Balancing Trade-offs: Adaptive Differential Privacy
in Interpretable Machine Learning Models

Abstract—In the advancing field of machine learning, balanc-
ing accuracy, interpretability, and privacy represents a signifi-
cant challenge. The problem is exacerbated by the widespread
deployment of pre-trained models locally in diverse applications,
which could lead to various amounts of privacy leakage. Con-
ventional Differential Privacy strategies in which uniform noises
are applied to model gradients, guarantee data privacy at the
expense of accuracy and interpretability. This paper introduces
a Feature-Sensitive Adaptive Differential Privacy (FADP) frame-
work with a novel noise-adding strategy. Noises are adaptively
added based on feature importance clustering where important
features are considered for interpretability. By employing a
unique masking technique, FADP selectively preserves crucial
features with minimal noise interference, maintaining accuracy
while enhancing interpretability. The FADP framework addresses
the limitations of traditional DP methods by preserving critical
channels and improving interpretability — a vital requirement
in machine learning applications that demand transparency
in model decisions. Through comprehensive testing, FADP is
shown to balance the trade-offs among accuracy, privacy, and
interpretability, marking a substantial advancement in the field
of privacy-preserving machine learning.

Index Terms—Privacy-Accuracy-Interpretability
Differential Privacy, Feature Importance

Tradeoffs,

I. INTRODUCTION

Machine learning (ML) models are increasingly employed
across diverse sectors, such as healthcare and finance, where
the privacy of sensitive training data is a major concern [1]
[2]. These models are prone to memorizing data, exposing
them to risks like Membership Inference Attacks (MIA),
where adversaries deduce if data points were used in training,
leading to potential privacy breaches [3]. As ML deployment
expands, the incidence of such attacks escalates, prompting
the use of Differential Privacy (DP) techniques. DP, typically
implemented by adding Gaussian noise to gradients, helps
protect privacy but can diminish model performance due to
the uniform noise application [4] [5] [6].

Traditional DP methods, while safeguarding data privacy,
often compromise model accuracy. Current research explores
various frameworks to lessen this impact, with a growing
emphasis on model transparency and interpretability [7]. As
ML models become integral to critical applications, ensuring
they are both accurate and interpretable becomes essential.
However, the typical DP strategy of applying uniform noise
affects not just the accuracy but also the interpretability of
models, presenting a challenging trade-off between privacy,
accuracy, and interpretability [8] [9].

To the best of our knowledge, the proposed underlying
technique is a unique approach, a simple yet effective way

to selectively add noise to model parameters while preserving
critical features that are directly involved in enhancing model
interpretability along with model accuracy. By mitigating the
impact of high-intensity uniform noise on important features,
our method not only preserves interpretability but also demon-
strates a positive impact on model accuracy and privacy.

In conventional DP methods, such as Stochastic Gradient
Descent with Differential Privacy (DP-SGD) [10], noise is
uniformly added to all parameters, impacting those crucial
for the model’s decision-making. While necessary for privacy,
this can compromise the model’s accuracy and interpretabil-
ity, sometimes rendering the data practically irrelevant. Con-
versely, too little noise risks exposing sensitive data and failing
privacy objectives [11]. Our FADP framework thoughtfully
adjusts noise application on key features, ensuring optimal
noise levels to maintain privacy and facilitate decision-making.
This approach strikes a balanced trade-off, enhancing model
performance and data privacy simultaneously. We leverage the
feature map of the last convolutional layer along with Gradient
Maps during training to guide strategic feature clustering for
adaptive noise masks. The last layer in Convolutional Neural
Networks (CNN) is crucial as it contains abstract, high-level
information that the model uses for final decision-making.
By preserving important features from excessive uniform
noise, our approach enhances interpretability while maintain-
ing strong privacy guarantees. Unlike Grad-CAM (Gradient-
weighted Class Activation Mapping) [12], which uses feature
maps for interpretability during inference, our FADP approach
integrates these maps with gradients during the model training.

Figure 1 demonstrates the main steps of the proposed
FADP framework applied to each batch of input samples.
Each sample is processed through the convolutional layers
of the neural network, where the network extracts features
and computes gradients for each parameter during back-
propagation, reflecting the contribution of samples to the
model’s predictions. In the first step (marked as (D) in Figure
1), the feature map of the last convolutional layer is integrated
with the gradient maps (retrieved before the softmax). The
integrated avj,qa,....,a ) values represent the important weight
scores for each channel that plays a role in the decision-
making process of the model. In step (@), these scores are
then clustered into three classes based on their importance
(high, moderate, and low), which are then used to generate the
adaptive noise mask. The adaptive noise masks can have values
greater than zero to one. This ensures that no feature map is
left unmasked, and the value of this mask helps to control
the noise intensity added to the model parameters. In step ),
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Fig. 1: FADP framework overview

standard Gaussian noise is generated, which is then multiplied
with the adaptive noise mask to control the further noise
addition to the parameters. The control is done by lowering
the intensity of noises in some parts of the generated Gaussian
noise, as when ”1” is multiplied by any noise value the noise
intensity remains the same for lower important features but
when any value lower than ”1” is multiplied with the noise
value it lowers the intensity of the noise for more important
features. How the value of the mask is determined is discussed
in the following sections. Lastly, the generated Adaptive noise
is added to the clipped gradient during backpropagation to
update the parameters.

