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Infrasound Workshop for CTBT Monitoring
Santa Fe, New Mexico
25-28 August 1997

Foreword

by Rodney W. Whitaker, Los Alamos National Laboratory
Workshop Coordinator and Host

From 25 through 28 August 1997, the US Department of Energy and Los Alamos
National Laboratory hosted, in Santa Fe, New Mexico, an International Infrasound
Workshop for CTBT Monitoring . Over 60 partcipants from around the world attended
the meeting and presented talks on sensors, signal processing and analysis, propagation,
sources of noise and noise reduction, analysis of explosion data, and analysis of man-made
and other natural sources. There were two and a half days of presentations and one-half
day devoted to a tour of the DOE prototype infrasound array recently installed in Los
Alamos. The informal atmosphere promoted much discussion among the attendees.

During the last session, all participants contributed to a discussion of key technical issues
and future work, which is summarized in this document.

In this document, you will find the Workshop Agenda, list of participants, and abstracts
and view graphs from each presentation.

We gladly acknowledge the generous support of Ms. Leslie Casey, Program Manager of
the DOE Comprehensive Test Ban Treaty Research and Development Program, for
making the workshop possible. We also thank Jan Hull, Los Alamos Technical
Associates, for meeting coordination support and Jill Warren and Fran Chavez, Los
‘Alamos National Laboratory, for helping with the assembly of the proceedings.
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INFRASOUND WORKSHOP FOR CTBT MONITORING

Monday, August 25

Santa Fe, New Mexico
August 25-28, 1997

5:00 - 7:00 p.m. Registration and Welcome Reception - Poolside, Radisson Hotel

Tuesday, August 26

7:30 - 8:30

8:30 - 8:45
8:45 -9:00
9:00 -9:15

9:15-9:30

9:30 - 12:00

12:00 - 1:00

Continental Breakfast -- Poolside, Radisson Hotel

TECHNICAL SESSIONS — Kachina Ballroom
Opening Remarks

Department of Energy Welcome

Los Alamos National Laboratory Welcome

PTS/PREP COMM UPDATE
A Progress Report on the Establishment
of the IMS Infrasound Network

SESSION ONE: ARRAY DESIGN AND SIGNAL PROCESSING

9:30- 9:50

9:50 - 10:10

10:10 - 10:30

10:30 - 10:50

10:50 - 11:10

11:10 - 11:30

11:30 - 12:00

Infrasound Array Design with Respect to Detection
Slowness Estimation

A Comparison of Several Automated
Detectors for Infrasound Signal

Break
F-Statistics: A Tool for Infrasound Signal Detection

Automatic Processing of Infrasonic Data at the
Prototype IDC

Scismo-Acoustical Equipment Complex in Murmansk
Region (Russia)

Open Discussion

Working Lunch -~ Dining Room, Radisson Hotel

Rodney W. Whitaker
Leslie A. Casey

David J. Simons
Wendee M. Brunish

Douglas R. Christie

Robert R. Blandford

Kevin D. Hutchenson

Haydar J. Al-Shukri

Raymond J. Willemann
Charles N. Katz

Oleg M. Raspopov

Thomas Armstrong,
Moderator



1:00 - 5:00

6:30 - 9:00

SESSION TWO: ARRAY PERFORMANCE AND NOISE REDUCTION

1:00 - 1:20

1220- 140

1:40 - 2:00

2:00- 2:20

2:20 - 2:40

2:40 - 3:10

3:30- 3:50

Infrasound Detection: The French System

Capability Modeling of the Proposed International
Monitoring System 60-Station Infrasonic Network

Effects of Stratospheric Winds on Long Range Infrasonic
Propagation

High Altitude Wind Effects on Infrasound Network
Performance . .

Permeable Hose Characteristics and Noise
Reduction For Infrasound Monitoring

Break

Noise Reducers for Infrasound Detection

3:50 - 4:10 Relationship Between the Normalized Cross-Correlation

4:10 - 5:00

Function and the F-Statistic

Open Discussion

Banquet — Board Room, Radisson Hotel

Speaker:

Wednesday, August 27

7:30 - 8:30

8:30 - 10:00

10:00 - 10:40

Ludwik J. Liszka
Swedish Institute of Space Physics

Continental Breakfast -- Pooiside, Radisson Hotel

SESSION THREE: EXPLOSION MONITORING

8:30 - 8:50

8:50-9:10

9:10 - 9:30

9:30 - 10:00

About Estimations of thé Explosion Sources
Energy by Remote Acoustic Techniques

Long-Range Sound Propagation from Underground
Surface, and Near Surface Bursts with Small Yields

Infrasound Monitoring System of Nuclear
Explosion in the Atmosphere

Open Discussion

SESSION FOUR: DOE/LANL PROTOTYPE ARRAY

10:00 - 10:20 Development of a Prototype Infrasound System

10:220 - 1040 Infrasound Sensor For CTBT Infrasound Array Application

10:40-11:00 Break

Elisabeth Blanc

Dean A. Clauter

Joseph P. Mutschlecner

" Lawrence C. Trost

Terrance G. Barker

Heinrich W. Haak

Charles N. Katz

Douglas R. Christie,
Moderator

Sergey N. Kulichkov

Sergey N. Kulichkov
Jin Lai Xie
Zhao Hua Xie

Douglas O. Revelle,
Moderator

Rodney W. Whitaker

Richard P. Kromer



11:00 - 6:00  Lunch and Tour of US Department of Energy Prototype

Infrasound Array at Los Alamos National Laboratory

Board bus at hotel front enfrance

Thursday, August 28

7:30 - 8:30 Continental Breakfast -~ Poolside, Radisson Hotel

8:30 - 12:00 SESSION FIVE: LONG RANGE PROPAGATION
8:30 - 8:50 Numerical Modeling of Long Range Infrasonic Propagation

8:50- 9:10 Propagation Conditions and Localization of
- Infrasonic Sources

9:10 - 9:30 Travel Times for Infrasonic Waves in the Atmosphere
9:30-9:50 Break
9:50 - 10:10 Ukraine Infrasound Array proposal
10:10 - 12:00 Site, Site Survery, and Other Issues
12:00 - 1:00 Working Lunch - Dining Room, Radisson Hotel
1.00- 2:20 SESSION SIX: OTHER SOURCES OF INFRASOUND

1:00 - 1:20 Infrasound from Mining Explosions, Space Shuttles
and Meteors

1:20 - 1:40 The Infrasound Background for High Latitude CTBT
Stations

1:40 - 2:00 Bolides as Explosive Infrasonic Sources: CTBT Implications

2:00 - 5:00 SESSION SEVEN: DISCUSSION AND SUMMARY

v

2:00- 2:20 Final Discussion Related to Presentations

2:20- 2:40 Break

2:40 - 3:00 Discussion of Key Technical Issues for Future Work

3.00 - 5:00 Summary

James H. Hunter
Ludwik J. Liszka

Milton A. Garcés

Alexander Sytolenko

Rodney W. Whitaker

Eugene Herrin

Charles R. Wilson

Douglas O. Revelle

All

Douglas R. Christie,
Moderator

Rodney W. Whitaker,
Moderator
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INFRASOUND WORKSHOP FOR CTBT MONITORING

25-28 August 1997

Santa Fe, New Mexico
Key Technical Issues and Recommendations for Further Work
Douglas Christie and Rod Whitaker

This brief document summarizes input provided by a broad spectrum of participants
during the last session of the workshop.

Introduction

It is expected that the establishment of new infrasound stations in the global IMS
network by the Provisional Technical Secretariat of the CTBTO in Vienna will commence
in the middle of 1998. Thus, decisions on the final operational design for IMS infrasound
stations will have to be made within the next 12 months. Though many of the basic design
problems have been resolved, it is clear that further work needs to be carried out during
the coming year to ensure that IMS infrasound stations will operate with maximum
capability in accord with the specifications determined during the May 1997 PrepCom
Meeting. Some of the papers presented at the Workshop suggest that it may be difficult to
design a four-element infrasound array station that will reliably detect and locate
infrasound signals at all frequencies in the specified range from 0.02 to 4.0 Hz in all noise
environments. Hence, if the basic design of an infrasound array is restricted to four array
elements, the final optimized design may be suited only to the detection and location of
signals in a more limited pass-band. Several participants have also noted that the reliable
discrimination of infrasound signals could.be quite difficult if the detection system leads to
signal distortion. Thus, it has been emphasized that the detection system should not, if
possible, compromise signal fidelity.

Key Technical Issues

The material presented at the workshop has led to the identification of a number of
specific technical areas that require further work.

(a) Design of a noise-reducing pipe array which will preserve signal fidelity and provide
large improvement in signal-to-noise ratio at all frequencies between 0.02 to 4.0 Hz.

(b) Design of robust noise-reducing pipe arrays that will operate in a wide variety of
hostile environments.



(c) Development of theoretical techniques which can be used to predict the response of
pipe array and integrated pipe array/microbarometer systems to both wind-generated
micropressure fluctuations and infrasonic signals.

(d) Development of infrasonic noise models for all environments.

(e) Determination of the frequency content, signal correlation properties, and morphology
of infrasound signals from explosions with yields in the range from about 0.5 to 4.0 kT
at distances of up to 4000 km for all upper atmospheric wind conditions.

' (f) Optimal design of an infrasonic array that will provide good detection and location
capability at all frequencies between 0.02 and 4.0 Hz.

(g) Development of other noise-reducing techniques, such as the use of properly designed
barriers to suppress wind-generated micropressure fluctuations. One type was
presented by Ludwik Liszka of Sweden.

(h) Development of optimal automatic signal detection techniques for infrasound signals,
including techniques that can be used in the presence of continuous infrasonic
background noise such as microbaroms.

(i) Development of techniques for accurate identification of all infrasonic signals from
both man-made and naturally occurring sources.

() Consideration of in-the-field calibration that ideally would include some type of
remotely controlled acoustic excitation.

Recommendations

1. Experimental and theoretical work should be carried out during the fiext year to
determine standard robust designs for noise-reducing pipe arrays that can be used at
infrasound stations located in wet, arid, or arctic environments. These pipe arrays
should preserve signal fidelity and should provide a significant improvement in signal-
to-noise ratio at all frequencies between 0.02 and 4.0 Hz. Results of the theoretical
work should provide the response of both pipe arrays and integrated pipe array/

microbarometer systems to wind-generated noise and signals in the frequency band
from 0.02 to 4.0 Hz.

2. Field and laboratory studies should be carried out on the design of wind-noise reducing

structures that can reduce the influence of air turbulence at IMS infrasound stations
located in high-wind areas.

3. Detailed studies, including correlation studies, should be carried out on the properties
of the infrasonic background noise field in a wide variety of different environments.



These studies should make use of both existing data sets and new experimental
observations.

4. To preserve signal fidelity and to improve discrimination capability, infrasound data

should be sampled at 20 samples per second. Clarification of two CTBTO instrument
specifications is also recommended: (a) the dynamic range should be interpreted as the
system dynamic range and (b) the sensor response should be flat, to wuhm 3 dB, and
known over the pass-band of 0.02 Hz to 4.0 Hz.

5. Observational studies should be carried out of infrasound from large explosions at -
distances in the range of 100 to 4000 km. These studies should focus on detailed
observations of the morphology, correlation properties, and frequency content of
infrasound signals under all upper atmospheric wind conditions. Use of recently
digitized data from observations of actual nuclear explosions, or other large explosions,
could be beneficial to this effort. All signatory states should be encouraged to provide,
as soon as possible, (e.g., updating at each PrepCom) advance notice to the Provisional
Technical Secretariat of any large mining explosions or other large chemical explosions.
This is a precursor to the Confidence Building Measures section of the treaty, and these
explosions would be most useful as calibration events for the infrasound network
during the PrepCom period.

6. An informal workshop on the use of infrasound for CTBT verification should be held in
August or September 1998. This workshop should focus primarily on solutions to the

problems described above that need to be resolved prior to the installation of IMS
infrasound stations.

7. The design of a simple and cost-effective remotely controlled field calibration technique
is needed that would include some acoustic source. Isolation of the sensor from the
hoses and manifold would be desirable as well as good repeatability of the source.
Innovative ideas are necessary in order to find a low-cost solution, if possible.

8. It is strongly recommended that any new ideas on site survey issues be forwarded to
Douglas Christie in Vienna.



ESTABLISHMENT OF THE
IMS INFRASOUND NETWORK
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Dr. D. R. Christie

IMS - Infrasound
Provisional Technical Secretariat
Comprehensive Nuclear Test-Ban Treaty Organization
Vienna International Centre




ESTABLISHMENT OF THE
IMS INFRASOUND NETWORK
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- *PTS

e Summary: Working Group B Meeting
* 1997/1998 PTS Work Program
* PTS Issues

e Technical Issues
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COMPREHENSIVE NUCLEAR
TEST-BAN TREATY (CTBT)

FUS AT TIASIINA o g M SRR v S L WA ST A AN A TSI S e W el g L et

* Opened for signature on 10 September,
1996

* 144 States have signed the Treaty

* 6 States have ratified the Treaty
Fiji
Qatar
Uzbekistan

Micronesia

Japan
Mongolia

* 44 designated States must ratify the
Treaty before Entry Into Force

* Entry Into Force?



The Provisional Technical Secretariat

MAJOR PROGRAMS

* International Monitoring System (IMS)
 International Data Centre (IDC)

e Communications

* On-Site Inspection

e Evaluation (evaluation of all procedures and
products of the verification system)

i Policy (support for Preparatory Commission and
Working Groups) ‘

o Administration, Coordination and
Support

-



IMS SECTION OF THE PTS

STAFF PROFILE

1997 1998
* Management/ 1D 1D
Training 3P 4P
2G 2G
e Seismic 4 P 6P
3G 4G
e Infrasound 2P 3P
2G 3G
e Hydroacoustics 2P 3P
2G 2G
* Radionuciides 3P 3P
3G 4G

Total 27 35



INTERNATIONAL MONITORING SYSTEM

e 321 stations in 88 countries:

Country Total No. Infrasound
IMS Stations Stations
United States 38 8
Russian Federation 31 4
Australia 20 5
Canada 15 1
France 14 5
United Kingdom 11 4
China 11 2

Draft IMS Budget for 1998

Management, $1.8 million
Co-ordination
and Training
- Seismology $ 16.2 million
" Infrasound $ 2.5 million
. Hydroacoustics $ 4.8 million
Radionuclides $ 4.2 million

Total: $29.5 million”

Total Draft 1998 Budget for all Major
Programs: approx. $68.8 million
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1998 Infrasound Work Program

Site Surveys
10 Site Surveys to be carried out.
Surveys to be determined from a list of
23 specified stations.

Capital Investment
77 stations to be installed at sites

surveyed in 1997.

Certification |
5 stations to be fully certified and
operational by the end of 1998.




ISSUES

A. PTS Procedural Issues

B. Technical Issues

Supply of Equipment

Site Survey Requirements:
- Slopmg ground? i it

- Other topographical limitations.

Spacing Between Array Elements
(Array Configuration)

Wind-Noise Reducing Pipe Array Design

- Problems due to snow, freezing rain,
precipitation, dust, sand etc.

- Protection from animals, insects etc.

- Configuration and size: need signal-to-
noise enhancement at all frequencies
between 0.02 and 4 Hz



INFRASONIC ARRAY DESIGN PARAMETERS

Design requirements:
a) Good detection capability at all frequencies
b) Good directional capability at all frequencies

Wind-Generated Noise

<Los>

Gravity Waves Etc.

@patial coherenc)D (frequenc@

all
frequencies
0.02to 4 Hz

OPTIMIZED
PIPE ARRAY
DESIGN

require
N4 = diameter
of pipe array

wavelength

@reque@ @patial coherenc@

subsonic,
low frequency

significant enhancement of
S/N ratio at all frequencies

SITE SPECIFIC
FACTORS

OPTIMAL
INFRASONIC}
ARRAY
DESIGN

0.02to4 Hz

CONFIGURATION

Infrasonic Noise

primarily
6-second
microbaroms

@patial coherenc@

OPTIMIZED
ARRAY

should be
coherent
over array
aperture

G‘requenc@ (spatial coherenc@

Tow>
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Pipe Arrays for IMS Infrasound Stations

R R A 2 A o el U Pe o UL NI R
M N T AR T R R AR I RN

* PrepCom Approved Specification:
Detection capability at all frequencies between
0.02 and 4 Hz.

* Design Requirement:
Wind-noise suppression at all frequencies
between 0.02 and 4 Hz.

* Design Problem:

(a) Detection of 4 Hz signals:
- Must use small diameter (~20 m) pipe
array. '

- Good performance at 4 Hz, but poor
performance at longer periods. ‘

(b) Noise reduction at longer periods:
- Must use larger diameter (~100 m)
pipe array.
- Not suitable for detection of high
frequency signals.



Pipe Array Design:
Possible Solutions

4L S ST DA VRN TN I YO SRR e s, ) DTS Y I A

4-Element Arrav

1. Determine design with enhanced signal-to-
noise ratio at all frequencies (0.02 and 4 Hz).

 Unresolved problem

BRROREBIIGHENRRR

2. Optimise pipe-array design for maximum
signal-to-noise ratio at dominant frequency
(0.2 Hz).

* Poor detection capability at high frequencies.
. Poor discrimination capability.

3. Install independent high frequency and low
frequency pipe arrays with 2 microbarometers
at each array element.

 Inefficient use of resources.

* Coherency and spatial aliasing problems
unresolved.



Long period /

\ High frequency
pipe array

sub-array with
20 m diameter
pipe arrays

A

2km

Y

7-ELEMENT ARRAY

D R D e B N R R R ey SR T s

" |All technical problems resolved.

* Good noise suppression at all frequencies.
* Good detection capability at all frequencies.
* Resolves spatial aliasing and signal coherence problems.

* Detrimental influence of microbaroms is reduced.
* Good discrimination capability.

Cost
4-element array: $180000
4-element array with small-aperture
tripartite sub-array: $205000

Rl R R iR



SUMMARY .
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Problems which need to be resolved:

1. Optimal array size.

2. Optimal configuration and practical
number of array elements.

3. Optimal design for pipe filters.
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INFRASOUND ARRAY DESIGN WITH RESPECT TO
DETECTION AND SLOWNESS-ESTIMATION

Robert Blandford

Air Force Technical Applications Center
1300 N 17" Suite 1450
Arlington, VA 22209

Detection by means of an F-statistic correlator detector, and slowness estimation by means of optimized
beamforming are evaluated for CD 4-element arrays of 1 to 3 km aperture for signal correlation estimates -
from nuclear test infrasound waveform data spanning 1 to 80 seconds signal period, 1 to 40 km sensor
spacing, and source distances of 700 to 10,000 km.

The frequency-wavenumber dispersion parameters determined by Mack and Flinn (1971) are found to
model the data satisfactorily, and, also using observed S/N as a function of frequency for 2 kt explosions, it
is found that the 1 km aperture array gives the best detection and location capability. Capability is much
better in the 4-1 second pass band than in the 10-20 second passband due to better S/N and greater
bandwidth. The larger apertures are unsatisfactory for the 4-1 second period band due to the loss of signal
correlation at the larger sensor spacings.

INFRASOUND WORKSHOP FOR CIBT MONITORING



Design of Infrasonic Arrays

CTBT Informal Infrasound Workshop
Santa Fe, New Mexico

Robert R. Blandford
AFTAC, Directorate of Nuclear Treaty Monitoring

August 26, 1997



Design of Infrasonic Arrays

Trade-off between array aperture and signal correlation.

Large Aperture Microbarograph Array (LAMA) and AEDS
signal correlation data.

Detection theory for partially correlated signals in noise.

Slowness estimation theory for partially correlated signals in
noise.
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Plan of the Large Aperture Microbarograph Array (LAMA).
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Representation of Coherence
Mack and Flinn (1971)

2 [sin(2wk xsinA6) 2 .

2 = sin(2mAky)|

2Aky

2k OxsinAG

A

Wavenumber representation of waves at the same frequency but having
a range of azimuth and velocity.
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Representation of Coherence
Mack and Flinn (1971)

2Ttk OxsinAe | 2mAky

Infrasound Coherence, Parailel ..... and Perpendicular . —
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Coherence, T = 10, 5, 2, 1 Seconds
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Distance Between Sensors, km

Coherence as a function of intersensor distance for T=10, 3, 2, 1 seconds

according to equation (2) using A c=0.015 km/sec and A6=35 degrees as determined
from Mack and Flinn (1971), parallel and perpendicular to the wavefront.



Signal Models for Azimuth Estimation in Arrays

« Fixed but unknown
« Stochastic-Identical (Perfect Correlation)

« Stochastic

y]' = Sj(f_ Tj(e)) + n](t)



(0)-1km, (x)-2km, (+)-2km/7element
10 T

Azimuth Standard Error, Degrees

10° 10
Single-Channel Ampiitude S/N

Azimuthal error as a function of signal-to-noise for a signal period
of 1 seconds for the 4-element 1 and 2 km aperture arrays and for the 2 km, 7-
element array. From equation (4).



(o)-tkm, (x)-2km, (+)=2km/7element

Azimuth Standard Error, Degrees

10 10° - 10
Single-Channel Ampiitude S/N

Azimuthal error as a function of signal-to-noise for a signal period
of 1 seconds for the 4-element 1 and 2 kan aperture arrays and for the 2 km, 7-
element array. From equation (4).
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BP: no filter

Petit, 2.2 kt, near Tanana, ~15:00, 19 June 1962 at Palmyra (Small Fry)
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Tanana, 2.6 kt,1.65N, 157.28W, 16:08:52, 25 May 1962 at Palmyra (Small Fry)
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Tanana, 2.6 kt,1.65N, 157.28W, 16:08:52, 25 May 1962 at Palmyra (Small Fry)

BP- 0.05t0 0.2 Hz
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BP-0.3t0 1.0 Hz
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Cross-Correlation of Aligned Traces

1/2,1/3,2/3

Tanana at Palmyra (Small Fry)

Observed Signal Correlation

BP (Hz) Corrected for Background Noise
Tsec) Signal 1 Signal 2 Signal 1 Signal 2
025-0.1 | -.02 .85 U 118

20 35 29 94 85 4.3 U 1.36 1.30
0.05-02 | .50 72 1.3 12

10 34 46 88 87 54 96 1.3 1.3
0.1-0.5 72 69 90 1.04

4 62 84 59 .68 .80 85 81 .86
0.2-0.5 64 96 81 14

3 70 82 .63 68 83 .90 98 .82
0.3-1.0 58 84 67 96

2 48 .69 2 .60 55 72 26 .64
0.5-2.0 38 71 44 77

1 28 40 .02 21 35 44 .03 22




Tanana, 2.6 kt,1.65N, 157.28W, 16:08:52, 25 May 1962 at Palmyra (Small Fry)

A B C D
I i 1 l 1 i i 1 l 1 i i t 1 { i i I 1 I i 1 l 1 1 I 1
20000 — .
T A
L
-20000

-10000 -

o1 e WWM‘\]MN%’MMJ\V\”M

-10000 —

o| fioos W«J\WWWMUVM

! ! 1 | ! ! t 1 l ! ! ! 1 ! | 1 ! l ) 1 1 1 ' ) | 1

:00 00:07:54.2 :10:00

Signal Windows: 1, A-B; 2, C-D



Bandpass Center Period (sec), Channel 3
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Time (hr:min:sec) - ~16:43:00
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Comparison of Predicted and Observed Infrasound Correlation
for Sensor Spacing of 1 km

Prediction, Mack and Flinn

Ac=0.015 km/sec Fitted Observations
) Tanana at Palmyra
Signal Period (sec) 2 1 2 1
p parallel to wavefront 5 28 54 32
p perpendicular to wavefront 92 70 .82 .58

Twelve (12) observations from T= 1 to 20 seconds were fitted to the expression I-exp(-aT). a
was found to be 0.39 parallel to the wavefront, and 0.87 perpendicular. Considering the scat-
ter in the small amount of data which is available for analysis, the observations seem not
inconsistent with the predictions of Mack and Flinn although there is some indication of a
lesser correlation, which would suggest the use of smaller arrays than those suggested using

the data of Mack and Flinn.




