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Summary
Background Large language models (LLMs) are increasingly used medicine for diverse applications including dif
ferential diagnostic support. The training data used to create LLMs such as the Generative Pretrained Transformer 
(GPT) predominantly consist of English-language texts, but LLMs could be used across the globe to support 
diagnostics if language barriers could be overcome. Initial pilot studies on the utility of LLMs for differential 
diagnosis in languages other than English have shown promise, but a large-scale assessment on the relative 
performance of these models in a variety of European and non-European languages on a comprehensive corpus 
of challenging rare-disease cases is lacking.

Methods We created 4917 clinical vignettes using structured data captured with Human Phenotype Ontology (HPO) 
terms with the Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema. These clinical vignettes 
span a total of 360 distinct genetic diseases with 2525 associated phenotypic features. We used translations of the 
Human Phenotype Ontology together with language-specific templates to generate prompts in English, Chinese, 
Czech, Dutch, French, German, Italian, Japanese, Spanish, and Turkish. We applied GPT-4o, version gpt-4o- 
2024-08-06, and the medically fine-tuned Meditron3-70B to the task of delivering a ranked differential diagnosis 
using a zero-shot prompt. An ontology-based approach with the Mondo disease ontology was used to map 
synonyms and to map disease subtypes to clinical diagnoses in order to automate evaluation of LLM responses.

Findings For English, GPT-4o placed the correct diagnosis at the first rank 19.9% and within the top-3 ranks 27.0% of 
the time. In comparison, for the nine non-English languages tested here the correct diagnosis was placed at rank 1 
between 16.9% and 20.6%, within top-3 between 25.4% and 28.6% of cases. The Meditron3 model placed the correct 
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diagnosis within the first 3 ranks for 20.9% of cases in English and between 19.9% and 24.0% for the other nine 
languages.

Interpretation The differential diagnostic performance of LLMs across a comprehensive corpus of rare-disease cases 
was largely consistent across the ten languages tested. This suggests that the utility of LLMs in clinical settings may 
extend to non-English clinical settings.

Funding NHGRI 5U24HG011449, 5RM1HG010860, R01HD103805 and R24OD011883. P.N.R. was supported by a 
Professorship of the Alexander von Humboldt Foundation; P.L. was supported by a National Grant (PMP21/00063 
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Science, Office of Basic Energy Sciences, of the US Department of Energy (Contract No. DE-AC0205CH11231).
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(http://creativecommons.org/licenses/by/4.0/).
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Introduction
Large language models (LLM) are being carefully 
investigated in the medical domain owing to their lin
guistic and problem solving capabilities. These artificial 
intelligence (AI) models are pre-trained by ingesting 
large amounts of unlabelled data in order to learn to 
generate coherent text, thereby opening up an array of 
possibilities in disparate aspects of clinical practice. 
Moreover, LLMs have been shown to encode latent 
medical knowledge and to be able to carry out deductive 
reasoning, which would make them candidate assis
tance tools in hard-to-diagnose, complex clinical cases.1

The majority of medical literature and therefore the 
LLMs’ relevant training data is in English. According to 
CommonCrawl,2 an open repository of web crawl data 
that can be used to estimate the distribution of internet 
data used by LLMs for training, 43% of available web 
pages are in English (version CC-MAIN-2024-51). The 

percentages for the other nine languages in our study 
range from 1.0% (Czech) to 5.4% (German). While the 
precise training data for most LLMs are not publicly 
disclosed, estimates suggest a high proportion of 
English language content.3 Thus, more material is 
available for training in English than in any other lan
guage, which may imply an expectation of LLMs to 
achieve higher performance in English, as suggested 
from previous studies.4–6 This clearly would have im
plications for their integration in clinical practice, as 
well as on the topic of AI fairness in the health domain. 
Few studies about multilinguality of generalist LLMs in 
biomedicine have been carried out, most of which 
tested the performance of a LLM on medical licencing 
exams or standardised medical questions in one non- 
English language or one language as compared to En
glish (e.g., Japanese,7 in-context enhanced Chinese,8 

German,9 and Arabic5).

