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System Reliability Assessment with an Approximate
Reasoning Model

S. W. Eisenhawer, T. F, Bott, T. M. Helm and S. T. Boerigter
Technology and Safety Assessment Division
Los Alamos National Laboratory
Los Alamos, New Mexico USA

Abstract

The projected service life of weapons in the United States nuclear stockpile will exceed the
original design life of their critical components. Interim metrics are needed to describe weapon
states for use in simulation models of the nuclear weapons complex. We present an approach to
this problem based upon the theory of approximate reasoning (AR) that allows meaningful
assessments to be made in an environment where reliability models are incomplete. AR models
are designed to emulate the inference process used by subject matter experts. The emulation is
based upon a formal logic structure that relates evidence about components. This evidence is
translated using natural language expressions into linguistic variables that describe membership
in fuzzy sets. We introduce a metric that measures the “acceptability” of a weapon to nuclear
deterrence planners. Implication rule bases are used to draw a series of forward chaining
inferences about the acceptability of components, subsystems and individual weapons. We
describe each component in the AR model in some detail and illustrate its behavior with a small
example. The integration of the acceptability metric into a prototype model to simulate the
weapons complex is also described.

Introduction

Operational requirements and the availability of limited resources often
dictate that decisions about the performance, reliability and replacement or
refurbishment of important technical systems be made in the absence of
complete data and validated system reliability models. Such a situation exists for
the United States nuclear weapons complex (NWC). The projected service lives
of currently existing nuclear weapons systems will exceed the original design life
of their critical components. Extrapolating available reliability and performance
data for these weapons systems to cover the now extended component lifetimes
will require considerable effort. Major efforts are under way to integrate the
available test data — from aboveground experiments and underground nuclear
tests, as well as from advanced numerical simulations of weapon performance,
into predictive reliability models that will provide a solid basis for such
extrapolation. These efforts are part of the Department of Energy’s (DOE)
Science-based Stockpile Stewardship Program whose goal is to assure the
continued reliability and safety of the U.S. nuclear arsenal without nuclear
testing. Meanwhile, important decisions about the capacity of the NWC must be
made in the near term to allow for long lead-time construction and research and
development projects.

As part of a larger effort at Los Alamos to understand this decision
process we are developing a prototype NWC simulation model. One element of
this project is the search for interim metrics that can be developed rapidly but




that adequately describe the state of a weapon system using currently available
evidence. Metrics can provide a useful time-dependent snapshot of the stockpile
and will be used to measure how well the NWC of the early twenty-first century
operates. Interim metrics should provide enough information to assess the
likelihood and potential consequences of crippling maintenance or
manufacturing bottlenecks, cost over-runs and other undesirable outcomes in
different NWC configurations and operations schedules. Finally, relatively
simple interim metrics provide a link between current planning approaches and
advanced decision analysis tools that incorporate adaptive modeling methods.

We begin by briefly discussing the principal elements of an AR model.
The application of AR in determining the acceptability of a single component is
then discussed. We show how different types of data and judgments about their
relative quality can be combined. Next the problem of aggregating component
acceptability to infer individual weapon acceptability is considered. A
numerical example is provided to show how a pilot AR model is being
implemented. The subsequent inferences associated with aggregation to the
weapon class and stockpile levels are discussed briefly. Finally we describe how
the results from this work are being integrated into a simulation model for the
NWC.

Overview of the Methodology

In this paper we describe the development of an interim performance
metric using the theory of approximate reasoning (AR) (Zadeh 1976) that
emulates the inference process used by an expert or group of subject matter
experts in making an evaluation. The metric proposed here is the “acceptability”
of a weapon to nuclear deterrence planners. We treat acceptability as a linguistic
variable whose gradations are expressed by three fuzzy sets into which the
weapon states can be classified: nominal (N), marginal (M) and inadequate (I).
The nominal acceptability set contains weapons that would be fully capable of
performing their design function. Within this set there would be no reason to
prefer one nominally acceptable weapon to another. The marginal acceptability
set contains weapons for which there is some cause for concern. A nominal
weapon is always preferable to one classified as marginal. Finally the inadequate
acceptability set contains weapons judged to be seriously deficient and requiring
some corrective action.

Although the acceptability of a complete weapon is the first desired
output from the AR model, the assignment of a weapon to an acceptability set is
based on the states of a selected number of components and subsystems within
the weapon. Each of these entities is similarly assigned membership in
acceptability fuzzy sets using data on the state of the component or subsystem
and an inference rule base that maps a natural language description of
component state into acceptability set membership. The overall weapon
acceptability is inferred using additional rule bases with individual components
and subsystem acceptabilities as antecedents.