Comparison of Observed and Theoretical Infrasound Signal Correlations

Period (sec) 20 10 4 3 2 1
10 km spacing, Petit at Oahu (~2195 km)
Observed (raw) >01 | >56 | >29 | >35 | >.13 | >-.09
Perpendicular (250-350 sec window)
to wavefront Theoretical .92 71 .06 0 0 0
1-2
_ Observed (raw) >68 | >41 | >-.15| >-28 | >-25 | >.09
Parallel (250-350 sec window)
to wave-front Theoretical I5 | 28 | .05 0 0 0
1-3

1 km spacing, Tanana at Palmyra (708 km)

Observed (Corrected 1 1 95 90 .82 .60
Perpendicular | Average Signals A-B & C-D

to wavefront Theoretical 999 | 997 98 .96 92 71
1-3
Observed (Corrected) 1 a7 .80 .90 .40 .19
Parallel Average Signals A-B & C-D
to wavefront Theoretical 997 .99 93 .88 75 28
2-3

Observed correlation at Oahu is biased lower than the true value because the available data

does not include pre-signal noise which is needed to correct signal correlation estimates for

the effects of noise. If the negative values of correlation at short periods at Oahu can be
. taken to indicate the standard errors of the Qahu correlation estimates, ~0.25,then the theo-

retical (Mack and Flinn, 1971), and observed data seem consistent, although there is a sug-
" gestion that, for estimates perpendicular to the wavefront, that the observed correlations are
greater than the theoretical. ’

Assuming that the true correlation must decline with distance for the Palmyra data parallel
to the wavefront, suggests a value of ~0.2 for the standard error of the estimates. Such a
standard error would seem to allow the theoretical and observed data to be consistent at
Palmyra, although there is a suggestion that the observed correlations are less that the theo-
retical. Analysis of Petit at Palmyra gives similar observed correlation values.



F Detectors

Detect on ratio of array beamed power to mean-over-channels residual power.
Ratio is an F statistic (Ratio of Chi-squares) Will detect only in presence of sig-
nal correlation.

pF(g, Nq, Ny, 1) is the cumulative integral of F from 0 to g with N, and N,
degrees of freedom and non-centrality parameter A. ’

N;=2BT, where B is the bandwidth in the range 0.075 to 1.5 Hz for bandpasses
centered from 20 to 1 sec.; T is ~100 seconds. N,=(N-1)N; where N is the num-
ber of channels in the array.

A=2BT(S/N)peqm Where (S/N)pear is the power signal-to-noise on the beam.

For 1 false alarm per day (FAR), T=100 sec implies 1-pF=0.0016 for central F
( A=0). For the range of values of B this corresponds to a range for q of qp=3.2
to 1.3.

Probability of detection (PD) is 1-pF(qp, Ny, No, 1)

df

Non-Central F

0
Areaof = | Area of
F to Right of V. Line is FAR NCF to Right of V. Line is PD



Azimuth Standard Error for Perfectly Correlated Signals

1 ) 1 1

%= (l_?rg) ' (ﬁ)'(zér)i'(w -lsnr)i(l W flsnr)i(%rk)

Azimuth Standard Error for Less-than-perfect Correlation

1 1 1
oo~ (22)-(2) (s () 0 070

where 6 = (ky~k,)' .and Dp = P;l -D

where P, is the power spectrum, and
S '
Jrk
where ? are element coordinates,
s -1 5
andFkJ = PS 'fkj
where ffq- is the signal covariance matrix.

In this application the off-diagonal elements of F Zj are equal to the correlation.

The signal-to-noise enters the calculation of D through the relation for the matrix for ¢ ik

1 -1
C = ForlForgnl)

It does not appear possible to write the expression for D in pure matrix notation.
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- Four Element Array -

— 1 to 3 Km
FIGURE 1:4 ELEMENT INFRASOUND ARRAY CONFIGURATION
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Period (sec)
d (km) | 20 10 5 21 1l 0.5
1 0.00 0.01 0.06 0.38 1.4 3.8
2 0.02 0.06 0.24 1.4 3.8 5.7
3 0.03 0.14 0.54 2.7 5.2 6.0
4 0.06 0.24 0.93 3.7 5.7 6.0
8 0.24 1.0 2.9 5.7 6.0 6.0

Beam signal Loss (dB), imperfect correlation, 4 element CD Array, d km on a side.

Period (sec

d (km) 20 10 5 2 1 0.5

1 41.3/414 14.6/147 45/45 126/1.39 046/0.66 0.20/0.65
20.6/20.7 7.3/7.4 2.2/24  0.63/0.90 0.23/0.75 0.10/2.87
13.7/13.9  4.9/5.0 1.39/1.71 0.42/0.86 0.15/1.49 0.07/33.6
10.3/10.5  3.6/39 1.12/1.42 0.32/1.02 0.12/3.31  0.05/3.95

5.2/5.5 1.8/2.3  0.56/1.25 0.15/4.54 0.06/4.56 0.02/117

Azimuth Error (deg), (perfect signal correlation/(imperfect correlation), 4 element CD
Array, d km on a side Single element amplitude signal-to-noise of 0.75. Signal window
of 60 sec.

to

o A W




Calculation of Signal Correlation in the Presence of Noise

S
A

s i
Where c;; is the cross correlation between two channels and where 4, is the autocorrelation,

assumed here to be the same on each channel. The cross-correlation corrected for noise, under the
assumption that the noise is stationary, is given by:

_ S
Pe As— An

where 4, is the autocorrelation before the signal.

To estimate detection thresholds, and standard errors of azimuth estimates at those thresholds, it is
necessary to calculate signal-to-noise and correlation as we multiply measured source powers by
factors of interest. We need estimates not only of the total signal power but also of the correlated
signal power (which is measured by the correlation) and the uncorrelated signal power. This
uncorrelated power influences the appearance of the beam in the time domain; it is reduced by
beamforming but nonetheless enhances the signal-to-noise on the beam if the beamed signal is
compared to pre-signal noise. We see that the correlated signal power is:

As, ¢ = Po (A= Ap)
and the uncorrelated signal is:

As, uc = 1 _pc) ) (As_An)

Now in the case of a reduced amplitude source we may multiply A, and 4, . by a suitable factor,
f, 1o obtain 4, .and A", ., where ¢ and uc refer to correlated and uncorrelated. Then
]
; A s, C

p = = ;
AS,C+A + A

S, uc n

would be the correlation for the same signal with reduced amplitude, in the original noise.

For application to determine probability of detection and errors of azimuth estimates using theo-
retical correlation estimates, we also need the signal-to-noise on an individual channel, (S/N)p

(S/N)p = (A', .+ A" /A,

s, uc



. Detection and Location Parameters for CD Infrasound (1,2,3) km Aperture Arrays Derived
from Mack and Flinn(1971) correlations, and (S/N)p from Tanana as observed at Palmyra,

reduced by a factor of 5.
Signal P Theoretical Mean Non-ceﬁtrality Parameter

1gnal Farameters Correlation, p A =2BT*(S/N)peam
Tc

B (Hz) qr (S/N)p 1 2 3 1 2 3

(sec)

20 .075 3.23 .540 .998 995 .99 6.5 6.5 6.5
10 .15 2.53 .620 .995 .98 .96 14.9 14.6 14.3
4 4 1.70 .880 .97 .89 77 55.2 48.8 42.0
3 3 1.88 920 95 81 .63 41.6 34.8 26.5
2 7 141 | 136 | .89 63 39 130 | 87.2 50.4
1 1.5 1.32 6.40 .63 22 .065 652 168 46.0

T, is the center period for the detection filter passband with bandwidth B and time duration
T=100 sec. gy is the F detection threshold for one false alarm per day. (S/N)p is the power
signal to noise ratio on a single channel of the event Tanana as seen at Palmyra. The theo-
retical mean correlation for the arrays was computed using the parameters A ¢=0.015 km/

. - f-(S/N
sec and AB=5° (S/N)yeam is given for a 4-element array by ] P i;
| 2 1(=p)-f-(S/N)p+1]

where fis the factor giving the reduction of signal power; for this table, f = 1/5. This is equiv-
alent to (1/5)th of the yield or 0.52 kt.




_Detection and Location Estimates for CD Infrasound (1,2,3) km Aperture Arrays Derived from
Mack and Flinn(1971), and the Event Tanana as observed at Palmyra. Estimates for the Event
Tanana as observed at Palmyra with Amplitude reduced by a factor of 5172

Probability of Detection Azimuth Estimate with
T.(sec) Visual With F using Simple Optimum Welghte_d
c (S/NYypoamAmplitude Beam . Beam
- PD Standard Error, g °
1 2 3 1 2 3 1 2 3
20 1.05 1.05 1.05 .02 .02 02 110 55 37
10 1.06 1.06 1.06 .02 .02 02 35 17.7 12.1
4 1.08 1.08 1.07 A48 37 26 6.6 3.6 2.7
3 1.08 | 1.08 | 1.06 | .29 18 09 5.6 32 2.6
2 1.12 1.10 1.07 99 .85 .39 1.9 1.3 1.3
1 1.38 124 1.17 1.0 96 07 34 42 1.02

T, is the center period for the detection filfer passband. Detection and azimuth estimates are
for a time window of 100 sec. The “Visual” amplitude is given by dividing the estimate for
the single-channel noise power in front of the signal into the sum of the noise plus correlated
signal power plus 1/4 the uncorrelated signal power (for a 4-element array), and then taking
the square root. The probability of detection is computed for an correlation F detector with
a false alarm rate of one per day and for a signal with 1/5th the power (yield~0.52kt) of
Tanana at Palmyra. The azimuth estimate assumes that detection has selected the proper
window over which to estimate the azimuth. Thus, if detection probability is low, the signifi-
cance of the azimuth estimate is questionable. It appears that one should construct 1 km
aperture arrays and detect at 1 Hz. Note that azimuth error would be larger for larger
arrays if azimuth were determined by the maximum of the simple beam instead of the opti-
mum weighted beam.



Summary

Infrasound signal coherence observed in the period range 1-20 sec at ~1 km sep-
aration for the 2.6 kt event Tanana recorded at Palmyra, a distance of 700 km, is
consistent with parameters estimated by Mack and Flinn (1971) to represent the

signal coherence of a Chinese event recorded at LAMA at a distance of ~90° in
the period range 10-80 sec at 7 to 40 km separation. Petit (2.2kt) at Oahu (~2000
km) is also in agreement for 10 km separation for periods of 20, 10 and 4 sec-
onds. Correlation is nearly zero, in agreement with MF, for T =2 and 1 seconds.

These parameters, together with the observed single-channel S/N of Tanana at
Palmyra make it possible to determine the ~1kt nuclear event detection threshold
and azimuth estimation standard error for infrasound CD arrays as a function of

array aperture.

Arrays with apertures of 1 km have the lowest detection threshold and smallest
standard error of azimuth estimation as compared to arrays with apertures of 2
and 3 km. This capability occurs at periods of 1 and 2 seconds. The loss of capa-
bility for the larger arrays is due to the loss of correlation of the 1 and 2 second
signals at the larger spatial intervals.

There is very little capability at 10 and 20 second periods. For detection this is
mostly due to the low bandwidth of the long-period signals, although S/N is also
slightly lower. for these low-yield shots. For location it is due also to the smalil
array aperture as compared to the wavelength.

Detection statistics reported in the 1950°s for 1-2 kt events at such distances rou-
tinely reported peak amplitude detections at periods near 5 seconds, independent
of distance. A fitted formula (AFTAC Tech Memo 87, 19 October 1956) gave
logY = -2.00 + 2.84 logT +/- 0.28 with data spanning the range 0.2 to 500 kt.
This is consistent with observations of Tanana at Palmyra, suggesting that the 1-
2 second energy also propagates to greater distances but was not reported due to
the instrument response which peaked at 13 seconds and was 4 dB down at 2
seconds. Further archival recovery and experimental research is sorely needed to
obtain good data on 1-2 second period data at distances of 1000-4000 km for
yields of 1-4 kt and at sensor spacings of 1-3 km.



A COMPARISON OF SEVERAL AUTOMATED
DETECTORS FOR INFRASOUND SIGNALS

Kevin D. Hutchenson and Haydar J. Al-Shukri

ENSCO, Inc.
445 Pineda Ct.
Melbourne, FL 32940

Under the IMS, a network of infrasonic arrays is expected to be deployed in the next few years. This
network should consist of approximately 50 to 60 arrays consisting of four elements to be distributed
around the globe. These arrays will be deployed to monitor potential atmospheric and near-surface nuclear

tests under the Comprehensive Test Ban Treaty (CTBT). Data from these arrays must be processed = *

routinely.

Several existing and new procedures are currently in use or have been proposed for automated infrasound
signal detection. Although not an exhaustive list, these detectors include: (1) Array Signal Detector by
Lag Closure, using cross-correlation functions to determine the delays of a propagating signal and
assuming that the sum of the delays along a closed path is zero, (2) F-detector, which in general represents
the ratio of the beam power to the power of the difference between the individual channel and the beam, (3)
Power detector using a standard STA/LTA ratio, and (4) an Autoregressive filter/detector process. Each of

these have been examined for the automated detection capability using both synthetic and real data.

The F-statistic detector has been found to be the most successful of the automated detectors, when factors
of capability, missed detections, false alarms, turning, etc, are considered.

INFRASOUND WORKSHOP FOR CTBT MONITORING
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F-STATISTICS: A TOOL FOR INFRASOUND SIGNAL DETECTION
Haydar J. Al-Shukri and Kevin D. Hutchenson

ENSCO, Inc.
445 Pineda Ct.

Melbourne, FL 32940

The infrasonic technique is one of the proposed methods for monitoring a Comprehensive Test Ban Treaty.
For such a treaty to be effective, reliable technologies must be developed to detect and identify low-yield
explosions. Under the proposed International Monitoring System, approximately 60 infrasonic arrays are
expected to detect potential atmospheric explosions. .

This paper presents a new and simple approach to analyze the F-statistic function, a multi-channel
statistical procedure which uses the coherency of signals recorded by an array as a detection criteria. The
new approach is to use the derivative of the F-statistic in the detection process. The derivative seems to
offer a dramatic improvement to the detection capability even during periods of high energy microbaroms.
The efficiency of this approach was evaluated according to the following characteristics: (1) the capability
of being operated in an automatic mode, (2) the number of missed detection, (3) the number of false alarms,
(4) the capability of processing data in a real time fashion, and (5) simplicity and flexibility of the tuning
process.

A suite of synthetic and real data were used for the evaluation process. Data were collected which contain
a variety of infrasonic signals and noise. Real data were collected from arrays at St. George, Utah; Los
Alamos, New Mexico (both are small aperture arrays); Windless Bight, Antarctica; and Fairbanks, and
Alaska. Results indicate that if a carefully selected pre-detection process (bandpass filter or autoregressive
filter) is used, the derivative of the F-statistic may provide the best approach for detecting coherent signals
from array data. A low coefficient (2 or 3) autoregressive filter was found to be an effective pre-detection
process.

INFRASOUND WORKSHOP FOR CTBT MONITORING
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F-Detector for Infrasonic Signals
1 [c_ )2
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F = statistical value for the F-detector for the time window

T = number of points in the window
C = number of stations in the array

X = time series.
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AUTOMATIC PROCESSING OF INFRASONIC DATA AT THE PROTOTYPE IDC
Raymond J. Willemann, Charles N. Katz, and J. Wang

Science Applications International Corporation
Center for Monitoring Research
1300 North 17th Street, suite 1450
Arlington, VA 22209

Infrasonic data received at the IDC will be automatically processed to produce a bulletin of "events", that is
locations and times of transient sources of signals received at several stations. The resulting automatic
event lists are released as intermediate products. The automatic event lists are also the starting point for
subsequent interactive analysis of the data, which produces the final product of the IDC. Given the data
volume expected at the CTBTO IDC and the limited number of analysts, reasonably accurate automatic
event lists are crucial.

Automatic processing of infrasonic data at the Prototype IDC begins with "detection”, that is identification
of discrete times in which a signal from a potentially interesting origin has arrived at the array. We have
developed a procedure for detection that finds times at which coherence across the array is large and either
the power or the coherence increases quickly, indicating onset of a transient signal. The coherence measure
is the F-statistic and the power is measured on a beam directed at the slowness vector of high coherence.
The procedure is designed to reliably detect transient signals while minimizing the number of detections on
continuous signals such as microbaroms.

The next step in automatic processing is "feature extraction", that is measurement of signal properties. We
have implemented measurement of

o the slowness vector and its uncertainty, based on the Cramer-Rao lower bound.
e spectral properties, including dominant period and comer frequency
e onset time, duration and other features in multiple frequency bands.

Preliminary classification of detections is based on these features. The primary purpose of classification of
infrasonic detections is to identify noise detections, which are ignored in subsequent automatic processing.
After preliminary classification, non-noise detections from different stations are associated with origins,
and origin locations and times are estimated.

The Prototype IDC currently receives data from five infrasonic arrays, which are processed in near real
time. Detection rates are generally low, indicating successful rejection of continuous signals. Nevertheless,
the approach detects natural transient signals of interest. Arrivals are currently classified based on
estimated slowness alone. A database of detection feature values is being accumulated, however, which
may later allow additional detections to be correctly classified as noise before the association process.

INFRASOUND WORKSHOP FOR CTBT MONITORING



Automatic Processing of Infrasonic Data at the Prototype IDC
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Infrasonic data received at the IDC will be automatically processed to produce a bulletin of
"events", that is locations and times of transient sources of signals received at several
stations. The resulting automatic event lists are released as intermediate products. The
automatic event lists are also the starting point for subsequent interactive analysis of the
data, which produces the final product of the IDC. Given the data volume expected at the
CTBTO IDC and the limited number of analysts, reasonably accurate automatic event lists
are crucial.

Automatic processing of infrasonic data at the Prototype IDC begins with "detection", that
is identification of discrete times in which a signal from a potentially interesting origin has
arrived at the array. We have developed a procedure for detection that finds times at which
coherence across the array is large and either the power or the coherence increases quickly,
indicating onset of a transient signal. The coherence measure is the F-statistic and the
power is measured on a beam directed at the slowness vector of high coherence. The
procedure is designed to reliably detect transient signals while minimizing the number of
detections on continuous signals such as microbaroms.

The next step in automatic processing is "feature extraction”, that is measurement of signal
properties. We have implemented measurement of

» the slowness vector and its uncertainty, from the Cramer-Rao lower bound.

* spectral properties, including dominant period and corner frequency.

* onset time, duration and other features in multiple frequency bands.

Preliminary classification of detections is based on these features. The primary purpose of
classification of infrasonic detections is to identify noise detections, which are ignored in
subsequent automatic processing. After preliminary classification, non-noise detections
from different stations are associated with origins, and origin locations and times are
estimated.

The Prototype IDC currently receives data from five infrasonic arrays, which are processed

in near real time. Detection rates are generally low, indicating successful rejection of
continuous signals. Nevertheless, the approach detects natural transient signals of interest.
Arrivals are currently classified based on estimated slowness alone. A database of
detection feature values is being accumulated, however, which may later allow additional
detections to be correctly classified as noise before the association process.
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Detections per hour or 24 hours Detection Count Hours of data successfully processed

pov] LSAR PDIAR SGAR TXWWR| LSAR PDIAR  SGAR TXIAR| LSAR PDIAR  SGAR  TXIAR
201] 0.00 1.09 0.00 6 2.0 5.5. 6.5

202| 1.32 1.83 8.47 0.00f 31 44 199 23.5 24.0 235 2.0
203] 3.23 2.73 2.31 0.00] 21 60 15 6.5 22.0 6.5 10.0
204] 434 485 366 0.000 89 114 75 20.5 235 205 5.5
205/ 0.00 0.00 0.00 1.30 1| 1.0 230 1.0 185
206| 0.67 0.45 1.91 0.00 14 5 41 21.0 11.0 215 7.5
207/ 2.33 0.79 7.60 0.00 14 11 38 6.0 140 5.0 14.5
208| 1.08 2.96 0.00 14 34 13.0 11.5 14.5
209| 0.23 0.00 0.60 0.00 5 13 21,5 6.5 21.5 23.5
210| 0.00 0.00 0.00 0.00 20.5 24.0 21.5 24.0
211} 1.20 0.60 1.22 2.13] 24 13 25 2| 200 215 205 225
212 1.11 1.50 5 1 4.5 16.0
213] 5.08 0.77 2.53 33 5 2 6.5 6.5 19.0
214 1.33 0.88 0.00 2.67 4 18 2 3.0 205 3.0 18.0
215 1.40 0.00 21 15.0 21.0
216 3.64 1.70 2.18 1.60 20 23 12 1 5.5 13.5 5.5 15.0
217 1.70 0.00 2.72 1.41 40 64 1| 235 3.5 235 17.0
218] 1.71 1.50 2.23 0.00f 35 9 48 20.5 6.0 21.5 19.0
219 1.52 0.00 2.36 1.41 35 53 1{ 23.0 3.0 225 17.0
220 2.26 2.50 1.74 133 43 20 33 11 18.0 8.0 19.0 18.0
221 1.86 0.00 0.14 1.14] 40 3 1| 215 1.0 215 21.0
222 2.88 0.33 0.00f 62 7 21.5 21.5 18.5
223 1.64 1.67 0.11 1.33 i8 20 2 1| 11.0 12.0 18.0 18.0
224| 0.79 0.45 o0.00 0.00] 15 9 19.0 20.0 22.0 17.0
225/ 1.62 0.77 0.11 2.59| 30 18 2 2{ 18.5 23.5 19.0 18.5
226| 1.33 0.85 0.00 0.00 12 20 9.0 23.5 9.0 18.5
227 0.91 0.00 21 23.0 17.5
228 0.30 1.20 7 i 23.0 20.0
229 1.13 1.30 27 1 24.0 18.5
230 0.58 1.30 14 1 24.0 18.5
231 1211 0.00 26 23.5 18.5
232 0.88 0.00 21 24.0 17.5
233 0.56 0.00 10 18.0 11.5
max 5.08 4.85 8.47 2.67 89 114 199 2 235 24.0 235 24.0

avg 1.74 1.02 1.73 0.77 29 23 37 1 149 16.3 155 16.8
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File Edit View Options
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1 > Connected to CommAgent jinwang as class ARS




Flle Edit View Optlons

Help

-
400 )
PDIARfazl WW
o resize
1000 __
PDIAR/slo
PR, /‘—H_/‘\/—"‘_\———_\ / . —
¢ — resize
10—
PDIAR/max ;
0 — resize
500 ___
PDIlo1isd
-500 — ;
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1> Connected to CommAgent jinwang as class ARS
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SEISMO-ACOUSTICAL EQUIPMENT COMPLEX IN MURMANSK REGION
E. O. Kremenetskaya, 1. A. Kuzmin

Kola Regional Seiemological
Center KSC RAS, Apatity

Oleg M. Raspopov

S. Petersburg Filial IZMIRAN
P.B.188
St. Petersburg, 191023, Russia

Sergey N. Kulichkov

Institute of Atmospheric Physics
Russian Academy of Sciences
3 Pyzevsky, Moscow 109017, RUSSIA

The acoustic and seismology equipment complex (ASEC) was installed on Kola Peninsula at 18 km from
Apatity. Equipment complex based on Apatity Regional Small Aperture Seismology Array included 9
seismometers and connected with Norwey seismology array NORSAR via satellite. Apatity seismological
array NORSAR via satellite. Apatity seismological array was added by microbarographs network included
3 microbarographs. The main aim of ASEC is the simultaneous registration of atmospheric and Earth
crust oscillations generated by the some sources. The programs for ASEC include registration of
explosions in open and underground mains and registration of following seismic afier-shocks, as well
registration of microbaroms and microseisms, generated simultaneously in Atlantic ocean region during
ciclonic and storm activity. Microbarom and microsesm data will be use for investigations of a short
period (T=1-12h) changes of temperature and wind velosities into stratosphere (H=30-50 km) and
termosphere (H90-120km). Microseisms will be use for a determination of the position of the oscillation
sources and the changes of the parameters of the microbaroms will characterize the thermodynamic regime
of the stratosphere and the thermosphere. The ASEC creation was supported by Russian Foundation for
Basic Research.