The evaluation of our proposed framework was conducted
through multiple experiments to validate its effectiveness in
privacy, interpretability, and accuracy. Privacy guarantees were
assessed using the standard MIA attack technique, confirming
the framework’s capacity to protect sensitive training data.
For interpretability, GradCAM was applied during inference to
visually analyze the model’s decision-making process. Model
performance was also evaluated using traditional metrics such
as accuracy, loss, and confusion matrix, providing a thorough
assessment of the framework’s accuracy and reliability.

The contributions of the framework can be summarized as
below:

o The FADP framework introduces a novel technique by
applying noise to model parameters adaptively, based on
the importance of features, rather than uniformly across
all parameters.

o The study addresses the gap where data privacy tech-
niques traditionally focus on improving model accuracy,
but with the growing demand for model transparency, it
becomes essential to balance both trade-offs effectively.

o By leveraging feature maps from the last convolutional

layer and corresponding gradient maps, the proposed
work introduces a feature clustering mechanism to gen-
erate the adaptive gradient masking.

o The framework demonstrates a detailed approach to se-
lecting values for adaptive noise masking, effectively con-
trolling noise intensity. This strategy of reducing noise for
specific gradients improves model performance without
compromising privacy.

o Through extensive evaluation, the framework shows im-
proved privacy preservation while effectively balancing
model accuracy and interpretability.

II. RELATED WORK

This section reviews recent research on improving model
utility in privacy-preserving machine learning with DP. It
discusses how our proposed framework offers a new approach
compared to existing work in this area.

A. DP in Machine Learning

DP has emerged as one of the most prominent techniques for
ensuring data privacy in machine learning models [13] [14].
DP introduces controlled noise to model computations to ob-
scure the contributions of individual data points, thereby pre-
venting attackers from distinguishing between models trained
with or without specific data samples [15]. One of the foun-
dational works on DP, by Dwork et al. [16], establishes DP as
a mathematical framework for privacy guarantees, which was
further expanded in machine learning applications by Abadi et
al. [17], who introduced the widely used DP-SGD technique
which adds noise to the gradients during the training process,
offering a balance between privacy and utility. [18] revisited
the Gaussian mechanism for DP, focusing on efficiency and
perhaps reducing noise. However, traditional DP-SGD often
results in reduced accuracy as noise is applied uniformly to



all parameters, regardless of their importance to the model’s
decision-making.

B. Adaptive DP in Machine Learning

Asi et al. proposed the AdaGrad algorithm, which focuses
on adaptive methods in the context of convex optimization,
whereas FADP applies in a broader context of neural networks
and deep learning, dealing with both convex and non-convex
problems. [19] proposed a method for adaptively scaling noise
based on data sensitivity, minimizing the impact on model
accuracy while ensuring robust privacy. [20] introduced a
fine-grained control over privacy parameters that adaptively
change according to the dataset’s properties. [21] developed
an approach where noise levels are adjusted dynamically
throughout the training process to balance the trade-offs be-
tween privacy, accuracy, and convergence. Unlike FADP, these
studies demonstrated advancements in adaptive privacy but did
not include the direct impact on the interpretability of the
model.

C. Trade-off Between Privacy and Accuracy

The privacy-accuracy trade-off remains a critical challenge
in DP. Noise-based protection methods like DP introduce a
fundamental dilemma: stronger privacy guarantees typically
come at the cost of accuracy [22] [23]. To address this,
researchers have proposed various strategies to improve ac-
curacy while maintaining privacy. Several works have aimed
to address the accuracy degradation caused by DP. For in-
stance [24] [25] [26] [27] [28], [29] propose frameworks that
focus on improving model performance. More refined noise
mechanisms, such as the Rényi DP proposed by Mironov [30],
offer tighter privacy bounds, enabling more flexible trade-offs
between privacy and accuracy. [31] proposes MVG, which
focuses on providing differential privacy by directional noise
for matrix-valued queries. Chen et al. [32] discuss a scalable
DP approach with gradient compression, which helps maintain
higher accuracy by optimizing privacy-utility trade-offs.

Despite these advancements, most of the focus has been
on balancing privacy and accuracy, with little attention to
how these techniques impact model interpretability. The FADP
framework distinguishes itself by not only adapting noise
based on the privacy-accuracy trade-off but also emphasizing
the preservation and enhancement of model interpretability.

D. Interpretability and DP

Model interpretability, the ability to explain a model’s
decision-making process, is crucial in domains where under-
standing predictions is as important as making accurate predic-
tions. However, uniformly adding noise to model gradients in
traditional DP often degrades the model’s ability to provide
interpretable outputs. Techniques like Grad-CAM [33] and
SHAP [34] are widely used to understand the decisions of
CNNs. Recent work has started exploring the intersection of
privacy and interoperability and demonstrated by evaluation
how noise is degrading the interpretability. In [35], Naidu et
al. demonstrated the effects of DP on DNN explainability,
especially on medical imaging applications. Ezzeddine et al.

showed that the enforcement of privacy through DP has a
significant impact on detection accuracy and explainability
[36].

E. Balancing Privacy, Accuracy, and Interpretability

Balancing privacy, accuracy, and interpretability is an open
problem in privacy-preserving machine learning. Many studies
have proposed different ways of balancing the trade-offs,
however, there are scopes that do not demonstrate the trade-off
balance as a whole, and there is room for improvement that
FADP aims to achieve by the unique adaptive noise adding
technique.