The information used to infer component or subsystem acceptability may
be quantitative or qualitative. Fuzzy sets are used in AR to provide the
capability to “hedge” which acceptability set is to be inferred from this
information. This provides a measure of the ambiguity encountered in assigning
a component to a particular set and reduces the number of sets needed to
accurately describe the features of the data and the inferences drawn from it.

Characteristics of Approximate Reasoning

The theory of approximate reasoning provides a robust and adaptable
formalism for emulating a series of expert judgments using both quantitative and
qualitative information. We briefly describe the major features of AR below.

Information, Evidence and Uncertainty

The general structure underlying the AR method discussed in this paper
is shown in Fig. 1. We begin with some universe of information about a weapon
whose acceptability is to be determined. This universe consists of both
qualitative and quantitative data. The information may not be in a form that is
immediately useful in the inferential process; some processing of the data may be
required. We denote the processed data as a body of evidence and only elements
within it will be considered in the AR model. Elements of evidence must be
related to each other in some definite way in order to draw inferences. This
ordering is achieved by way of formal structures with the logical implication
operation used to define the inferences. An inference may be related to other
elements of evidence or earlier inferences to produce subsequent inferences. In
this manner the chain of forward-chaining inferences that is characteristic of an
AR model is generated. By carefully constructing this inference chain, a final
inference of interest can be obtained. The algorithmic nature of an AR model
helps to ensure that the inferential process is traceable and reproducible.

The output from the logic structure is a description of the system called a
state vector. The state vector is a concise description of a system, in this case the
weapon undergoing the acceptability evaluation. The elements of a state vector
are always assumed to include some component of uncertainty that reflects
imprecision or imperfect knowledge of the system state. Finally the system state
vector is used in a decision model where some definite statement about the
system is inferred. Note that as we move through the process the level of
abstraction increases.!

! The process can be viewed as a composition of set functions mapping from the universe of
information to a set of decisions. :




Abstraction

Figure 1. Overall structure for approximate reasoning model. (CP Structure.eps)

The relationship between the universe of information and a body of
evidence is shown in Fig. 2. The universe of information consists of what can be
considered “raw” information about the weapon. In the present application these
include component ages, surveillance data describing defects and out-of--
specification conditions and the results of component testing. Information
processing is needed to make this data useful. Processing occurs via
phenomenological models, detailed numerical simulation and specific expert
judgment. These operations place a piece of information in a useful context for
drawing inferences about acceptability. Information of this sort forms the body
of evidence.

Fuzzy Sets and Linguistic Variables

In an AR model the elements of evidence are handled as linguistic
variables. That is, natural language descriptors are used. For example we can
characterize the temperature in a room as “too cold”, “comfortable” or “too hot”
without actually measuring the temperature. The descriptors are used to define
sets in which the variable of interest, in this case the temperature in the room,
may belong. The sets used in approximate reasoning are fuzzy. That is, a variable
may belong to several sets, which might traditionally be considered to be
mutually exclusive.




Figure 2. Conceptual relationship between the universe of information and a
body of evidence.

For example, the temperature could be assigned membership in all the
fuzzy sets {Too Cold}, {Comfortable} and {Too Hot}. Membership in a fuzzy set -
can vary between zero and one, with one implying full membership and zero
non-membership. For quantitative elements of evidence, the degree of
membership (DOM) in a set is assigned using membership functions. The

numerical value of the degree of membership in a set 5; is determined by w(x,S;),

where u(x,Sj) is the membership function. One possible set of membership

functions for the room temperature is shown in Fig. 3. If the temperature in the
room is 70 F then we assign DOMs of 0.5 in {Too Cold} and {Too Hot} and a
DOM of 1.0 in {Comfortable}. We denote the three degrees of membership in

these sets by the vector yr = [0.5, 1, 0.5] and membership in {Comfortable} for

example, is p(T, Comfortable) = 1.0. It is important to note that a small change in

temperature will have a similarly small effect on the degrees of membership in
the sets. A traditional approach would use threshold values to define the sets.
With this approach a particular temperature can only belong to one set. Such sets
are referred to as crisp and a small change in temperature could completely
change the set to which it belongs. So far we have been dealing with quantitative
measures for temperature. However we might chose instead to use subjective
judgment to qualitatively define the room temperature. Then the degrees of
membership in the sets can be assigned directly. For example the judgment “a
little too cold” could be converted directly to a degree of membership vector .of




vr = [0.3, 0.7, 0] without explicit membership functions. Note that when

employing either quantitative or qualitative temperature measures, the use of
fuzzy sets allows for ambiguity in classification of the temperature.
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Figure 3. Membership functions for fuzzy sets used to describe room
temperature. (FLMF21)