INFRASOUND WORKSHOP FOR CTBT MONITORING



Seismo-Acoustical Equipment Complex in Murmansk Region
(RUSSIA)*

E.O Kremenetskaya, 1. A. Kuzmin,
Kola Regional Seismological Center KSC RAS, Apatity,
Murmansk Region, 184200, Russia
O.M.Raspopov
S.-Petersburg Filial IZMIRAN, P.B.188, St.-Petersburg,
191023, Russia, E-mail: oleg@omr.izmi.ras.spb.ru
S.N.Kulichkov
Institute of Physics of the Atmosphere RAS, Pyzhevskiy
per. 3, Moscow, 109017, Russia

Absiract

The acoustic and seismological equipment complex (ASEC) was installed on Kola
Peninsula at 18 km from Apatity. The equipment complex is based on Apatity Regional
Small Aperture Seismological Array that includes 9 seismometers and is connected with
Norway seismological array NORSAR via satellite. Apatity seismological array was
complemented by microbarographs network that consists of three microbarographs. The
main purpose of ASEC is the simultaneous registration of atmospheric and Earth crust
oscillations generated by the some sources. The programs for ASEC include
registration of explosions in open and underground mines and registration of the following
seismic after-shocks as well as registration of microbaroms and microseisms generated
simultaneously in Atlantic ocean region during cyclonic and storm activity. The
microbarom and microseism data is used for investigations of short period (T =1+ 12 h)
changes of temperature and wind velocities in stratosphere (H= 30 + 50 km) and
thermosphere (H= 90 + 120 km). Microseisms can be used for determination of the
position of the oscillation sources, and the changes of the parameters of the microbaroms
characterize the thermodynamic regime of the stratosphere and the thermosphere.

The hard- and sofrware development for Apatity seismic array and complemented by hard-
and software for acoustic waves registration allows to record and process the signals in
real time and to transfer this information to the international data base.

The ASEC creation was supported by Russian Foundation for Basic Research.

*Presented on INFRASOUND WORKSHOP FOR CTBT MONITORING, Santa Fe,
New Mexico, August 25 - 28, 1995



Introduction

Kola Regional Seismological Center of Kola Scientific Center (KRSC)_of the Russian
Academy of Sciences (RAS), Institute of Atmospheric Physics of RAS, St.Petersburg
Filial of IZMIRAN (SPbF IZMIRAN), and Polar Geophysical Institute of KSC of RAS
initiated complex observations of atmospheric infrasound oscillations, seismic oscillations,
and geomagnetic disturbances in 1988. This joint project has the goals: 1. To study the
thermodynamic regime of the stratosphere and thermosphere basing on microbarom and
microseism investigations; 2. To study the atmospheric infrasonic oscillations associated
with the ionospheric disturbances.

Originally the recording of infrasound oscillations was carried out at Loparskaya obs.
(68.6° N, 33.3° E) (Figure 1) where ionospheric and geomagnetic observations were
simultaneously carried out. In 1990 the three-position set of microbarographs was
installed. It permitted to carry out the estimation of azimuths of arriving waves,
Microseism registration was carried out nearby, at Apatity obs. that is 150 km to the south

from Loparskaya obs. (Figure 1). This made it possible to carry out the simultaneous

observation of microbaroms and microseisms generated by cyclonic activity above ocean.
In this case the microseism parameters provide the information about temporal variations
of the source power, while the microbarom parameters give information on source
location and variations in the stratospheric and thermospheric parameters.

The microbarographs were modernized and replaced at Apatity in 1994 where earlier
the Kola Regional Small Aperture seismological Array was installed (67.61° N, 32.99° S).
This array included 9 seismometers and was connected with Norwegian seismological

array via satellite (Figure 2). The seismological array in Apatity was complemented by
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microbarograph network consisted of three microbarographs. The main goal of the
installation of the joint Acoustic and Seismic Equipment Complex (ASEC) is the
investigation of the problems mentioned above and the investigation of acoustic signals
generated by near-surface explosions [1,2,3]. The location of ASEC gives a good -
possibility for the study the explosions problem because a few open mines are located at

Kola peninsula. In this paper we describe the acoustic equipment and some results

obtained by the recently installed acoustic array.

Microbarograph system and its testing.

During the summer of 1994 tree liquid microbarographs were installed at the Apatity
seismic array site of Kola Regional Seismological Center of the Russian Academy of
Sciences (KRSC). The Apatity seismic array site is located 13 km to the east from Apatity
town (Figure 1). Figure 3 displays the array geometry along with the newly installed
devices.

The liquid microbarographs allow to register an infrasound signals in a most interesting
frequency range 1 - 0.01 Hz and are simple to operate that was reason why this type of
sensor has been selected [4]. A typical liquid microbarograph design is shown in Figure 4.
One of the output holes (4) is kept open into atmosphere, other is coupled with a volume

(not shown) separated from the atmosphere. The relative liquid level in the capacitors (2)

changes under a difference between the atmospheric pressure and the pressure in the
volume. Deviation of liquid level from the balance is transformed into-electric signal by

capacity-voltage converter.

Microbarographs are installed on the concrete basements coupled with the bedrock.



The outputs are connected to the ADC in central hub by symmetric communication lines
in order to suppress the interference. Three spare channels of the existing data acquisition

system, sampling rate 40 Hz, were used to transfer a data to KRSC in Apatity. Effective

frequency band of infrasound data is registered to 1 - 0.1 Hz because of these channels
were originally designed to register seismic data therefore their frequency band and
sampling rate are not quite conforming with infrasound signals. However, their bandwidth
is large enough to record most interesting phenomena except the internal gravitation
waves.

The operation of set of the microbarographs and of seismic array is similar, therefore
microbarographs relative phase responses should be either identical or carefully measured.
To obtain the relative phase shifts the ‘following measurements have been made. All
microbarographs were placed close each other near the central hub and were linked with
the d:clta acquisition system. The input holes of microba;ographs normally opened into
atmosphere were coupled by rubber tubes with a single punc‘ture. Such a connection leads
that the pressure in measuring chambers of microbarographs will be identical, thus the
phase shifts between microbarographs output yield a relative phase responses. The data
were recorded during several hours. For further processing time histories free of spikes
about of an hour length have been chosen. To estimate a relative phase shifts and a
coherency of acoustical signals. the method described in [5] has been applied.

Figure 4a shows the output signals coherency, Figure 4b represents the phase shifis.
High coherency of the analyzed signals confirms that the estimates are confident. These

results will be used further by more comprehensive software when estimating arrival
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angles infrasound atmospheric oscillations.

The next step was to asses the threshold sensitivity. Figure 5 shows a response of the
recording system obtained by imposing a step function 2.5 dyne/cm® amplitude to the input
of a microbarograph. In spite of this estimation is quite rough, a conclusion that the
threshold pressure sensitivity is not less than 1 dyne/cm’ can be made.

Software installed at the SUN workstation in KRSC extractsinfrasound data from thf;
data stream, filters it by the anti-aliasing Butterwort low pass filter that has corner
frequency 1.5 Hz slope 80 dB/decade, resamples it to 4 Hz sampling rate and stores the

outcome on the hard disk afterward.

The atmospheric oscillation recordings are often affected by the wind initiated the air
turbulence near the ground hence the data selection is necessary before the processing.
The effective indicator of the true infrasound signal is a coherency between the
microbarographs output. Thus the first step for selecting the efficient signal was the

calculation of a coherency spectra between microbarographs.

Some results as an example of the acoustic signal registration
Registration on explosions.

The explosions in open mines in Olenegorsk and Kirovsk (Figure 1) were used as the
test signals for standartization and checking the identity of microbarographs operation.
The distance from ASEC to Kirovsk mine is 33 km and to Olenegorsk mine is 60 km.
Figure 7 shows the example of registration of the explosion in Kirovsk mine on June 22,

1994. Upper three curves represent acoustic signals, and the next nine curves are the

records of the seismic signals at ASEC. The lower three curves are from seismograplhs



located at Kirovsk near the mine. They give the information about the explosion time. One
can clearly see the phase shift of the acoustic signal arrival that permits to determine the
azimuth of the signal arrival equal to 80 degrees that coincides with the direction to
Kirovsk mine with the accuracy of 1°.

The parameters of the acoustic signal from the explosion in Olenegorsk open mine on

February 10, 1995 are shown in Figure 8. In the Figure one can see the acoustic signals

from three microbarographs as well as the coherency, the variations of the signal
amplitude (root mean square (RMS)) and the azimuth of the signal propagation. The wave
arrival azimuth prove to be 4 degrees that corresponds to Olenegorsk direction with
accuracy 2°.

The example of registration of long-distance propagation of acoustic waves generated
by the explosion is shown in Figure 9. In this Figure one can see the signals from the large
explosion at Plesetsk rocket range that were registered at Loparskaya on February 27,
1991, 12.09 UT. The distance from Plesetsk to Loparskaya is about 600 km. Azimuth of
Plesetsk direction from Loparskaya is 160 degrees. Figure 10 shows the coherency of
microbarograph signals and the calculated azimuth of the wave propagation before (12.06
UT) and during the registration of explosion signals (12.10 UT). For the explosion wave
packet the calculated azimuth varied from 140 to 180 degrees if the microbarographs

coherency is more than 0.75. Thus the accuracy of the azimuth detections occurs to be

+/-20 degrees. The variations in the determined azimuth value could be associated with
the atmospheric nonhomogeneities produced by warm atmospheric front located to South-

East from Loparskaya during the explosion time.



Registration of microbaronts

The convenient objects for the development of a methods of long-term observation of
acoustic signals and the useful signal selection are microbaroms. They are generated
during the atmospheric cyclonic activity above ocean, they have quasi-sinusoidal
signal shape in the periods range from 3 to 8 seconds, and their generation continues for
hours. The microbarom source is usually located on the back side the a cyclone.

For the microbarom registration the useful signal selection was carried out by means of
the coherency analysis of the signals from all microbarographs. The succession of
microbaroms was registered during three days from February, 9 till February,11, 1995.
Besides the explosion in Olenegorsk mine was registered as well at 10.20 UT on February,
10, 1995. One can see from Figure 11 that the development of three cyclones above
Atlantic ocean occurs. One of the cyclones is close to Kola peninsula and moves towards
Nonh-Eaét. The 15 minutes plots of the signal coherency of microbarographs on
February, 10, 1995 is shown in Figure 12. One can see that during the whole day
the good coherency of acoustic waves with periods from 3 to 8 seconds is observed. In
Figure 13 the distribution of the power spectra of microbaroms is shown for the same day.
The increase of the oscillation period from 5 to 8 seconds was observed during the day.
The plots of microbarom amplitude variations (RMS) on February, 9, 1995 for oscillations
with periods of T=3,4,6,and 8 seconds are presented in Figure 14. Zero of the abscissa
axis corresponds to 00 UT on February 9, 1995. One can see that from the second half of
February 10, 19995 the increase of the signal power takes place that is associated with
approach of the back side of the cyclon that was moving near Kola peninsula. The plots of

azimuth variations of acoustic waves arrivals are presented in Figure 15. The azimuth



varies from 50 to 75 degrees during three days that is associated with the source shift
southward. One can clearly see the peak near 10 UT on February 10, 1995 in the plot.
This peak corresponds to the explosion time in Olenegorsk mine at 10.20 UT that was

discussed in the previous section of this paper.

The analysis of seismic signals on February 9-11, 1995 indicates that the microseism
generation occurs during these days. The plots of microseism and microbarom amplitude
vaﬁat?ons on February 10, 1995 are shown Figure 16 for the wave periods of 3,4,6, and 8
seconds. The amplitude of the microseisms is practically stable. It means that the change
of the microbarom amplitude is not the result of the change of the source power, but
it is the result of the acoustic wave propagation in the atmosphere and the change of the

source location relatively the point of waves detection.

'

Conclusions

1. Joint Acoustic and Seismic Equipment Complex (ASEC) was created in Apatity (Kola
peninsula) in 1994-1995 basing on the Apatity seismic array connected by satellite with
NORSAR seismic network.

2. The test registration of explosions in several mines and microbaroms showed the
identity of microbarographs operation and confirmed the possibility of a correct
determination of the direction of the oscillation source.

3. The hard- and software developed for Apatity seismic array and complemented by the
software for acoustic waves registration allows to record and process the signals in real

time and to transfer this information to the international data base. Thus Apatity could

be a convenient location for the station connected with CTBT/IMS infrasound network.
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4. The developed method of microbarograph signal coherency provides the possibility to
select the useful signal, however the acoustic noise problem requires the further
development.

The ASEC creation was supported by Russian Fundation for Basic Research.
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1.

Figure captions.

Figure 1. The map of Kola peninsula.

Figure 2 The seismological network related to NORSAR-system.

Figure 3. Scheme of the seismograph (A and B) and microbarograph (MB) locations at
Apatity testing area.

Figure 4, Principal scheme of the microbarograph: 1 - liquid; 2 - capacitor plates;
3 - body; 4 - output holes; 5 - electronics.

Figure 5. Result of the measurement of relative phase-frequency response of the
microbarographs. A - coherency, B - phase difference.

Figure 6. The response of the acoustic measuring system on injection of 0.1 cm?® of air
into microbarograph (in relative units).

Figure 7. Record of acoustic and seismic signal of explosion at Kirovsk open mine on
July 22, 1994, located at 33 ki distance from Apatity.

Figure 8. The parameters of acoustic signal of explosion at Olenegorsk open mine on
February 10, 1995, 15 20 UT. A - signal recorded, B - azimuth, C - coherency,
D - amplitude (RMS).

Figure 9. The record of acoustic signals of the explosion at Plesetsk rocket range on
February 7. 1991, 12 09 UT.

Figure 10. Coherency and azimuth of acoustic signals of Plesetsk explosion registered by

microbarographs before (12 06 UT) and during explosion wave packet
(12 10UT).

Figure 11. The maps of meteorological situation on February 9 - 10, 1995 during

microbarom registration at Apatity



Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Coherency (MB1 - MB2) of microbarom signals registered on February 10,
1995 in Apatity.

Variations of microbarom power spectra in Apatity on February 10, 1995.
Plot of microbarom amplitude variations (root mean square) on

February 9 - 11, 1995 in Apatity.

Plot of azimuth variations of microbarom arrivals on February 9 - 11, 1995
in Apatity.

Variations of microseism and microbarom amplitudes on February 10, 1995

in Apatity.

12.



g

parska

I3

7

Yalptss

)
2®

Y
1Jli7e

™

@\-

2,

Ly

N
TNE

-
o,
)

.

3

il

P

}

” Ry
N

(\

AV SRS

Figure 1.



14,

70.0
60.0
55.0

50.0

45.0

0.5 10..0 '2o.'o 30:0
o LONGITUDE (DEG E) -

Figure 2.



600 T T ¥
N B5 (495,60)
T .
400 [ )
B4 (205,-455) A1 (200,30)
200 [ * * N
B1 (100,495)
<+
AO
1
0 | |
A3 + (-45,-195) A2 (-85,180)
+
-200 [ )
B3 (-370,-360)
N B2 (-435,245)
400 [ ]
L 4
-600 : : ’ :
-600 -400 -200 0 200 400

The distance from central point (m)

Figure 3.

600

ST



Figure 4.



coherency

phase difference.

0.95
0.80
0.85
0.80 |
0.75 |
0.70
0.85
0.60
0.55
0.50 T
0.45

1 2 3 4 5 6 ¢ 8 9 10
Period [sec]

10

b

MB3-MB1 b
. Wﬂ .
J10 YN . !

1 2 8 4« 5 6 7 8 910

[ 4

Pgriod [sec]
Figure S.



4000
2000.

-2000

-4000 |

-6000

-8000
-10000
-12000~

/\’\m il et

VA

~7

i,
= v

S

N~

o

Figure 6.

8 ]

10

Time [sec]



-
1%

*/, 9an31Y

200'9w £v 90

400 9» €% 30

400'0v°EY 90

200 v £v %0

2000 Ty 03

400'9y Ly 00

400 ¥ Tv 00

£00°00 L 00

400 3¥ Ev 90

400 pe zv 00

400 ¥v Er 90

400 #¥ &Y 40

©00"EE ve 80

00O IZ v 90

=vS
O00'Co'9v Co0'0Ov'SY 000°'0C'SP 000°00°ctH OCOo'Ov'vv
,.____.___._________ ____________________________________.l
8 v VA—
lv.' _‘| r <><r

298 7

HSAOITS] J& SI9JWOWSIS

A

L

@
—
—
9

ki
i

=
3

.
3
£
=

$1939WOWSIAS DYSY ;) % —

§
=

b3
3
=

i
=

w0 ttense H.(\/\f)))%.&)})\(;)}%ééik(,\/\/\/\

Ve Egikér\mﬁmﬁwoénﬁﬁg ~

—]

N N N N N
x,.ulr\mwmu)b‘!-

N
X
.




30

20

10

10

ON.)F&O)OO

Backazimuth

Coherncy greater than 0.5 B

0.2 0.4 0.6

Coherency

0.2 0.4 0.6 0.8
RMS (normalized) \ \J
T 1 l I
15.20.000
0.2 0. 0.8 1 1.2

0.6
Time (hours)

Figure 8.

20.



- ~12.04 06

Loparskaya

February 27, 1991

A M

|

i

I
W M kw M‘W l]# it “‘H et "k’ f’f' aaf ’\J‘mwllﬁx‘ At “H

Microbarograph 1

ll,

hsdy H{’N’rfl #«vd’iﬁ,fm’wﬂ!]'vﬂ l‘” %I}l !l

N

Microbarograph 2

"-_;:-—

dlﬁlﬁ IHE.'I{ W{lllmfw' ‘r‘Jw s rrl' J\ u/Jif\f\j il LI

e e e —

*(\W

l |

MN

Microbarograph 3

Wl Fﬂ MM ,:W il mns&w MW

e

. 08

10

12

14

Figure 9.

22 1224 UT
Time

16 18 20



Loparskaya February 27, 1991 1206 UT

Coherency MB 1 - MB 2

.75
0.504

0.25 -W
0.0

L0

o Coherency MB 1 - MB 3

0.254

4
0.1 02 03 o4 05 0.8 07 o8 o8 1o
Frequency [Hz]

1210 UT

o7k Coherency MB 1 - MB 2

0.50 -+

0.5+

Coherency MB 1 - MB 3

0.50 1

0.25+

e.00
165

80 T AZimuth

0 (%

¢ 02 03 04 05 08 0.7 058 o8 1o
Freguency [Hz]
Figure 10.



Brepusewd seseanwd

>
N 7

e A
4 o 3
2 tefpr MY TN gw | gsh tm/bw
0 N o 35 So_39%

) / ¥ lz i’*‘ebruary 9,1995 ..

-----------------

ee] R ¢

/"1': G D P YA )
2B QP < > 6 °§9

/o #~'~~. 74 -
W PR Mirmansk

2\ S ! !
35 ‘/\,\5-\/ K N v/ [ o
, - f

N\
C

Figure 11



24 A o

Time [hour]

o~ <° /"'
- - Wy,

TITIIEIS ) l 1
. '.-7yl"* 72

] ..r',,c//,({’»,'./ PN \ S

= INGL)

18 ‘—?"s,"'. .;Q‘l(/.'/,_.—/; 2\ N - 18
S N\E—
= \\e—==

—— /(l“""d/'{& N ~
J > "“"‘:I' 'A‘!IM - -
e - S\
L ISR P ] ~
o S A
12 == N
==
y“v’l‘"",;’ﬁ!’/ 7
N
PR
AR .4'»,? e
61 v/gﬁi%df{ =
‘.-"IJVJ ’,,;( 2
AT
=Y -
0 — T 0
100 10!

Period [sec]

Figure 12.

Time [hour]



10 February 1995

- 24

[inoy] awyy

N © [=]
-~
{

Period [sec]

"1 Microbarom power spectra

[inoy] sy

Figure 13.



N¢}
(43

sInoy 99

12°]

314

(414

"p1 3An3LY

o€

oe

ve

8} 4

l

9 0

aaarsacalasaaiis

000

- G20
- 05°0
- GL°0
- 00}

A

0s’4

E7A

00

ST

- 0Sc

SL%¢

00t

gee

0s'e

7

o T FOTPRVETITE FUTTIOTITN FTTTTITITTIN FITTTUTUTIS IYPTWIVITTN FRTTTTPITIN FINTITUTTET PRTTTTTTI FTPTITITI FRPTTTTN 1
: !
] [N SUUPEGUUI S, - . b - nh .
] ' i _
k 32?. ma o “I!....
3 A ». «r.\_. e oo [
] e ... AF _} t
J ﬁ 1 M“ .Jm. ? .:/...\-f.
l... .o L.»um" ﬁ.m\» 4 n.lﬁn»l#mm‘l:
] o vilis U
l " PO
.” T A N R e
1 i
I i
” | m opydme WoxeqoXdTI [
4 4 f B |

1

S661 ‘11 - 6 Areniqay

Ayedy

00y



cL g9 03

INSRTTETETL FUUTUNETESTS FPTTNPRRUTE

/

*S Y N3y

14°] t:14 ey 9

TUSTETERTS FONTITIRY VI NG UUINTT

g oe

ve 8

FETETVITERYS INTRRSYUENTI SWU TR ESURY I

I cl

IEETENTSTET

9 0

INUTVRTETSTI PFUNTRTE UV FPRNNET

- — ¥ iI*. - . P ] - — - —— - —
oo e e
I _

:
|
T £ S -

TYTTTTT T T T T T Y YT Ty Y

TYITITY T T [TIrrerrrees

TTTTTTIITTY

S661 ‘11 -6 Ateniqdy

|
\ :
“
i
PO . | S
1 * !
. ; m pnuzy
I -
i !
T T P T T T T T TR T T YT

T [T T T T T T LT Y TT T TN Y

fiyedy




*91 9An3L]

43

9

(s1not) awly, ¢

2+ (sanory) owry,
1 2

000

§2°0

050

S0

L

-~

g

G

00°}

STHOXE(0.IIIIA]

| Se'b

- L7}

STASIISOITTA

000

s2'0

0s'0

S0

|- 00°%

- -} szt

S66T ¢ 01 Arenaqay

002

- 0574

- SL°)



INFRASOUND DETECTION - THE FRENCH SYSTEM
Elisabeth Blanc

CEA/DASE/LDG
BP 12, 91680
Bruy¢res le Chatel, France

An experimental station developed by CEA/DASE has been set up at Flers (Normandy), France. This
station is a four element array, whose characteristics correspond to the request of the experts of the

Conference of Disarmament for the CTBT infrasound monitoring network. The purpose of this

presentation is to summarize the most important results obfained at Flers during 1.5 year of permanent

measurements.

