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Abstract—The inverter-based resources (IBRs) have enabled
the integration of renewable energy at the grid edge with
enhanced control capabilities to support the reliable operation
of power grids. Different control frameworks, such as hier-
archical or distributed architecture, have been proposed with
the expansion of cyber networks for real-time monitoring and
control. This evolution of critical infrastructure into cyber-
physical systems also brings more vulnerabilities for the broad-
ened attack surfaces, and significantly increases the possibility
of physical system failures or outages caused by cyberattacks.
Among tremendous efforts in the defense-in-depth approach, it
remains challenging to provide prompt detection and accurate
location of attack entry points or paths. Therefore, the prevailing
restoration framework may struggle to fully consider the cyber-
physical interdependence, successfully isolate the compromised
cyber and physical components, and safely recover the sys-
tems without the potential risks leading to secondary outages.
This paper is motivated to develop a cyber-physical restoration
framework for distribution grids to recover from cyber attacks
by harnessing grid-edge IBRs. The framework is first built on
the operational guidelines of IBRs considering the compromised
cyber layer. Then, an ambiguity set is established to represent
the uncertainty of attack scenarios and their possibility levels.
Next, a distributionally robust optimization model is developed to
provide the optimal load restoration strategy across all scenarios.
The effectiveness of the proposed model is demonstrated through
various use cases on the modified IEEE 13-node and 123-node
test systems. Simulation results demonstrate the effectiveness and
advancement of developed post-attack restoration strategies.

Index Terms—Cybersecurity, Distributed energy resources,
Distributionally robust optimization, Inverter-based resources,
Power system resilience, Post-attack restoration

I. INTRODUCTION

HE inverter-based resources (IBRs) have emerged as the

new types of distributed energy resources (DERs) at the
edge of distribution grids. These grid-edge IBRs are equipped
with the capability of enhanced power quality, rapid response,
and expanded functionalities, serving as the main interfaces
for renewable integration. Given their inherent low inertia and
the uncertain nature of renewable energy, smart sensors and
controllers are necessary to facilitate the real-time monitor-
ing and control of IBRs. While this evolving infrastructure
is essential for ensuring the secure and reliable operation
of distribution grids with IBRs, this expansion significantly
broadens the attack surfaces of existing cyber networks. More-
over, non-utility owners of IBR might encounter challenges
in establishing sufficient security policies and consequently
elevating the risk of cyber threats. Furthermore, the design of
the cyber network allows accessibility to third parties such
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as IBR owners, manufacturers, and aggregators, posing safety
concerns for unsecured network connections. Therefore, the
increased exposure of the cyber networks of IBRs to potential
attacks emerges as a significant security concern.

In literature, [1], [2] indicated that the common cyber
attacks, such as denial of services (DoS) or false data injection
(FDI), targeting IBR cyber networks, might lead to severe
consequences at the physical layer. These include branch
overflow, posing risks of equipment damage, stability issues
such as voltage/frequency violation, and even power outages.
Strengthening distribution system resilience against cyber at-
tacks involves two main strategies. One way is to identify
and strengthen the vulnerable components accordingly, thereby
enhancing system resistance to cyber threats. The other way
is to develop post-attack restoration methods, improving the
system’s ability to recover from cyber attacks rapidly. This
paper is motivated to focus on the latter one.

The majority of existing restoration algorithms mainly
tackle the disruptions within the physical layer, and usually as-
sume the full functionality of the cyber layer, treating restora-
tion as an optimization problem [3]-[6]. However, the post-
attack restoration necessitates accounting for the compromised
cyber layer. Given the compromised components infiltrated by
the malicious entity, if not identified and isolated successfully,
attackers can launch subsequent attacks, continuously impact-
ing the physical layer and potentially leading to a secondary
outage. Therefore, the prevailing restoration algorithms from
component failures, system malfunctions, or natural disasters
are inadequate for handling post-attack restoration problems.

Furthermore, due to the intricate cyber-physical interdepen-
dence, it is challenging or usually impossible to pinpoint and
identify the compromised components shortly after observing
physical system failures, given very limited or implicit infor-
mation of cyber-physical system status. Recent efforts have
made some progress in detecting and locating potential attacks.
For instance, [7] proposed a graph neural network to identify
the presence and location of FDI attacks. [8] introduced
a clustering method to determine the compromised phasor
measurement units. [9] presented a deep-learning method to
identify active attack locations. However, these approaches
mainly utilize the data-based learning method, which requires
massive data and powerful computational resources. Moreover,
the training data are generally confined to specific devices or
attack types. Consequently, when faced with incomplete attack
information, these methods might struggle to identify the entry
points of attacks within the cyber layer. This limitation could
impede the ability of these algorithms to effectively identify
and isolate the compromised components.

This paper is motivated to address these challenges, by in-
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troducing a distributionally robust optimization (DRO) method
to solve the post-attack load restoration problem. Instead of
the deterministic identification of compromised components
based on assumptions, the proposed method develops an
ambiguity set, reflecting the uncertainty of the probability of
compromised components, leveraging the limited data from
the cyber layer and the observations from the physical layer.
Subsequently, based on this ambiguity set, the DRO algorithm
can provide the optimal restoration strategy, ensuring the
minimum expectation of lost load in the worst cases.

The main contributions of this paper are threefold, i)
Established the operational guidelines to ensure the secure
operation of IBRs while considering the compromised cyber
layer; ii) Built up an ambiguity set to model the uncertainty
level regarding the probability of cyber components being
compromised; and iii) Developed a tractable DRO model for
providing the optimal restoration strategy from cyber attacks.

The remainder of the paper is structured as follows: Sec-
tion II provided an overview of the post-attack restoration
framework. Section III presented a deterministic model under
given attack scenarios. Section IV introduced the DRO model,
focusing on more practical scenarios where the attack entry
points are unknown. SectionV introduced the DRO model re-
formulation strategy and the corresponding solution algorithm.
Section VI presents simulation results and discussions on the
performances of the proposed DRO model. Finally, Section
VII concludes this paper.

II. POST-ATTACK RESTORATION FRAMEWORK WITH IBRS

The grid-forming IBRs are equipped with the ability to
regulate their terminal voltages and system frequency, which
enables them to independently establish a stable grid and func-
tion effectively in both grid-connected and islanded scenarios,
significantly enhancing the adaptability of IBR systems [10]-
[13]. Ensuring the secure operation of IBRs heavily relies on
a highly efficient communication network that enables real-
time monitoring and control. However, the extensive presence
of cyber components, such as sensors and routers, has notably
broadened the attack surface of the supporting communication
network. Moreover, non-utility owners, often lacking expertise
in configuring secure policies, inadvertently introduce more
vulnerabilities into these networks. Furthermore, due to the op-
erational requirements of IBRs, which necessitate monitoring
and support from manufacturers, aggregators, and maintainers,
inadequate access policies may heighten the risk of insecure
network connection. Hence, the escalating cyber threats within
current IBR communication networks pose a significant risk
to the secure operation of IBRs.