An element of information can be either quantitative or qualitative but it is
important to note that in either case it is almost inevitably uncertain. If an '
element is defined numerically it is treated as a classic random variable
characterized by a probability density function. Definition of the parameters in
the density function then characterizes the uncertainty. A qualitative element of
evidence is always considered to be a linguistic variable. These too canbe
stochastic.

Organizing Evidence using a Logic Structure

The connection between the elements in the body of evidence and a logic
structure is shown in Fig. 4. The logic structure defines a set of relationships
between the elements of evidence. The nature of the individual branch junctions
depends upon the particular type of relation used. A relation is a general
function that maps multiple inputs into a single output. Many different types of
relations, both numerical and logical are possible. However in an AR model the
only relation used is formal logical implication. We refer to this as an implication
junction. Many of the implications are of the form “If A and B then C”, or “A and
B implies C”, written symbolically as

(AMB)—>C.

For example, assume that the acceptability of a weapon is determined completely
by two components A and B.

Implication 1: If the acceptability of Component A is nominal and the
acceptability of Component B is inadequate then the acceptability of the
Weapon is inadequate.




The component acceptabilities are linguistic variables and are the antecedents of
the implication. The consequent is “the acceptability of the Weapon”. As noted
earlier, linguistic variables are allowed to have membership in as many fuzzy
sets as are needed so that a reasonably complete description of the quantity is
possible. In this case we need 3 x 3 = 9 different implications to cover all the
possible combinations of the two antecedents. We refer to this set of implications
as a rule base. The complete form of the inference rule is

“(Ais Ajand B is Bj) and (If Aj and B} imply Ck) then Ck”
or
[(Ai * By M (A; A Bp— G, Ck -

This statement is a special logical construct known as the modus ponens ,
tautology and is the basic form of rule base used in all AR models. It can be seen
that the combination of Implication 1 above and the statement “the acceptability
of A is nominal and the acceptability of B is inadequate” is of exactly this form.

Elements of Evidence
Universe of Information

|
Element with ]
|
]

Uncertainty Rel
elation
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Weapon System
State Vector
4\' Logic Structure A

Figure 4. The relationship between a body of evidence and the logic structure
used to evaluate it.

Statements of the modus ponens form are evaluated algorithmically in an
AR model. We represent the nine implications in the rule base in Table IA. The
shaded box is Implication 1. The expert judgment incorporated into this rule
base will be discussed shortly. To illustrate how inferences are drawn in
practice, let us arbitrarily assign acceptability membership vectors for the two

components of W(A) = [.3, .6, .5] and ¥(B) = [.4, .7, .5]. That is, Component A has
DOMs of y(Inadequate) = .3, wy(Marginal) = .6, and p(Nominal) =.5. Because

both components have membership in all of the acceptability sets it is reasonable
to expect that all of the implications in the rule base should be considered. The
relative strength of these implications is determined using the max-min rule -




(Ross 1995). In the first phase of the rule, the minimum degree of membership
for the antecedent pair is found for each element in the rule base. This is shown
in Table IB. The logic behind this step is that the strength of an individual rule is
determined by the weaker of the antecedents. In the second phase of the rule, the
maximum degree of membership of the consequent sets from phase 1 is found.
Referring to Table IB, in the case of the inadequate acceptability set this is
u(Inadequate) = 0.4 and the membership vector for the weapon is {C) = [4, .6,
.5]. The principle here is that for each consequent set the strongest rule should
govern. In this particular case no clear-cut performance is possible. This is
perfectly reasonable given the assumed degrees of membership for the
antecedents. For now we might express the consequent linguistically as “ the
weapon state is marginal”. A rule base to state explicitly how such weapon state
vectors should be evaluated will be presented below.

Table IA.