Research in context

Evidence before this study
Large language models (LLMs) have been shown to be 
effective at providing differential diagnostic support by 
returning ranked lists of candidates when prompted with a 
summary of the case. Most published analyses of the 
performance of LLMs in this task have used English-language 
prompts. Most medical texts available for LLM training are in 
English. An important question is whether LLMs are able to 
respond accurately to differential diagnostic queries in other 
languages. Several studies have compared performance 
between English and other languages such as Japanese, 
Chinese, German, and Arabic, but at the time of this writing, 
no published study was available that compared the 
performance of an LLM on thousands of rare-disease cases in 
multiple languages.

Added value of this study
We present a large-scale study on 4917 GA4GH 
Phenopackets with 360 rare genetic diseases. We used 
translations of Human Phenotype Ontology terms and a 
templated approach to translate other clinical data available 
in the Phenopackets to create equivalent prompts in Chinese, 
Czech, Dutch, French, German, Italian, Japanese, Spanish, and 
Turkish. We showed that there was only a small difference 
between the performance of English and each of the other 
languages.

Implications of all the available evidence
Available evidence suggests that LLMs are able to respond to 
differential diagnostic prompts with similar accuracy in 
English and nine other languages. This result has important 
implications for deploying LLM-based differential diagnostic 
solutions around the globe.
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Roughly 25% of patients with rare diseases go 5–30 
years without a diagnosis, and 40% of initial diagnoses 
are wrong.10 There are at least 10,000 RDs,11 and the 
diagnostic yield of genomic sequencing is still low 
(25–50%).12 Therefore, the differential diagnosis of RDs 
represents a challenging task with which to evaluate the 
capabilities of LLMs.

LLMs have shown promise in supporting the dif
ferential diagnosis of RDs in English,13 yet most of the 
earth’s population does not use English as their first 
language and clinical practice is carried out in diverse 
languages across the world. In this paper, we assess the 
relative performance of LLMs in RD differential di
agnostics by creating a large multilingual set of pub
lished patient descriptions. Thereby we address 
limitations of previous studies that used simulated/ 
synthetic patients or small cohorts and provide a 
comprehensive analysis of the relative performance of a 
leading general purpose LLM and a recent medically 
fine-tuned model in ten different languages.

Methods
Overview of study
We conducted a comparison of the ability of LLMs to 
support genetic differential diagnostics across several 
languages. We analysed 4917 case reports from the 
literature and generated LLM prompts in ten languages. 
We then directed two LLMs, openAI’s GPT-4o and the 
medically fine-tuned Meditron3-70B,14 based on Meta 
AI’s open source Llama-3.1-70B-Instruct, to return a 
ranked list of possible diagnoses for each case. The 
Mondo disease ontology,15 which contains numerous 
synonyms for each disease, was used to map the di
agnoses returned by the LLM to a unique standardised 
medical vocabulary, to which we applied our automatic 
ontology-aware scoring.16 The rank of the correct diag
nosis in the output was compared across languages in 
order to assess to what degree the LLM’s performance 
is prompt-language dependent. This study is reported 
according to the TRIPOD-LLM reporting guideline.17

Human Phenotype Ontology internationalisation
The Human Phenotype Ontology (HPO) provides a 
standardised vocabulary of 19,034 terms that describe 
the phenotypic abnormalities of human disease. 
Version 2024-12-12 was used for this study. Addition
ally, the HPO provides a comprehensive corpus of 
phenotype annotations (HPOA) that form computa
tional models of 8333 rare diseases. HPO applications 
include genomic interpretation for diagnostics, gene- 
disease discovery, machine learning (ML) and elec
tronic health record (EHR) cohort analytics.18 The HPO 
Internationalisation Effort comprises language-specific 
working groups that have translated HPO term labels 
and in some cases synonyms and definitions from 
English into other languages.19 For the current project, 

we used ten languages that have extensive coverage of 
HPO-term translations, namely Chinese, Czech, Dutch, 
French, German, Italian, Japanese, Spanish, and 
Turkish translations. All translations are freely available 
(see data availability section). Information about the 
number of available translated terms present in HPO is 
found in Supplemental Table S1. Translations are 
created by or confirmed by human experts before in
clusion in an HPO release.