Most of the infrasounds measured at the Flers station are microbaroms produced by the ocean swell,
atmospheric waves associated to severe weather and high frequency infrasounds generated by the Concorde
supersonic aircraft. The signature of theses disturbances is characteristic. Well identified infrasound as
microbaroms or Concorde infrasounds can be used for testing the system and defining the best adapted
automatic processing methods. Last results obtained with PMCC method are presented.

A second station in Bretagne has been added for determining the location precision and for testing the event
association methods. Several different configuration of porous hoses for noise reduction have been tested
and circular hoses seems to be a well adapted configuration. Noise measurements in different vegetation
conditions were intensively performed in France. Measurements in French Guyana allowed to evaluate
noise and vegetation effects in quite different conditions. Infrasounds produced by the Ariane rocket on
April 16, 1997 have been used for the estimation of the detectability in different environment conditions.

INFRASOUND WORKSHOP FOR CTBT MONITORING
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Electronic and background noises
*on a MB 2000 microbaroreter
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PMCC method

For each frequency-time elementary element

INITIALISATION:

STARTING SUBSET (N CdMPONENTS)

A 4

CORRELATION FUNCTION
FOR THE N COMPONENTS

v

CONSISTANCY OF THE SUBSET: C

!

v
LOCATION
PARAMETERS
azimuth:a
velocity : V

Y

DETECTION |«——— c< ¢

OTHER COMPONENT
n+1' ?-

yes no

no

NO DETECTION

yes l

CORRELATION FUNCTION
FOR THE NEW CLOSEST COMPONENT
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DASE/LDG - E. BLANC - 25/08/97
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PRESSURE (Pa)

INFRASOUNDS PRODUCED BY EXPLOSIONS IN THE ATMOSPHERE

10 T : T ¥ T _ T i
: East station, 440 km
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Figure 2; signals measured by the LDG during nuclear tests of a few kilotons at 440 km East of
the explosion point. The different arrivals are produced by reflections of the waves in the upper
Iayers of the atmosphere
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Figure 3: same as Figure 2 for measurements at 450 km in the North-West direction
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INFRASOUNDS PRODUCED BY EXPLOSIONS IN THE ATMOSPHERE
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Figure 5: Same as Figure 4 for the signals of Figure 3
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INFRASOUNDS PRODUCED BY EXPLOSIONS IN THE ATMOSPHERE
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figure 4: Comparison of the spectra of the different arrivals of Figure 2 with a noise spectrum
measured little before the test. The upper part of the figure shows the details of the signals
corresponding to the different arrivals.



WAVE PROPAGATION IN THE ATMOSPHERE

: 1
§‘°° /A%/%%‘:§§s
o %// /////////% N \\\\\\ \\X\\\\\\\

Distance (km)

g“” %/ % \\\\\\s
| //// // ’W/m\ \\\ M,

-200 150 1oo -5 150 200
Distance (km)

Figure 8 : The wave fronts have bee determined for a 5 kt explosion without wind (top) and in the
presence of winds (bottom)
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Atmospheric noise

05 Date: 19?4.23 - Sltation FLN - dB relative to 1000 Pa/sqrt(Hz
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Figure 10 : Measurements were performed at the Flers station between 23 and 29
January 95. Noise significantly increases during the day, under the effect of wind-
related local turbulence. - .



Spectra for different wind conditions
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Example of atmospheric waves at Flers
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GRAVITY WAVES AT FLERS
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The gravity waves period is higher than the Brunt Vaissala period
(about 5 mn).

Gravity waves are attenuated in the measurements because they
are outside the sensor bandwidth. Their amplitude is however
strong and they are observed and used for testing the system.
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Signal and noise spectra
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CAPABILITY MODELING OF THE PROPOSED INTERNATIONAL
MONITORING SYSTEM 60-STATION INFRASONIC NETWORK

Dean A. Clauter and Robert R. Blandford

Air Force Technical Applications Center
1300 N 17™ Suite 1450
Arlington, VA 22209

We have modeled the detection and location capability of the International Monitoring System (IMS)
proposed 60-station infrasonic network using a statistical model which assumes a log normal distribution of
signal and noise. Model inputs were determined empirically from infrasonic data of US nuclear tests.
Amplitude as a function of source distance was determined after normalizing the amplitude by the square
root of the yield. An empirical relationship was derived for the background noise as a function of wind
speed. Modeling results indicate that the proposed 60-station international network with 4-element arrays
will achieve detection capabilities for two stations at the 90% confidence level between 0.1 kilotons (kt)
over land areas and 0.7 kt over ocean areas. Location uncertainties are based on empirically determined
azimuth and arrival time errors. The location radius of uncertainty circle at the 90% confidence level
ranges from 50 kilometers over land to 150 kilometers over the southern ocean areas.

INFRASOUND WORKSHOP FOR CIBT MONITORING



Capability Modeling of the Proposed International Monitoring System
60-Station Infrasonic Network

by Dr. Dean Clauter and Dr. Robert Blandford
Air Force Technical Applications Center (AFTAC)

sponsored by AFTAC

ABSTRACT

We have modeled the detection and location capability of the International Monitoring System
(IMS) proposed 60-station infrasonic network using a statistical model which assumes a log nor-
mal distribution of signal and noise. Model inputs were determined empirically from infrasonic
data of US nuclear tests. Amplitude as a function of source distance was determined after
normalizing the amplitude by the square root of the yield. An empirical relationship was derived
for the background noise as a function of wind speed. Modeling results indicate that the proposed
60-station international network with 4-element arrays will achieve detection capabilities for two
stations at the 90% confidence level between 0.1 kt over land areas and 0.7 kt over ocean areas.
Location uncertainties are based on empirically determined azimuth and arrival time errors. The
location radius of uncertainty circle at the 90% confidence level ranges from 50 km over land to
150 km over the southern ocean areas.

Keywords: Infrasonic, Infrasound, detection and location modeling



Objective

AFTAC had an infrasonic nuclear monitoring mission until 1974, Currently, the mission is
being reestablished by the international community. For support to the United States delegation at
the Comprehensive Test Ban Treaty (CTBT) talks in Geneva, we modeled the detection thresholds
and the location uncertainty of the proposed 60-station international infrasonic network consisting
of 4-element arrays. We used actual data from nuclear tests of known yields, origin times, and
locations recorded at historical infrasonic stations and included these as empirical inputs to the
modeling program. We have three objectives for this presentation. Our first objective is to
describe our method and show our modeled detection and location capability for the 60-station
infrasonic network. Our second objective is to demonstrate that both azimuth and arrival times
can be used to reduce the area of the location uncertainty ellipse. Our third objective is to convey
to the research community the additional work that we anticipate is needed to improve location
methods in order to meet international expectations.

Research Accomplished

The model for signal detection thresholds model was first developed for the determination of
seismic detection and location capabilities (Sereno, 1990). The model assumes a log normal dis-
tribution of signals and noise amplitudes. The probability of detection is given by the expression:

log$S ik~ logN ik~ logSNRl.j &

5 N1/2
Osijk +°Nijk)

P..

ijk = Rl.xd)

where
P is the probability of detection at the ith station for the jth epicenter and the kth event.

R; is the reliability of the station i, assumed to be 95%.

Siji is the signal amplitude. This number is a function of distance and was empirically deter-
mined and will be shown in the first figure.

Ny is the station noise amplitude, for which we developed an empirical relationship between

station noise and wind speed. We assumed that for 4-element arrays, we can also reduce
the wind noise for a single sensor by a factor of 2.

SNR,-jk refers to the signal-to-noise ratio expected for a detection. This number is 1.5, based
on empirical experience.

Ogiji Tefers to the log standard deviation of the signal. This number was empirically deter-
mined to be 0.3 log units. We used this number for all station-event pairs.



Opiji, to the log standard deviation of the noise background. This number was empirically

determined to be about 0.4 log units for a number of our stations. We used this number for
all stations.

& is the probability density function.

In Figure 1, we show our empirically determined amplitude distance relationship. The hori-
zontal axis is in kilometers, and the vertical axis is in microbars. The black crosses are nuclear
events from Nevada Test Site (NTS) shots, and the Dominick series of tests in the Pacific. The
X’s are ammonia nitrate and fuel oil (ANFO) explosions, which had their size corrected for the
equivalent nuclear energy. The amplitudes observed were scaled to 1 kt by square root scaling of
the yield. Shots at the surface were multiplied by a factor of 2 in yield to account for the surface
reflection. In addition, amplitude corrections were made for the wind direction for the ANFO
shots, but not the others. A least squares scaling was done on the events which give the relation-
ship between pressure and range given at the bottom of the slide. From the scatter, a log signal
deviation of 0.28 was determined of the individual points from the best fitting straight line. This
is thought to be due in large part to the variation in the upper level winds.

We determined the mean wind speed in meters per second on an annual and monthly basis
from meteorological stations adjacent to our old infrasonic stations. There was a period of 36
months for which we have data of background noise measurements made four times per day at

each sensor. The arrays had Daniels pipes to suppress noise. We took those noise levels and plot-
ted them versus mean annual wind speed in meters per second, taken at the standard meteorologi-
cal height of 10 meters. The empirical relationship obtained is plotted in Figure 2. The circles
represent yearly averages. In order to obtain the extremes, we looked at particularly calm or
windy months and plotted the noise values versus the monthly means. One observation from this
graph is that the noise rarely goes below about 0.3 microbars. This level must represent the zero-
wind background noise levels which are presumably usually due to propagating infrasound sig-
nals from distant storms. Note also that the noise varies quadratically with speed. High wind
speeds along with few land areas contribute to the problem in the southern ocean areas of finding
suitably spaced sites. In these areas the arrays may have to be expanded to 16 elements to achieve
the required detection and location thresholds. In the modeling, meteorological stations near pro-
posed sites or other data were used to estimate the typical wind speed at a site and the derived
empirical relationship between wind speed and noise was used to model the noise. Other effects
besides wind speed contribute to wind noise. These included the vegetation and topography of
the sites. These differences contribute to the scatter of the data points along the best fitting empir-
ical relationship.

Based on the model and empirical data described above, we show our detection capability for
the proposed international 60-station network in Figure 3. The detection capability is modeled for
detection by two stations at the 90% confidence level. The detection contours are in Kilotons
(KT). Over land areas the network will have a detection threshold considerably below 1 KT, and’
only approaching 1 KT in the remote ocean areas. The objective of the international community
is to be at or below 1 KT worldwide.



In addition to modeling the detection thresholds, the location uncertainty was modeled.
Inputs required for determining the location uncertainty in addition to the probability of detection
are the standard deviation in the velocity and azimuth. Figure 4 shows the azimuth uncertainty for
Dominic and NTS events as a function of distance. From these data, a standard-deviation of 1.8
degrees was used in the modeling for events less than 27 degrees distant from the event. For
events between 27 and 35 degrees, linear interpolation was used to a value of 7 at 35 degrees;
between 35 and 91 degrees, 12.2 was used; and 27.5 was used for stations at greater distances
from the event. These values could be reduced if the conditions of the upper level winds are
known.

Figure 5 is a graph of the mean wind speed as a function of distance from the Novaya Zemlya
test site to our infrasonic stations at the distances indicated. The average standard deviation from
this test site is 5.17 meters per second which represents a velocity error of 1.7%. This is probably
the best one can do for a calibrated test site where station bias has been removed without indepen-
dent meteorological information.

In Figure 6 shown is the radius of uncertainty circle for the 60-station network where arrival
time is not considered in the solution. The errors over land range from 50 - 150 kilometers,
whereas over water they exceed 1000 kilometers.

In Figure 7 we have assumed a 5% uncertainty in the arrival time and factored it into the
uncertainty estimate for the uncertainty circle. Note that we have reduced our error considerably
for location.

If we assume a 2% uncertainty in velocity, we get an uncertainty radius of around 100 kilome-
ters over most ocean areas and, in the worst case, 225 kilometers as shown in Figure 8.

We have taken the worst case in the southern ocean areas and shown in Figure 9 that when the
velocity uncertainty falls beneath 10%, there is a significant drop in the radius of uncertainty cir-
cle. The international community’s goal is 100 kilometers or less for location uncertainty every-
where. Some array sites may be supplemented by more than 4-element arrays to help meet this
goal.

- Conclusions and Recommendations

1. The detection threshold for the 60-station, 4-element array international infrasonic net-
work at the 90% level for two stations to detect a signal is below 1 KT.

2. Location uncertainty can be reduced considerably using both arrival times and azimuth of
incoming signals.

3. Location uncertainties with a 5% velocity uncertainty vary from approximately 50 - 100
kilometers over land areas and from 200 - 300 kilometers over ocean areas for 1 KT
events. With satellite observations, both azimuth and velocity errors may be significantly
reduced, giving a more precise event location.



4. Future research will be necessary to meet the goals for location accuracy of events
required by the international community. Since there are several infrasonic phases that all ravel
at different velocities, one must identify the detected phase arrival times before they can be used
to constrain location. This is not a simple procedure since not all phases are identified with a par-
ticular event. The event may have to be located first with azimuth information, and this informa-
tion used to identify the phase in a second iteration. In addition, corrections for azimuth and
velocity bias may be possible by knowing the velocity of the upper level winds with the Upper
Atmospheric Research Satellite and other satellites. These winds have large standard deviations
so that a dynamic model will have to be developed.
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Velocity and Uncertainty for NZ Events
computed from observed travel times

a7t

300.0 -
o T { :
290.0 i

280.0 - -

310.0

velocity in meters per second

270.0 —_— . —
2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0
distance in kilometers

Figure 5. Velocity and velocity uncertainty for events from the Novaya Zemlya test
site recorded by the Dawn Star (AFTAC) infrasonic network.

Figure 6. Contours of radius of uncertainty circle (kilometers) for 100% veloc-
ity uncertainty, 1 Kiloton sources.



Figure 7. Contours of radius of uncertainty circle (kilometers) for 5% velocity
uncertainty, 1 Kiloton sources.

Figure 8. Contours of radius of uncertainty circle (kilometers) for 2% velocity
uncertainty, 1 Xiloton sources.
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EFFECTS OF STRATOSPHERIC WINDS ON LONG
RANGE INFRASONIC SIGNALS

Joseph Paul Mutschlecner, Rodney W. Whitaker, and Lawrence Auer

Los Alamos National Laboratory
Los Alamos, NM 87545

Stratospheric winds play a central role in determining the propagation of infrasonic signals at long ranges
(hundreds to thousands of kilometers). These winds and the temperature profile determine the refraction of
the ozonospheric signals and the effectiveness of the return of signals from the layers near fifty kilometers
in height to the earth, The following figure illustrates the effect of stratospheric winds on signals. These
infrasonic observations of atmospheric nuclear tests by the Sandia National Laboratory were made at St.
George, Utah, over a period of years. The observed amplitudes are scaled to one kiloton and displayed
versus day of the year. At this location, directly east of the test site, the amplitudes are strong in the winter
and greatly reduced in the summer.

‘Word 6.0c or later to

view Macintosh picture.

It is of obvious importance to understand how to correct signals and when it is necessary to do so. We
have analyzed an archival data set of infrasonic signals from atmospheric nuclear tests at the Nevada Test
Site. The observations, by the Sandia National Laboratory, were made primarily at a set of stations
surrounding the test site at or near the first bounce return distance over a period of several years and

included a large rarige in explosive yield. Our analysis indicates that an appropriate correction is given by
Ac = Ao * 10"(-k*Vd)

where Ac is the corrected amplitude, Ao is the observed amplitude, Vd is the stratospheric wind velocity
vector near fifty kilometers altitude directed towards the receiver from the source, and k is an empirical
onstant. The value of k is approximately 0.02 s m-1 near the first bounce distance but appears to vary with
range. We illustrate the general effect of the of the correction by application to on several data sets and
discuss the applicability of the method at multibounce distances from a source. The work was supported
by the Department of Energy Office of Non- Proliferation and National Security.

INFRASOUND WORKSHOP FOR CTBT MONITORING



EFFECTS OF STRATOSPHERIC WINDS

ON LONG-RANGE INFRASONIC SIGNALS

J. Paul Mutschlecner, Rodney W. Whitaker, and Lawrence H. Auer

Los Alamos National Laboratory
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SNL Observations of NTS
Atmospheric Nuclear Events

o Period: 1951-1958

o  Number of Events: 79
o Yield Range: 0.5 ton to 74.3 kilotons

o Amplitude Range: pbar to few mbars
o  Stations: 8 (typically 5-6 per event)
o Single Broad-Band Microbarographs

Other Features:
Tropospheric and Ionospheric Signals
Average Velocities
1.2 ton HE Calibration Shots
Selected Wave Forms (in progress)
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DATA FITTING EQUATIONS

RANGE SCALING:

Aobs = C . (%) . Iok-Vd

MULTIVARIATE FIT:
LogA,,=C+5s-LogR+n-LogW +k-V,
where

n=—m-sS

FOR ONE STATION (CONSTANT RANGE):

LogA, ,=C +n-LogW+k-V,
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Results from the Analysis of the NTS

Data
o LogA,,,=C +n-LogW+k-V,
0 wd Ay = Apps* 107
o k=f(R)
0 k=0.019 s/ m at first bounce distances
0 n=045

Does the Correction Method Apply to
Longer Ranges ?
Trial Applications to Several Other Data

Sets:
o LANL White Sands HE Data

o LANL Earthquake Data
o Longer Range NTS Data (T'S-
UK)
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Conclusions and Recommendations

Analysis of the NTS Data Provides a Method for the
Correction of Amplitide for Stratospheric Wind Effects
(several 100 km in range)

Application to Longer Range Data Sets Indicates that the

Method is Applicable to Long Ranges (several 1000 km in
range) -

Future Efforts:

1. Theoretical understanding of the correction (use of
Pierce-type modal model) '

2. Analysis of a selected set of the NTSwaveforms

3. Propose an observational effort to confirm and expand
the method using HE explosions



POSSIBLE INFRASOUND
PROPAGATION EXPERIMENT

10 to 12 HE Explosions About 1 Month Apart 7
Yield Approx. 5 Tons

Microphones at “Bounce” Distances Out to About 1000
km. to the East and to the West

At Least One Array of Microphones to East and West

Dedicated Rocketsondes and/or Satellite Data to Provide
Upper Atmospheric Wind Velocities

Confirm Ability to Model Results
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ANTICIPATED RESULTS OF INFRASOUND
PROPAGATION EXPERIMENT
Effects of Wind upon Signal Amplitude to Large RaITges
Effects on Winds upon Average Signal Velocity
Changes in Spectral Characteristics of Signals
Understanding of E-W Asymmetry
Azimuth Deviations Caused by Winds

Some Tropospheric Signals




HIGH ALTITUDE WIND EFFECTS ON
INFRASOUND NETWORK PERFORMANCE

Lawrence Trost
Sandia National Laboratory

Currently there is disagreement on the effects of 50 km ‘winds on infrasound propagation. Many
researchers feel it is highly important, while other do not view it as a major influence. In order to gain a
first order impression of the effects that the 50 km winds might have on IMS network performance, a series ‘
of simulations were made using the IVSEM computer code. In these simulations, the detection -
performance of the WP330R infrasound network against small (subkiloton) events was analyzed for a
number of months with different average wind conditions, with and without a LANL derived wind
correction factor. It was found that on the average, the simulation predicted better performance for the
network with the wind correction than without. It was also found that the geographic coverage of the
network varied greatly throughout the year. Regions of decreased detection performance, found mostly in
the Southern Hemisphere, remained stable if the wind correction was not used. When wind effects were
factored in, the position of those regions shifted radically with the season, and the size varied greatly. In
view of these differences, research is warranted to better understand the physics of infrasound propagation
under the influence of high altitude winds.

INFRASOUND WORKSHOP FOR CTBT MONITORING
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PERMEABLE HOSE CHARACTERISTICS AND NOISE
REDUCTION FOR INFRASOUND MONITORING

Keith L. McLaughlin, Terrance G. Barker, and Darin E. Wilkins,

Maxwell Technologies
8888 Balboa Blvd.
San Diego, CA 92123

The proposed CTBT infrasound monitoring network consists of between 50 and 60 4 - station -arrays.
Many of the infrasound stations will be co-located or adjacent to seismic systems and work in concert.
Each infrasound station is intended to consist of a broadband microbaragraph equipped with several
hundred meters of noise reduction hose. The permeable hose design replaces Daniels microphone pipes for
the purposes of spatially averaging wind eddy generated pressure fluctuations. Useful detection thresholds
for infrasound stations will be directly related to the effectiveness of the noise reduction hose arrays. We
present an analysis of the differential equations that describe the acoustics of infrasound recording with a
permeable hose as opposed to the discrete set of coupled equations that have traditionally been used to
describe a Daniels pipe. We have implemented solutions to the differential equations using the finite -
difference code Maxhose, which is an implicit Crank-Nickelson time-stepping second order code. The code
includes the effects of atmospheric loading, calibration/test volumes, and finite volume manifolds and
transducers attached to the hose. It may be generalized to multiple hoses connected to finite volume
manifolds. Traditionally, the momentum term is neglected in computing hose response. We have included
this term and found its effect to be significant under some circumstances. The code accepts arbitrary
atmospheric pressure as a function of position and time to simulate wind noise and propagating signals.
‘We show results for atmospheric loading in which the noise power spectra decay as inverse frequency and
inverse wavenumber. Future plans include Monte Carlo simulations of noise reduction properties of
multiple hose configurations. It is shown that a hose may be characterized by a characteristic time
constant, and a characteristic length, 1. The time constant is related to permeability of the hose and the
characteristic length is related to both flow resistance and permeability of the hose. Signal to noise
improvement is directly proportional to the characteristic length of the hose. The low pass filer comer
frequency of the system is determined by the characteristic time. Wavelengths of the pressure field shorter
than characteristic length are averaged over the length of the hose. The finite difference code, Maxhose, is
used to model both operational hose designs as well as calibration configurations. A simple experimental
calibration is described to measure the characteristic times and lengths of permeable hoses. Calibration
results are shown for commercially available soaker hose. Typical measured characteristic times are
between 10 to 20 milliseconds, while characteristic lengths are between 100 and 300 meters. Of particular
note are the effects of hose degradation during a typical San Diego winter as demonstrated by a reduction
in characteristic length of the hose by a factor of 2. An operational system would have experienced a
comparable degradation of signal - to - noise over time. Simple calibration systems can be designed to
track such hose characteristics, and modeled using simple finite-difference codes to predict system
performance.