ArB—-C

M N
A M M
| I
M N

B

Table IB.
ArB—-C

N 5 I.4 M .5 N .5
A Moo I .4 M .6 M5
I3 1.3 1.3 1.3
1.4 M7 N .5

B

AR Model for Reliability Assessment

An overview of the inductive logic structure used for determining
weapon acceptability is shown in Fig. 5. The elements of evidence fora NWC
system state assessment consist of data about individual components in




individual weapons and judgments about the quality of that data. The desired
final output of the AR model for use in modeling the NWC is the acceptability of
the nuclear weapons stockpile. To make this final inference it is necessary to
make other subsidiary inferences about the acceptability of individual
components, subsystems, weapons and weapon types. This series of forward
chaining inferences is characteristic of AR models. As noted earlier we focus
here on aggregation to the level of individual weapon.

Component
Level
Evidence
Component
Acceptability
Subsystem
Acceptability
Weapon
Other Component Evidence Acceptability
Weapon
Other Subsystems Type
---------------------------- Acceptability
Stockpile
Other Weapons Acceptability
Other Weapon Types

Figure 5. Overall logic structure for determining stockpile acceptability.

Acceptability for an Individual Component

Figure 6 shows the logic structure used to draw an inference about the
acceptability of a single component. Here F denotes fraction of service life, D
denotes a measure of defects or out of specification conditions and R is a
quantitative reliability estimate for the component? All of these elements of
evidence are time-dependent. Q is a linguistic variable used to evaluate the
quality associated with an element of evidence. We start by discussing the
characteristics of each element of evidence and then explain how they are
combined to draw the necessary inferences.

? The actual component lifetimes, defect rates and reliability metrics for nuclear weapons are
classified. All numerical values used in this paper are for illustration purposes only.
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Figure 6. Logic structure used to determine component acceptability.

Q

Fraction of Service Life, F
The fraction of service life for a component at time t is just

F=(t-t) / t,

where t; is the time of manufacture and t, is the specified service life of the
component. The service life is determined primarily during initial design testing
and for nuclear weapons reflects the results of underground tests as well as
evaluations of accelerated aging units. Service life therefore incorporates
implicitly the judgments of the weapon designers and component engineers.
Service life may change as a result of the surveillance of weapons over time.
Finally service life is component-based so to infer weapon acceptability it will
always be necessary to define intermediate rule bases that allow this evidence to
be combined.

In order to use F in the AR model it is first necessary to decide upon the
natural language expressions that describe it sufficiently. One obvious set
would be “small”, “medium” and “large” and that therefore any value of F will

be a member of one or more of these sets, F € {Small, Medium, Large}. Three
straightforward inferences that could be drawn immediately are

If F is small then the component acceptability is nominal.
If F is medium then the component acceptability is marginal.
If F is large then the component acceptability is inadequate.

In fact an inference of this form is always the first step in the consideration of F
for any component. Therefore we chose to characterize these linguistic variables

immediately using the expressions for acceptability. That is, F, € {Inadequate,
Marginal, Nominal}.




Numerical values of F must be converted into degrees of membership in
these sets before the information can be processed in the AR model. This is done
using membership functions such as those shown in Fig. 7. These membership
functions must be defined for each component and can vary in shape (subject to
certain consistency constraints) and in the locations where full membership in a
particular set occurs. Referring to Fig. 7, if F = 0.5 for Component C,, then at this
particular time it has degrees of membership in {Inadequate}, {Marginal} and

{Nominal} of 0, 0 and 1.0 respectively, v:(C) = [0, 0, 1]. Similarly, if F = 1.6, then
Y:(C) =10, .75, .25]. Note that in the latter case F has membership in two of the

acceptability sets. Although we have defined all of the membership functions in
this paper so that a specific element of evidence will have non-zero membership
in at most two fuzzy sets, this is not an AR requirement. If for example in Fig. 7,
the intercept with the abscissa for {Inadequate} were moved leftward from F =
1.5 to 1.0, then for values of F in the interval [1.0, 1.5], non-zero membership in
all three sets would occur. A set of membership functions for F must be defined
for each component in the system.

10 Nominal Marginal Inadequate
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Figure 7. Example membership functions for fraction of service life, F.