Li et al introduced a framework that balances privacy
and interpretability in federated learning settings by using an
adaptive noise [37]. However, this approach leaves important
features unmasked or unperturbed, raising concerns about
the completeness of privacy guarantees (vulnerable to MIA),
primarily focusing on better accuracy and interpretability. Patel
et al. [38] studied the minimum privacy budget required for
feature-based model explanations, while Bozorgpanah et al.
[39] applied SHAP to examine the impact of features on
DP-protected models’ predictions. However, these approaches
focus only on feature-based interpretation rather than the
both feature and gradient-based approach that we employ
in FADP. Our framework offers a solution by introducing
adaptive noise scaling that adjusts noise intensity based on
feature importance, thus maintaining both privacy and inter-
operability. Harder et al. [40] proposed methods to improve
the interpretability of DP-protected models by optimizing
noise allocation in sensitive areas of the model. Similarly,
Phan er al. [41] developed an adaptive DP framework that
applies different levels of noise to features based on their
importance, thus preserving both privacy and interoperability.
However, these researches do not fully address the trade-off
between privacy protection and gradient-based interpretability,
particularly in tasks involving image data.

III. BACKGROUND AND OVERVIEW

Notations. Lower-case letters like = and 7 denote variables,
with Upper-case letters X and Y representing datasets and
labels. Greek letters 6 and o are used for model parameters
and noise scale. Bold letters like x represent vectors. o is the
importance weight for feature map %k and class ¢, while M
is the adaptive noise mask. Gradients are V.£(6), and clipped
gradients are V. Matrix elements W, ; and transpose wT
are also used.

A. Baseline Model

Training. The Baseline Model trains a CNN using data
without privacy-preserving mechanisms, learning to map in-
puts to outputs by adjusting internal parameters to minimize
prediction errors. This often leads to data memorization,
making models susceptible to MIA, where adversaries infer the
inclusion of data points in the training set. The training dataset
X ={z1,22,...,2,} and labels Y = {y1, 92, ..., yn} guide
the optimization of the model fy, which aims to minimize the



loss function L£(fo(X
Z;.

Memorization. Models with many parameters tend to mem-
orize training data, particularly when overfitting, as they
become finely tuned to specific data points. The optimized
parameters 6* are derived by minimizing £, where 6* =
argming = Y1 | L(fo(x;), yi), with L(fo(x;),y;) represent-
ing the error between predictions and actual labels. Excessive
tuning to the training data can lead to overfitting, affecting the
model’s ability to generalize.

), Y), where fy(x;) is the prediction for

B. Membership Inference Attack

Memorization by deep learning models can be exploited
through Membership Inference Attacks, where an adversary
seeks to determine if specific data points x; were part of
the training dataset. The adversary queries the model fy(x;)
and observes its output, typically the predicted probability or
confidence score, pp(x;) = softmax(fy(x;)). High confidence
scores for training data points reveal their potential inclusion
in the training set.

Formally, the adversary determines membership using:

. L if pg(zy) > 7
m; = .
0 otherwise

where:

e 7; € {0,1} indicates the adversary’s guess about the
membership of x; in the training set.

e pp(x;) is the model’s confidence score for z;.

o 7 is a threshold set by the adversary, typically based on
the model’s behavior on known datasets.

Algorithm 1 Membership Inference Attack (MIA)

shadow

1: Input: Target model fo, shadow model fj
Girain, nON-train generator Gnon-irain

: Output: AUC score for the MIA attack

: Collect data Dtrain and Dnon—train from glrain and gn(m—train llSiIlg f@

Spht Dlrain into Dtrain-shadow and Dnon-train-shadow

. Train shadow model fgh”d"w with Dirain-shadow

: Generate attack data using predictions from f3""
and Dnon—train—shadnw

7: Train attack model to distinguish training from non-training data

8: Evaluate the attack on the target model by calculating the AUC

score
9: return AUC score

, train generator

DWW

on Dtrain-shadow

Algorithm 1, initializes by collecting and splitting data into
training and non-training sets for both the target and shadow
models, using these sets to train a shadow model that simulates
the target model’s behavior. The attack model is then trained
to predict membership based on data labeled by the shadow
model’s predictions, quantifying its effectiveness via the AUC
score.

C. Benchmark DP technique

DP is a robust framework for protecting privacy in machine
learning models, especially against MIA. In MIAs, adversaries
attempt to determine if specific data points were used in

training by analyzing model outputs, like confidence scores.
DP addresses these concerns by adding randomness to the
model’s gradient updates during training, thus obscuring in-
dividual data contributions. Specifically, DP-SGD, a variant
within DP, introduces noise to gradients during Stochastic
Gradient Descent, preserving privacy and hindering MIAs by
disrupting pattern predictability in prediction scores, generally
reducing AUC scores for attack models.

Consider a dataset X of samples with Y labels, where x; €
R? denotes an input data point. The model’s parameters 6 €
R? are updated by minimizing the loss function L(6, X) with
a learning rate 7, using mini-batches X; at each iteration £.
DP-SGD computes gradients VL(6;, X;) for X; per iteration

Gradients are clipped to a maximum norm C' to limit the
influence of individual data points:

V + V max (1, ”Z') (1)

Post-clipping, Gaussian noise N (0, 0?) is added, updating the
gradients as:

O =0~ (V+ N(0,0%)) 2

This method adjusts noise based on the privacy budget
parameters ¢, 9, and sensitivity A:

o= a -1/ 2log 1.25 3)
€ )

Typically, higher e values reduce o, decreasing noise for
better accuracy but weaker privacy protections and vice versa.
Typical € values are between 1 and 10, with 6 around 10~°
to ensure strong privacy [8].