INFRASOUND WORKSHOP FOR CTBT MONITORING
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Log10(W) Threshold for 2
Infrasound Stations - Proposed
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NOISE REDUCERS FOR INFRASOUND DETECTION

Heinrich W. Haak and G. J. de Wilde

' Royal Netherlands
Meteorological Institute
Seismology Division
DeBilt, The Netherlands

The Comprehensive Test Ban Treaty (CTBT) has brought renewed interest in infrasound detection. A
worldwide network of sixty infrasound measurement stations are planned in the International Monitoring
System. .

Infrasound detection is also of importance for research of sonic booms and other natural and man-made
low-frequency sound sources. Infrasound is usually detected with microbarographs or low frequency
microphones. The main problem of infrasound detection is the reduction of background noise due to
turbulent wind. Simple filtering in the frequency domain is not effective because the strong overlap of the
noise frequency band and the frequency band of the signals under consideration. To be able to distinguish
between noise and infrasound signals, usually array techniques are used. To improve the signal to noise
ratio of the sensor itself, they are usually connected to the atmosphere by a noise reducing structure, which
acts as a spatial filter. Recently we conducted experiments with star configurations of porous rubber hoses
as noise reducers. The porous wall constitutes a distributed inlet for sound waves. It was found that
porous hoses are effective in noise reduction. The porous hose can theoretically be treated as a leaky
transmission-line. The propagation constant and the characteristic impedance are the main parameters and
can be used to distinguish different types of commercial porous hoses. Standing-wave experiments in the
frequency range 0.5-10 Hz with a porous tube of 12 mm inside diameter and 2 mm wall thickness have
been performed to determine the impedance and the propagation constant. Good agreement with
transmission-line theory was found. The slowness response of a star configuration of porous hoses depends
highly on the diameter of the hoses and the impedance matching at end points and at branching points.
Distortionless line design is possible when the flow resistance of the porous wall can be chosen as a free
parameter. The attenuation of sound waves in commercial available porous hoses limits the physical
dimensions of the noise reducers. Although porous hoses are effective in noise reduction, the question
remains if they are robust enough for the intended purposes. Research of noise reducing structures of
possibly more robust Daniels tubes is proposed in order to achieve a robust, linear, omnidirectional,
effective noise reducing element. The air inlet points are most sensitive in almost every design. A right
integration with the surface is essential. The problem of proper noise reducer design, therefore, is
combining user demands with technological feasible and scientifically sound ideas. ’

INFRASOUND WORKSHOP FOR CTBT MONITORING
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Linear acoustical transmission-line theory

The solution of the wave-equation for the pressure in a tube is given by

PG,y =(de T +Be e’

where the propagation constant of the acoustical line is defined as

I'=JZ¥ =\JR+iwL)(G +iwC)

The characteristic impedance is given by

7 = Z___ R+iwl
0 Y G+iwC

The phase velocity in the line can be written as

=w/Im(I)

vpha:e

and the attenuation length is given by
L, =1/Re(I)

where Im and Re represent the imaginary and real parts.
For tubes with a heat-conducting and rigid wall the exact expressions for the series impedance
Z and the shunt admittance ¥ are

Z=i(wplna®) (1-F,e'*)
Y =i(wna*pc?) (1 (y-1)F,e'%)

where @ is the angular frequency, p is the density of free air, a is the tube radius, ¢ is the
free-space speed of sound and 1y is the ratio of specific heats at constant pressure and volume

C,/C,.



e

Linear acoustical transmission-line theory
of porous tubes

The admittance Y of the porous tube is effected by the porous wall in the following way
. =7 q-l
Y,=2,,8" +Y
where Z_ is the input impedance of the porous wall per unit area, S is the area of the inner

wall surfgce per meter and Y the admittance for non-porous tube according to Benade’s theory.
The input impedance of the wall per unit area backed by the free air is given by

. mesinh ( ypmaD +Z,, cosh( ypmd) P
Py Z,,cosh(Y,,d) +Z,,sinh(y, d) pm

where Z,, is the characteristic impedance of the porous material per unit area, Z,,, is the
characteristic impedance of the air per unit area, ¥,m i the propagation constant of the porous
material and d is the wall thickness. Expressions for the impedance and propagation constant

of porous sound absorbing materials are:

Z, =\(ke/h +alic)pc/h

with k the structure constant, /s the porosity and o the air resistance for steady air flow per unit
area,

Vom = 1) (ep/h +lic)/pc?

and the impedance of free air is given by

Zalr :pc



The parameter Fve'¢" is defined as

i, 2D ()]
r (-0, [rJ(-D]

Fe

where the functions J are complex Bessel-functions and r, is the ratio of tube radius and
viscous boundary layer thickness and is defined as

, = af(wp/n)

Here 7 is the viscosity of air. The parameterF, ,eid” is defined in an analogous way with r,, the
ratio of tube radius and thermal boundary layer thickness, defined as

r, =a,/pr}/K

where x is the thermal conductivity.

We define R and wL as the real and imaginary parts of the series impedance, associated with
dissipation via viscous losses at the wall and storage of kinetic energy, and G and @C as the
real and imaginary parts of the shunt admittance, associated with thermal energy losses at the
wall and potential energy of compression.
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Transmission line model:
amplitude along the porous hose at 10 Hz
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Transmission line model:
phase along the porous hose at 10 Hz
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Propagation constant I" (m™)
as function of frequency
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Characteristic impedance Z, (kg m™sec ™)
as function of frequency
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Phase velocity v,,... (m sec™)
as function of frequency
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ABOUT ESTIMATION OF THE EXPLOSION SOURCES
ENERGY BY REMOTE ACOUSTIC TECHNIQUES

Sergey N. Kulichkov

Institute of Atmospheric Physics
Russian Academy of Sciences
3 Pyzevsky, Moscow 109017, RUSSIA

The problem of estimation of explosion energy by using the remote acoustic method is discussed. The
characteristics considered are the explosion energy E and the quantity I ("impulse") the product of the area
of the wave profile S (in pressure-time coordinates) and the distance to the source. The quantity I remains
unchanged along the path of infrasonic wave propagation and takes approximately the same values for
tropospheric, stratospheric, and thermospheric arrivals. The records of infrasonic signals from air, surface,
and underground explosions are considered as an example. The source energy varied between 300 kg and 2
kt; the distance between the sources and receivers was from 160 to 310 km. The records of more than 20
explosions were considered. Satisfactory agreement is observed between the values of I (“impulse")
determined both in the vicinity of the sources and at great distances from them for different types of
acoustic arrivals. The relation between the values of the explosion energy E and I-impulse is
suggested E(kt)= k*3.19*10(-11) I(kg/sec)(3/2). The coefficient k is determined from empirical data,

INFRASOUND WORKSHOP FOR CIBT MONITORING



On the Estimation of Source Energy with the Aid of Remote
Acoustic Techniques.

Sergey N. Kulichkov
Institute of Atmospheric Physics,
Russian Academy of Scicnces.
3 Pyzevsky, Moscow 109017, RUSSIA
Tel: 7 (095) 233-4876, Fax: 7 (095) 233-1652;
E-mail:<postmaster@iaph.msl.su>

ABSTRACT. The problem of estimation of explosion energy by using the
remote acoustic method is discussed. The I-"impulse" value, equal to the product
of the wave profile area S (in the pressure-time coordinates) by the distance R
between a source and a receiver, is used as a parameter characterizing a source.
The quantity I remains unchanged along the path of infrasonic wave propagation
and takes approximately the same values for tropospheric, stratospheric, and
thermospheric arrivals. The records of infrasonic signals from air, surface, and
underground explosions are considered as an example. The sourcc energy varied
between 300 kg and 2 kt; the distance between the sources and receivers was
from 160 to 310 km. The records of more than 20 explosions were considered.
Satisfactory agreement is observed between the values of E (explosions energy)
determined both in the vicnity of the sources and at great distances from them
for different types of acoustic arrivals. The relation between the values of the
explosion energy E and I-"impulse” is suggested.

GENERAL GOAL.
To obtain a universal characteristic of infrasonic arrivals at long distances
from explosions suitable to estimate explosion energy.

BACKGROUND.:
SOURCE ENERGY RELATIONS

a. Semi-Empirical Approach of Mutschlecner and Whitaker (1988)
Es(kt)=0.62{(Ap,.,(1tbars)/4.69%10%)}4110°*%Y_ R (km)
b. Semi-Empirical Approach of Reed (1972)

p(kPa) =11.8E(kt)™ R@am)?, E~ (p/11.8)>°R’



c. Semi-Empirical Approach of Sadovsky (see Gubkin,1978 )

Ap(kg/sm®*)=0.83[E'”(kg)/R(m)]+2.7E**/R*+7.0E/R>
E*<R<10E"

d. Approach of Landay (see Gubkin,1978)

Ap=1.35{E"”(kg)/R[In(R(m)/2.7E**)]*?}  [ke/sm?]
10E3<R '

NONLINEAR EFFECTS.

The expression for the amplitude p and duration < of the acoustic pulses at
large distances from the sources, when nonlinear effects were pronounced, takes
_the forms (Bush,Kulichkov etc.1989)

. %
pa"'fl/z(2Soro)1/2(p00308)1/2r 1 [ I {(&opOCSO/&p(:S)l/z/rosina}dz ]-1/2

(2808} 2(oc®e) 2 | | {(eeopot’o/epc®) i sina}dz |12
% .
patr = (2S,r,)

where p is the density of air,p,, ¢,and S,, are the tnitial values or p,c and S at
Z=Z, , o 1s the grazing angle of the sound ray, ® is the cross-sectional area of the
ray tube, f=r’@,/&?, is the focusing factor, £ =1.2 -

DATA ANALYZED

The records of 23 explosions were considered (Kulichkov,1992).

There were: '
(1) air explosions (Z=6-8 km,R=160-180km, E=300 kg- 1 1),
(2) surface explosions (R=290-310 km; E = 20 t=500 1)
(3) commercial subsurface explosions (R=186-240km; E=30- 2000 t)
(4) underground nuclear explosions.
(5) runs of surface explosions with an energy of 20--70 t regularly
realized 1—2 times a month in 1989—1991 (when the SS-20 medium-
range missiles were destructed).



SOURCE ENERGY RELATION

E,=2.85+10-0(1 [kgfsec}/2)** [kt] Gubkin (1978)
I=SR

S= I p(t)dt (square of the “wave profile”)
RESULTS OF CALCI'JLATIONS”

The acoustic records in the vicinity of explosions and at the distances R
from explosions were analyzed (sec examples in Fig.1)

The correlation between the values of E, obtained at the distances R and
'R, from the same explosion by using Reed's formulais presented in Fig.
2. .

Great differences can been seen between the values of Eo(R) and Eo(Ro).
In contrast to this case, the same correlation between E;(R) and Ey(R,)
obtained by using the formula:

F;=2.85+10-19(I [kg/sec}/2)*2 [kt])
is satisfactory (see Fig. 3).

Tt follows from Fig.3 that the final correlation between the explosion
energy and the parameters 1 for long distances from explosions can be written
in the following form: .

Ey= k+3.19+10-10(I [kg/sec]/2)3? [ki]

coefficient k may be defined from empirical data.

CONCLUSIONS

To estimate explosion energy by using remote acoustic method ,the
obtained relation E(I) may be used, as well as already known semi-empirical
relations E(p,R). ‘
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LONG-RANGE SOUND PROPAGATION FROM UNDERGROUND,
SURFACE AND NEAR-SURFACE BURSTS WITH SMALL YIELDS

Sergey N. Kulichkov

Institute of Atmospheric Physics
Russian Academy of Sciences
3 Pyzevsky, Moscow 109017, RUSSIA

The results of the records of infrasonic waves from air, surface, and underground explosions at long
distances from sources are presented. These data encompass source yields of 30 kg to 2000 tons and
observation ranges of 120 to 980 km. The experiments were performed in runs of 3--5 in different regions,
in different seasons, and with different intervals between the sources (from 15 min to a few days), but at the
same relative position of the sources and observational points for one-type explosions. Infrasonic signals
corresponding to the Lamb waves and also to stratospheric, mesospheric, and thermospheric arrivals were
recorded. The results of the experiments, where the runs of explosions with an energy of 2070 tons were
regularly realized 1--2 times a month in 1989--1991 (when destructing the SS-20 medium-range missile)are
presented too. Infrasonic signals in these experiments were recorded in the regions of geometric shadow at
a distance of 300~-310 km due to a partial reflection of infrasonic waves from inhomogeneous structures
of acoustic refractive index at stratospheric and mesospheric altitudes. It is shown that the variations in the
parameters of the inhomogeneous structure (cross wind, etc) of acoustic paths (including the time intervals

up to I5 min) substantially affect the arrival azimuth and the standard parameters used in infrasonic
monitoring to identify explosions and to estimate their energy.

INFRASOUND WORKSHOP FOR CTBT MONITORING



Long-Range Sound Propagation from Air sSurface, and
Underground Small-Energy Explosions.

Sergey N. Kulichkov
Institute of Atmospheric Physics,
N Russian Academy of Sciences.
3 Pyzevsky, Moscow 109017, RUSSIA
Tel: 7 (095) 233-4876, Fax: 7 (095) 233-1652;
E-mail:<postmaster@iaph.msk.su>

ABSTRACT. The results of the records of infrasonic waves from

ionospheric,air, surface, and underground explosions at long distances from
sources are presented. These data encompass source vyields of 5 kg to 4000 tons
and observation ranges of 120 to 980 km. The experiments were performed in runs
of 3--10 explosions in different regions, in different seasons, and with different
intervals between the explosions (from 1 min to a few days), but at the same
relative position of the sources and receivers for one-type explosions. Infrasonic
signals corresponding to the Lamb waves and also to stratospheric, mesospheric,
and thermospheric arrivals were recorded. The results of the experiments, where
'the runs of explosions. with an energy of 20--70 tons were regularly realized (1--2
times a month) in 19891991 (when the SS-20 medium-range missiles were
destructed), are presented too . Infrasonic signals in these experiments were
recorded in the regions of geometric shadow at a distance of 300--310 km duetoa
partial reflection of infrasonic waves from inhomogeneous structures of the
acoustic refractive index in the stratosphere and mesosphere. It is shown that the
variations in the parameters of the inhomogeneous structure of acoustic waveguides
(including the time intervals up to 15 min) substantially affect the arrival azimuth
and the standard parameters used in the infrasonic monitoring to identify
explosions and to estimate their energy.



GENERAL GOALS.

The main objectives of the studies are the following:

(1)- to develop the methods of acoustic sounding of turbulent structures in
the middle atmosphere and to study their time vanations;

(2)- to study the influence of the atmospheric fine inhomogeneous structure
on the standard parameters used in the infrasonic monitoring of small -
energy explosions: the main period of infrasonic signals, their amplitude,
duration; and dispersion;

(3)- to study the effect of time variations in atmospheric stratification
(interseasonal, daily, and hourly variations, including the effect of internal
gravity waves) on the parameters of recorded infrasonic signals;

(4)- to study the nonlinear and dissipative effects. _

(5)- to study the effects of cross wind on the determined source azimuth.

EXPERIMENTS.
More than 100 experiments with explosions of different type and energy have been
carried out (Kulichkov,1992).

Source energy varied between 5 kg and 4000 t;

The distance between sources and receivers varied between 120 and

980 km.

The experiments were carried out in different regions of Russia, in different
seasons, and at different spatial orientations of acoustic paths. The experiments
were carried out in rurs of 3—10 explosions realized with different time intervals
at one and the same relative position of sources and receivers.

The time intervals between explosions varied from 1 min to a few days.

TYPES OF EXPLOSIONS.

The following types of explosions were used as sources:

(1) ionospheric explosions ( Z=120-150 km,E=5-15 kg);

(2) air explosions (Z=6-8 km,R=160-180km,

E=300 kg- 3 t);

(3) surface explosions (R=160-980 km; E = 30kg-500 t)

(4) commercial subsurface explosions

(R=186-450km;E=30- 4000t)

(5) underground nuclear explosions.

(6) runs of surface explosions with an energy of 20--70 t regularly

realized 1--2 times a month in 1989--1991 (when the SS-20 medium- range
missiles were destructed). (60 explosions).

Samples of the acoustic records in the vicinity of explosions of different type are
presented in Fig.1-2.



EXPERIMENTAL RESULTS.
MINIMUM VALUES FOR EXPLOSION ENERGY SUFFICIENT TO
RECORD STRATOSPHERIC AND THERMOSPHERIC ACOUSTIC
ARRIVALS.

It is shown that the explosion energy of the order of 30—50 kg is enough for
. stable recording and further processing of stratospheric and thermospheric acoustic

arrivals. (Fig.3.)( Kulichkov,1996).

\

MOLECULAR DISSIPATION.

In our experiments, no essential effects of molecular dissipation on the amplitudes
of recorded infrasonic signals from explosions with an energy ranging from 5 kg
was observed (Bush,Kulichkov etc.1997).

The dissipative absorption of high-frequency (about 7 Hz) acoustic signals recorded
from the explosions with an energy of 5—15 kg at the ionospheric altitudes was

found to be lacking. (Fig.4-5)

NONLINEAR EFFECTS.

Nonlinear effects noticeably manifest themselves when explosion energy
exceeds 1 t. (Bush,Kulichkov etc. 1989)

At great distances from the sources, the amplitude and characteristic period
of infrasonic signals are determined from the initial values of the magnitude I (
“impulse”),the product of the wave profile area S (in the pressure-time
coordinates), and the distance R to the explosion. (Fig.4)
BACKSCATTERING.

The results of the experiments show that the inhomogeneous structures of
the acoustic refractive index with the values of the vertical gradients (9¢/0z) of the
effective sound velocity of the order of 50 m/sec/km exist in the middle
atmosphere. It has been known earlier that the similar structures exist only'in the
atmospheric boundary layer. (Kulichkov,1996)

The inhomogeneous structures with great values of dc/dz fill the upper
atmosphere full. It is likely that an isolated layer with high dc/0z is present in the
mesosphere.

In all the experiments with explosions of 20—70 t, acoustic signals scattered
from the inhomogeneous structures of the acoustic refractive index in the middle
atmosphere were recorded in the zone of acoustic shadow (Fig.7). The
_ corresponding profiles of the effective sound velocity are prescnted n
Fig.8.(Kulichkov ,1996)



THE INFLUENCE OF VARIATIONS IN  ATMOSPHERIC
STRATIFICATION WITH DIFFERENT TIME SCALES ON THE
CHARACTERISTICS OF RECORDED INFRASONIC SIGNALS FROM
SMALL- ENERGY EXPLOSIONS.

Interannual and interseasonal variations

The maximum values of signal velocities for stratospheric, mesospheric, and
thermospheric acoustic arrivals in the north and west directions from'the sources
are observed in July.(Kulichkov ,1996).(Fig.9)

The amplitudes of acoustic signals scattered from turbulent structures in the middle
atmosphere take maximum values in July (Fig.9).

The general form of acoustic arrivals (both reflected and scattered) corresponds
principally to interseasonal variations in atmospheric stratification. (Fig.7,10)

Daily and hourly variations

The sequence of stratospheric arrivals recorded at different time during a day is
observed to vary (Fig.10). The general shape of reflected and scattered
stratospheric arrivals remains unchanged during an hour (Fig.11).

The values of the amplitudes of registered signals can vary within an hour interval.
It is probably due to the influence of gravity waves (Fig.9,11). (Kulichkov,1996)

MAIN PERIOD. GENERAL DURATION OF INFRASONIC SIGNALS
FROM SMALL ENERGY EXPLOSIONS.

The main period of the “head” of stratospheric acoustic arrivals recorded in
the audibility region corresponds to explosion energy. In this case, the
characteristic period of arrival “tail” is determined by diffraction effects due to
turbulent inhomogeneities in the middle atmosphere.

" The main period of thermospheric arrivals also corresponds to explosion
energy. At slightly oblique propagation (turning height is 115 km and path length
is more than 500 km), the main period of thermospheric arrivals substantially

varies due to the combination of the diffractive effects. (Fig.12)

The general duration of recorded acoustic arrivals from small energy
explosions is mainly determined from the diffractive effects due to the presence of
turbulent structures in the middle atmosphere (Fig 13).

The presence of a quasi-continuous component within the range between 0.5
and 2 Hz is noted for all the types of acoustic arrivals (stratospheric, mesospheric,
and thermospheric).(see Figures)



EFFECTS OF CROSS WIND.

For acoustic signals propagating along the direction of the predominant
stratospheric wind, only slight variations are observed in the measured azimuth of
signal arrival. It makes sense to determine the azimuth of signal arrival for a high-
frequency component of the signal spectrum (Fig.14).

CONCLUSIONS. ,

The fine inhomogeneous structure of the atmosphere substantially affects the
parameters of infrasonic signals at great distances from small-energy explosions.
Therefore the infrasonic monitoring of such explosions is a matter of some difficulty
because of the frequency, amplitude and duration of infrasonic signals change
essentially.

On the other hand, the presence of the atmospheric fine inhomogencous
structure opens some additional prospects in developing the methods of infrasonic
monitoring. There appears a possibility to record infrasonic signals in the region of a
geometric shadow from sources. Due to diffraction, the duration of recorded signals
increases, and a quasi-periodic component appears in a frequency band between 0.5
and 2 Hz. All this facilitates the detection of infrasonic signals from small-energy
explosions and their further analysis.

In developing the methods of infrasonic monitoring of small- energy
explosions, one should take into account the diffraction effects caused by the
influence of fine turbulent structures in the middle atmosphere on infrasonic signals
at long distances from explosions. When choosing a spatial scale for the net-work
of acoustic microphones, one should take into account the characteristic values of
the vertical scales of turbulent structures in the middle atmosphere.
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Figure 1. Samples of the acoustic records in the vicinity of the cxplosions of
different types.

1- subsurface explosion (E~35 t); 2-surface explosion (E~50 kg);

3-air explosion (E~1 t);4 - surface explosion (E~260 1);

5- commercial subsurface explosion (E~2000 t);

G- commercial subsurface explosion (E~4000 t).
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Figure 2. Photographs of a conunercial subsurface explosion (L~ 4 km,
depth h~15 m, E~4000 ¢) and a surface expevimental explosion (E~260 1).
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Figure 9. Velocities of stratospheric (s); mesospheric (m)
and thermospheric arrivals (t)

A-S e-m m-+ acoustic audibility r=300 km

V= Q’/T' mjsee  +-§ 0-8 DO-t acoustic shadow r=310 km
—4— =
300 — l A N +
- \ ~
¥ NN
- —{. - O- o&‘.
o~ e -0
250 |- u/s_\-s\\s\\\u\ b
T —
" . \.
1 1 L { L 1 f 1 {
12 3% 4 5 6 38 g 40
/: "~ month
|
—v" acoustic shadow
S
1

7

’ AN
L 0.4 I"I
Illl||l|l|
{2 3 456 3 3 g 40

month

S-@- T = 43h 481434
S w-0-T, = 12 g7 4 4" EC(MW)
0 t-M-T,= |3"04' ool 20.40.90 40

¥ c——o\. O |
- Dl>\<U\U‘D)<.:D acoustic shadow2() -
Sy 3 _

(0.4 O , 40 80  T-To (min)

Interseasonal and daily variations of the coefficients of partial reflection of
acoustic signals from turbulent irregularitics of the acoustic refractive index in
the middle atmosphere.