Structured data from case reports: phenopackets
The Global Alliance for Genomics and Health 
(GA4GH) Phenopacket Schema is a standard for 
sharing phenotypic, genetic and clinical information.20 

The Phenopacket Schema obtained International Stan
dard Organisation approval as ISO 4454:2022. Each 
Phenopacket is a clinical vignette about one individual 
with representations of phenotypic abnormalities using 
HPO terms, as well as a specification of the disease 
diagnosis and other information.

The Phenopackets used in this project were selected 
from the Phenopacket Store version 0.1.19, an openly 
available collection of Phenopackets manually curated 
from published case reports.21 It contains a total of 6668 
Phenopackets representing 475 diseases and 423 dis
ease genes. We restricted our analysis to the subset of 
Phenopackets in the Phenopacket Store for which 
translations of all associated HPO terms exist in the 
nine languages mentioned above. This yielded a dataset 
of 4917 Phenopackets (1590 females, 1826 males and 
1500 unspecified) from 706 PubMed IDs, comprising 
326 causative disease genes, 360 diseases, 2899 alleles, 
2525 unique HPO terms and an average of 14 HPO 
terms per patient.

Prompt generation
Phenopackets comprise a hierarchical structure that is 
typically stored as a JSON file. We developed a strategy 
to create narrative prompts from each Phenopacket by a 
templating system implemented in a Java application 
called phenopacket2prompt.22 Each template consists of 
constant texts (such as the header that instructs the 
models to return a differential diagnosis), and a series 
of templates to represent the age and sex of the indi
vidual represented by the Phenopacket as well as 
phenotypic abnormalities that were observed or 
excluded. If available, the age of onset of the disease or 
specific manifestations is recorded. The templating 
system involves vocabulary for describing the individual 
in each of the languages. HPO terms in each of the 
languages are substituted into the corresponding tem
plates. The translators of each of the nine languages are 
physicians or medical researchers, and an example of 
the part of a prompt describing a patient is shown in 
Fig. 1. The correctness of the translation templates was 
confirmed by review of 54 simulated cases that were 
output in each language using permutations of ages, 
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sexes, as well as observed and excluded HPO terms. 
The diagnosis and the genetic information were not 
included in the prompts. At the end of the constant 
section, we state that the case is a genetic disease and 
we request the LLMs to return an ordered list of 
candidate diagnoses, giving an example output. The 
example output is always given in English and in non- 
English languages we explicitly instruct the LLM to 
return the differential diagnosis in English. To evaluate 
the effect of this choice, we prompted GPT-4o with 100 
randomly chosen cases in Italian, German and Spanish, 
but giving the example output of the prompt in the 
respective language and dropping the request for an 
English reply. We then manually evaluated and scored 

GPT-4o’s output differential diagnoses in 100 cases in 
these three languages (see Supplementary Figure S1). 
An example Phenopacket with associated full prompt in 
English and its translation into the nine languages is 
available in Supplementary Tables S3 and S4.

Grounding and scoring
The queries to GPT-4o were carried out through its API 
between November 22nd, 2024 and May 20th, 2025. 
The knowledge cutoff claimed by openAI is October 
2023 for all GPT-4o models, including gpt-4o-2024-08- 
06, the version we used. We used the default parame
ters (temperature of 1, with no token length limitation) 
which roughly amounted to 22.5 million input tokens 

