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Introduction

TEGs is a solid-state device that converts the
heat flux directly into the electrical energy
(i.e., called as Seebeck effect).

A thermoelectric module is a circuit
containing dissimilar thermoelectric materials
(semiconductors) joined at their ends & these
semiconductors are:

o n-type semiconductors (negative charge
carrier)

o p-type semiconductors (positive charge
carrier)

n-type p-type
semiconductor semiconductor

High temperature

Heat sink Heat sink

Low temperature

Load

Working Principle of TEGs
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Performance Evaluation of TEGs

Figure of Merit (zT): Heatabaorpe =
o: electrical conductivity e
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Phase Change Material (PCM)

Phase Change Material (PCM) is a substance that
absorbs and releases thermal energy during phase
transitions, typically from solid to liquid and vice
versa.

e These materials are widely used for thermal energy
storage (TES) applications due to their ability to |
store and release large amounts of latent heat at a
nearly constant temperature.

* There are three types of PCMs:
* Organic PCM

* |norganic PCM
° Eutectic PCM Melting & Solidification Process [3]
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Selection of TEGs & PCM

Selected TEGs - Bi,Te,

Parameters Semiconductor Connector Ceramic plate

. Cu
On Constant Variable (Cu)
il Property Property
/ ,
N P () k k, =k, k, =k, 350 130
— o (WKm-1) 1.54 0.000029T2 -
(il h, convectional heat 0.019593T +
transfer 4.809677
" ptype
I P Py, =P, P, =Py 1.695 x 107 -
P { 2 (Qm) 1.03 x 10° 10%(0.043542T —
"’Ii‘.-ﬂ. 4 | A L i)/ 2.754139)
% o 4 a a,=a, a,=a, 6.5 x 10 -
Cold end (VK) 2.0 x 10° 10%(-0.002025T? +
1.423448T —
Oc 44.953611)
Schematic of TEG Thermophysical Properties of Bismuth Telluride (Bi,Te;)
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S

PureTemp 18
PureTemp 20
PureTemp 23

CrodaTherm
19
CrodaTherm
21
CrodaTherm
24
RT 18 HC
RT 21 HC
RT 22 HC
RT 24 HC

Melting Point
(0

(Solid/Liquid)

16/18
18/20
21/23
18/19

19/21
22/24
16/18
19/21

20/22
22/24

Latent Heat
(ki/kg)

Thermal
Conductivity

(Summer Season)

192
171
201
175

190

184

260

190

190
200

0.25/0.15
0.23/0.14
0.25/0.15
0.23/0.16

0.18/0.15

0.22/0.16
0.2/0.2
0.2/0.2

0.2/0.2
0.2/0.2

Selected PCMs

Specific Heat
(kJ/kg K)
(Solid/liquid)

1.47/1.74

2.07/2.15

1.84/1.99
2.5/1.8

2.3/1.9

3.7/2.2

N NNN

Density

(kg/m3)
(Solid/Liquid)

950/860
950/860
910/830
911/850

891/850
906/843
880/770
880/770

760/700
800/700



Validation
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* Heat transfer from the heat source to the hot junction and power generation for a single thermoelectric device.
*  Maximum relative error of 7.48% at 422 K
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Modeling of Submersible/Thermopod

TEGs

Submersible/Thermopod with
PCM & TEGs
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Geometrical Details

PCM at
c=4°C
initiall

External Resistor/Load
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Meshing & Boundary Conditions

_ V=0, at the resistor and p-leg
Cu electrode interface

v a
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* There are 107 TEGs couples in the entire geometry. NREL | 15
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Time Independence Study
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Temperature Contour (Charging)
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Melt Fraction (Charging)

0.00 0.01 1.00
0.00 0.01 0.90
0.00 0.01 0.80
0.00 0.01 0.70
0.00 0.01 0.60
0.00 0.00 0.50
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0.00 0.00 =3.3min 0.30
0.00 0.00 0.20
0.00 0.00 0.10
0.00 0.00 0.00
If
1.00 1.00 1.00
0.90 0.90 0.91
0.80 0.80 0.82
0.70 0.70 0.73
0.60 0.60 0.64
0.50 0.50 0.55
0.40 0.40 0.45
0.30 T=16.6 min 0.30 T=23.3 min 1 038
 0.20 1 0.20 | 0.27
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0.00 0.00 0.09 NREL | 21




Temperature Contour (Discharging)

25 25
25 24
25 23
25 22
25 21
25 21
2: / fg T=3.3min T=10min
25 B 18
25 17
25 16
temperature temperature temperature
18 18 4.44
17 16 4.40
15 15 4.36
14 14 432
13 12 4.27
11 11 4.23
10 10 4.19
9 8 4.15
8 7 411
6 6 4.07
temp:jeralure temp?erature tempir%%ure NREL | 22



Melt Fraction (Discharging)

Liquid Fraction Liquid Fraction

1.00

1.00 0.96 1.00
1.00 0.93 0.90
1.00 0.89 0.80
1.00 0.85 0.70
1.00 0.82 0.60
1.00 0.78 0.50
1.00 0.74 0.40 T=10min
1.00 0.70 0.30
1.00 0.67 0.20
1.00 0.63 0.10
1 NN n NN
1.00 1.00 0.00
0.90 0.90 0.00
0.80 0.80 0.00
0.70 0.70 0.00
0.60 0.60 0.00
0.50 0.50 0.00
0.40 0.40 0.00
0.30 T=16.6 min 0.30 T=23.3min 0.00
0.20 0.20 0.00
0.10 0.10 0.00
0.00 0.00 0.00
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Conclusion

* Different PCMs serves more effectively at different locations and seasons.

 Based on the initial analysis, we can generate the around 100 to 150 kWh power
per year from a single Thermopod.

 Design optimizations can further increase the power production from a
submersible/Thermopod.

 The whole system will produce between 1 to 5 MWh per year.
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