction. This is directly related to the structure of the potential saddle point which is "earlier" in the entrance channel with a stretched H_2 bond length but a slightly *shrunk* CN

Figure 4: Calculated reaction probabilities for the reaction of $\text{HO}(j_1) + \text{CO}(j_2) \rightarrow \text{H} + \text{CO}_2, \text{D} + \text{HOH}$.

bond length.

(3) The rotational excitations of H_2 and CN increases the *individual* reaction probabilities for fixed total angular momentum $J=0$. The effect is more pronounced for CN rotations.

4) The comparison of calculated rate constant with experimental data suggests that the *effective* barrier of the TSH3 surface may be too high by about 0.3 kcal/mol.

(5) From both a short reaction time directly observed from the wavepacket propagation and the inactivities of excited vibrational states of CN, we conclude that the $\text{H}_2 + \text{CN}$ reaction is a direct abstract reaction. Firstly, if the reaction goes through an insertion process to form the H_2CN adduct, one would expect a much longer propagation time due to resonances. Secondly, the insertion mechanism requires contributions from excited CN vibrational states because the H_2CN complex has a much stretched CN bond length ($2.30 a_0$) clearly supports the mechanism for a direct abstraction reaction.

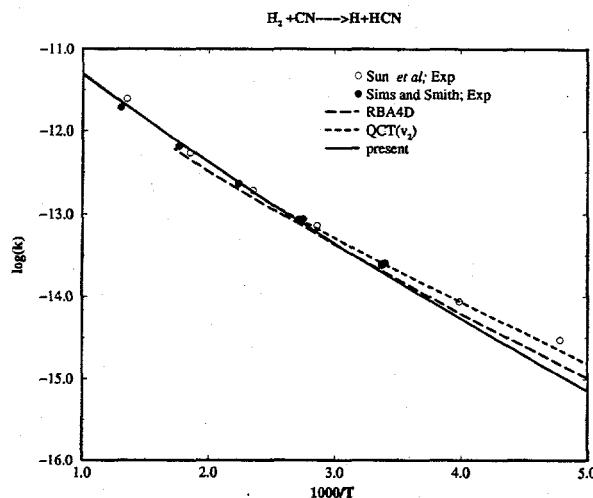


Figure 5: Comparison of the present theoretical rate constant for the reaction of $H_2 + CN$ at ground state with the experimental thermal rate, the RBA4D quantum calculation, and the QCT calculation with ZPE correction for the bending mode of HCN.

Publications:

1. D.H. Zhang and J.Z.H. Zhang, "Accurate time-dependent quantum scattering calculation for diatom-diatom reaction with branching: $HD + OH \rightarrow H + DOH, D + HOH$," *Chem. Phys. Lett.* **232**, 370 (1995).
2. D.H. Zhang, J.Z.H. Zhang, Y. Zhang, D. Wang, and Q. Zhang, "Quantum dynamics study of the reaction $HD + OH \rightarrow H + DOH, D + HOH$," *J. Chem. Phys.* **102**, 7400 (1995).
3. D.H. Zhang and J.Z.H. Zhang, "Quantum calculations of reaction probabilities for $HO + CO \rightarrow H + CO_2$ and bound states of HO CO," *J. Chem. Phys.* **103**, 6512 (1995).
4. Y. Zhang, D. Zhang, W. Li, Q. Zhang, D. Wang, D.H. Zhang, J.Z.H.

Zhang, "Quantum dynamics study for $D_2 + OH$ reaction," *J. Phys. Chem.* **99**, 16824 (1995).

5. T. Peng, D. H. Zhang, and J. Z.H. Zhang, "Reaction of $O(^1D) + H_2 \rightarrow HO + H$, A three-dimensional quantum dynamics study," *Chem. Phys. Lett.* **248**, 37 (1996).
6. J. Dai and J.Z.H. Zhang, "Time-dependent spectral calculation of bound and resonance energies of HO_2 ," *J. Chem. Phys.* **104**, 3664 (1996).
7. J. Dai and J.Z.H. Zhang, "Time-dependent wavepacket approach to state-to-state reactive scattering and application to $H + O_2$ reaction," *J. Phys. Chem.* **100**, 6898 (1996).
8. W. Zhu, Jiqiong Dai, and John Z.H. Zhang, "State-to-state time-dependent quantum calculation for reaction $H_2 + OH \rightarrow H + H_2O$ in six dimensions," *J. Chem. Phys.* **105**, 4881 (1996).
9. Jiqiong Dai, Wei Zhu, and John Z. H. Zhang, "Energy-dependence of state-to-state reaction probabilities for $H_2 + OH \rightarrow H + H_2O$ in six dimensions," *J. Phys. Chem.* **100**, 13901 (1996).
10. Tong Peng and John H. Z. Zhang, "A reactant-product decoupling method for state-to-state reactive scattering," *J. Chem. Phys.* **105**, 6072 (1996).
11. W. Zhu, T. Peng and J.H. Z. Zhang, "Reactant-product decoupling method for state-to-state reactive scattering: A case study for 3D $H + H_2$ exchange-reaction ($J = 0$)," *J. Chem. Phys.* **106**, 1742 (1997).
12. J. Dai and J.H. Z. Zhang, "The application of Reactant-product Decoupling method in the state-to-state calculation of $D + H_2(v = 0, j = 0) \rightarrow H + HD, (J = 0, 1)$," *J. Chem. Soc. Faraday Trans.* **93**, 699 (1997).
13. J.Z.H. Zhang, J. Dai, and W. Zhu, "Development of Accurate Quantum Dynamical Methods for Tetraatomic Reactions," (Feature article) *J. Phys. Chem.* **101**, A, 2746 (1997).

14. S. C. Althorpe, D. J. Kouri, D.K. Hoffman, and J.Z.H. Zhang, "Reactant-product decoupling approach to state-resolved reactive scattering: Time-independent wavepacket formulation," *J. Chem. Soc. Faraday Trans.* **93**, 703 (1997).
15. W. Zhu, D.Y. Wang, and J.Z.H. Zhang, "Quantum dynamics study of Li + HF reaction," *Theo. Chem. Acct.* **96** 31 (1997).
16. D.Y Wang, W. Zhu, J.Z.H. Zhang, and D.J. Kouri, "Reactant-product decoupling approach to half-scattering problems: photodissociation of H₂O in 3D", *J. Chem. Phys.* **107**, 751 (1997).
17. W. Zhu, J.Z.H. Zhang, Y.C Zhang, Y.B. Zhang, L.X. Zhan, and S.L. Zhang, "Quantum dynamics study of H₂+CN → HCN+H reaction in full dimensions," *J. Chem. Phys.* **108**, 3509 (1998).