The real-world attack cases highlighted by [14], [15] em-
phasize the susceptibility of IBRs to cyber threats. These cases
reveal that current cyber layer vulnerabilities provide attackers
with potential intrusion points, potentially enabling them to
terminate essential communications, manipulate IBR control
parameters, and issue false commands to IBRs. Given the
low inertia of IBRs, such interruptions have the potential to
induce severe system stability issues, trigger IBR trips and
cause cascade failures, and consequently lead to load shedding

and blackouts. Therefore, in anticipation of potential blackouts
due to cyber attacks, it is crucial to develop secure and reliable
post-attack restoration strategies.

Post-attack restoration using IBRs requires coordination
among multiple stakeholders [16]. First, utilities must secure
approval and access from IBR owners or aggregators to in-
volve non-utility-owned IBRs in the restoration process. Then,
collaboration with regulatory agencies is necessary to validate
IBR capabilities and establish operational guidelines, ensuring
secure restorations. Utilities also need to work with vendors
to accurately model IBRs and develop appropriate control
algorithms for the restoration. Finally, coordination with re-
gional ISO/RTO is essential to integrate upstream resources
and facilitate comprehensive T&D system restoration. Besides,
utilities need to deploy additional devices to support the
restoration process, such as integrating IBR status into existing
situational awareness (SCADA) systems for monitoring and
fault alerts, deploying smart breakers to manage sub-grid
processes to isolate faults, and coordinating IBR operations.

A typical restoration process after system outages can be
described as follows: First, the protection breakers isolate the
faulted devices, whose statuses are sent to the control center
through the fault awareness (SCADA) system. Then, the utility
activates the restoration decision support system and sends
the fault/outage information to the restoration optimization
module to determine the restoration strategy. Finally, the
restoration commands generated by this module are sent to
device actuators for execution.

Existing restoration optimization models are built upon the
assumption of a fully functional cyber layer during the restora-
tion process. Nevertheless, these models prove inadequate for
post-attack restoration scenarios. The rapid recovery of cyber
networks poses substantial challenges, wherein compromised
components within the cyber layer can impede the execution of
the restoration process, consequently giving rise to potential
system instability and subsequent outages. In light of these
considerations, there is a pressing need to enhance existing
restoration frameworks to address the intricacies associated
with post-cyber attack recovery. To overcome this limitation,
a deterministic post-attack restoration model that considers
compromised cyber networks is first developed, as illustrated
in Fig. 1. This model is designed to restore as much load
as possible by utilizing available IBRs and, at the same time
isolating the identified compromised components. Besides the
traditional grid-related constraints, this model incorporates
operational constraints for IBRs, considering compromised
components in the cyber layer. A detailed explanation of this
deterministic model is provided in Section III.

However, the timely identification of compromised compo-
nents presents significant challenges with current detection
algorithms, posing a feasibility issue for the deterministic
model. To address this limitation, a DRO model is designed
to handle the uncertainty inherent in attack scenarios, i.e.,
compromised components. This model integrates the deter-
ministic model with an ambiguity set to address the attack
scenario uncertainty. This ambiguity set is a Wasserstein
ball-based distribution set, presenting the possibility level of
each attack scenario, and ensuring a high confidence level
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Fig. 1. Post-attack restoration framework

that the actual probability distribution within this set. As a
result, the proposed DRO model can generate restoration plans
that guarantee maximized load pickup across all scenarios.
Further details on the development of the DRO model will be
presented in Section IV.

III. DETERMINISTIC POST-ATTACK RESTORATION MODEL

In this section, the IBR operational guidelines considering
compromised cyber networks will be established first, followed
by the formulation of the restoration model.

A. IBR Operational Guidelines under Cyber Attacks

1) IBR control framework: Among various control algo-
rithms designed for grid-forming IBRs, the load-sharing algo-
rithm stands out for its cost-effectiveness and high reliability.
This algorithm utilizes a distributed two-tier control frame-
work. The secondary control gathers local and neighboring
measurements, computes the deviation in their power ratios,
and transmits it to the primary control, at the frequency of sec-
onds. Operating with a faster cycle time within milliseconds,
the primary control adjusts the terminal output to compensate
for the power ratio deviations. As the system stabilizes in the
steady state, the power ratio among each IBR unit becomes
uniform, effectively achieving load sharing.

2) Cyber attacks on IBR communication system: The IBR
control algorithm necessitates a two-layer communication net-
work, as shown in Fig. 2. The first layer includes IBR Clients,
communicating with local controllers and neighboring clients.
These IBR clients handle the secondary control and other
advanced functions, such as emergency response. The second
layer comprises local controllers, exclusively communicating
with their associated clients. These controllers oversee the
execution of primary control and IBR protection, such as over-
and under-voltage protection.

Table I presents the common vulnerabilities that attackers
can exploit in the IBR cyber layer, according to the Na-
tional Vulnerability Database (NVD). In this network, the
protocol used for communication among clients is DNP3,
while the Modbus is used between the local controller and
the client. In the client nodes, the DNP3 master and the
gateway are deployed for packet transportation and protocol
conversion. Their vulnerabilities allow attackers to launch
replay attacks, jamming attacks, and FDI attacks, which can
lead to IBR misoperation, causing large-scale IBR trips, grid

{ ) Clients:
i - 1
{ E <—>§ | Secondary control
- Y  Advanced IBR function
(¥ v ¥ Local Controller:
(D) (D) @ | Primary control
"!" "i" "i" | IBR protection
O—O——0
IBR_1 IBR_2 IBR_3
Fig. 2. IBR cyber networks
TABLE I
VULNERABILITIES IN IBR CYBER LAYER
Component Vulnerability
Unrestricted upload of file
Client Improper access control

Improper certificate validation
Missing authentication for critical function
Improper restriction of excessive
authentication attempts
Download of code without integrity check
Remotely expose network through
TCP crafted packets
Issue harmful command to devices
Reply to illegal function

Local Controller

Channel (DNP3)

Channel (Modbus)

stability issues, and even power outages. The local controller
is generally provided by the inverter manufacturer, and its
vulnerabilities are inherent in the users’ applications. Once
local controllers are compromised, attackers can execute unau-
thorized commands, modify or delete data packets, and cause
similar consequences to those on client nodes in the physical
layer, although typically limited to local areas. Regarding
the communication channel, both DNP3 and Modbus pose
vulnerabilities that attackers can exploit to launch man-in-the-
middle (MITM) attacks, leading to packet delays, dropping, or
malicious modification of payloads. The attack consequences
in the physical layer include grid loss and stability issues [2].