Measure of Defects or Out —of-Specification Conditions, D

Components in nuclear weapons follow the familiar bathtub curve for
occurrence of defects: birth defects are seen at early time, followed by a long
period where defects occur rarely and a final stage where defects appearatan
increasing rate. In the past, weapon systems have been retired from the stockpile
before this final stage was reached so little data exists on how rapidly the defect
rate may increase. Observations of defects or out-of specification components
are made as part of an extensive surveillance program that includes both non-
destructive and destructive testing. Statistical models are then employed to
predict the probability of a number of defects as a function of time. D is also
either component or subsystem based so some aggregation method is required to




evaluate an individual weapon. How does the presence of a number of defects
or out of specification conditions affect the acceptability of a component? If a
reliability model does not exist for the component then we might infer that as the
number of defects increases the likelihood of a condition that could affect
weapon performance - a lethal defect would increase. We can express this
likelihood as a linguistic variable by assigning membership to the fuzzy sets
{Extremely Unlikely}, {Very Unlikely}, {Unlikely}, {Likely} and {Very Likely}.
Modifiers such as “extremely” and “very” are referred to as hedges and are used
in AR to represent the qualifiers often employed by subject matter experts.
Figure 8 shows notional membership functions for assigning numbers of defects
or out-of-specification conditions to the likelihood metric sets. It is important to
note that we use the expression “likelihood” in the sense that it “supplies a
natural order of preference among the possibilities under consideration”
(Thomas 1995). That is, something that is said to be “very likely” is understood to
have a more realistic chance of happening or to occur more frequently than -
something that is “likely” or “extremely unlikely.” However it must be
emphasized that the likelihood linguistic variable is not to be confused with
quantitative probability nor do we intend our use of likelihood to be associated
directly with the likelihood function of probability theory.

Extremely  Very Unlikely Likely Very
Unlikely Unlikely Likely
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Figure 8. Example membership functions for number of defects, D. -

Both defect rate and reliability are explicitly model-based. Therefore it is
necessary to incorporate some judgment about the quality of the data and model
that are being used. This evaluation is done by incorporating a linguistic
variable, Q that represents an expert judgment about the quality of the
prediction. The sets used for Q are Q € {Poor, Fair, Good}. Several approaches

for assigning degrees of membership in these sets using expert elicitation are




discussed in (Eisenhawer 1998). We will discuss a rule base that uses D and Q
shortly.

Reliability, R

Reliability estimates for weapon systems beyond their original design life
are not currently available. However, for certain components sufficient
accelerated aging data and validated reliability models exist so that beyond-
design life reliability can be predicted. For such components this metric
naturally is very useful. Additionally, as the results of Science-Based Stockpile
Stewardship appear, reliability models for other components and subsystems
will become available and will be incorporated into the AR model. Figure 9
shows a set of notional membership functions for R. Here we use the natural
language expressions ranging from very high to very low to describe the fuzzy
sets to which numerical values of R are to be assigned. For very high
performance systems it would be reasonable to expect that 1 - R << .01 for an
assignment to {Nominal} and this would be incorporated into the membership
functions accordingly. As noted above, the quality variable Q is also used with
this metric.

Very Low Medium High Ve
Low 7 Higr%

Degree of Membership

Component Reliability, R

Figure 9. Example membership functions for reliability, R.

Figure 10 shows all three of the elements of evidence as a function of time.
It is evident that the three are closely related. Service life is initially determined
before the component or system goes into service. In some cases the
determination of service life may be derived from a reliability model. As
surveillance data becomes available, realistic estimates for numbers of defects
become possible. This may result in modifications of service life or changes in
reliability estimates. For the case considered here, it is realistic to assume that
the AR model must initially operate with very little defect and reliability
evidence.
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Figure 10. Relationship between the three elements of evidence used to measure
component state.

Inference Chain for a Single Component
Each node in Fig. 6 is an inference of the form discussed earlier. We

consider first Node 1 associated withD and QQ,. The importance that we attach
to the likelihood of a lethal defect certainly depends upon some consideration of
the quality of the data and model used to estimate it. We incorporate this
weighing of the evidence into the AR model by explicitly defining how
component acceptability will be inferred from D and Q. One possible rule base
to do this is shown in Table II. This rule base reflects a positive bias towards
weapon function. Good data is required to convince an expert that there is a
problem with a weapon. Other wise the weapon is assumed to be functionally
nominal.

Table II.

D/AQ - Ap




The shaded box corresponds to the rule: “If the likelihood of a lethal defect is
unlikely and the quality is judged good, then the component acceptability is
marginal. “. In this version of the rule base the inference that the acceptability is
nominal can occur when the quality is judged good only if the number of defects
is assigned to {Extremely Unlikely}. However if Q is poor then even an
assignment of D to {Unlikely} will yield in a nominal acceptability. Underlying
this rule base is a perspective that poor evidence should not be given too much
influence.

A similar inference must be drawn for the reliability evidence. Here the
reliability estimate is placed into context by considering how confident one feels
about the surveillance data and the statistical model being used. A rule base
similar to Table II that allows this assessment is given in Table III.