R, ~ 300 kwm E,=20- 70 ton

.29
0.290 21,95,39} 0,

]L{PQ_

19.05.90

[

—

'51830

L
2950, ' 029 16.0%.89 |
= ° 19.2Pa

'iro0 P 0g |
\‘//\/K:/\/\VM/‘M\/MM
" ligoi3o0
11.08.90 2P
i
0
it20 480
1 i
1l.08.90
| 33800
Afwwwvwww soioly Joe
| 153320 - 0238
I il
- 19.08.38 .
0283 112,0% 40

Figure 10. Interannual and interseasonal daily variations of stratospheric arrivals
observed in the zone of audibility to the West from surface explosions with an

energy of 20-70 t.



r=310 km

¥

) i
11" k¢ g0 . x

acoustic shadow

. t 1 2 see
LI ["'Lb\ LRI '
16.0%. 89 16 o
r=7300 km acoustic audibility

1

3.2 gq

t \2\1 l’-l-l L_Z._J

Figurc 11. Samples of the acoustic records obtained in ‘ihe zones of silence and
audibility for the run of explosions with an energy of 20-70 t.



. (9Z-L1°1'99°886T
"dep 208 RN L "BIEL )
BsuiIf-gInyeg

OUBI[OA WO.IJ S[BALLIE
srrydsouriay) jo sadAy,

e:_esﬁ
1

Héx\{f)\/\{ifﬁﬂ

w7

0os3i!

I N Y e N e N

238
ook

Wt 086 = n

‘1 0L-07Z JO U2am33q AS.19U5 uE YILM uogsofdxd
39BJINS WO Uy (86 JO OUEISIP & )& S[BALLIE d)JSNOJE 3 JO sojdureg * 71 om31q

vof| Mgtz
90651 |

é%??i{ig%é

é,\g%?
Sl ¥ og

6 Goll

DoV

ogtsil

4

S
whee

100951

M¥oz

[ 3«

(k){)\/(L}§}%ééﬁ}$§>ﬁﬂl>ﬁz

M030t -08 =3

s

[milg

s



Al 1010 1030 T (aec)
Lo 14,0491 Mo
. 60 -

- 50 50 A

40 -

60} 14.10.89

ho

S dl
| o, % (mfsec/hm)
A)=fi2(cos0)23t 40 40 60 - _

Figure 13.Values of A(®) (curve 1) for sound rays reaching the heights
H of partial reflection (curve 2). Double amplitudes 2p(D) of recorded infrasound
signals from explosion with an energy between 20-70 i.

Example of a profile of 8c¢/dz from cxperimental data.
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INFRASOUND MONITORING SYSTEM OF NUCLEAR
EXPLOSION IN THE ATMOSPHERE

Jin Lai XIE

Institute of Acoustics
Chinese Academy of Sciences
Beijing 100080, China

Zhao Hua XIE

Computer Network Information Center
Chinese Academy of Sciences
Beijing 100080, China

Infrasound Program has been operating since 1965, making routine measurements of low frequency
atmospheric pressure waves in Institute of Acoustics, Chinese Academy of Sciences. Infrasound
monitoring is a well-established method for detecting and locating nuclear explosions in the atmosphere,
hailstorm, earthquake and so on. A properly designed system provides anti-jamming probe, data
acquisition, dynamic spectrum and cross analysis, real-time display, measurement velocity, location,
indication of yield in real--time, capabilities of the unique event identification, classification events, and
data transfer. The performance specifications of the equipment for detecting and recording infrasonic
waves, and some typical results we obtained infrasonic waves from nuclear explosions would be shown.
We hope that it will make as good as possible for monitoring nuclear test in comprehensive nuclear test ban
treaty.

INFRASOUND WORKSHOP FOR CTBT MONITORING
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INFRASOUND MONITORING SYSTEM OF NUCLEAR
EXPLOSION IN THE ATMOSPHERE *

XIE Jin Lai
(Institute of Acoustics, Chinese Academy of Sciences, Bejing 100080)
XIE Zhaohua

A

(Computer Network Information Center, Chinese Academy of Sciences, Beijing 100080)

ABSTRACT Infrasound monitoring is a well-established method for detecting and
locating nuclear explosions in the atmosphere, hailstorm, earthquake and so on. A prop-
erly designed system provides anti-jamming probe, data acquisition, dynamic spectrum,
cross-correlation analysis, measurement velocity, location, indication of yield in real-time,

capabilities of the unique event identification, classification events, and data transfer. We,

Institute of Acoustics, Chinese Academy of Sciences, provide performance specifications
for the necessary equipment. It will make as well as possible for monitoring nuclear test

in comprehensive nuclear test ban treaty.
1 INTRODUCTION

In the fifties to early seventies, there were frequent nuclear tests in the atmosphere, by
means of our equipment we can determine when and where these tests being carried out
and the equivalence of the nuclear bombs. Some typical recorded waveforms show the
distinct differences at different distances (hundreds of kilometers) are discontinuous and
separate obviously into three groups with increasing amplitudes.

This kind of d.iscontinuity is featured for explosive waves. The dominant components
are “high frequencies” with periods ranging from 2 to 10 sec. The recorded waveforms
at moderate distance (about two thousand km) are shared equally by “high frequencies”

with average period about 1 min and “low frequencies” with period about 6 min. The

* waveforms at far distance (about 10 thousand km, concerning the French nuclear test held

in South Pacific in 1968) show that high frequencies all die out but only low frequencies

* The project is supported by National Natural Science Foundation of China

1



with periods about 120 min remain.
2 Equipment for detecting and recording infrasonic waves:

(1) Block diagram of complete system as shown Fig. 1

Our self-devised equipment has the advantages in simplicity and economy, in the easiness
of operation and 1;1aintena.nce, and also in the intuition of results. The complete system
consists of anti-interference receivers, digital wave-shape recorder and devices for signal
transmission, processing and reserving. .

(2) Transducers

The condenser type has the advantages in small volume, high sensitivity (30 millivolts per
Pascal in general) and wide frequen‘cy responses (with high responses in low frequency
range and uniform response characteristics within a wider frequency range; the frequency
response characteristics can be adjusted by the acoustic compliance of the diaphragm),
and thus suits to receive infrasonic waves with periods 0.1-200 sec. (Measurement range
as 0.1-1000 sec.)

(3) Array

These microphones are seldom used singly, but often used to construct an array, or in
equivalence, to be attached with some auxiliary devices. There are two purposes for doing
so: for anti-jamming and for direction—finding or source-locating.

birectz'on-ﬁnding or source-locating erray: One cannot determine the direction of coming
wave by using a single microphone, but can do so by three microphones. If one wants

to locate the wave source, however, at least three microphones are needed. The basic

construction for this goal is triangular array.

From the time difference between the arrival of waves at any two elements of such an
array, the arrival angle of a wave can be determined, and two such angles can determine
the location of source (the intersection of two corresponding lines). Generally, the wave
velocity is unknown, so at least two sets of such combination are required in order to
eliminate the wave velocity, and at the same time, the unknown velocity can thus be

determined also.



(1)

(2)
®3)

)
(5)
(6)

The actual array adopted in our field measurements is in the form of multi-element array
in orthogonal lines.

Such arrays are designed to study the accuracy of the triangular array and the random
characteristics of infrasonic wave propagation. Using this large-scale array, one can calcu-
late the deflection obtained from various triangular arrays of different scales in detecting

~

the same source.

3 NEW CONSTRUCTION

This system is included as followings:

3.1 Hardware configuration:

CSH-5 type condenser infrasound microphone, sensibility 0.01 Pa, period range 0.1 ~ 200
s, dynamic range 80 dB;

Anti-jamming array; _

Pentium 586/166 MHz PC, memory 16 MB, harddisk 2 GB, Floppy 1.44 MB, modura-
tion/demoduration 2.88 Mbps;

53 cm display;

A/D and D/A data converter card;

Chart recorder.

3.2 Software configuration and data processing as shown fig. 2

(1) Data acquisition program; (2) Dynamic spectrum analysis; (3) Real-time display; (4)
Dynamic spectra represent; (5) Data compress; (6) Front grand and back; (7) Waveform
display; (8) Measurement velocity; (9) Locating; (10) Windows95; (11) Matlab.

4 NETWORK DESIGN

The density of the network determines its detection and location capability. A single array
station can provide information on the direction of the explosion as seen from the detector
site, but only a rough estimate of range. Detection by two array stations will give a rough
position, and detection by three or more array stations provides high accuracy location.

Three infrasound stations have been established in China, such as Beijing, Kung Ming



and Hang Zhou city.

5 INFRASOUND NOISE FIELD AND ANTI-JAMMING
ARRAY

Infrasound noise field investigation has been made and anti-jamming arrays have been
used in Beijing Infrasound Station.

Since the infrasonic signals are quite weak in some cases but the background nojse is rel-
atively strong, such 'that the former are frequently éubmerged. The noises come mainly
from the pressure fluctuations due to wind or local turbulences. The common feature of"
these disturbances lies in the fact that their correlation scales ate much smaller compared
with the acoustic wavelengths. Therefore the signal-to-noise ratio can be raised by tech-
nique of space filtering on the basis of time filtering. Two forms of anti~jamming receiving
equipment are developed bacing on this idea: long tube with uniform cross-section as a
“line-series microphone” and “circular” of microphones. )

We have designed four specifications of long tube with different lengths (110, 200 and 400
meters respectively). different inner radii (25 and 38mm) and different spacings between
adjacent inlet ports (2, 3 and 4 meters). The selection of impedance* of the inlet ports
(nylon or syringe needles) is important, its optimal valué can be selected in accordance
with the period of the signal to be received. A good selection will guarantee the signal to
pass smoothly but cut out the high frequency noise rapidly. The selection of the spacing
between adjacent inlet ports is also a key point. In doing this, the correlation under
different wind velocities must be taken into consideration. The total length of array is
limited by the high frequency components of the signal. In general, the length ought to
be shorter than the half wavelength of the high frequency component. Thus the long tube
array is mainly available for wind noise of shorter periods. A series of experiments have
been carried out with these arrays. We received infx-asoMc wa;.ves in atmosphere by two
transducers simultaneously. They are situated close to each other, one is connected to a

pipe array and the other one is not. Some typical results are shown here.

* R=8n/nr* (n= air viscosity; l=effective length; r=inner radius of inlet port)



1]

[2]

(3]

[4]

As can be see, the effect of array is obvious. The periods of the infrasonic signal recorded

are ranging between 3-30 sec. and the amplitudes between 0.2-5 Pa. As for the wind
with velocity 6-7 m/s, the fluctuation has been reduced from 3 Pa to 0.3 Pa after passing
through the array.

‘We have designed also a circular infrasonic array with eighteen microphones, which are
spread uniformly z;long three concentric rings, and an extra microphone used for comparing
with the array is situated at the center.

A great number of experiments had. been carried out at various noise levels caused by
various wind speeds under different weather conditions to verify the anti-jamming effect

of the array. The experimental results show that the reduction of wind noise is quite

obvious. An example for moderate wind speed is shown.
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DEVELOPMENT OF A PROTOTYPE INFRASOUND SYSTEM

Rod Whitaker

Los Alamos National Laboratory
Dale Breding

Sandia National laboratories
Sponsored by DOE

Under Department of Energy sponsorship, Sandia and Los Alamos National Laboratories cooperated to
develop a prototype infrasonic array that could be used as part of the International Monitoring System.
The USG or foreign countries could procure these commercially available systems based on this prototype
to fulfill their Comprehensive Test Ban Treaty (CTBT) obligations. The prototype is a four-element array
in a triangular layout as recommended in CD/NTB/WP.224 with an element at each comer and one in the
center. The initial array spacing will be 1 km.

The prototype infrasound system has the following objectives:

¢ Provide a prototype that reliably acquires and transmits near real-time infrasonic data to facilitate the
rapid location and identification of atmospheric events.

e Provide documentation that could be used by the US and foreign countries to procure infrasound
systems commercially to fulfill their CTBT responsibilities.

Infrasonic monitoring is an effective, low cost technology for detecting atmospheric explosions. The low
frequency components of explosion signals propagate to long ranges (few thousand kilometers) where they
can be detected with an array of sensors.

LANL’s expertise in Infrasound systems and phenomenology when combined with Sandia’s expertise in
providing verification quality systems for treaty monitoring make an excellent team to provide the
prototype infrasound sensor system.

By September 1997, we will have procured, integrated, evaluated and documented the Prototype Infrasound
System. Final documentation will include a system requirements document, an evaluation report and a
hardware design document. The hardware design document will describe the various hardware components
used in the Infrasound Prototype and their interrelationships. Final versions of all documents are available
from the bibliography on the CTBT R&D web site, URL: http://www.ctbt.rnd.doe.gov/.

INFRASOUND WORKSHOP FOR CTBT MONITORING
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TEST AND EVALUATION OF THE CHAPARRAL PHYSICS MODEL
4.11 INFRASOUND SENSOR FOR CTBT INFRASOUND ARRAY APPLICATION

Richard, P. Kromer and T. S. McDonald

Sandia National Laboratories
Cooperative Monitoring Technologies
Department 5736
Albuquerque, NM, 87185-0655

The Sandia National Laboratories has tested and evaluated the Chaparral Physics Model 4.11 prototype
infrasound sensor to CTBT requirements. The sensor was characterized by using a piston-phone chamber
to set and measure sensor sensitivity. Multiple sensor side-by-side coherence analysis testing provided a
measure of sensor relative gain and phase; sensor self-noise was computed using this technique. The
performance of the sensor calibration circuitry was evaluated. Sensor performance was compared to
CTBT requirements. The Chaparral sensor met or exceeded all CTBT requirements. (Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-ACO4- 94AL85000).

INFRASOUND WORKSHOP FOR CIBT MONITORING
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Prototype Infrasound System -

Sensor Pictures
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NUMERICAL MODELING OF LONG RANGE INFRASONIC PROPAGATION
James H. Hunter, Jr.
University of Florida
Rodney W. Whitaker

Los Alamos National Laboratory

We present calculations of long range infrasonic propagation using a modified version of the Pierce normat mode
code, which includes atmospheric winds. Our modifications include a WKB procedure for the determination of the
modes which is more suitable for our frequency range than the méthod in Pierce's original program. The yields of
current interest are somewhat lower than considered in Pierce's original work. After summarizing our approach

we will discuss results for a series of ideal ducts with and without winds. This will be followed by application to
one of the large surface ammonium nitrate fuel oil tests at White Sands Missile Range. Comparison to

observations of this event made at two Los Alamos infrasound arrays will be included.

INFRASOUND WORKSHOP FOR CTBT MONITORING
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Pierce potentials

i - =
9, =—p'*Vev
Q
Differential Equations

d
di;lz Cln¢1+a12¢2

do,
di;- = a21¢, + azz¢2

where

a, =—a, = gk’ 1Q* -y /(2c*)
a, =1-Kk>c? 1O
a, = gk> (Q*c*)—-Q*/c?

-t

Combined equation

d’o dina, d¢ dlna, dlna
dz21 —(a121 +a1,04,)9, "[ dz lzd_zl_an( 4z 2 — 2 ”)ﬁbl]:O




Simplified equation

29 0+ ¢ () =0
dz

where
2D = -1 1-Q*(2)/k*c? (2) - @5 (2)/ Q% (2) +
> (2) 1 k*c*(2)
WKB Integrals

® 0
I q(2)dz=—1=(m+==)m
VP 72:

I=[2 e dz
c(2)

Lid conditions

a)\/(vp —v)?—¢?

VPC

g
tan”'(qz, )= zL=(m+—;0)7r

2 2 2
-1 CL\/CL - (vp - VL) (Vp - V)

6 =tan
c\/(vp —v): —¢? (V,, - VL)2

o




~Y

Q=wm—kev

g 1is the acceleration of gravity

v is the ratio of specific heats
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9 0.0 1.0 2.0 3.0 4.0 5.0 6.0
o’ T T (N DL S S (L B AL R SR AN e R A B ] D’
[V} ] w
n Jw Isothermal
e 1° no wind
o o 30 km height
- Jw
n o 1l o
~
£
X wn wn
— T <
oo 1o
[4)]
2 ]
o< 12
>3 B =)
72 1]
" e
i Sy
o o
© =
.8’!;!* (o] PR SR N WY ST ST N N TSN ST N N ST TN WY N N UK N0 IY NS A R RN o
0.0 1.0 2.0 3.0 4.0 5.0 6.0

omego (rad/s)



Pressure (dynes/cm®*2)

Pressure (dynes/cm®*2)

Pressure (dynes/cm®*2)

. -250

-300

-35i

200

100

[o]

-100

-200

-300

-400

-500

-600

2000 2002 2004 2006 2008 2010 2012

400

200

-200

-400

-600

-800

-1000

2000 2002 2004 2006 2008 2010 2012

L} T L3
“outisoww*® ——

a2

time (sec)

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

L4 L] L]
“outisonw® ——

TR

time (sec)

2014 2016 2018 2020

1 7 T
“outisocw” ——

time (sec)

2014 2016 2018 2020

With wind
820.8 km .
389 dynes/cm**2 pp

No Wind
660 km
620 dynes/cm**2 pp

Counter wind
499.2 km
1095 dynes/cm**2 pp



Pressure (dynes/cm®*2) Pressure {dynes/cm®*2)

Pressure (dynes/cm**2)

How et e e

300 T T T

“outisohw2"* ~—-—
250 |

200 |-
150 |- 1
100

50 |-

T

-100 1 ! 1 1 1 [ 1 P

4010 4012 4014 4016 4018 4020 4022 4024 4026 4028 4030
time (sec)

180 T T
160 -
140

13 1 14 I 1] i ¥
"outisoww2" ——

120
100 1
80 -
60 1
40 + E

20

0 -.w#- -
-20 +
I 3 1 1 1 1 L 1 1

4010 4012 4014 4016 4018 4020 4022 4024 4026 4028 4030
time (sec)

500 T T

] 1 ] ) ) ] ]
“outisocw2" ——
400 |-

300 |

200

100 -

-100 N

-200 L] 1 [ [ 1 1 1 1 1

4010 4012 4014 4016 4018 4020 4022 4024 4026 4028 4030
time (sec)

No wind
1320 km
310 dynes/cm**2 pp

With wind
1641.6 km

196 dynes/cm**2 pp

Counter wind
998.4 km
544 dynes/cm**2 pp



Pressure (dynes/cm**2)

Pressure (dynes/cm**2)

100 . .

50 |-

-50

-100

-150

-200

-250 1 1 (]

§ ] 1 13 ¥ §
*outisowlid2" —

4010 4012 4014 4016 4018 4020 4022 4024 4026 4028 4030

300 —

time (sec)

200

100 |

-100

-200

-300 |

-400 1 1 1

“outisowlid* —

1 1 1 1 1 1

2000 2002 2004 2006

2008 2010 2012 2014 2016 2018 2020
time (sec)



QUIT) SUIOS JOJ 159} o[BS 981e] 1Se] AJqeqoid @
oroydsturoy 9oeJIinS @

OANYV Su0l ovvC @

1S9] $109]JJ9 ISe[QIIe YN @

€661 ‘01 °unf @

rtTrTr et |
J1ONN YONIN

doysyiopy punosedju]



ALTITUDE (KM)

100

WHITE SANDS - 6/10/93 9:10 MDT

90-
80
70~
60-
50
40
30
20~

104

0

T
=100 -80

T 1 T T T T T
60 -40 -20 0 20 40 60

MERIDIONAL WIND SPEED M/S)

T
80

100



ALTITUDE (KM)

WHITE SANDS — 6/10/93 9:10 MDT

90
80 -

70

i | T T T T

T T
=100 -80 -60 - =40 -20 0 20 40 60 80

ZONAL WIND SPEED (M/S)




Signal (volts)

4.0

6.0

-4.0

0.0 30.0 60.0 $0.0 120.0 150.0 180.0 210.0 240.0

ST GEORGE ARRAY

Day 161 1893 1548:00
Channel 1

1Ir7rlIl“lllllll]‘lllnlll]'|l|]']llllllllllllll"]]ill'llllll'l'l[I‘TTITTIl
-

TV BT

.
- 0.324
yeesgssvslaaaseaaagtoagrerasstognoaeseydoganeagesdssnespecafosageneaelsaraens

Channel 2 0.311 Knm/s

llllll‘ll‘TTr’ll‘l|‘lllllllll]l‘llll]lll(lllll]lll]T‘llll‘l|l‘71lllil]lllll‘ll‘

Ty

4
-
-4

T 71 ¢ ¥

ll!lllllllllllllllilll]llllllllllllllllllllllllllll!lllllllllllllllljllllllllll

Channel 3

ll‘llllllllllllllll]‘IIlllll]lilllllllllTllIIIIT‘IIIIllI‘T‘[Tllll‘lll]]“‘lllll

LER B

-
lllllllllllllllllllllljlillllllll!llllllllllljllll!llllllllllllllllllllllllIlll

Channel 4

RARRERRENRRSSRSARRR RIS SRR ARE RS ARt R R AR RERRERiRaRR aR Rl e R RARRARLEN)

yepeteenatoaesrgaretrqesnenestavennraaadasaeresentoroqaeanefgreaseesatoganeens

Time (sec)
Figure 6

489



ST GEORGE ARRAY
Day 161 1983 15652:00

I‘ll'lllll]lIllll‘ll]llllllllllll]illll‘]ll.lllilll]lll|llTIl]Illll1]ll -

-

I .

0.296

_4 D ulucnu“lun11nulxuunuhnnuulnnu:nluuulullnuui
L]

Channel 2 0.285 Km/s
4,0 TITHT n|lunnu]llnlnuunnuu]nnlun(unxnnunuuupxuunn

118 4t xululullulnxuuullunlulllnuunllnnnnhnuuuhnun
T

Channel 3

4.0 LAY llI‘llllll!lll]ll"lllllllllll‘llll‘Illllrl'T'l‘llx(l‘llilllllllil‘llll‘lIIllI‘
b

¥
H

Signal (volts)
1

-q 0 118144 lIll[lll\llllllllllllllllllllllllllllllll!l'll]!lilllllllllllll’llllllll
.
Charnel 4
4.0 IR ERA] 1‘]lilTl‘I]lllIlllllllllllllll‘llllfl"IT]llllllllllll]l'r“ll‘TT“lll‘

_4 0 11448 nllulnnnllu11nnluununlul111111!:11nnnhuunnluuuux
.

0.0 309.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0
Time (sec)
Figure7

490




4.0

a —
X
X
e
0o
~N o
3,0
O
2
oyt T T T T T T T — 1
2340.2370.0 2400.0 2430.0 2460.0 2480.0 2520.0 25593.0
tume [(sec)
o
ha
X
X
E -
T R=
\D_)O—M/\IV\/WA/WWV\MMWMW
o .
e
oY

S ] ] T 1 T ] i
2580.®610.0 2640.0 2670.0 2700.0 2730.0 2760.0 27¢35.0
tume (sec)

Normal mode calculation of Minér Uncle at St. George
750 km range



Signal (volts)

3.0

-3.0

0.0 30.0 60.0 80.0 120.0 150.0 180.0 210.0 240.0

NTS ARRAY
Day 161 1993 1555:00
Channel 1 .

lllllllll[lIllll“{llll‘llllllllllll]ll‘(lll'lll“"']’llIlllil'l‘lllTrWl1T¥‘I'1II“[

LIRS R

1)
3
5
i
z
3
1%1 .11

Al .