Due to the low cost and high impact, the increasing fre-
quency of cyber attacks on the IBR communication network
could significantly disrupt IBR operations. In this work, we
focus on attacks targeting cyber nodes, specifically client
nodes and local controllers, due to their significant impact
compared to channel attacks. We will delve into the attacks
that disrupt connectivity between cyber nodes, such as FDI
and DoS attacks. These attacks pose severe threats to IBR
operations under load-sharing algorithms. To ensure secure op-
eration, additional guidelines must be established, considering
the disconnectivity among IBRs in the cyber layer.

3) IBR operational guideline considering compromised cy-
ber network: Take Fig. 2 as an example, and assume the
communication channel between IBR_3 and its local controller
is compromised. To ensure the secure operation of IBRs, one
option is to trip IBR_3 and terminate the compromised chan-
nel, thus the remaining IBRs can operate securely. However, it
is worth noting that IBR is capable of operating in autonomous
mode, which it utilizes the default configuration to execute
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voltage/frequency control, serves local load within its capacity,
and guarantees system state variables in normal range. Yet,
without communication with other IBRs, physical connection
between multiple autonomous IBRs may cause unregulated
power flow, leading to state variables exceeding the normal
range, and potentially causing IBR trips. Hence, physical
isolation between autonomous IBRs becomes necessary when
they are operating in this mode. Therefore, an alternative
option is to isolate IBR_3 in both physical and cyber layers
and let it operate in autonomous mode, as shown in Fig. 2.
Nevertheless, this strategy restricts the power flow within two
sub-grids, potentially leading to a reduced load restoration.
The choice between these two options relies on compre-
hensive analysis. In this example, communication between
IBR_2 and IBR_3 is disrupted, and the first solution involves
turning off IBR_3 to prevent potential disturbances. In the
second solution, although IBR_3 is turned on, it is physically
disconnected from IBR_2. In summary, to ensure the secure
operation of IBRs under compromised cyber networks, it is
essential to maintain consistency in their cyber and physical
connectivity, regardless of their operation strategy.

B. Deterministic Model Formulation

Consider a distribution grid with N buses and K lines,
alongside a set of G IBRs and £ loads. The corresponding
cyber network consists of M nodes and V links. Let binary
variable £ indicate the cyber node status, which is predefined
in the deterministic model. & = 0 refers to the i** node
is compromised; otherwise, it is secure. Incorporating with
the IBR operational constraint, binary vectors x and z are
introduced to enable modification of IBR physical connections.
Here, 5" denotes the states of line switches, while z/BE
refers to ON/OFF status of IBRs. S indicates the swtichable
lines. The binary vector y indicates the load status. The
objective function of this model can be formulated as:

min Z (1—y,) - pFosd (1)
xz,Y,z
lel
1) Grid-related constraints: Let p, q refer to the real and
reactive power, u indicate bus voltage square, and binary
variable e refer to the energization status of buses. The grid-
related constraints can be formulated as follows:

—-IBR
&IBRzéBR Sp;BR < Pg Z;BR vg c g (2)

——IBR
Qy'PIPR < glPR < Qg TP vgeg ()

‘pLGe| < PLGe ;S;w V’L] cK (4)
|q zne| < QLGe ;S;w \V/Z] cK (5)
gf" <Qf"” veec (©)
uims“’ = [u; — 27‘¢jplt-] + a:”qf;"e)]:cisj“’ vije K (7
ngzne _ szLoad + Z pLGe piIBR \V/Z] cK (8)
keC;
qll;znf’ — leLoad + Z qun(’ IBR q_C(lP VZ] cK
keC;
9)
Qiei <u; < Uiei Vie N (10)
v _1 Vije (K—S) 11)

Constraints (2)-(6) represent the capacity limits of IBRs,
line branches, and capacitor banks. (7) refers to voltage drop
equation, where 7,2 can be referred to [17]. (8) and (9)
indicate the power flow equation, and C; indicates the children
nodes of node . (10) specifies the permissive voltage range.
The determination of e; and load-sharing constraints will be
discussed next. (11) indicates the switchable lines.

2) IBR operational constraints considering compromised
cyber nodes: The IBR connectivity is established among
every pair of IBRs. Let GP%" denote all possible pairs, the
binary variable C'on® indicates the IBR physical connectivity
and C'on® denotes the IBR cyber connectivity. Based on the
previous discussion, the IBR cyber and physical connectivity
should be consistent to ensure secure operation. This constraint
can be formulated as follows:

Con?, = Con; Vij € GP*" (12)

The IBR physical connectivity is determined as follows:
assuming p%/ refers to the set of all possible physical paths
from IBR; to IBR;, which can be derived by the depth-first
search algorithm [18]. Let binary variable SP;% indicate the
status of the m!" path in pi/. Therefore, S?;/ is active only

when all on-path switches are closed, expressed as follows:
spid = [ «i (13)
kqepy,
where kq denotes the line from bus k to bus q.

The physical connectivity of IBRs is determined by the path
status, as well as the ON/OFF status of IBRs. It’s active when
both IBRs are online, and at least one path between them is
active, which can be expressed as follows:

Confj =(1- H(

m

Sp,z])) IBR ZJ[BR (14)
Similarly, e; = 1 if the it bus is connected to at least one
IBR in the ON state, as determined in the following equation:

e;=1— [0 —@-JJ@-s5%)- " (15)
keg m

The cyber connectivity can be derived similarly. Assuming
the cyber node is directly connected to IBR; and IBR; at
node k and node g respectively, the set of paths in between is
o*4, then the p”* path status Sg*kq is positive when all on-path
cyber nodes (including starting and end nodes) is in normal

status, which can be formulated as:

kg
spti= 1] &
veap
Therefore, the cyber connection between I BR; and IBR;
is active if there exists at least one active path in o*9:

Cong; = (1— (1 - Sg*)) Vij € grer
P
In addition, the load-sharing algorithm ensures that the out-
put power ratio among interconnected IBRs remains identical
in the steady state, formulated as follows:

(16)

amn

pi”" Con?, _nt Con®. Vij € GF9"  (18)
7;IBF.’ jIBR 1)

G Cont, = L Con?, Wij e g (19)

—IBR ] —IBR (]

Q; Qj
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In summary, the deterministic model is formulated as:

. Load
min lezﬁ(l —u)- B (20)
s.t. Grid-related constraints: (2)-(11) (20a)
Connectivity consistency:(12) (20b)
IBR physical connectivity: (13)-(15) (20c)
IBR cyber connectivity: (16)-(17) (20d)
Load sharing: (18)-(19) (20e)

There are multiple nonlinear constraints in this problem,
as indicated by equations (13)-(17). These constraints contain
high order binary variable terms and can be reformulated into
linear constraints. For instance, equation (13) can be expressed
as a set of equivalent linear constraints:

Sy <ap) Vkq € py,

SPi > N (apr 1)+ 1

kq€pii

2L
(22)

Similarly, constraints (14)-(17) can be transformed into lin-
ear forms. Consequently, the deterministic model is converted
into a standard MILP problem.