Table I11.

RAQ — Ap

~
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Node 3 in Fig. 6 is an example of aggregation. Here two acceptability
measures must be combined to infer a joint acceptability. The rule base for this is
shown in Table IV. The structure of this rule base is identical to that in Table II
and the actual inferences are the same as those discussed earlier in the discussion
of modus ponens rule bases and the max-min rule (Tables I). Only the linguistics
used to describe one of the antecedents has changed. The shaded box
corresponds to the rule: “If the defect rate acceptability is marginal and the
fraction of service life is nominal then the aggregate acceptability is marginal.”
Several characteristics of this rule base should be noted. First, both antecedents
are given the same importance in the inference. Therefore the rule is symmetric
about the right diagonal. If the expert judgment were that defect evidence
should be given more importance then the rule base would be changed to reflect
this judgment. Secondly if either acceptability is “inadequate” then so is the
aggregate. Finally, if there is no defect evidence then when using this rule base
" Ap is given full membership in {Nominal}. In this case the aggregate ,
acceptability reflects the judgment based upon the service life evidence only.




Table IV.

m 2 IR

A rule base of the same form is used for Node 4 to obtain the inferred
acceptability for a component. This is shown in Table V. Again if there is no
reliability evidence then the other antecedent that uses the F and D evidence
alone determines the inference.

Table V

AR A 2 A

N I M
Ay, M I M
I I I
I M N
App

Aggregation of Component Acceptability
The inductive logic structure for inferring weapon acceptability is
designed to allow for the evaluation of several alternatives

1) all components are equally important
2) certain components are especially important
3) the acceptability of subsystems must be considered.

Note that these considerations arise because of the absence of a system reliability
model. The AR structure therefore must incorporate logic that represents subject
matter experts’ judgments about how to evaluate these possibilities. In this

paper we consider only the first and third cases. Nuclear weapons systems are




not highly redundant and therefore all major components can be considered to
be of equal importance.

If all components are equally important then aggregation to the weapon
level proceeds as follows. First find the maximum degree of membership in each

acceptability set over the set of all components. For example if C,) = [0, 0, 1],
YC) =12, .5, 4], and ¥(C;) = [.8, .2, 0] then this operation yields max y= W(C,, C,,
C,) = .8, .5, 11. The process of converting this vector into a definite natural
language expression is a form of defuzzification (Ross 1995). We currently use
the rule that if the degree of membership in {Inadequate,} is greater than 0.5 then
the weapon state is inadequate. If the weapon state does not satisfy this criterion
then it is tested in the same way to determine if the acceptability is marginal. If it
is neither inadequate nor marginal then the weapon state is nominal. In the
example here the result would be “the weapon state is inadequate”. Similarly if

YC,, C,, C) =1.0,.4,.7] then the weapon state is nominal. The defuzzification rule
is described compactly in Eq.1.

If u(max v, Inadequate) > 0.5 then the weapon state is Inadequate

If p(max y, Inadequate) < 0.5 and p(max vy, Marginal) > 0.5 then the weapon
state is Marginal ¢))
If p(max v, Inadequate) < 0.5 and p(max y, Marginal) < 0.5 then the weapon
state is Nominal

If subsystems must be considered then the concern involves how to
treat situations where multiple components that are “marginal” occur. We
illustrate the general approach by example. Suppose that two components C,
and C, form a subsystem as do components C, and C,. The two subsystems are
then combined into a higher level subsystem. Table VI shows the possible
outcomes. M;,; denotes that all three components C;, C, and C; have been
independently assigned to the marginal set. At this stage expert opinion is
required to determine which of these marginal possibilities should be considered
to represent an inadequate state. Suppose for illustration that all multiple
marginal possibilities greater than pairs are considered to be inadequate weapon
states. That is, we infer that if three or four components in a subsystem are
marginal considered singly then the subsystem itself should be considered
inadequate. Table IV then becomes Table VII. It is important to note that the
order in which the components are grouped is important because of the way in
which the inference rule bases are evaluated. That is, to apply this rule base to
make an inference about sub-system acceptability, the components must actually
be members of a distinct subsystem. '

The basic logic structure, generic membership functions and rule bases
described here are sufficient to allow evaluation of a system of arbitrary size. In

the next Section we consider a small system that illustrates the operation of an
AR model. -