Ca 2 ¢

=
1eeesengsdleserepeeefogagneensfoecserraatortrraterfesnneneastoorarsneatstonsaney

Channel 2 0.327 Kivv/s

AR R ER L R AR R R R AR R AR R R R R AR R AR AR D AR AR R R RN R R R RN SRR N R R AR RSN R R R AR RAREERS
-

LR SRR

£
I
i

o

=

1.0 1t

Lljlllljlllllllllll‘llllllllllllllllllllllll!llllllllllIjlllllllllllllllll!llll

Channel 3

II“ITI‘I‘K‘I]ll(llll’(([l‘lTrIiIll'llllllIll]‘ll‘llllllllllllll]]lIIKIITIIIIIIIIIIII

-
5 e
- o
b o
Al .;L...hm o’ PM~
ey g -y
- -
- h -
- .
L o
1aggstesfpeceersreloernennqefongeeogentovaeqeneefenneyorysfocrrernrntarenneges

Channel 4

17‘17‘[1]]!1]51llllll(l‘l‘l‘llll[lllllKlll]lITI’IIIYIlfllllllll"ll‘lllili]llIIIIII'I

SR SR IR

1;-
1
JF
i

m

1erpesesdtaesageyefneypaserefnenenngestonenyrreglosnssgreetoanesnnrofaensnsss

Time (sec)
Figure8

491



Signal (volts)

NTS ARRAY
Day 161 1893 1559:00

_Channel 1

¢
F 0.315
Channel 2 0.304 Kmvs_ 0.293 Kmv/s
IRARRR R AR S R ARRRREE R AR AR R SRR RN RR R RARRARARASRRARSCARRE RRERERER S ARARE AL

4
%
L.
L

11stessefesreeerrelestonessstoennaspesfyreeacaselvesocanerfsoaetotertbongesgrgs

Channel 3

A RRARARES R AR RRARE R AR ERARR AR AR AR RN AR AR AR SRR AR AR RER NS ER AREARASAS

T 1)

-
-
o
o

1e3esvrloseepennpboononpenefoeoprpyagtonarerseedoreraevtaloqoorgoeetorgegroeg

Channel 4

R AR EER S SR AR R R AR R RS R R R R A R A R R R R R N R R R R AR AR R AR AR AR AR AR AR RER R RARRERAR!

-
b

attegeesdveereravpdterrtaessedessreaserfesrersrrsboasaesansteooesopeeloaerorsy

0 30.0 60.0 S0.0 "120.0 150.0 180.0 210.0 240.0
Time (sec)
Figure 9

492

i i e e i et



Signal (volts)

3.0

-3.0

0.0.

NTS ARRAY

Day 161 -1983 1603:00
Channel 1

Illl1111][I‘l‘llllll]II(TIIIT7IIIIIIIIlll‘[T‘I'IlII]IIlKlIY“]l‘lllllllll!‘l“]l

o

o

.
1.1.1

1.1 1.8

srsgeggeleessngegelyenessgsetogoentgagtsnaresagaloonenqastoagstassefenntsney

Channel 2 0.284 Kmvs

Illlll‘ll]lliﬂ11]l[llllllllllIlllIIIl1]l(lllllll[|ITIIIIII[lliilllllﬂ'ﬂ1l’f'l1

.

1.1 2

-

b

-

]1!llljlllllLlllllLlll]llllll‘lllllllll'llllljlllllllll!lll!!lllllll!]l!!llLlll

Channel 3

:llll‘lllllllllIlll(lllT‘T“I]'I‘I'Y(lI‘ll]7'lTIf[lllll!lll|l‘T1UIIllll]lllllll

1

2.0

b~

o

sseqgetaslosegenegedosprnersalograrennefeneorxncsfoscaatnastoseayseteftnrentay

Channel 4

AR ARG R AR AR R R RN R AR R R R R R RN AR A AR RN R R AR AR R RARAR AR AR RAAR AL AR Y A RRRRRER NS
-

o -
o

b

l!lll!lilllllllllll'LllL!llll‘l!lllllll|llllll!lllllllll!ll'lll]llll‘llll'l'l

30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0
‘Time (sec) '
Figure 10

493



p [(dy/cmxx2)
-8.1109.8147 9.7404

1 ! I { I I | L
2820.2849.94 2979.88 3009.81 30339.75 3069.69 30939.63 3129.58 3159.50

tume (sec)

|

N

P (dy/cmxx2)
-8.11090.8147 9.7404

] T | 1] I 1 T 1
3160.0089.94 3219.88 3248.81 3279.75 33039.69 3339.63 3369.56 3399.50
tume (sec)

Normal mode calculation of Minor Uncle for Nevada Test
Site 920 km range



SOI] puIM JO uorsnoul 1odoig e

$90IN0S PIOIA JomO[ J0J sorouanbaiy 10ySTy
10] pajuowrordwr AJ[nJssoons UOT)BOO] SpOUI M @

suonernores uonededord sduel
guo[ 107 1001 TRUONEINAUIOD POOT ST OPOJ AVISLJ @

mEfIryrrYrrryr
ANVINNS |

doysyop punoseayu|



PROPAGATION CONDITIONS AND LOCALIZATION OF INFRASONIC SOURCES
Ludwik Liszka

Swedish Institute of Space Physics
Umea Division
Sorfors 634
S-90588 Umea, Sweden

Studies of long-distance infrasound propagation indicate lateral deviation of rays, probably due to
horizontal gradients of wind and temperature. At distances around 2000 km differences between observed
and calculated angle-of-arrival of the order of 10 degrees are observed. The phenomenon is clearly seen on
recordings of infrasonic signals from Concorde. There is another problem in localization of infrasonic’
sources using multistation observations. Even if two stations are located as close as 300 km it is not
certain that the same source will be observed at both stations due to both differences in local meteorological
conditions and due to different propagation conditions. There is thus a need to develop techniques to
estimate the distance to the source from recordings made at a single station. There is also a need to verify
the distance information obtained from multistation measurements of the angle-of-arrival. Two different
methods using: - the shape of infrasonic spectrum, - the anisotropy of the crosscorrelation field on the
groundare presented.

INFRASOUND WORKSHOP FOR CTBT MONITORING



TRAVEL TIMES FOR INFRASONIC WAVES IN THE ATMOSPHERE

Milton Garcés

Alaska Volcano Observatory
Geophysical Institute, University of Alaska
Fairbanks 99775-7320, USA

Sergey N. Kulichkov

Institute of Atmospheric Physics
Russian Academy of Sciences
3 Pyzevsky, Moscow 109017 Russia

A fast ray-theoretical method for computing travel times and transverse offsets of infrasonic waves
propagating in a stratified, windy atmosphere has been developed and utilized to identify distinct phases in
infrasonic recordings of pressure signals generated by chemical explosions detonated in Russia. The theory
accounts for distinct infrasonic phases caused by the arrival of the Lamb wave (L), and by tropospheric
(T), stratospheric (S), and thermospheric (I) ducting. Multiple branches for the last three phases may
appear because of discontinuities in the effective sound speed gradient in each region. Using atmospheric
temperature and wind velocity profiles up to heights of 200 km, theoretical travel time plots will be used to
interpret the arrival times of infrasonic waves recorded by a linear acoustic network with an aperture of
300 -310 km. Future implementations of this method may be used for rapid and more precise locations of
infrasonic sources.

INFRASOUND WORKSHOP FOR CTBT MONITORING
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DOE/LANL Infrasound Workshop
Santa Fe, New Mexico
August 25-29, 1997

Travel times for infrasonic waves in the atmosphere

Milton A. Garcés (Alaska Volcano Observatory, Geophysical Institute, University of
Alaska, Fairbanks: milton@giseis.alaska.edu) and Sergey Kulichkov (Institute of
Atmospheric Physics, Russian Academy of Sciences: mail_adm@omega.ifaran.ru)

Overview

A theoretical model that permits travel time estimates in a stratified atmosphere with
negligible vertical and shear winds was developed in the work of Garcés er al. (1997).
This presentation focuses on the application of this theory to the comparison of predicted
and observed arrival times of stratospheric (S) and thermospheric (I) phases at a distance of
300-310 km generated by 20-70 ton explosions detonated in Russia on August of 1990. An
acoustic network of three B&K 4147 pressure microphones with a bandpass of 0.1-10 Hz
recorded I phases at an azimuth of 5 degrees from North and 245 degrees from North
(measured from the epicenter), and S phases at an azimuth of 245 degrees from North. The
theoretical model predicted the presence of these phases, but the predicted arrival time for
the I waves at 5° was approximately 100 s too late, and the S waves at 245° arrived
approximately 60 s too early. The I waves at 245° were within 10 s of the observed values.
Yet, the model correctly predicted the presence of distinct S branches arriving within 20 s
of each other, which were observed in the acoustic data.

For operational applications, it is possible to use as input data the temperature and
wind velocity vectors to compute theoretical travel ime curves as a function of azimuth.
The predicted time and distance of the first arrival, and the slope of the travel-time curve for
specific branches at different angles may be stored and used to identify distinct branches in
infrasonic data. A more sophisticated approach would involve the interpolation of the tau
function over ray parameter-azimuth space. In contrast to the tavel time, range, and
transverse offset, the tau function is a monotonic function of the ray parameter for each
branch, and thus permits convenient interpolation. The travel time and range for a specific
ray parameter can be promptly computed once the interpolated tau function is known, and
may provide more accurate determinatons of travel time curves for infrasonic waves in the
atmosphere.

References

Garcés, M. A, R. A. Hanscn, K. Lindquist (1997). Travel times for infrasonic waves
propagating in a stratified atmosphere. Geophys. J. International (Submitted).

Kulichkov, S. N. (1992). Long-range propagation of sound in the atmosphere, a
review. Izvestiya, Atmoshperic and Oceanic Physics, 28, 253-265.



Travel Time Determinations in a Stratified Atmosphere

Basic Equations

Ray parameter, p, for given sound speed, ¢, and horizontal wind velocity along the ray

path, u.
sine( usin@)'1
=30,
c c

Let s = 1/c. Travel time, T, range along the ray direction, X, and transverse offset, Y, of a
propagating wave over a specific ray path

Y= fsv( (1 pu)]dz'

The above equations reduce to their standard forms when the wind velocity vanishes.
The Legendre transformation defines the intercept time, T:

T=T-pX

=401 p)[ (1_1”‘)2%

Tau is a monotonic function of the Tay parameter, p, and it does not exhibit square root
singularities of X, ¥ and T.

Construct an interpolation function for T up to its turning point, and transform tau
into a continuous function of ray parameter.

The range for a specific ray parameter (or launch angle), p,, can be obtained from

or

dt

—d7 Py = —Xk

and the travel time for a specific arrival at a given range from

T, =7(p,)+ peX; -



Height (km)

(@) Sound speed, August 1990 (b) Meridional wind (c) Zonal wind
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August 1990, azimuth of 5 degrees
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August 1990, azimuth of 10 degrees
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Azimuth from Norih (degrees)

Travel time as a function of range and azimuth; tmax = 1700 s
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Azimutn trom North (degrees)

Transverse offset as a function of range and azimuth: ymax = 50 km
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(a) Travel Time
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Tau as a function of ray parameter and azimuth; taumax = 700 s
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Concluding Remarks

“ A ray-theoretical model was utilized to compare
observed and predicted arrival times for infrasonic waves
ducted in the stratosphere and the thermosphere. -

% Predicted S and I phases can be identified in the
infrasonic data.

“+ Deviations in the arrival times of predicted and
observed phases may be due to atmospheric changes,
shearing or vertical winds, or diffraction.

<+ Travel time curves as a function of azimuth can be
used for the identification of distinct branches observed in
infrasonic data.

<+ Interpolation of the T function over ray parameter and
azimuth may permit the construction of more accurate
travel time curves and efficient algorithms for source
location.



INFRASOUND FROM MINING EXPLOSIONS, SPACE SHUTTLES AND METEORS

Eugene Herrin

Southern Methodist University

Seismic and infrasonic signals have been recorded at TXAR from explosions in Mexico, Texas,
New Mexico and Arizona when the stratospheric winds were favorable. The effect of these winds
has been found to be very significant to distances as great as 700km. Acoustic N waves and
seismic “shuttle quakes” have been observed from the NASA space shuttle on landing orbits at
distances up to 150km from TXAR. The unusual and distinctive characteristics of the shuttle
quakes result from elastic bow-wave propagation resulting from the intersection of the acoustic
conical wave with the earth’s surface. Infrasonic signals and, in a few cases, seismic signals have
been observed from meteors. These observations also show the importance of the stratospheric
winds for infrasound detection.

INFRASOUND WORKSHOP FOR CTBT MONITORING



INFRASOUND FROWN MINING
EXPLOSIONS, SPACE
SHUTTLES, AND METEORS

Contributions by:

Jessie Bonner
Sarah Deering
Paul Golden
Eugene Herrin
Tao Liu
Gordon Sorrells
Jack Swanson
lleana Tibuleac

Southern Methodist University
Department of Geological Sciences
Dallas, Texas 75275
(214)-768-2760

http:!/'www.gebiogy.smu.edu
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New Mexico

UsA
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MEXICO

e
Chihuahua

Locations of events recorded at TXAR between July 15, 1996 and
August 10, 1996.
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Seismograms (A) and microbarograms (B} from an explosioh at the
Tyrone Copper mine in western New Mexico.
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Low Pressure Starm Front— February 13, 1997 -

T T " T T 4 T T ] 1 T O 1 T

TXOV/sz

Tine {hwrmircsacy *
. Arrival of a weather front at TXAR on Feb. 13, 1997. Noise levels
are significantly increased on the seismic and acoustic charmrels as a resalt of
the storm’s passage. ‘



Lacal Explosion— February 11, 1997
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Local sefsaic event thought to be from an explosive source due to
assoczted mfrasound signals.
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STS-82 before elevation comrection for 188.8 degrees azimuth
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SHUTTLE LANDING GROUNDTRACKS

STS-78 .

STS-74 STS-82

lable through NASA's web pages.
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Ceminid event 12 Decamber 1996 acoustic channals 0.75-5.0 Hz

4.5

TXlgg4

TXIo1 1

0.5

0 ] [ [ v r 1 ]
102 1025 103 1035 1t@4 1t@®45 105 1655 10.6 10.65
Thne afer 16:40:00 (min)

Infrasound signal thought to be the result of the Geminid meteor
shower of December, 1996.
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THE INFRASOUND BACKGROUND FOR HIGH LATITUDE CTBT STATIONS
Charles R. Wilson

Geophysical Institute,
University of Alaska, Fairbanks Alaska

Examples are presented of typical infrasonic signals observed from natural sources at Fairbanks, Alaska
(64.9 deg. North) and Windless Bight, Antarctica (77.7 deg. South) to illustrate the infrasound background
to be expected at future high latitude CTBT sites.

Mountain Associated '(MAW), Volcanic eruption (VOL), and Aur;nal infrasonic waves (AIW), within the - -

passband of 0.01 to 0.1 Hz, were observed with a microphone array of 4km to 6km spacing, while
Microbaroms (MB) from marine storm standing-sea-waves, within the passband from 0.1 to 1.0 Hz, were
observed on a small array with ~1.0km spacing. For each infrasonic signal individual microphone
waveform traces as well as a phase-aligned overlay trace for maximum correlation together with the
horizontal trace velocity, the azimuth of arrival, and the maximum values of the six inter-microphone cross-
correlation coefficients (cmax) are given for both the raw unfiltered data and for the Pure State filtered data
to illustrate the often great increase in signal-to-noise ration after Pure State filtering F. Diagrams are also
shown of Azimuth of Arrival and Horizontal Trace Velocity as a function of time for typical infrasonic
wave episodes of MAW, VOL, AIW and BM. The typical signals that are presented were selected from a
Geophysical Institute six station-years of historical digital data that has recently been transferred to CD-
ROMs using a Matlab format. This digital infrasonic data archive is now available for testing infrasonic
signal detection and analysis algorithms.

INFRASOUND WORKSHOP FOR CTBT MONITORING



Atm;)spheric Infrasonic Waves of Natural Origin

By Charles R. Wilson, Professor of Geophysics
Emeritus, Geophysical Institute
University of Alaska, Fairbanks, Alaska
E-mail: 76654.2724@CompuServe.com .
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Auroral Infrasonic Waves (ATW)

In the passband from 10 to 100 second periods, auroral infrasonic waves (AIW) are
frequently observed on the night side of the earth by infrasonic microphone arrays both in the high
latitude auroral regions as well as at lower latitude stations, at distances up to 1,000 km from the
source auroral arcs. AIW are occur at all seasons of the year with maximum activity around the
Equinoxes. Their diurnal characteristics depend on the latitude of the observing station, with a
maximum frequency of occurrence usually around local magnetic midnight in the auroral zone.
AIW substorms are highly correlated with negative bays in geomagnetic activity and they can last
for periods from only a few hours to all night long. ATW are infrasonic bow waves that are
generated by the transverse supersonic motions of large scale auroral electrojet arcs that develop,
high in the ionosphere, during periods of intense auroral activity. The infrasound produced by
auroral arc supersonic motions is highly anisotropic propagating to the earth’s surface as bow
, Wwaves directly beneath the supersonic auroral arcs, with a delay times of about six minutes
following zenith passage of the arc over the observing station, ( see Fig. 2 ). The propagation
vector of the ATW bow wave is parallel to the direction of motion of the supersonic auroral arc and
to the total horizontal magnetic disturbance vector that is associated with the westward electrojet
current flowing within the auroral arc itself, ( see Fig.3 ). The azimuth of arrival for ATWs from
the same source arc will frequently diverge by as much as 45 degrees, as observed successively at
two infrasonic stations that are hundreds of kilometers apart, if the higher latitude station is in the
front shock region of the bow wave while the lower latitude array is in the side-shock region, (see
Fig. 2). Propagation to great distances takes place by reflection at the surface of the initial bow
wave and subsequent ducting in the atmospheric sound channels to lower latitudes. Because the
infrasound generated by aurora motions is not isotropic but highly directional, it is not possible to
triangulate on the source region of ATW by the use of a network of infrasonic arrays as would be
the case of volcanic infrasonic signals. The spectral characteristics of AIW observed at great
distances from their sources differ from those observed at auroral zone stations in that the high
frequency components of the ATW have are filtered out by multiple high level reflections along
the ray path, ( see Fig. 4 and 5 ). The diurnal variation in the azimuth of arrival of AIW, in the
auroral zone, is totally dependent on the morphology of auroral motions along the auroral oval
during the development of magnetic substorms, ( see Fig. 6 ). At Fairbanks, Alaska AIW are
observed to arrive first from the NE in the evening, from N around magnetic midnight and from
the NW in the morning hours, ( see Fig. 7 ).There is a great asymmetry in the production
mechanism of ATW such that no AIW have ever been observed that result from poleward moving
supersonic auroral arcs even though these auroral arcs may contain strong electrojet currents,( see
Fig. 8 ). This asymmetry effect in ATW production is thought to be associated with Lorentz force,(
J X B ), coupling mechanism between the auroral electrojet current J and the neutral gas that
produces the infrasonic bow wave in the auroral electrojet arcs in the lower ionosphere. The AIW
horizontal trace velocity,( the speed with which the signal crosses the microphone array ), varies
from 300 m/sec to almost 1,000 m/sec, with an average value of about 500 m/sec. The high trace
velocities occur only near the source arcs. AIW have inverse dispersion with the higher frequency
components arriving first. The periods of AIW vary from 10 to 100 seconds with maximum
spectral power around 70 second periods. The pressure amplitude of ATW varies from 0.5 to 20
microbars. In the near-field zone, under the source arcs, the ATW wave-packets are highly coherent
across microphone arrays with sensor spacing of up to six km.

Two examples are shown ,after Figure8, of AIW signals observed at Fairbanks from an
historical digital data set from 1984. The waveform data, for both the unfiltered raw data and the
Pure-State filtered data (PSF), from each microphone as well as a phase-aligned overlay of all



channels are shown giving the trace velocity, azimuth of arrival, and the maximum cross-
correlation coefficients (cmax) between microphone pairs. The spectral characteristics are given
for the ATW for each of the four channels. The first ATW signals shown for 03/22/84 from 09:41 to
09:55 UT have a period around 50 seconds, while the two AIW signals at 09:11 and 09:18 on
04/08/84 have spectral energy at periods of 20 and 13.5 seconds.
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Figure 1. ATW observed at Steven's Village , Alaska that was generated by the supersonic

motion of the auroral arc from 0920 to 0921UT from geomagnetic NE to SW.
The true azimuth of arrival of the ATW was from 43 degrees and Vt=400m/sec.
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Figure 2, AIW bow wave surface geometry for an auroral arc surge traveling with supersonic
motion in the positive x direction. The xy plane is the earth’s surface. The mach angle
of the bow wave is given by the arcsin( sound speed / auroral speed). In the front
shock region the AIW trace velocity is equal to the auroral arc velocity. In the side
shock region the azimuth of arrival for the AIW is divergent and the trace velocity

asymptotically approaches the speed of sound at the surface.
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Figure 3a. Projection on to the earth's surface of a supersonic auroral arc at 1 min intervals
showing motion parallel to that of AIWs that were generated by the arc as observed
at College (0635UT) and later at Palmer (0655UT). The magnetic perturbation,
(delta H), at College of 1500 gamma is shown paralle! to the direction of the AIW.



17 AUG 1968
- .

8,0,

Figure 3b  Horizontal (Bh) and vertical (Bz) components of the magnetic perturbation
vs time from a moving auroral electrojet arcs that generated AIW observed at
College after the zenith passage of the arc. The slope of the tangent of Bz / Bh at the
zenith crossing time gives the speed of the auroral arc. Delta H , the horizontal
magnetic disturbance vector and the AW propagation vector (INF) are
approximately parallel for the two events shown.
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Figure 4. Portions of the AIW infrasonic substorm records from College,Alaska and
Pullman, Washington showing the different character of the AIW from the

same-auroral substorm. The Pullman signals are of lower trace velocity and
have longer periods.
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Figure 5.  AIW signals observed in the auroral zone in Alaska at College and Palmer
where the infrasonic array was in the front shock region resulting in higher
frequency components in the wave-packets.
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Figure 6. Number of AIW as a function of azimuth of arrival, plotted at the locations of
Inuvik, College or Paimer, as these stations rotate with time throughout the night
beneath the fixed auroral oval, for each hour of UT and each 20 degrees of azimuth.
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INUVIK, 6 DECEMBER /969

All sky camera pictures of supersonic auroral arcs moving poleward from

0457 to 0501 at 550m/sec , and equatorward from 0510 to 0512:30 at 1,000m/sec.
Although strong electrojet currents were flowing in both arc systems, as shown by
the large values of the magnetic perturbation delta H , only the equatorward

moving arc produced an AIW at Inuvik at 0519 demonstrating the basic
North - South asvmmetry in the AIW generating mechanism.