This process repeats across a set number of iterations to
balance learning efficacy with privacy protection.

D. Grad-CAM

Grad-CAM is a widely utilized technique in explainable
Al that improves the interpretability of deep learning models,
particularly CNNs. It offers visual explanations for model
predictions by producing heatmaps that emphasize the key
regions of an input image affecting the model’s decision-
making. Utilizing the gradients of the output for a specific
class against the feature maps of the last convolutional layer,
Grad-CAM uncovers the importance of spatial features like
edges and textures in class predictions. This tool is especially
crucial in sectors such as healthcare, finance, and autonomous
driving, where comprehending a model’s logic is as important
as its prediction accuracy.

Let fp represent the CNN model with parameters 6, and
Aj(x) denote the activations of the k-th feature map in the last
convolutional layer for an input x. Let y. be the class output
score. The gradient of y. with respect to Ag(x) is given by:

9y

9A,(z)



Input Image

Grad-CAM Heatmap

I
2%

Fig. 2: Three stages of Grad-CAM from input to output,
highlighting the areas the model focuses on during prediction.
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The importance weights «.; for each feature map are com-

puted as: 5
1 Ye
= — Y 4
Ock Z;zjja%(x) )

where Z is the normalization factor, typically the spatial
dimensions of the feature map, and Afj (x) refers to the
activation at position (¢, ).

The Grad-CAM heatmap L4 cam () for class c is calcu-
lated as:

LGrs-cam(®) = ReLU (Z ackAk(:v)> (5)
k

The ReLU function is used to ensure that only positive
contributions to the class score are considered, focusing on
features that positively influence the model’s decision.

Figure 2 demonstrates the Grad-CAM process across three
images. The “Input Image” undergoes forward processing to
produce activations and predictions. “Grad-CAM heatmap”
in figure 2 shows the heatmap, pinpointing influential image
regions for the model’s decision. This step involves back-
propagating gradients to compute importance weights o for
each feature map, which are then used to create the class-
specific heatmap. ”"Heatmap Overlay” in figure 2 overlays the
heatmap on the input image, providing a visual explanation
of the model’s decision-making process and enabling a clear
interpretation of which image regions most influence the
model’s decisions.

E. Feature-Sensitive Adaptive Differential Privacy (FADP)

The proposed FADP framework aims to balance privacy,
accuracy, and interpretability by introducing adaptive noise
based on the importance of the features. Rather than applying
uniform noise to all model parameters, FADP adjusts the noise
based on the contribution of different features to the model’s
decision-making process. The feature importance is computed
using the gradient of the model’s output for a given class
with respect to the feature maps, and the noise is adapted
accordingly.

Let X be the dataset with corresponding labels Y. The
model’s output for input x is denoted as fy(x), where 6 € RP
are the learnable parameters, and the loss function L(6, X)
measures the prediction error. The model’s score for class c is
represented as y. , and Ag(x) denotes the activations of the
k-th feature map at layer A for input x.

Algorithm 2 FADP: Feature-Sensitive Adaptive Differential
Privacy with Clustering

1: Input: Dataset X, Learning rate 7, Noise scale o, Clipping norm
C, Importance weights o
: Output: Model parameters 6
: Initialize model parameters 6o
for each iteration t = 1 to 7" do
Sample mini-batch X; from dataset X
Compute gradients VL(0:, X¢)
Compute feature importance weights o¥ using:

k 1 ayc
=720 DAL (x)
i g

8:  Cluster importance weights into high, moderate, and low
groups using thresholds aumoderate and Othigh
9:  Assign adaptive noise mask M, to each feature map:

AN A

k

Mlow, if ap € (Oémin7 Oémoderate}
ek
My = ¢ Mmoderate, 1if Qg € (amodeme, ahigh]
ek
Mhigh, if Q. c (O[highy amax]
10:  Clip gradients:
- Vi
Vi —=——
max(1 ”ka)
rC

11:  Add adaptive noise:
Vi < Vi + My, - N(0,0%)
12:  Update parameters:
001 < 0, — Vi

13: end for
14: Return final model parameters 61

The importance of each feature map Ay (z) for class ¢
is derived from the gradient of the class score y. with
respect to the activations Ag(x) which can be explained
with equation 4, as the proposed framework adopts its first
step drawing inspiration from the underlying technique used
in Grad-CAM. However, unlike Grad-CAM which operates
during the inference phase, our framework innovatively applies
this concept during the training phase to enhance privacy-
preserving interpretability. In equation 4 the notation Z is the
normalization factor (typically the size of the feature map),
and AF;(x) refers to the activation at spatial position (i, j).

The weights . are clustered into three categories: high
importance, moderate importance, and low importance. Intro-
ducing a moderate importance class offers a nuanced approach
to noise application. If the importance weights were divided
solely into high and low categories, the resulting adaptive
noise could exhibit more pronounced patterns, potentially
compromising privacy. By incorporating a third, moderate
category, the framework achieves a more hierarchical and
gradual control over noise intensity, ensuring a smoother
transition between high and low-importance features, thereby
reducing the risk of identifiable noise patterns while enhancing
the balance between interpretability and privacy [41].