Table VI

N I M34 M4 MS N
M, I M,,, M, M;; M,
AC1C2 M2 I M234 M24 M23 M2
M;, I M2, My, My, M,,
I | I I 1 I
I M,, M, M, N
Acscs
Table VII
N I M M M N
M, I I M M M
Aqc M, I I M M M
M,, I I I I M
I I I I I I
I M34 M4 M3 N
Acscy
Illustrative Results

For our example problem we consider the fictitious three component
weapon system shown in Fig. 11. Components 1 and 3 have only service life
elements of evidence associated with them while for Component 2 there exist
service life and defect rate information. Further, Components 2 and 3 comprise a
single subsystem. All components are assumed to be of equal importance. For
some time t, the membership functions for the components yield the degrees of
membership for F,, F,, D, and F; shown. Also the quality associated with D, is

judged to have degrees of membership of v, = [0, .6, .4] in { Poor, Fair, Good }.

Such a situation might occur if Component 1 had been replaced before time t and
the other components were becoming increasingly marginal as judged by service
life or an estimate of the number of defects present. ,

Also shown in Fig. 11 are the results of the evaluation of the implication rule base
for each node. For reference Node 1 corresponds to the rule base in Table I,
Node 2 uses Table II, the rule base for Node 3 is a two component version of
Table VI and Node 4 uses the rule defined in Eq. 1. We discuss each node briefly
below.
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Figure 11. Logic structure for illustrative weapon acceptability AR model.

As noted earlier, evaluation of a rule base proceeds according to the max-
min rule. Table VIII shows the evaluation for Node 1. The shaded boxes are
those that correspond to the maximum of the minima for each consequent set
with non-zero membership. In this case the degrees of membership for the
acceptability of Component 2 based upon the defect rate evidence is [.2, .6, 0].
Linguistically this corresponds to “the acceptability is marginal tending toward
inadequate.” Node 2 evaluates in a similar fashion to Ag, — [.2, .5, 0]. This may
appear somewhat surprising since F has a degree of membership in {Nominal} of

uw(F,)=0.5. However the consequent cannot have a non-zero membership in this
set because Ap, has no membership in {Nominal}. *

Table VIII
DAQ - A,
EU 0 N (0, 0) N ©,.6) N (0, 4)
VU 0 N (0, 0) M (0, 4)
U 8 N (8,0 56 | M3 2
D L .2 M (0, '2) ) i N
VL 0 10,0
PO

* The only numerical values for degrees of membership that appear anywhere in an AR model
are those associated with the elements of evidence. The sets to which these numbers apply
change as the chain of inferences is drawn.




Node 3 is an aggregation inference for a subsystem. The condensed
version of Table VI is shown in Table IX. For this example we assume that the
multiple marginal M,; (shaded in the Table) is judged to be of particular concern
and add the internal inference that M,; — . Note that by concluding that

multiple marginal components in this subsystem are unacceptable the degree of
membership in {Inadequate}has increased from 0.2 to 0.4.

Table IX.
AL MNAG— A
N-0 ~1=(0,0) "N-0,6)
A, M-5 1-(5,0) M,-(5,.6)
I-3 I1-(3,0) I1-(3,.6)
I-0 N-.6

Finally, at Node 4 the complete weapon acceptability is inferred. The
calculation of max y produces an acceptability vector for the system of max y=

[4, .5, 1] and according to Eq. 1 this evaluates to “Marginal”. That is, for the
notional elements of evidence presented, the corresponding AR model produces
a final inference that the state of the weapon is marginal. Given the nature of the
membership functions discussed above it is clear that the degree of membership
in {Inadequate} will increase as a function of time and that this particular weapon
will become increasingly unacceptable unless some corrective action is taken.

If no defect evidence were available then, for all other evidence the same,
max y = [0, .5, 1], which evaluates again to marginal. In this case however, the

state vector has zero membership in {Inadequate} and the interpretation of the
severity of the situation would be different. The state vector contains
information about how the acceptability metric is<changing.

Discussion

The weapon state vector and the weapon acceptability are time-dependent
because F, D and R for the components are functions of time. Therefore the AR
model must be run for a number of different times in order to understand how
the weapon state evolves. Figure 12 shows how the components of the state
vector can change and weapon acceptability degrades from nominal through
marginal to inadequate according to Eq. 1.
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Figure 12. Time-dependent behavior of the weapon state vector elements and
the acceptability metric.