IV. PROPOSED DRO MODEL

In reality, it is significantly challenging to fully identify
the compromised nodes in real time, which notably reduces
the practicality of the proposed deterministic model (20) in
Section III. Therefore, we have to embrace the uncertainty of
compromised nodes in developing the post-attack restoration
model. Approaches such as stochastic optimization (SO),
robust optimization (RO), and the recently proposed distribu-
tionally robust optimization (DRO) can be employed to tackle
this challenge. However, the SO method necessitates complete
knowledge of attack probability distribution, which may be
difficult to obtain or inaccurate due to limited historical attack
data. While the RO method does not require exhaustive proba-
bility distribution information, it may yield overly conservative
solutions. In contrast, the DRO model demonstrates superior
performance compared to SO and RO. This model utilizes
an ambiguity set to address the uncertainty of compromised
nodes, encompassing empirical attack probability information
and ensuring the real attack probability distribution falls within
this set with a considerable confidence level. This feature
enhances the model’s reliability compared to SO. Compared
to RO, this approach extensively integrates probability infor-
mation, thereby yielding a more efficient yet robust solution
[19]. The DRO model enables the derivation of the sub-grid
plans to maximize load pickup expectations across all possible
attack scenarios in worst-case scenarios.

The development of the proposed DRO model is illustrated
in Fig. 3. This model is established through two steps. First,
the ambiguity set is defined. The input data include physical
layer observations (e.g., outage information), ambiguity set
parameters (e.g., confidence level), historical attack data, and
the cyber-physical interdependence model. This process is
detailed in Subsection A. Then, the previous deterministic

Physical observation

Ambiguity set parameters
Historical attack data
Cyber-physical interdependency

Ambiguity set

development

Sec. IVA

Ambiguity set P(¢]y)

Cyber & physical . L
network configuration Revised deterministic
restoration model

Sec. Il B; Sec. IV B

Sub-grid breaker profile

Proposed
DRO model

Sec.IVB

Fig. 3. Flowchart of DRO model development

model is revised and combined with the ambiguity set to
formulate the DRO model. The revised deterministic model
requires the cyber and physical configuration and the sub-grid
breaker profile as inputs. By replacing the regular variable ¢ as
the random variable and combining it with the ambiguity set,
the DRO model is finally established. This process is presented
in Subsection B. In Subsection C, a detailed comparison of
RO, SO, and DRO models is presented to demonstrate the
overall best performance of the DRO model.

A. Ambiguity Set

Given the condition of observed physical outages denoted
as =, the probability of scenario £ can be represented as
P(&]7y). While one cannot directly obtain the information of
this probability, it can be determined through the Bayesian
inference as follows:

Plery) - _POIOPE

>z P(I€)P(E)
where E represents the supporting space of £. P(&|7) can be
determined by the following steps.

1) Determination of P(y|€): P(|€) indicates the proba-
bility of « given attack scenario &. This probability represents
the problem faced by attackers in determining their targets,
i.e. which IBR to trip, and it can be addressed using the
Quantal Response model [20]. This model suggests that,
owing to incomplete information or subjective preferences,
attackers may not necessarily choose the node with the highest
reward U. Instead, they might target all IBRs. To capture this
scenario, a non-negative parameter u is introduced to assess
their rationality level. A higher u signifies a greater likelihood
of selecting targets with larger U. Specifically, the probability
of each node being chosen is determined by the following:

exp(peUsy)
PV =<7 7
>_re exp(peUsyi)
In this paper, U is defined as the capacity of tripped IBRs,
expressed as follows:

Uy =(1-7)"Cap'"" (25)
Let I" denote all possible scenarios of IBR tripping. Then
I'¢ is a sub-set of I, indicating all IBR tripping scenarios

under &, which is determined by analyzing the cyber-physical
interdependence model.

(23)

(24)
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Based on our previous work [2], the cyber-physical interde-
pendence can be modeled as a graph-based mapping function
M (t), to demonstrate the data exchange patterns between the
control and physical system layers. M (t) is derived from the
cyber node functionality matrix denoted as F'(¢), the data
packets transition path matrix P(t), and the data packets
starting node incidence matrix S. The mapping function of
it" cyber node M is determined by the following equation:

M' = (diag(P" ® F))T . 8" (26)
Accordingly, the cyber sensitivity matrix, indicating which
IBR can be tripped by each node, is defined as:
dm'  dMM
d' T daM
where A refers to the input data of each node. In this model,
it refers to the IBR control command. Replacing all non-zero
elements in Sen as 1, and denotes the new matrix as Sen’.

Thus, all possible tripped IBRs under &, denoting as 4% is
determined by following equation:

5¢ = Sen/(1- )

Sen = | ] (27)

(28)
Thus, I'¢ can be determined accordingly.

2) Determination of P(€): In response to the escalating
cyber threats to power systems, the deployment of honeypot
systems [21] as intrusion detection techniques in power sys-
tems supporting communication networks has recently become
more popular. These systems meticulously monitor and log
intrusion attempts, regardless of whether they would lead to
physical impacts or not. These records can be used to identify
attack types and determine whether they will disrupt cyber
connectivity. However, given the limited implementation, the
data collected by the honeypot system might not be suf-
ficient to establish a convincing attack probability distribu-
tion. Nevertheless, it can contribute to the development of
a Wasserstein ball-based probability distribution set, which
presents the desirable out-of-sample performance [22]. This
set ensures that the true P(&) falls within the distribution
set with a considerable confidence level, which is suitable for
approximating P(§).

Assuming the honeypot system has collected N historical
data. In this framework, it’s crucial to ensure that /N is not
too small. A small NV could result in a relatively large ambi-
guity set, leading to a “worst-case” scenario that significantly
diverges from the actual probability and tends to be more
conservative. Moreover, given the rapid pace of technological
evolution, outdated data may fail to accurately reflect current
attacker behaviors. Therefore, we recommend utilizing data no
older than two years. Based on [23], within this framework,
N is selected within the range of at least 1 month but no
more than 2 years. This dataset is updated weekly. The more
data available, the more accurate estimation fif t[lg WE)rst—case
scenario. These data can be expressed as: € , € ,...£ , then
the empirical distribution of £ is formulated as:

N
Py(€) = % > 58 (29)
=1

6
where § & is defined by following equation:
1, & =¢
00 = ¢ (30)
¢ {0, otherwise

The supporting space = can be approximated as the sam-
pling space. The confidence level [ is determined by the
subjective preference of the users. For a given confidence
level f3, there is always a Wasserstein ball centered with Py (&)
satisfying that:

P(Dw(P(§), Po(§)) <v) = p (31)

where v indicates the Wasserstein ball radius and can be
derived by the following equation [24]:

—2log(1 — B)
N
where D denotes the diameter of £ supporting space. Given
historical data and a predefined confidence level, v is fixed.
Dy (P(€), Po(€)) in (31) refers to the Wasserstein distance:

v=2D (32)

— mi ! ’
Dw (P(&), Po(€)) = rggng e €llp& €  (33)
E/
where p(&, ¢') is the combined probability of (£,&’), with the
marginal probability of P(£) and Py(&), respectively. Then,
(33) can be reformulated as follows [25]:

S lE-¢pg ) <v (34)
£ ¢
> p(, &) =P (34a)
o
3 (34b)

Sp(E€) = Po(e)
3

Thus, the ambiguity set of P(&|7), denoted as P, can be
summarized as:

P = {P(&)I(23)(24)(34)} (35)
In summary, the development of the ambiguity set is pre-
sented in Fig. 4. First, the model utilizes our previously devel-
oped cyber-physical interdependence model to determine at-
tack reward U given any . Then the Quantal Response model
is used to determine the marginal likelihood P(~|€). Next, an
uncertainty set is constructed to represent the prior probability
P(&), which is a Wasserstein ball-based set centered with
empirical distribution Py(€). Finally, according to Bayesian
inference, the ambiguity set representing the probability level
of all possible scenarios P(£|v) can be derived.

B. DRO Formulation

The DRO model aims to generate a sub-grid plan to
minimize the expected lost load across all possible scenarios in
the worst-case situations. Consequently, £ becomes a variable
in this case, with the ambiguity set of (35). The decision
variable @ pertains to the sub-grid plan. Specifically, =!%°
denotes whether the cyber node requires isolation, particularly
if its likelihood of being compromised is relatively high. Z"*
refers to the decision to terminate the communication channel
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within the cyber network to facilitate its sub-grid. Meanwhile,

Sw still denotes the line relay status, serving the purpose of
the physical distribution system sub-grid.

In the DRO model, the operational constraints remain iden-
tical to the deterministic model, except for cyber connectivity,
which is determined as follows. Assuming the set of paths
between node k and node g is still %9, then the p*" path status
is active only when there are no isolated nodes, compromised
nodes, or terminated links on the path, as follows:

seke < T & (36)

UGGISQ
seka < I b (37)

’UGU',;Q

7
I [ [ (38)
NE_1 p,i'9p,i+1

1

sokt> N (g a2+ S (@Hrk L, 1) +1
UEU;;q foq—l e

(39

These constraints can be linearized in a similar way to the
method presented in the deterministic model. Therefore, the
proposed DRO model can be formulated as follows:

mln sup Ep[min Z (1—y; ) PLoad] (40)
el
s.t. Operational Constraints:
(2)-(11),(12)-(15),(36)-(39),(17) VE € = (40a)
Uncertainty Constraints: (23)(24)(34) (40b)

C. Comparison with SO and RO

For the SO algorithm, the ambiguity set is reduced to a
single distribution, which is determined as follows: the Wasser-
stein ball-based set Dy (P (&), Po(€)) is replaced solely by
the empirical distribution Py(&). The attackers rational level
is also determined by historical data, resulting in a fixed value
rather than a range. Consequently, the probability distribution
of all attack scenarios given physical outage = can still be
derived based on (23) and (24), denoted as IPy. Thus, the
objective function in the SO algorithm becomes:

mln Ep, mlnz (1- yl ) - pLoad]
el

(41)

Thus, this algorithm will prioritize the scenarios with higher
probabilities in IPy. However, due to the limited historical data,
this probability distribution may not accurately reflect the real
likelihood of each attack scenario. For example, if PPy indicates
a higher probability of attacks on the local controller, the
solution derived from SO will most likely only isolate the local
controller and shut down the corresponding IBR. However,
if the actual probability distribution suggests that the client
nodes or other critical nodes are of high probability to be
targeted in the cyber layer, the SO algorithm’s focus on the
local controller alone will leave the actual compromised nodes
unidentified. These unidentified nodes could launch continuous
attacks and cause secondary outages. Therefore, the solution
derived from the SO algorithm is unreliable.

For the RO algorithm, only the worst-case attack scenario is
considered. It is worth noting that the “worst-case” here differs
from that in the DRO model. Instead, it refers to a particular
attack scenario, whereas the “worst-case” in the DRO model
pertains to a specific attack probability distribution. This
distribution encompasses all possible attack scenarios, with
the expectation of load pick-up across all scenarios being the
worst. The objective function of RO is modeled as follows:

PLoad (42)

min sup mlnz 1—y; )
¥ geE ez

The restoration strategy derived from the RO algorithm
only considers the scenario that the compromised node is the
most critical one and will cause the most severe disconnection
among IBRs. Thus, to ensure consistent cyber and physical
connectivity among IBRs, the main grid is divided into multi-
ple sub-grids. However, this approach blocks power flow and
results in the most lost load. Compared to SO and DRO, this
algorithm is the most “’robust,” avoiding secondary outages to
the greatest extent. However, if the probability of this scenario
is relatively low, the algorithm is overly conservative and
may lead to significantly higher economic losses due to the
increased lost load.

Based on the discussion above, the DRO model can adjust
the restoration strategy according to the probability level of
each attack scenario, resulting in better performance compared
to both SO and RO models.

V. REFORMULATION OF DRO MODEL

Let Q¢(x ) indicates the inner problem of (40), i.e.:

= IIllIl {Z (1- yl PLoad
$2¢ et 43)
(2) = (11)(12) — (15)(36) — (39)(17)}

This problem is similar to the previously presented deter-
ministic model and can be easily solved by the off-the-shelf
solver for each given & and «. Thus, the proposed DRO
problem can be reformulated as:

mmin ;161712 ZE: P(&]7)Qe(x)

st (23)(24)(34)

In the following sections, (44) is reformulated step by step
and transformed into a tractable problem.

(44)
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A. Reformulation of Quantal Response Constraint

The first step is to transform the Quantal Response con-
straint (24) into a linear constraint. Given that ¢ Uy in (24) is
non-negative, exp(pe Uy ) is positive. Dividing both numerator
and denominator of equation (24) by exp(ueUs), it can be
rewritten as follows:

1

PO = S e lue 0y — T3

Let f(pe) = D reexp(ue(Uys — Uy)), then the second
order derivative of f(e) with respect to jue is expressed as

follows:
- S -
re

It is easy to prove that %
f(pe) is convex. Giving pe within the non-negative range
[ 57ﬁs], which can be estimated by reviewing the log infor-
mation of the compromised nodes, f(ue) is bounded and
positive. Consequently, P(+|€) is also bounded and positive.
Since P(~|€) depends solely on fe, and pg is independent
of all other variables, it is possible to treat P(v|£) as an
independent variable, with its bounds determined by ji¢.
Let bg = P(v|£), based on the previous discussion, (24)
is equivalent to the following linear constraints, with lower
and upper bounds of the variable determined offline using
Algorithm 1.