The three clusters of feature maps are determined by



calculating the highest and lowest importance weights and
then dividing this range into three segments. Feature maps
with the largest importance weights e, € (Qhigh, max] are
considered highly important. This means that any feature map
whose importance weight is strictly greater than owmen and
up to oy falls into the high importance category. Similarly,
maps with intermediate weights ot € (Qmoderate; Othigh] are
of moderate importance, and those with the smallest weights
ek € (Qmin, Cmoderate] are of low importance.

Once the privacy budget parameters € and § along with A
are set, the value of o becomes fixed, as shown in equation
3. To further control the intensity of the noise to be added,
the value of M} is introduced, which modulates the noise
for different feature maps. Specifically, the noise applied is
scaled by multiplying o with M}, allowing us to adjust the
noise based on feature importance, My = M (ac).

For high-importance features, M (c) = Mpigh, Similarly
Moderate-importance features receive a scaled noise M moderates
where Mmoderate 1i€s between the values for high and low
importance. Both Mmu;gn and Mumegerare have values greater than
0 but less than 1, which helps reduce the noise intensity. Con-
versely, for low-importance features, M (ccr) = miow = 1,
ensuring that the full intensity of the generated Gaussian noise
is applied without alteration.

By adjusting mpigh and Mmoderate> the framework ensures a
balance between privacy and model interpretability, with more
critical features receiving less noise and less critical features
maintaining stronger privacy guarantees.

Gradient clipping is applied to ensure that no individual
feature has too much influence on the model update, which is
represented in equation 1.

Finally, the generated adaptive noise mask M} modulates
the noise intensity applied to the gradients:

Vi = Vi + M - N(0,0?) (6)

This adaptive noise scaling mechanism ensures that more
critical features are safeguarded by applying lower noise levels
while less important features are assigned stronger noise to
enhance privacy protection. Importantly, the noise intensity is
regulated such that the value of o remains within a range that
has been rigorously validated in the literature to guarantee
differential privacy.

Algorithm 2 details the FADP technique, beginning with the
initialization of model parameters 6 (line 3). Each iteration
starts by sampling a mini-batch X; from the dataset (line 5),
followed by computing gradients VL(0;, X;) for the mini-
batch (line 6). Important weights o* for each feature map are
calculated using the gradient of the class score y. with respect
to the feature map activations A*(x) (line 7). These weights
are categorized into high, moderate, and low importance based
on thresholds aimogerate and aunign (line 8). Adaptive noise masks
M, are assigned based on importance (line 9). Gradients are
then clipped by norm C' (line 10), and adaptive noise scaled
by Mj, is added (line 11). The model updates using the noisy,
clipped gradients V}, (line 12), repeating for 7' iterations.

Theorem (Differential Privacy Guarantee of FADP)

The FADP framework ensures differential privacy by adap-
tively applying non-isotropic Gaussian noise based on the
importance of features, thereby preserving privacy while main-
taining a significant level of model accuracy and interpretabil-
iry.

Proof: Consider a model fy parameterized by 6, trained on
a dataset D. The feature importance weights, denoted by a,
influence the scale of noise added to each feature’s gradient
during training.

Let g;(0) represent the gradient of the loss function with
respect to feature ¢ of the model parameters 6. The FADP
mechanism modifies g;(#) by adding Gaussian noise N (0, 07?),
where o; is adapted based on «;, the importance weight of the
feature:

9:(0) = g:(0) + N(0, 07 (cx;))

where o;(«;) is defined such that critical features (higher
o) receive less noise to preserve their interpretability and
contribution to the model’s accuracy.

The adaptive noise N(0,0?(c;)) ensures that each feature’s
contribution to the output is perturbed to limit the influence of
any single training example, adhering to differential privacy.
The overall noise variance o2(c;) is calibrated to ensure
that for any two adjacent datasets D and D’ differing by a
single element, the probability distributions of their outputs
are indistinguishable:

P[fo(D) € S] < eP[fo(D') € S|+ 6

for all S C Range(fy), ensuring (e, ¢)-differential privacy.
The calibration of o;(«;) is crucial and is typically set such
that o;(o;) = Ae‘ 2log 1'525, where A; is the sensitivity of
feature ¢ and depends inversely on «;. This adaptation ensures
that more important features (lower A;) receive proportionally

less noise.

IV. THREAT MODEL

In this section, we outline the threat model considered in
the design of the FADP framework. The objective is to protect
the training dataset from adversarial attempts to infer sensitive
information, particularly individual data points.

A. Adversary’s Knowledge and Capabilities

In our threat model, we assume a black-box attack where
the adversary cannot access model parameters but can observe
outputs (e.g., probability scores or labels).

The adversary has the following capabilities:

o Access to the model: The adversary can query the model
with data points of their choice and observe the outputs
[42].

« Knowledge of the data distribution: The adversary may
have a general understanding of the data distribution or
access to auxiliary data from the same distribution as the
model’s training data [43].



o No knowledge of model parameters: The adversary
cannot view or modify the model’s internal weights or
architecture (typical in a black-box setting). [44]

o Limited query access: The adversary can send a limited
number of queries to the model, ensuring that their attack
is realistic in terms of time and resource constraints [45].