Fig. 1: Templated system for generating prompts using translation of the HPO into 9 languages. An excerpt of one prompt is shown. 
Words representing age, sex, onset, and phenotypes are colour-coded as indicated.
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(corresponding to a cost of about US $112) and 2.1 
million output tokens (about US $42). Meditron3’s base 
model is Llama-3.1-70B-Instruct, which has a knowl
edge cutoff of December 2023 and officially supports 
English, German, French, Italian, Portuguese, Hindi, 
Spanish and Thai, though its training data contains a 
broader collection of languages.23 We downloaded and 
ran the model on a local HPC cluster with 2 NVIDIA 
A100 80 GB SXM4 GPUs. The run took approximately 
18 h, with the maximum output token length of 2048 
(and otherwise the model’s standard parameters: tem
perature of 0, seed of 1234, and the Meditron-specific 
parameter of “task_type” set to mcq).We instructed 
the LLM to reply in the form of free text (e.g., Marfan 
syndrome), rather than a corresponding ontology term 
identifier (e.g., MONDO:0007947), because the task of 
returning identifiers may be prone to so-called “hallu
cinations”, where plausible-sounding yet wrong an
swers are given.24,25 We leveraged our pheval.llm 
pipeline to parse the LLM response for free-text candi
date diagnoses, to identify the corresponding ontology 
identifier, and to rank genetic subforms of a clinical 
disease as equivalent (e.g., Loeys-Dietz syndrome and 
any of its six genetic subforms were regarded as 
equivalent for the purposes of assessing correctness of 
the differential diagnosis). PhEval.llm is a freely avail
able plugin for the PhEval framework and leverages 
Monarch Initiative LLM tooling.16,26,27

With this, we could computationally score the re
sponses of both GPT and Meditron for all Phenopackets 
in all ten languages, corresponding to 98,340 differen
tial diagnoses with more than 544 thousand candidate 
diseases (of which 8273 unique guesses). Finally, we 
computed the number of correct diagnoses found at the 
top of the differential diagnosis (“Top-1”), within the 
first three candidate diseases (“Top-3”), and likewise for 
“Top-10”. This procedure was carried out for all ten 
languages.

Role of the funding source
The funding sources had no role in study design, data 
collection, data analysis, data interpretation, writing of 
the report, and decision to submit.

Ethics
Ethical approval was not required.

Results
In this work we leveraged translations of the Human 
Phenotype Ontology into Chinese, Czech, Dutch, 
French, German, Italian, Japanese, Spanish, and 
Turkish to test the relative performance of GPT-4o and 
Meditron3-70B in differential diagnostic support. To do 
so, we leveraged GA4GH Phenopackets, representing 
the clinical data (phenotypic abnormalities and diag
nosis) for 4917 patients with 360 diseases drawn from 

706 publications. We generated a programmatic tem
plating system that generated a narrative text using 
templates to represent the age, sex, and age of onset of 
disease together with observed and excluded phenotypic 
features (Fig. 1).

Results are counts of correct diagnoses at a given 
rank in the differential diagnosis, shown in Table 1 for 
GPT-4o and in Table 2 for Meditron3 aggregated at 
“Top-1”, “Top-3”, and “Top-10”. The “Not ranked” col
umn shows the number of cases in which the LLM 
reply did not contain the correct diagnosis. Additionally, 
the “No Diagnosis” column indicates the number of 
cases in which the returned text could not be parsed as 
a differential (for example, “I’m sorry but based on the 
information provided, I cannot return a confident 
diagnosis”). In no case did we observe a correct result 
beyond rank 10, so that the sum of the last three col
umns in Tables 1 and 2 is always 4917, the total 
number of cases. Depending on the language and 
model, between 1.6% and 16.0% items in the differ
ential could not be successfully grounded (i.e., the 
Mondo term corresponding to the diagnosis could not 
be identified; see Supplemental Table S2). Excluding 
Japanese and Chinese (the two languages not based on 
Latin scripts) for Meditron3, the grounding failures for 
both models lie in the range of 1.6%–6.2%.