(45)

d2f

e - Uy)

)2exp(pg (U (46)

is positive definite, therefore

be <be < be
be=— b =
max f(ug) min f(ug)

Algorithm 1 is based on the classical gradient descent
method to solve convex optimization problems. The basic idea
is to search for the minimum value along the direction in which
the gradient decreases the fastest. In Algorithm 1, « refers to
the user-defined step size. A smaller « tends to improve the
convergence of algorithm, but increases the execution time. §
indicates a minimal value, forcing the gradient to approach
0, thereby bringing the searched minimum value as close as
possible to the actual minimum value.

(47)

Algorithm 1 Gradient Descent Search
1. if f’(,u ) > 0 then

b < T % T
else if f’ (,ug) < 0 then

be = 7y b6 © T
else

pe < g 9 < | (ne)l

while g > § do

pe < pe — ax g, g < [f'(pe)]

end while

be, bg + min, max{ f(LE),
11: end if

D A A

—
4

1 1 }
f(ﬁg) ’ f(l“f)

B. Transformation of Proposed DRO Problem Formulation

We first convert (23) into a linear constraint and then
transform the DRO formulation into a tractable convex form.

1) Transformation of (23):
reformulated as:

Based on (47), (23) can be

_ beP(§)
P(€ly) = S be P(E)
Introduce new variable ke = bg P(£€). Given that P(§) is

non-negative, the following constraint can be derived based
on (47):

(48)

be P(€) < bgP(€) = ke < beP(€) (49)
In addition, (48) can be rewritten as:
ke
50
P(&ly) = S ke (50)

Therefore, variable be can be replaced by k¢ in this model.
Insert (50) into the objective function of (44) and replace (49)
with (47), the proposed DRO model can be reformulated as:

in s 2= keQe(@)
T PeP ZE ke
s.t. (49)(34)

2) Convexification of DRO Formulation: (51) is an opti-
mization problem with linear fraction objective function and
linear constraints, constituting a quasi-convex problem, and it
can be transformed into a convex form. Let s¢ s = p€L)

(D

ke R2EL
Ug = P—(glz , Mg = Z—k , E e then the inner sup
problem of (51) can be rewritten as fbllows
sup m’ Q(x) (52)
st. als —vv <0 (52a)
beug < mg < begug VEE€E (52b)
Y see =ug V& EE (520)
e
D see =Po(&)v VEEE (52d)
¢'es
1Tu=v (52¢)
1Tm=1 (52f)
where ¢ = ||¢ — &'||. Thus, the proposed DRO model

becomes a tracable optimization problem.

C. C&CG-based Solution Algorithm

The proposed DRO problem is a tri-level optimization
problem. Given that the dual function of the inner sup problem
is a quadratic form, the cutting-plane method will be employed
to solve this problem. Specifically, the C&CG algorithm [26]
will be utilized, due to its efficient convergence characteristics.
This algorithm decomposes the original problem into two sub-
problems. The master problem is formulated as follows:

MP : minn (53)

st.n> ) mg[(1—yS)TPY Vve<k  (53a)
£eE

(2) — (11)(12) — (15)(36) — (39)(17) VE€E  (53b)

The sub-problem is a bi-level problem, which can be
referred to (52), where the second level problem Q(z) is
defined by (43).



IEEE TRANSACTIONS ON POWER SYSTEMS

The implementation of the C&CG algorithm for solving
the reformulated DRO problem is outlined in Algorithm 2.
The overall iteration process can be described as follows:
Upon initializing m**, the master problem transforms into a
single-level MILP problem. The lower bound LB is updated
as its objective value, and the optimal sub-grid plan x* is
obtained. Subsequently, (43) is solved for any given x* to
derive Q(x) under each attack scenario £&. The sub-problem
(52) then becomes a linear problem. The upper bound UB
is updated with the objective value of (52), and m*F+1* is
determined for the next iteration. This iteration loop continues
until LB and U B are sufficiently close.

Algorithm 2 C&CG Algorithm
1: UB ¢ 400, LB ¢~ —00,k < 0
2: initiate m”** = m?
while UB-LB< ¢ do
4 Solve MP, update LB, x*
5 Solve (43) V&€ € B, update Q" (x*)
6: Solve SP, update U B, mF+1:*
7
8

w

k+—k+1
: end while

The comprehensive process of DRO reformulation and solu-
tion algorithm can be summarized as follows: first, reformulate
(24) into an equivalent linear box constraint (47). Then,
the inner problem can be transformed into a linear fraction
form. This can be further converted into a convex problem
through variable substitution. As a result, this DRO problem
is transformed into a tractable tri-level optimization problem
that can be solved using the C&CG algorithm.

VI. SIMULATION RESULTS

A. IEEE 13-node Test Cases

1) Test system: The standard test system is modified to
include IBRs at Nodes 680, 633, 692, and 675, with dif-
ferent capacities of 700kW, 1000kW, 600kW, and 1000kW,
respectively. The circuit breakers are located at Lines 670671,
671692, and 692675. The corresponding cyber network is
shown in Fig. 5. The cyber nodes can be divided into two
tiers: IBR clients and local controllers. In this test system,
Nodes 1, 2, and 3 are designed as clients, while the remaining
nodes serve as local controllers.

Let us assume IBR at Node 675 is reported to be tripped.
The historical data identifies 7 distinct attack scenarios, each
targeting one unique cyber node. The confidence level 3 is set
to 95%, data size N = 1,000, and the range of regional index
[4, 7] = [5,20]. Two cases have been developed and tested,
each with different empirical distributions. Case 1 depicts
a scenario where local controllers have a higher probability
of being attacked. This may be due to insufficient security
configuration in local controllers. Case 2 portrays a scenario
where IBR clients are more susceptible to attacks, likely due to
attackers prioritizing client nodes that could potentially cause
more significant impacts on the physical layer.

SO @
ﬁ & @
4 1 ) {

‘ IBR 680 ‘ ‘ IBR 633 ‘ ‘ IBR 692 ‘ ‘ IBR 675 ‘

‘ BR 680 ‘ ‘ 1BR 633 ‘ ‘ 1BR 692 ‘ ‘ IBR 675 ‘
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Fig. 5. Sub-grid strategy in IEEE 13-node test cases (top: cyber network,

bottom: physical network)
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Fig. 6. Probability range of attack scenario in IEEE 13-node test cases

2) Attack probability: Fig. 6 indicates the probability range
of each attack scenario. The scenario index corresponds to
the compromised node. It can be observed that Scenarios
4, 6, and 7 exhibit a probability of 0, as Nodes 4, 6, and
7 function as local controllers without the authorization to
manage other IBRs. Consequently, they are unable to trigger
IBR 675 to trip. Conversely, Nodes 1, 2, and 3 operate as client
nodes, possessing the necessary authorization to initiate trip
commands for IBR 675. Meanwhile, Node 5 acts as the local
controller of IBR 675, empowered to issue a trip command
when specific protection mechanisms are activated.