B. Attack Vectors

The attack vector considered here is the MIA, where an
adversary follows these steps:

o Model Querying: The adversary queries the target model
with crafted inputs resembling both training and non-
training data, observing outputs like confidence scores
or labels [46].

« Pattern Exploitation: By analyzing model responses, the
adversary identifies higher confidence in training data,
exploiting this to infer membership [47].

o Training a Shadow Model: A shadow model trained
on similar data mimics the target, allowing the adversary
to develop a binary attack model distinguishing training
from non-training patterns [45].

o Membership Inference: The attack model then evaluates
new data, assessing the likelihood of training set mem-
bership [45], [48].

Through black-box access and observing outputs, MIAs ex-
ploit the behavioral distinctions between training and non-
training data. DP techniques, such as FADP, aim to mitigate
these risks by adding noise to the training process, reducing
the adversary’s ability to leverage these differences effectively.

C. Adversarial Objective and Failure Probability

The adversary’s primary objective is to enhance their attack
model’s performance by increasing its capacity to differentiate
between training set members and non-members. This per-
formance is generally evaluated using the AUC score, which
effectively measures the model’s ability to distinguish between
classes across all classification thresholds [45]. Additionally,
the adversary seeks to challenge the effectiveness of differ-
ential privacy mechanisms, either by recovering a data point
x; or determining its membership in the training set. A high
AUC score suggests that the adversary’s model is proficient at
identifying training data usage.

The privacy guarantee of FADP ensures that for any two
adjacent datasets X and X', the probability of producing a
specific output remains comparable:

P(fo(X) = 0) = P(fo(X') = 0) )

where this similarity is regulated by the differential privacy
parameters (¢, ). By adding noise, particularly to less crucial
features, FADP disrupts patterns in the model’s output, reduc-
ing the AUC score of the attack model and thereby diminishing
the adversary’s ability to infer dataset membership. This con-
trolled noise application strategically preserves privacy while
minimizing the impact on model accuracy.

D. Security Guarantees

The FADP framework provides a strong defense against the
adversarial models described above. Specifically: The use of
gradient clipping limits the impact of any single data point,
thus protecting against gradient-based attacks. The adaptive
noise scaling ensures robustness against membership inference
attacks by adding more noise to features less relevant to the
prediction. By balancing the trade-offs between privacy and
accuracy, FADP provides a comprehensive defense mechanism
against common attack vectors while maintaining model inter-
pretability and performance.

V. EVALUATION
A. Experimental Setup

In this section, we describe the setup for evaluating the
FADP framework. The evaluation focuses on the trade-offs
between privacy, accuracy, and interpretability, utilizing both
visual and numerical metrics.

1) Environment and Tools: All experiments were con-
ducted using Google Colab’s TPU (T4) for training [49]. The
models were implemented using TensorFlow and Python 3.x.
Standard machine learning libraries such as NumPy and Mat-
plotlib were used for data processing and visualization, while
OpenCV and scikit-learn were used for image manipulation
and evaluation metrics.

2) Model Architecture: We utilized the MobileNet archi-
tecture with pre-trained ImageNet weights as the backbone
of the model [50]. To enhance the feature extraction for
Grad-CAM and adaptive noise application, we added an extra
convolutional layer followed by fully connected layers. This
allows us to leverage the activations from the last convolutional
layer to compute feature importance, which plays a critical role
in the FADP framework.

3) Datasets: The evaluation was carried out on two
datasets:

o CIFAR-10: A dataset of 60,000 32x32 color images
containing 10 classes with a distribution of 50,000 images
for training and 10,000 for testing. [51]

o Cat and Dog: The dataset is available on Kaggle which
consists of two classes: cats and dogs. The dataset
includes a total of 25,000 images, evenly distributed
between the two categories, with 12,500 images of cats
and 12,500 images of dogs. [52]

These datasets were chosen for their diversity in the number of
classes, allowing us to assess the scalability and performance
of the FADP framework both for binary and non-binary
classification CNN models. Binary models are more prone
to overfitting [53] and membership inference attacks, making
them ideal for assessing the robustness and privacy trade-offs
in our framework [54]. This allows us to demonstrate the
FADP’s effectiveness under high-risk scenarios.

4) Evaluation Metrics: We evaluated the FADP framework
using key metrics to assess classification performance, privacy,
and interpretability. Classification performance was measured
using accuracy percentage, loss, and a confusion matrix on



the test set. Privacy was evaluated through the MIA, where
the AUC score indicated the attack model’s ability to distin-
guish between training and non-training data. Additionally, a
heatmap of data point probabilities was analyzed to assess the
model’s targeting accuracy. For interpretability, we used Grad-
CAM heatmap overlays on input images and quantitatively
measured with the Structural Similarity Index (SSIM) [55] to
compare heatmaps from different models.

o 200 0

(c) Grad-CAM output for the proposed FADP
Fig. 3: Grad-CAM heatmaps for different models to demon-
strate model interpretability

5) Training Setup and Hyperparameters: The model was
trained using the Adam optimizer with a learning rate of n =
0.001, a mini-batch size of 64, and a clipping norm C = 1.0
to limit the gradient magnitude. In our experimental setup, we
ensure that the adaptive noise scaling using Mpigh, Mmoderates
and my,y maintains Gaussian noise within a range that upholds
privacy guarantees. According to existing literature, € values
between 0.1 and 3 with a small § (e.g., 10~°) provide adequate
privacy protection [8]. When € = 0.1, the maximum noise level
Opase 18 calculated using equation 3. Conversely, for € = 3,
the minimum noise level oy, is determined, ensuring the
noise falls within o, < 0 < Opege. To balance privacy and
utility, we apply scaling factors mpigh ~ 0.6 and Mmoderate ~
0.8. For high-importance features, the noise is scaled with
My = mMhigh © Omin, €nsuring privacy remains intact. For
moderate-importance features, My, = Mmpoderate - Tbase Provides
a balanced reduction. Low-importance features receive the full
noise intensity with myoy = 1. This ensures that noise levels
correspond to the privacy guarantees associated with € values
within [0.1, 3].