In Figs. 2 and 3 we show frequencies obtained as 
Top-N divided by the total number of cases excluding 
those in “No Diagnosis”. To test for statistical differ
ences between ranks in different languages we used 
SciPy’s ‘stats’ package to perform a Kruskal-Wallis28 H- 
test. We obtain as a statistic H = 30.8 and p- 
value = 0.0003, for GPT-4o and H = 55.5 and p-value of 
10−8 for Meditron3, indeed indicating statistically sig
nificant differences between the languages.

In openAI’s GPT-4o English was the third best 
performer at Top-1 and Top-10. At Top-1, there were 
19.9% of correct cases in English while other languages 
ranged from 16.9% to 20.6%. At Top-3, the relative 

Language Top-1 Top-3 Top-10 Not ranked No diagnosis

English 978 1328 1532 3384 1
Spanish 941 1355 1560 3357 0
Czech 880 1240 1396 3495 26
Turkish 978 1373 1544 3265 108
German 938 1290 1439 3377 101
Italian 851 1314 1498 3416 3
Chinese 909 1338 1401 3510 6
Dutch 1006 1357 1503 3391 23
Japanese 790 1245 1352 3318 247
French 918 1338 1524 3388 5

Numbers indicate counts, not ranked includes grounding failures but not 
instances of refusal by GPT to deliver a diagnosis, which is counted separately 
in the rightmost column “No Diagnosis”.

Table 1: Results of differential diagnosis by GPT-4o by language.
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spread decreases, with the correct diagnosis among the 
Top-3 candidates in the differential diagnosis 27.0% of 
cases for English, compared to the range 25.4%–28.6% 
for the other languages. This comprises a relative dif
ference of at most 6% for Top-3 with respect to English, 
and at most 9% for Top-10, where English scored 31.2% 
while other languages lie in the range 28.5%–32.1%.

The medically fine-tuned Meditron3-70B shows a 
worse overall performance (though this may be largely 
attributable to the likely much smaller size of the 
model) with quite some variability at Top-10. English 
scored 15.4% at Top-1 while other languages ranged 

between 13.4 and 16.9%, and the highest scorer at Top- 
10 was Dutch with 28.0%, with English lagging behind 
at 23.2%, the lowest of all. The largest relative difference 
with English at Top-3 consists of 13% and is with 
Japanese.

Discussion
We prompted the GPT-4o and Meditron3 language 
models with 4917 RD cases in ten different languages. 
All languages in this study constitute at least ∼1% of 
the CommonCrawl, which is a proxy for the amount of 
relative internet data available in a given language, a 
reflection of the language-specific data available for 
training. For these ten languages we have shown that 
GPT-4o and Meditron3 are able to perform differential 
diagnostics for RD with similar performance. This 
would be surprising if LLMs only used language- 
specific models to answer queries because most of 
their training data and of relevant medical literature is 
in English. Although the performances do vary, our 
result suggests that this model can generalise medically 
relevant knowledge derived mainly from English lan
guage texts in order to answer queries posed in (at least) 
the nine non-English languages tested.

The creation of a large set of realistic vignette-like 
prompts originating from real cases and translated in 
multiple languages overcomes limitations of previous 
diagnostics studies with LLMs, such as the utilisation of 

Language Top-1 Top-3 Top-10 Not ranked

French 751 1094 1229 3688
Spanish 755 1117 1358 3559
Japanese 833 1181 1293 3623
German 752 1088 1309 3608
Dutch 782 1118 1379 3538
Chinese 810 1105 1176 3741
Turkish 670 978 1178 3735
Czech 659 1006 1180 3735
English 756 1028 1141 3776
Italian 767 1089 1310 3607

Table 2: Results of differential diagnosis by Meditron3-70B, see 
caption of Table 1 (however, we did not observe any refusal to reply 
and therefore drop the “No Diagnosis” column).
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Fig. 2: Differential diagnostic performance of GPT-4o in English, Chinese, Czech, Dutch, French, German, Italian, Japanese, Spanish, and 
Turkish. The percentage of cases in which GPT-4o place the correct diagnosis in rank 1 (Top-1), within the top three ranks (Top-3) or within 
the first ten ranks (Top-10) is shown.
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extensive and unrealistically long case reports,29 the 
usage of simulated/synthetic patients,30,31 the usage of 
comparably small cohorts,29–31 and the difference in 
style and length of real clinical notes coming from 
different countries.31