In Case 1, the most probable scenario is the compromise of
local controller at Node 5, with a probability range between
0.7 and 1. In Case 2, there is a higher probability of the
client node being attacked, ranging approximately from 0.1
to 0.3. Besides, the probability range for Node 5 experiences
a noticeable decrease compared to Case 1. It is worth noting
that this range is derived from the entire ambiguity set. For a
specific distribution, the sum of the probabilities of each attack
scenario equals 1.

3) Restoration result: In Case 1, due to the dominant
probability of an attack on Node 5, the DRO model proposes
a strategy to isolate Node 5 (marked gray in Fig. 5) directly
within the cyber layer. Accordingly, Node 675 is disconnected
from the main grid in the physical layer. The distribution grid
is therefore divided into two subgrids. During restoration, IBR
675 operates in autonomous mode, eliminating the impact of
the compromised local controller. In Case 2, the compromised
nodes within the client nodes hold a higher likelihood, which
potentially impacts more IBRs. To respond to this risk, the
proposed DRO method provides a strategy to divide the
distribution grid into two subgrids, one with IBRs 692 and 675
and the other with IBRs 633 and 680, restricting the potential
impact of compromised client nodes within smaller regions,
thereby reducing the overall lost load.
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Fig. 7. IBR output power in IEEE 13-node test cases

TABLE 1T
LoAD Pick-up IN IEEE 13-NODE TEST CASES
Scenario 1 2 3 5 Expectation
Casel [kW] 1243 1243 1243 2514
Prob. (worst case)  0.057  0.038  0.204  0.700 2131.46
Case2 [kW] 1898 2030 1898 2030
Prob. (worst case)  0.167  0.227  0.347  0.259 1962.15

Fig. 7 illustrates the IBR output across all scenarios. In
Case 1, the compromise of Nodes 1, 2, or 3, as per the sub-
grid plan, impacts the sub-grid composed of IBRs 680, 633,
and 692. To ensure optimal operations amid a compromised
communication network, the most secure strategy is to select
an IBR with the largest capacity for operation while keeping
the others offline. Simultaneously, isolating IBR 675 from the
remaining IBRs enables its autonomous operation in every sce-
nario. In Scenario 5, the accurate isolation of the compromised
node allows the sub-grid comprising IBRs 680, 633, and 692 to
securely operate in a load-sharing mode, resulting in increased
load pickup. In Case 2, in Scenarios 1 and 3, IBRs 692 and
675 establish a secure connection, allowing them to operate
efficiently in a load-sharing mode. Conversely, only one unit
between IBRs 680 and 633 can remain online. In Scenarios 2
and 5, the situation reverses. In summary, this sub-grid plan
accommodates the operation of 3 IBRs and ensures balanced
load pick-up in each scenario.

For load restoration, the medium-level loads are typically
recoverable across all cases and scenarios. However, the
restoration of larger loads depends on the sub-grid capability.

Essentially, the proposed DRO model provides adaptive sub-
grid plans customized to specific probability profiles, ensuring
optimal load recovery across all potential scenarios.

4) Comparison to conventional restoration: To demonstrate
the performance of the proposed model, this section compares
the DRO method with the conventional restoration approach.
Following the reported IBR 675 incident, the conventional
restoration algorithm ignores cyber-physical interdependence
and directly isolates IBR 675, allowing it to operate au-
tonomously, which is the same restoration strategy offered
by the proposed DRO in Case 1. Fig. 8 illustrates the load
restoration derived by the proposed DRO and the conventional
model in the worst case.

In Fig. 8, the z-axis represents attack scenarios. The bar
heights depict the load pick-up in each scenario, while the bar
widths denote the probability of each scenario. In Scenarios
1, 2, and 3, the conventional method displays less load pick-
up. This is because, within the sub-grid of IBRs 680, 633,

mmm Conventional Model
DRO Model

Attack scenario

Fig. 8. Comparisons of DRO model and conventional restoration method

and 692, only one IBR can securely operate in autonomous
mode, thereby limiting the total available IBR capacity under
this plan. Conversely, the DRO model offers an alternative
sub-grid plan, as previously discussed, enabling more IBRs
to operate securely and consequently pick up more load in
these scenarios. In Scenario 5, the conventional restoration
outperforms by accurately identifying the compromised node.
The DRO’s load pick-up is slightly less due to the offline status
of IBR 692, prioritizing the secure operation of IBR 675. In
summary, the conventional method picks up approximately
800 kW less load in Scenarios 1, 2, and 3 compared to
the proposed DRO method. These three scenarios collectively
account for around 80% probability. Additionally, it picks
up 500 kW more load in Scenario 5 compared to the DRO
method. However, this scenario only accounts for around 20%
probability. Thus, considering the load pickup expectations
across all scenarios, the DRO method demonstrates superior
overall performance.

Moreover, when there are more local controllers, the prob-
ability of attacks on the client nodes is relatively lower. The
DRO algorithm will prioritize scenarios where attacks occur
on the local controllers, making the restoration strategy tend
to resemble that of the conventional algorithm.

B. IEEE 123-node Test Cases

1) Test system: The standard test system is modified to
include 7 IBRs and 11 switchable lines (.24, L13, L55, L61,
L117, L68, L76, L105, L45, L96, L10). The IBR location,
capacity, and the cyber network topology can be referred to
Fig. 9. This network is delineated into two clusters, represented
by different colors. The cyber system includes two tiers: clients
and local controllers, the same as the previous test system.
However, the client nodes encompass two types: regular nodes
(3, 4,5, 6, 7) and cluster leads (1, 2). Regular nodes have
control capabilities confined to their respective in-cluster IBRs.
In contrast, cluster leads possess the ability to manage in-
cluster IBRs and coordinate with IBRs outside their cluster.
Within this system, historical data reveals the existence of 14
distinct scenarios, each involving an attack on a specific node.

Considering the reported trip of IBR 77, three cases are
designed: Case 1 assumes a scenario of random attack behav-
ior. The local controllers, being generally more vulnerable,
present a higher probability of being targeted in this case.
Case 2 assumes attackers with a more regional focus. Given
that regular clients are relatively easier to compromise and
the impact surface is substantial, they attract the largest
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Fig. 10. Probability range of attack scenario in 123-node test system

number of attackers. In Case 3, the attackers adopt a more
radical approach, leaning toward targeting cluster leads as they
possess the ability to impact a greater number of IBRs.