6) Model Comparisons: For comparison, we evaluated the
following models in each result section:

« Baseline Model (No DP): A model trained without any
privacy-preserving mechanisms.

Phase Baseline DP-SGD FADP
Acc. Loss Acc. Loss Acc. Loss
Train | 0.9215 | 0.2310 | 0.8125 | 0.7063 0.882 0.3013
Val. 0.9110 | 0.2635 | 0.8200 | 0.4124 | 0.8750 | 0.2896
Test 0.8701 | 0.4981 | 0.8250 | 0.3584 | 0.8500 | 0.4286

TABLE I: Comparison of Baseline, DP-SGD, and FADP Models on
Cat and Dog Dataset

Phase Baseline DP-SGD FADP
Acc. Loss Acc. Loss Acc. Loss
Train | 0.9310 | 0.2100 | 0.8100 | 0.6520 | 0.8600 | 0.2031
Val. 0.9200 | 0.2320 | 0.8250 | 0.3990 | 0.8650 | 0.2790
Test 0.8850 | 0.2590 | 0.8350 | 0.2910 | 0.8400 | 0.2390

TABLE II: Comparison of Baseline, DP-SGD, and FADP Models
on CIFAR-10 Dataset

e DP-SGD (Benchmark DP): A model trained using
Stochastic Gradient Descent Differential privacy with
uniform noise addition after gradient clipping.

o FADP: A model trained using the proposed FADP tech-
nique with adaptive noise.

Model Input | Baseline | Compared | SSIM
Benchmark DP-SGD | gem . 0.31
. Hm 0.45

Proposed FADP 0.86
H 0.81

TABLE III: SSIM score comparison with baseline model

B. Results

1) Accuracy Improvement Analysis: The FADP frame-
work significantly enhances accuracy over the DP-SGD
method, as evidenced in Table I using the Cat and Dog Dataset.
The Baseline Model achieved training, validation, and testing
accuracies of 92.15%, 91.10%, and 87.01% without privacy
constraints. In comparison, DP-SGD saw a decline in train-
ing accuracy to 81.25%, illustrating the privacy-performance
trade-offs.

FADP improved training accuracy to 88.2%, validation to
87.50%, and testing accuracy to 85.00%, clearly surpassing
DP-SGD and, in testing, nearly matching the Baseline. This
underscores FADP’s ability to balance accuracy with privacy
in a binary CNN classifier setting. For CIFAR-10, as shown in
Table II, the Baseline Model’s training, validation, and testing
accuracies were 93.10%, 92.00%, and 88.50% respectively,
without privacy interventions. DP-SGD reduced the training
accuracy significantly to 81.00%. In contrast, FADP not only
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Fig. 4: Comparison of AUC Scores of the MIA Attack models on the Baseline, Benchmark DP (DP-SGD), and FADP Models

outperformed DP-SGD with 86.00% training accuracy but
also recorded 86.50% validation and 84.00% testing accuracy,
demonstrating robust performance in a non-binary CNN con-
text.

2) Interpretability Improvement Analysis: Figure 3 com-
pares the interpretability of the Baseline Model (No DP), the
Benchmark DP (DP-SGD), and the proposed FADP frame-
work, using Grad-CAM heatmaps as a visual tool to highlight
model focus areas during prediction.

In Figure 3a, the Baseline Model’s Grad-CAM heatmap
focuses sharply on the facial features of the cat, such as the
eyes and nose. This precision suggests high interpretability as
the model bases predictions on key, intuitive features crucial
for classification. In Figure 3b, the Grad-CAM output for the
DP-SGD model shows a diffused heatmap, indicating that the
uniform application of noise has broadened the model’s focus,
including irrelevant areas. This broadened attention reflects
a reduction in interpretability due to privacy-focused noise
addition, diluting the model’s ability to focus on essential
features. Conversely, Figure 3c illustrates that the FADP
framework’s Grad-CAM output remains focused on important
image regions like the eyes and nose. Despite noise application
for privacy, the FADP’s adaptive noise approach helps preserve
interpretability. The heatmap is broader than the baseline but
still highlights critical features, indicating minimal impact on
key decision-making areas.

This comparison shows that the FADP model successfully
balances privacy and interpretability by adaptively control-
ling noise intensity based on feature importance, maintain-
ing focus on essential features. Unlike the DP-SGD model,
which scatters attention and degrades interpretability, the
FADP framework ensures critical regions are emphasized,
demonstrating its effectiveness in preserving interpretability
alongside privacy. Table III provides SSIM scores to quantify
the similarity of heatmaps to the baseline. The DP-SGD model
scores of 0.31 and 0.45 reflect a notable decline in heatmap
similarity due to uniform noise diffusing the model’s focus. In
contrast, the FADP model’s scores of 0.86 and 0.81 suggest
a high similarity, underscoring the FADP’s superior ability to
maintain critical focus while implementing privacy-preserving
measures.