It is also the case that the elements of evidence are stochastic. We expect
for example that the number of defects as a function of time is a random variable
characterized by a probability density function. The underlying distribution or
the parameters defining it may also be uncertain. This means of course that the
outputs of the AR model are stochastic as well. Thus rather than express the
acceptability as simply “marginal”, we now must make a statement such as “ at
the 90" percentile the weapon state is marginal”. We treat this situation by using
Monte Carlo simulation. This introduces additional considerations beyond the
scope of this paper that are discussed in Eisenhawer (1998). One can view the
addition of Monte Carlo sampling to AR as the analog of an expert’s expression
of confidence in his judgment.

As part of our research efforts at Los Alamos National Laboratory, we
have developed system-level tools based on the concepts of virtual
manufacturing for assessing the capability of the NWC to perform its mandated
mission. Los Alamos is the studying the science and developing the concepts
and methods for a new generation of “enterprise” modeling technologies to
address long-term planning options.

A comprehensive system model will be used to assess the performance of
future NWC manufacturing alternatives with the intent of identifying
production configurations that are best capable of achieving the goals and
objectives of the Department of Energy. It is during the process of searching

‘many alternatives that the intuition we seek about the real system performance
begins to emerge as a formal product of the computational experiment.




Applying the weapon acceptability metric is an essential element that enables us
to understand how well possible NWC alternatives actually meet expectations.

To maintain the weapon stockpile, DOE must decide when, where, and
the extent of intrusion required to upgrade and/or refurbish weapon
components. The weapon maintenance job is remarkably constrained by the
limited capability of the downsized NWC manufacturing infrastructure. The
present maintenance process relies on engineers, designers, and various subject
matter experts to produce schedules intended to extend the service life of
nuclear weapons. These schedules are referred to as Lifetime Extension Options
(LEO). Current LEO planning is a manually executed process — essentially a
guess and test methodology. Use of the Los Alamos NWC model will enable us
to rapidly develop globally optimal, component-by-component maintenance
strategies.

The ability to develop maintenance schedules using weapon
acceptability measures to optimize overall NWC system performance will be'a
significant improvement in how business is conducted by DOE. A model-based
approach can significantly reduce the cost and time it takes to produce LEOs and
will increase the overall effectiveness of the NWC manufacturing system.

At this time we are in the early stages of evaluating acceptability for a
stockpile of several thousand individual weapons of seven different types. Each
weapon in this model has seven individual components that in several cases are
actually subsystems themselves. The acceptability for various proposed LEOs
will be determined subject to infrastructure constraints imposed on NWC
performance. :

We anticipate that this is only the initial application for the approac
discussed here. We are working on incorporating AR into advanced, adaptive
models for the NWC and industry. In these models AR will be an important tool
in evaluating the fitness of solutions found by the adaptive search algorithms.
We expect to see enterprise models that incorporate AR and adaptive search
used to evaluate other manufacturing-related issues within government
operations and, eventually, throughout all of industry. The fact that a model of
the NWC can now quantitatively address an enterprise-level task of this
magnitude is a direct result of the development of the AR methodology
discussed in this paper.

Conclusions :

In this paper we have proposed an approach based upon the theory of
approximate reasoning for assessing the state of a system in the absence of a
complete reliability model. Such an approach is needed now for modeling the
NWC. Our approach is centered around an inductive logic structure that
specifies how the evidence on individual components and subsystems can be
used to draw inferences about the state of individual weapons and aggregations
of weapons up to the level of the national stockpile. The metric used to describe
the state of entities from components up to aggregations of weapons is
acceptability. Acceptability is a linguistic variable defined in terms of the fuzzy
sets {Nominal}, {Marginal} and {Inadequate}. Inferences about acceptability are
drawn using rule bases that describe how specific antecedents are related by




logical implication to a consequent. The sequence of forward-chaining inferences
emulates the evaluation process used by subject matter experts.

We have developed logic structures that allow different kinds of evidence
about a component to be combined. This logic also allows for the assessment of
evidence quality. Several possibilities for component aggregation have been
proposed, in particular a method for treating the case where components must
be treated as part of a subsystem.

Through the use of an illustrative example, the application of this
methodology to the assessment of a small fictitious system is described. The
time-dependent nature of the assessment is easily treated with the AR model and
the extension to a system where the evidence is stochastic is straightforward.

The acceptability metric has proven to be a useful metric in the
development of a NWC simulation model. We are encouraged by the results to
date and are working on incorporating approximate reasoning into an advanced,
adaptive model for the Complex. We suggest that the approach used here may
be applicable to other systems where decisions related to system performance
must be made without detailed reliability data.
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