Figure 8.
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Aerodynamic Infrasound (MAW)

Infrasonic waves , in the passband from 10 to 100 second periods, that last for many hours
and propagate great distances , are radiated by the atmospheric turbulence that is generated when
the tropospheric wind flow is interrupted by high mountain ranges. These mountain associated
infrasonic waves ( MAW) are observed at infrasonic stations all over the world. MAW that have
been observed in Alaska and Antarctica are characterized by : (1) an average periods from 30 to
70 seconds, (2) long duration of quasi-sinusoidal wave form of a few microbars amplitude, (3)
their fixed azimuth of arrival from definite directions depending on the particular station, (4) a
total lack of diurnal variation of frequency of occurrence, (5) a strong tendency to be observed
only during winter months, (6) their low average horizontal trace velocity of 325 m/sec. to 425 -
m/sec., (7) and the relatively poor quality of their phase coherence over the dimensions of the large
. microphone arrays at Fairbanks and Windless Bight. Examples are shown of the microphone traces -
time shifted to show coherent waves in Figure 1 of MAW observed at College (Fairbanks), Alaska
for the three principle directions from which they arrive. These, as shown in Figure 2, are as
follows: (1) 125° to 150° azimuth ( the Saint Elias Range); (2) 200° to 230° ( Alaska and
Aleutian Ranges); and (3) 275° to 300° ( Seward and Chukotsk peninsulas ). The total lack of a
diumnal variation in the frequency of occurrence at Fairbanks can be seen in Figure 3 for
observations over a 42 month period of time. The seasonal variation of MAW at Fairbanks, as
given in Figure 4, shows very few signals during the summer as compared with the winter months
.The spectral characteristics of MAW change as the propagation distance increases. Thus the
higher frequency of the wave train in Figure 1, for the December 4, 1967, is due to the fact that
the source was Mt. McKinley, a 20,300 foot peak only a few hundred kilometers from Fairbanks.
The waves from McKinley propagated via the lower sound channel while those observed on
October 11,1968 from the Chukotsk Peninsula , coming from a much greater distance, arrived via
the upper channel where the higher levels of reflection cause a filtering out of the higher
frequency components and thus are of longer period.

Examples are shown in the following six figures, from the DataScan analysis system, of an
MAW event from Mt. McKinley observed at Fairbanks with the digital system on March 3,
1984.The first two figures are of the waveform traces for RAW data and PSF data respectively
with a phase-aligned overlay of all microphone channels at the bottom of each diagrams. The
average value of the cross-correlation coefficients increased from 0.628 for RAW data to 0.765 for
PSF data. The P value from PSF filtering has a maximum just above 0.60 as shown in the next
figure. These low values for inter-microphone cross-correlation (cmax) and P parameter for
multivariate coherence of all channels together are low which is typical for MAW waves. The
spectral diagram, where abs(fft) is given as a function of frequency, for PSF data shows maximum
energy at periods of 28.5 sec, 38.5 sec, and 55.5 sec. The last two figures for the Mt. McKinley
MAW event of March 6, 1984 show the fixed azimuth of arrival at 215 degrees and the trace
velocity variations for a 160 minute time window of data. The trace velocity of about 485 m/sec,
that is shown in the last figure for the MAW event, must be corrected by a factor of 1/1.178 ( to
correct for the actual sampling interval being dT=1.178 instead of the assumed value of dT=1.00).
Thus the correct velocity value determined by the least-squares analysis is 412 m/sec. The
penultimate figure of azimuth versus time for this MAW event is another example of how well the
least-§qua.res detection algorithm locks on to the signal even though its coherence between
microphones is only 0.6.
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Volcanic Infrasound (VOL)

Depending on the scale size and violence of a volcanic eruption, traveling pressure waves
may be generated by the eruption in the acoustic, infrasonic or even the internal-gravity wave
modes, ( see Fig. 1). Rapid collapse of a volcanic caldera of sufficient size can generate infrasonic
waves in a manner similar to that resulting from under ground nuclear tests. The propagation of
volcanic infrasonic waves from the eruption site to the infrasonic observatory depends on the
atmospheric temperature and wind distribution along the path. The thermal structure of the
atmosphere produces acoustic inversions in the sound speed profile in the mesosphere and the
thermosphere. Over long distances infrasonic waves propagate in a reflection mode between the
earth’s surface and the acoustic inversions, giving zones of silence and zones of detectability on
the ground as a series of rings concentric with the source. For distances greater than the first .
acoustical skip zone , the infrasonic wave may arrive via the upper and/or the lower sound

. channel, leading to a superposition of wave modes in the infrasonic wave train that may reduce -

waveform coherence across a microphone array, ( see Figures 1 and 2 ). When the energy released
by volcanic explosive eruptions is large enough, infrasonic waves can propagate around the earth
by both direct and antipodal paths. Thus the May 1980 Saint Helens eruption produced infrasonic
signals detected in Antarctica at Windless Bight on 19 May first at 0542UT from the direct path
and again at 1615UT from the antipodal path. Over the twenty year period of operation by the
Geophysical Institute of infrasonic observatories in Alaska, Canada, Sweden and Antarctica,
infrasonic waves from volcanic eruptions have been detected from all over the world.. Examples
are shown in Figures 2 and 3 of small impulsive type volcanic infrasonic signals that could easily
be mistaken, at a single station, for an nuclear atmospheric test events because of their similarities
of low trace velocity, amplitude and spectral characteristics. However, because volcanic
infrasound is radiated isotropicaly, if the signal is detected at two stations, identification by
triangulation of the volcanic source region should be possible.

Examples are shown, from a DataScan system, in the figures that follow of a volcanic
infrasonic signal observed at Windless Bight, Antarctica from an eruption of Galunggung volcano
in Java 8,538 km distant on April 5, 1982. The first figure gives the waveform traces from 13:23
to 13;44 UT of the unfiltered data. On the ordinate scale 100 is equal to 1.0 microbar of pressure
disturbance. The second figure gives the same information for the Pure-State filtered data to
remove incoherent noise. There is an increase in the average value of the cross-correlation
coefficient (cmax) from 0.830 for the raw data to 0.948 for the PSF data. The third figure gives the
spectrum of the PSF data with maximum values at periods of 83.3 seconds and 58.8 seconds. The
small peak at 0.085 Hz is due to instrumental noise. The multivariate coherence parameter value P
versus frequency in the next diagram has a strong maximum at 0.017 Hz as well. The last two
figures for the Galunggung volcanic signal data show the effectiveness of the least-squares
detection algorithm that was used to identify coherent signals in the DataScan analysis program
that was operated online in real-time as the digital data was taken and archived. The penultimate
figure displays the azimuth of arrival for a 10.6 hour period beginning at 10:42 UT before the
volcanic signal was present and ending at 21:20 UT after the coherent volcanic signal had ended.
There is a wide scatter in the azimuth data points until time index 75 when the Galunggung signal
begins and after time index 200 when it ends. The same effect can be seen in the last figure for the
trace velocity for the same data series. This volcanic signal wave train lasted for about five hours.

Bibliography for Volcanic Infrasound
Craine, L. and J. Thomas, Atmospheric sound signal from Galapagos volcanic eruption, A. U. G.
Meeting, April 1, 1969
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Goerke, V. J., J. M. Young and R. J. Cook, Infrasonic observations of the May 14, 1963 volcanic
explosion on the island of Bali, J. Geophys. Res., 70, 6017-6022, 1965
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Figure 2.

Redoubt volcanoes in Cook Inlet, Alaska that are 843 km and 510 km

respectively from College.

Microbarograph records for impulsive type volcanic eruptions of Trident and
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Figure 3.  Volcanic infrasonic signals from unidentified eruptions of the Cook Inlet
volcanoes. A much larger value of the trace velocity Vit can be seen in all three
examples for the second signal propagating via the upper sound channel.
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Microbaroms (MB)

Standing-wave patterns on the sea surface in marine storms produce infrasonic waves,
called microbaroms (MB), with three to eight second period and amplitudes of a few microbars,
that will propagate great distances with little dispersion or attenuation. The seasonal variations in
occurrence of marine storms as well as the effect of upper level winds in the atmospheric sound
channels will jointly determine the seasonal and diurnal variations of occurrence for MB. The
observed trace velocity for a MB wave packet, that is observed at distances greater than the first
acoustical skip-zone, will be modified from its intrinsic value by the addition of the component (
in the direction of propagation of the MB ) of the upper level wind at the height of the reflection in
the atmospheric sound channel. The direction bands from which MB will be received are different
for each observing station depending on the station location with respect to the surrounding oceans -
and marine storm source regions. Examples are shown in the figures that follow of microbaroms
. observed at Fairbanks on 01/26/84 from a storm in the Guif of Alaska from an azimuth of 195 to-
200 degrees. The MB data were obtained with a triangular microphone array of side length of
about one kilometer and with a frequency passband of 0.10 Hz to 1.0 Hz.. The wave-packet like
nature of microbarom events as a string of successive “pearls” can be seen in the second waveform
figure that shows a 7 minute time window for the MB event. The multivariate coherence
parameter P from Pure-State filtering is shown, as a function of frequency, for the MB event. The
P value can be seen to peak at a value of 0.82 at a frequency of about 0.2 Hz. The peak in the
spectral energy diagram for this same MB event, is also at 0.2 Hz. The penultimate figure in the
BM diagram series shows, for a seven hour time window, the consistent azimuth of arrival from
195 to 200 degrees, from the Gulf of Alaska, for the MB event on 01/26/84. The trace velocity
and azimuth of arrival for successive individual microbarom wave-packets can vary over a wide
range that depends on the scale size of the marine storm source and its distance to the infrasonic
array. The last figure in the Fairbanks 01/26/84 MB event series shows the fluctuations in the trace
velocity within a band from about 290 m/sec to 350 m/sec for the same time period.

The theory of the generation mechanism of MB that agrees well with their characteristics,
as observed at Fairbanks and in Antarctica, was developed by Posmentier (1967). He proposed
that the oscillation of the center of gravity of the air above the standing-wave patterns on the
surface of the sea would cause the radiation of infrasound of a frequency double that of the
standing-waves themselves. The observed frequency range for microbaroms, from 0.125 Hz to
0.333 Hz, assures that microbaroms can be considered as nondispersive waves that can propagate
long distances with little attenuation. Acoustic waves will be attenuated in amplitude by energy
dissipation given by exp(-az) , where z is the distance traveled and a is the dissipation coefficient
(Landau and Lifchitz, 1959). The dissipation coefficient for acoustic waves of frequency 0.25 Hz,
(similar to that of microbaroms), increases with height from 5.1 x 10 7 at a 40 km altitude by
almost four orders of magnitude to 3.0 x 10 ® at an altitude of 100 km. Thus microbaroms will
suffer increasing energy dissipation with height. For very longpropagation paths, where multiple
reflections in the upper atmosphere occur, energy dissipation becomes important.

Infrasonic observations in both Fairbanks, Alaska and in Windless Bight, Antarctica have
shown that MB waves are not coherent over the area of arrays with microphone spacing greater
than a few kilometers. They could only be detected at either location where the inter-microphone
distance was close to 800 meters at the Fairbanks and about 1,200 meters at the Windless Bight.

In Antarctica the use of the pure-state filter in the digital system with the small microphone array
at Windless Bight enabled the detection of microbaroms that were not detectable in the unfiltered
data. The number of microbaroms as a function of azimuth for the year 1981 at Windless Bight are
shown in Figure 5. There is a systematic variation ,due the upper level winds, in the average trace



velocity of microbaroms as a function of azimuth of arrival that is shown in Figure 6 for 1981 data
at Windless Bight.

Bibliography for Microbaroms
Collier, J. L., Masters Thesis, Morphology of Microbaroms at Windless Bight, Antarctica and
Fairbanks, Alaska, University of Alaska at Fairbanks, May 1983
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Donn, W.L. and E.S. Rind, Microbaroms and the temperature and wind of the upper atmosphere,
J. Aimos. Sci., 29,156,1972

. Posmentier, E. S., A Theory of Microbaroms, Geophys. .J. R. Ast. Soc., 13,487, 1967
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Infrasound from Earthquakes

Infrasonic waves in the passband from 10 Hz to 0.01 Hz are generated by sudden ground
displacements that occur in earthquakes and in under ground tests of nuclear weapons. There are
two types of infrasonic signals the are associated with earthquakes. First ,as the seismic Rayleigh
wave from an earthquake sweeps across an array of infrasonic microphones at seismic wave
speeds, the vertical component of the ground motion of the Rayleigh wave causes the radiation of
infrasound into the atmosphere at the microphone sites. The period of the Rayleigh wave
generated infrasound is identical to that of the Rayleigh wave itself. Second, impulsive ground
motion in the epicenter region of an earthquake will generate infrasonic waves that travel far from
the source as was the case for the great Alaska earthquake of 1964. The infrasonic waves
generated in the epicenter region by ground motion of an earthquake are of longer period (10 to
100 seconds) depending on the horizontal scale size of the ground displacement. An example is
. shown in Figure 1 from the Fairbanks infrasonic array of earthquake infrasound observed on 28
February 1979 from a magnitude 7.3 earthquake 640 km away with epicenter near Cape
Yakataga, Alaska. The Rayleigh wave infrasound was observed at 2130 UT as the surface seismic
wave crossed the microphone array. The air wave generated in the epicenter region arrived about
30 minutes later at 2202 UT with a trace velocity of 320 m/sec propagating via the stratospheric
sound channel. Because of the particular azimuth of arrival of the wave, this second signal is
thought to be associated with the motion of the Mount Logan massif as the earthquake seismic

waves shook the mountain. The period of the Rayleigh wave signal was about 20 seconds while
that of the second signal from Mount Logan is longer with components up to 100 seconds. The
original analogue records from the Yakataga earthquake were hand digitized every 1.8 seconds
and low pass filtered to remove high frequency contamination from the digitization process and
then pure state filtered to produce the records shown in Figure 2. The most obvious feature of the
pure state filtered data is the clarity of the onset of the arrival of the infrasonic waves at the array
as shown in Figure 2. The pure state filtering of the data resulted in an overall enhancement of the
signal to noise power at 0.01 Hz of approximately two orders of magnitude. The efficacy of this
treatment by pure state filtering of the infrasonic microphone data results from the fact that the
principal noise source, boundary layer turbulence, is uncorrelated over the scale size of the array.
The spectra of the air wave signal at 2200 UT from one of the Fairbanks array microphones are
shown in Figure 3 for the raw data, and in Figure 4 for the data after pure state filtering. There is
considerable enhancement of the contrast between the central peaks and the noise in these spectra
(raw data versus pure state filtered data). This filtering at 0.01 Hz gives an overall signal to noise
enhancement of 20 db.

Rayleigh wave infrasonic signals have been detected numerous times in Antarctica at the
Windless Bight array that is located on the floating Ross Ice Shelf. The area of the floating ice
shelf is tens of thousands of square miles with a thickness of 800 feet. Surface seismic waves
couple to the Ross Ice Shelf from the contiguous mountain ranges to the west and south-and from
the grounded glaciers of East Antarctica. The microphone traces from two of the sensors at
Windless Bight are given in Figure 5 for a Rayleigh Wave infrasonic signal observed on December
30, 1976. From the one minute time marks at the bottom of the traces one can see that the arrival
of the waves at the two microphones was virtually simultaneous. The amplitude of the signal was
about three to five microbars.
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Figure 2 , Fairbanks infrasonic array data for Yakataga earthquake, pure
state filtered.
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Figure 3, Raw data spectrum . Yakataga earthquake infrasound.
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Figure 4, Pure filtered data spectrum, Yakataga infrasound.
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BOLIDES AS EXPLOSIVE INFRASONIC SOURCES: CTBT IMPLICATIONS

Douglas O. ReVelle

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Among the natural explosive sources of infrasound in the atmosphere, bolides (meteor-fireballs) rank as a
major candidate along with volcanic eruptions for generating false alarm signals in the CTBT IMS system.
This means much more work is needed to fully evaluate these bodies as infrasonic sources. This includes
collaborative work with the US DoD satellite community and may include cooperation with the

hydroacoustic and seismic communities as well. In this talk we will categorize bolides as infrasonic . -

sources including the development of the line and modified line source blast waves from the fundamental
bolide entry parameters. We will also consider refractive propagation effects on these signals at relatively
close range from the standpoint of ray theory. Finally, we will discuss the interpretation of these signals at
the ground at long ranges from the source. The development of the blast waves depends critically on the
depth of penetration of bolides into the atmosphere. This, in turn, depends upon the composition, entry
angle, size, velocity and rate of ablation of the bolide, etc. From other studies we know of at least five
different, unique compositions whose tensile and compressive strength ranges from very strong(nickel-iron
materials) to extremely weak, fragile cometary materials. This factor also greatly influences the number
and size of major break-up events that can occur, ie., gross-fragmentation effects. At the largest
observable sizes there is also a tendency for weaker and consequently higher velocity bodies. The source
energies corresponding to bolides that have previously produced detectable infrasound at the ground ranges
from about le-5 kt to >10 Mt (TNT equivalent). This correspond to bodies large enough to reach a level of
near-continuum flow (small Knudsen number) while still traveling at high Mach number. The Very narrow
Mach cone of the bolide generates a characteristic velocity pattern which is circular for vertical entry and
which becomes a highly elongated ellipse as the entry angle becomes more horizontal. Consequently, the
line source acoustic radiation pattern is highly directional and the range of altitudes from which infrasound
can reach the ground depends critically on both the atmospheric temperature and wind structure aloft and
on the altitude region penetrated. The consequences of this line source geometry are that for very steep
entries the acoustical signals are likely to propagate horizontally and thus be much more influenced by
refractive effects. For shallow entrics the rays are traveling nearly vertically (in the entry plane) and thus
subject to far less refractive influences. We will also summarize and evaluate the current techniques
available for estimation of the bolide source energy for either point or line source geometry. These include

various approaches that incorporate cither wave amplitude information only or include both the wave
amplitude and wave period information for the acoustic signals. We will also consider methods based on
the presence of the Lamb wave and also methods that combine these approaches. Finally, we will consider
the corresponding bolide influx rate implications as a function of their source energy. At a bolide source
energy exceeding 0.1 kt, for example, we have estimated from the AFTAC bolide data (1960-1974) that
there are about 30 bolides/year impacting the Earth's atmosphere. (This work is supported by the U.S.
Department of Energy under contract No. W-7405-ENG.)

INFRASOUND WORKSHOP FOR CTBT MONITORING
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Summary:

Bolide Size and Source Energy-

Radius: m Bolide source energy (¥)
0.03 0.02 t
0.04 0.047 t
0.05 0.093 t
0.1 0.741 t
0.5 92.6 t

1 0.741 kt
2 5.93 kt

3 20.0 kt

4 47.4 kt

S 92.6 kt
10 0.741 Mt
20 5.93 Mt
30 20.0 Mt
40 47.4 Mt
50 92.6 Mt
100 740.7 Mt

(*) Assumes a spherically shaped, chondritic bolide
(p=3.7 g/cc) with V=20 km/s.
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Figure 72. Cylindrical blast wave radius as a function of altitude ( curves
2 and 4, 0=0; curves 1 and 3, ¢=5-10"12 sec2/cm2; for all curves dashed
portion represents altitude region for which cylindrical blast wave theory

1s not applicable to hypersonic flow ), 8=10°, dmpy= 100 cm, P

m=7.7glcm3
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Table III. Summary of Basic Meteoroid Airwave Events Taken
by the U.S. Air Force During the Period From 1960-1974.

*)

Date Source Origin Total .~ Source
Location Time Range Energy
1: (**)
11/2/60 9N, 43E 0022 GMT 2488 mi. 10 kt
2:
9/26/62 30N, 35E 1545 aMT 688 mi. 20 kt
3:
9/27/62 32N, 60E 1529 GMT 518 mi. ] 30 kt
4: .
8/3/63 51s, 24E 1645 aMT 7038 mi. 1100 kt
8590 mi. won
5:
11/30/64 18N, 123W 0310 &MT 3243 mi. 10 kt
6:
1/3/65 21N, 68E 2151 GMT 2008 mi. 0.2 kt
7:
4/1/65 49N, 117w 0548 GMT 1552 mi. 0.24-2.4
kt
(***)
2173 mi. noon
8:
6/12/66 51N, 164E 0905 GMT 4150 mi. 8 kt
2750 mi.. noon
1800 mi. vou
3000 mi. woowm
9:
1/8/71 30N, 40E 1826 GMT 8632 mi. 6 kt
10:
4/14/72 138, 78E 1613 GMT 2300 mi. 14 kt
2700 mi. womn
3400 mi. woon
4850 mi. woon
8000 mi. won
8550 mi. non

(*) 1 kt TNT = 4.185*10(12) Joules; Assuming Eg= 2*Yield
(**) Originally estimated by the Air Force to be 1 kt

(***)} The average E5 of about 1.3 kt is from E.M. Shoemaker (personal
communication, 1972) using a multi-modal analysis from Pfeffer and
Zarichny (1963). Eg= 26 kt was used for the NEO influx calculations, but
since equation (3) predicted 44.6 kt, our influx is likely to be too
low. Also, in Table VIA., Eg for Revelstoke was about 69 kt. Bayer and
Jordan (1967) located its ground impact using infrasonic and seismic
waves from multiple stations in the U.S. and Canada.
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Figure 1. Common logarithm of cumulative numbers N (all bodies with masses larger than the given mass m)
of interplanetary bodies coming to the entire Earth’s surface per year are plotted against common logarithm of the
mass m. The thick line : resulting fluxes of all bodies. The thin line from logm = —6 to logm = 3 denoted ‘I’:
fluxes of the typel bolides (stony bodies, for larger masses meteorite dropping). The thin line from logm = 4.5 to
logm = 6.5 denoted ‘s’: fluxes from recording sounds of superbolides (the dots are the individual values of cumulative
numbers defining the thin line: Ref. 5). The arrow at logm = 5.4 : satellite observed superbolides interpreted as
belonging to typel (stony bodies); because separation of typeI and II superbolides was not possible” , only the upper
limit can be given (the base of the arrow) and the arrow symbol means: ‘less than the given value’. - - - the
cumulative flux curve of all bodies as published in Ref. 1 before calibration with the new Lost City mass. ——— the
cumulative flux curve of all bodies as published in Ref. 2 (without calibration for the new Spacewatch statistics in
Ref. 10). The enormously high flux announced by Frank®! is denoted by ‘F’.
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PATH OF FIREBALL
APRIL 25,1969

Heading 332*2° .
20 hrs 22min 0.5 UT. Entry Angle of Descent 6730 -
(at end point height)
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Figure 125.  Ground projection of the entry of the British
Fireball of April 25, 1969, after Hindley and Miles, 1970.
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ON THEORETICAL FUNDAMENTALS OF INFRASOUND PROPAGATION
IN AN INHOMOGENEOUS MOVING ATMOSPHERE

Viadimir E. Ostashev

Department of Physics
New Mexico State University
Las Cruces, NM 88003-8001, U.S.A
(On leave from Institute of Atmospheric Physics
Russian Academy of Sciences
Moscow 109017, Russia)

The book [1] deals partly with theoretical fundamentals of infrasound propagation in an inhomogeneous
moving atmosphere. The main goal of the presentation is to briefly review the results presented in [1].
First, we consider the historical review of extensive studies of infrasound propagation from large
explosions on the ground, which were done in the first half of the century. Then, starting from a system of
linearized equations for fluid dynamics, both classical and new equations for acoustic and internal-gravity
waves in a stratified moving or turbulent atmosphere are systematically derived. The main results of
geometrical acoustics in an inhomogeneous moving atmosphere are presented. In particular, the recently
derived refraction law for an infrasound ray in a stratified moving atmosphere is considered. This law
allows one to study deflection of the ray from a vertical plane containing source and receiver. The wave
theory of infrasound propagation in a stratified moving atmosphere is considered. This theory gives
various approaches for calculating a form of infrasound impulse propagating in an atmosphere. Finally,
we consider the recently developed theory of wave propagation in an atmosphere with temperature and
wind velocity fluctuations. (This material is based partly upon work supported by the U.S. Army Research
Office under contract number DAAH04-95-1-0593.)
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