3) Under Attack Performance Analysis: Figure 4 illus-
trates the results of the MIA on the baseline, DP-SGD, and
FADP models, visualized as heatmaps indicating the member-
ship probability for different data points of the Cat and Dog
Dataset.

”In Figure 4a, the heatmap shows a clear separation between
training and non-training data, with training set data points
having a membership probability close to 1, and non-training
data closer to 0. This clear distinction highlights the model’s
vulnerability to MIA, as evidenced by a higher AUC score
of 0.59. The gradient pattern underscores this difference,
indicating a successful attack. Conversely, in Figure 4b, the
gradient is more diffused, and membership probabilities are
less distinct, showing overlapping between members and non-
members. This suggests that DP-SGD effectively reduces the
model’s susceptibility to MIA, evidenced by a lower AUC
score of 0.45. The added noise blurs the distinction between
training and non-training data, enhancing privacy but at some
cost to model performance. The color gradient shows more
blending between probabilities, indicating a stronger defense.
Figure 4c presents the results for the FADP framework, where
membership probabilities are more distributed than in the
baseline but more structured than in the DP-SGD model.
The heatmap indicates a better balance between privacy and
accuracy, challenging the adversary more than the baseline.
With an AUC score of 0.48, FADP shows improvement over
the baseline, reducing model vulnerability to MIA while
maintaining a more focused distribution of membership prob-
abilities.”

In summary, Figure 4 demonstrates the baseline model’s
vulnerability to MIA, with a distinct separation of members
and non-members resulting in a high AUC score. DP-SGD
diffuses this distinction more effectively, significantly lowering
the AUC but reducing focus on key features. FADP achieves
a balanced approach, reducing attack success while maintain-
ing interpretability and an intermediate level of privacy and
accuracy.

4) Selection of Noise Mask Values: In Table IV, the FADP
model’s performance is evaluated under varying m values,
considering both accuracy and the AUC score of Member-
ship Inference Attacks (MIA). A lower AUC reflects better



Accuracy MIA Attack AUC
Case Model Parameters
Cat vs Dog CIFAR-10 Cat vs Dog CIFAR-10
Case 1 Mhigh = 0.5, Mmoderae = 0.7, Myow = 1 0.8950 0.8750 0.51 0.54
Case 2 | mpigh = 0.55, Mmoderae = 0.75, Moy = 1 0.8900 0.8600 0.49 0.54
Case 3 Mhigh = 0.6, Mmoderae = 0.8, Mygw = 1 0.8800 0.8400 0.45 0.48
Case 4 | mpigh = 0.65, Mmoderae = 0.85, Myow = 1 0.8650 0.8150 0.44 0.47

TABLE IV: FADP Model Accuracy and MIA Attack AUC Scores for Different m Values Across Datasets

Model Training Time (minutes) Number of Steps Remarks on Computational Cost
Baseline Model (No-DP) ~ 45.1 Standard steps Least cost, no privacy steps
DP-SGD Model ~ b3.7 Extra privacy steps Higher cost for DP mechanisms
FADP Model ~ 58.3 Feature clustering + Adaptive mask generating | Slightly higher for mask generation

TABLE V: Comparison of Computational Cost for Baseline, DP-SGD, and FADP Models

privacy, while higher accuracy indicates better model perfor-
mance. Among the cases, Case 3 (Mnigh = 0.6, Mmoderate =
0.8, mjowy = 1) provides a well-balanced trade-off between
accuracy and privacy. It achieves AUC scores of 0.45 for Cat
vs. Dog and 0.48 for CIFAR-10, indicating stronger privacy
protection compared to the other cases. Although its accuracy
is slightly lower than in Case 1, the reduction in AUC makes
it the most balanced configuration.

5) Computational Cost: Table V presents the computa-
tional cost comparison for the Baseline Model (No DP),
Benchmark DP (DP-SGD), and FADP models, all trained on
the Cat and Dog dataset using Google Colab GPU T4 for 50
epochs. The training times reported in the table represent the
approximate average from multiple independent training runs
for each model across the dataset. The table indicates that the
Baseline Model has the lowest training time, as no privacy
mechanisms are involved. The DP-SGD model requires more
time due to the added differential privacy steps. The FADP
model incurs a slightly higher cost than DP-SGD due to the
additional steps needed to cluster the features and generate
the adaptive noise mask. Despite the increase in training time
which is a limitation for the proposed framework, the primary
objective of enhancing privacy while maintaining performance
was successfully achieved.

VI. CONCLUSION

The proposed framework successfully addresses the criti-
cal trade-offs between privacy, accuracy, and interpretability
in machine learning models. By applying noise adaptively
based on feature importance, rather than uniformly, the FADP
model preserves key features essential for decision-making
while maintaining adequate privacy. Extensive testing on
various datasets demonstrates that FADP achieves a more
balanced trade-off, improving interpretability and maintaining
high model accuracy while offering strong privacy guarantees.
Although the framework incurs slightly higher computational
costs, particularly in comparison to standard DP methods, the

significant improvements in model performance and privacy
preservation underscore the effectiveness of the FADP ap-
proach.
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