Our study has several limitations. We used the same 
zero-shot prompting strategy for each language and did 
not attempt to improve performance using more so
phisticated strategies such as chain of thought or 
retrieval augmented generation approaches.32 Our 
evaluation made use of lists of phenotype terms, rather 
than narrative clinical notes, and thus may not reflect 
challenges or nuances relating to individual languages. 
Additionally, we only tested two models, and were only 
able to test a selection of relatively widely used Euro
pean and Asian languages native to roughly 2.3 billion 
people. Therefore, further research will be needed to 
determine the potential utility of LLMs in clinical set
tings where other languages are spoken. We chose the 
ten languages for this study because the translations 
had been previously created by groups collaboration 
with the HPO project. We invite colleagues from other 
countries to contact us in order to create HPO re
sources in additional languages. We are not able to 
precisely assess to which extent failures in mapping 
free text to Mondo identifiers were responsible for the 
slightly worse performance of some languages in our 
testing. We noticed Meditron3 had a significantly 
higher grounding failure rate for non-Latin scripts, 

since sometimes the model would ignore our request 
for an English reply. Our results with GPT-4o and 
Meditron3 suggest that in principle it is possible to 
train an LLM to leverage medical knowledge that is 
predominantly recorded in English to support differ
ential diagnostics in other languages.

Although it is difficult to measure the extent of data 
contamination bias in LLM, data contamination is 
known to affect the results of benchmark evaluations of 
LLM on a variety of tasks.33 It is likely that GPT and 
Meditron3 had access to some of the published clinical 
data used to perform the evaluation, and thus the 
evaluation results may not reflect what to expect on new 
data. However, we know of no other dataset with several 
thousand cases available in ten languages and that is 
also unpublished (and thus not subject to data 
contamination bias).

The ability of LLMs to carry out any diagnostics of 
complex cases in different languages is notable 
considering they are general purpose language models 
predominantly trained with English data. Both OpenAI 
and Meta AI claim to have significantly increased the 
multilingual capabilities with respect to their previous 
models.23,34 The vast amount of data used by LLMs for 
training can lead to data contamination that may over
estimate the performance to be expected for new data.35 

Therefore, the performance measured in our study may 
not generalise. Future research will be required to un
derstand if generalisation performance is dependent on 
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Fig. 3: Differential diagnostic performance of Meditron3-70B in English, Chinese, Czech, Dutch, French, German, Italian, Japanese, 
Spanish, and Turkish. The percentage of cases in which Meditron3-70B place the correct diagnosis in rank 1 (Top-1), within the top three 
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prompt language. Finally, we instructed the LLMs to 
return the diagnoses in English, which was necessary to 
be able to perform grounding for our computational 
analysis. Our comparison of the results in Italian, 
German, and Spanish for 100 cases with diagnoses 
returned in either English or the other language did not 
show a consistent difference between the approaches 
(Supplemental Figure S1).

Despite the interest in using LLMs to support clin
ical care, LLMs are not currently ready for autonomous 
decision making.36 Before widespread application of 
LLMs in English or other languages in clinical care, it 
will be necessary to develop strict guidelines about 
accurate and ethical use of LLMs.

Consistent performance across languages has im
plications for the implementation of these models in 
clinical practice across the globe. Many people in low- 
and middle-income countries (LMICs) have limited 
access to healthcare services.37 As LLMs become 
increasingly proficient in supporting differential diag
nosis and related domains such as bedside consultation 
question answering and addressing questions from the 
general public,38 there is a great potential to improve 
care for people in LMICs by supplementing existing 
systems with LLM-driven services. It would be desirable 
to offer such services in local languages, especially for 
consumer-facing applications. Future work will be 
required to assess performance of LLMs in LMICs (all 
languages assessed in our study are from high-income 
countries).
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