2) Probability of attack scenario: Fig. 10 illustrates the
probability ranges for attack scenarios in each case. As the
regular client nodes possess control over in-cluster IBRs,
Nodes 5, 6, and 7 cannot trip IBR 77, resulting in a zero
probability of attack for these nodes. Furthermore, aside from
local controller 10, other local controllers (8, 9, 11, 12, 13,
14) cannot also trip IBR 77. In Case 1, the local controller
at Node 10 exhibits the highest probability of attack, ranging
between 0.47 and 0.88. Each of Nodes 1, 2, 3, and 4 presents
a relatively even probability, approximately ranging from 0
to 0.2. In Case 2, regular clients at Nodes 3 and 4 exhibit
considerable probabilities, along with the local controller at
Node 10, ranging from approximately 0.1 to 0.6. The proba-
bility of attack for cluster leads 1 and 2 remains relatively low,
peaking at less than 0.3. In Case 3, the cluster leads display
the highest probability of being targeted, ranging from 0.1 to
0.7. Conversely, the probability of local controller attack is
notably lower in this case, approximately ranging from 0.1
to 0.4. Nodes 3 and 4 depict the lowest probability of being
attacked within this case.

3) Restoration result: Table III outlines the load restoration
under each scenario across three cases, with the worst-case
probability labeled accordingly. In Case 1, Scenario 10 domi-
nates in the worst case. Hence, the grid deployed the strategy
to divide the main grid into two sub-grids to maximize load
pick-up. In Case 2, Scenarios 2, 3, 4, and 10 exhibit relatively
equal probabilities, with each around 0.25. In response, the
DRO model strategically divides the grid into three regions,
ensuring optimal load restoration across these scenarios. It
is noticed that compared to Case 1, this plan significantly
enhances load pick-up in Scenario 2 particularly. For Case
3, Scenarios 1 and 2 take precedence. Here, the DRO model
divides the main grid into three sub-grids, optimizing load
restoration plans for Scenarios 1 and 2. This sub-grid strategy
differs from Case 2, focusing on enhancing load restoration

TABLE III
LoAD PICcK-UP IN IEEE 123-NODE TEST CASES (WORST CASE) / KW
Scenario Casel Case2 Case3
(Opened lines) L55 L24, 155 L55, L45

1 3470 (0.027) 3430 (0.026) 3365 (0.343)

2 3195 (0.234) 3315 (0.253) 3365 (0.374)

3 3470 (0.046) 3430 (0.222) 3365 ( 0.069)

4 3470 (0.070) 3430 (0.233) 3365 (0.107)

10 3470 (0.623) 3430 (0.267) 3365 (0.107)
Expectation 3405.65 3400.91 3365
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Fig. 11. Parameter sensitivity analysis in IEEE 123-node test cases

specifically in Scenarios 1 and 2.

Overall, when client nodes carry a higher probability of
being targeted and potentially impacting more IBRs, the
DRO model tends to segment the grid into more sub-grids,
mitigating their impact within smaller areas. Nevertheless, this
segmentation restricts the transfer of power within the grid,
leading to lower load pick-up expectations in comparison to
cases with fewer sub-grids.

The computational time for this test system varies from
20 to 50 seconds among different cases. In the previous 13-
node test system, the computational time is around 2 seconds
across all cases. This data confirms the efficacy of the proposed
algorithm for rapid system restoration.

4) Sensitivity analysis: Fig. 11 illustrates the sensitivity of
the ambiguity set parameters (confidence level 3, data size N,
and the range of regional index [y, z]) in all cases. The default
parameters are as follows: N = 20k, 3 = 95%, i € [0.3,8]. In
this analysis, only one parameter changes while others remain
at their default values. The x-axis in this figure represents the
attack scenario, while the y-axis indicates the probability in
the worst cases. Each row signifies a specific case, whereas
each column denotes the influence of a particular parameter
across all cases. The dashed line indicates deviations in the
sub-grid plan compared to the benchmark case.

It’s noteworthy that an increase in N results in a contraction
of the ambiguity set, leading to an “improved” worst case. This
can be translated to a reduced probability of client nodes being
attacked, potentially impacting fewer IBRs. It is observed that
Cases 1 and 2 are more sensitive to this parameter. Case 3
exhibits robustness to changes in this parameter.
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On the other hand, an increase in 3 leads to an extension
of the ambiguity set, resulting in a “worse” worst case. Cases
1 and 2 continue to display high sensitivity to /3. Contrarily,
Case 3 shows negligible sensitivity to this parameter.

When p varies, notable sensitivity to this parameter is
observed in Cases 2 and 3, particularly in Case 3. This
is attributed to the impact of higher rational levels when
client nodes are compromised, which compels attackers to
target larger IBRs. However, this effect doesn’t impact local
controllers, as their accessibility is confined to the local IBR.
Consequently, Case 1 exhibits limited sensitivity to this param-
eter. On the contrary, when 7z fluctuates, Cases 1 and 2 show
considerable sensitivity. The increase in 1z shifts the probability
from local controllers to client nodes, resulting in “worse”
worst-case scenarios. In Case 3, where the most probable
compromised nodes are assumed to be cluster leads, this
scenario inherently represents the “worst” worst-case situation.
Consequently, as iz increases, there’s no space for the worst-
case scenario to deteriorate further. This results in minimal
variations in the probability distribution in Case 3.

In summary, each case exhibits unique sensitivity to these
parameters. Thus, the variations in these parameters may
necessitate corresponding adjustments to the sub-grid strategy.

VII. CONCLUSION

This paper introduces a distributionally robust optimization
model designed to tackle the restoration problem utilizing
inverter-based resources following cyber attacks. The model
first delineates the operational guidelines for IBR amidst
the compromised cyber network. Then, an ambiguity set is
constructed using Bayesian inference to encompass potential
attack scenarios and their likelihoods. Next, the DRO model
is formulated with advanced transformation techniques for
tractable solution algorithms with guaranteed convergence.
Simulation results across various test cases and scenarios
substantiate the model’s efficacy in managing post-attack
restoration processes.

This work addresses the post-attack restoration, clarifying
essential data to be collected, resources to be coordinated, and
the algorithm to be implemented. It provides a comprehensive
guideline for post-attack recovery, which can be integrated into
the system restoration platform to enable rapid restoration after
attacks. This framework can be combined with existing sys-
tem restoration strategies to tackle increasing cyber-physical
coordinated attacks. Additionally, it can be enhanced with
advanced detection algorithms in the future. By identifying
the attack type and estimating the cyber restoration time, this
approach can offer a more effective restoration plan, thus
improving the overall cyber-physical resilience of the system.
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