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- Advance Nuclear Reactors

The Generation IV International
forum (GIF) has selected six reactor

technologies for further research and

development!: LWR MSR
* Gas-cooled fast reactor (GFR), = ©
* Lead-cooled fast reactor (LFR), o | _'m'ft
* Molten salt reactor (MSR),
* Sodium-cooled fast reactor (SFR), e moderator
* Supercritical-water-cooled reactor HIO 1 chama
in salt

(SCWR)
* Very high-temperature reactor
(VHTR).
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Riley, B.J., et al. (2019). "Molten salt reactor waste and effluent management
strategies: Areview." Nuclear Engineering and Design 345: 94-109.

Nuclear fission reactor where the primary coolant (or
even the fuelitself) is a molten salt

Conceptual schema ofa molten salt reactor. (US Department
of Energy Nuclear Energy Research Advisory Committee)
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INEA. www.gen-4.org. Annual report 2020.
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Il Background = lodine in Molten Salt Reactors

» Advance technologies in Nuclear reactors
demand proper monitor and speciation of iodine

 lodine is a high-yield fission product of
concern for environmental release due to uptake
in the human thyroid gland.

Speciation
Red OX D Iﬂ:USIOn Retrieved from: https://www.ensuringnuclearperformance.com/
potential
Nuclgon Ki n eti CS- ) Ni metal in 1wt% EuCl; - LiCI-KCI eutectic, 500°C
TR stabilization of

transients.

Abst

- Evaluate the impact of dissolved
lodide ions or metal iodide species N
on the salt systems.
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* Compere et al. Fission product behavior in the Molten Salt Reactor Experiment. ORNL-4865, 1975.




- How to do it?

High Temperature
Speciation in _~"
conditions of

lonizing radiation fields

. . 2
Density ! 1 qullld
. ! 1
Coordination (temperature) (fixed) , &
. ] . g _: # .i;f‘_ s :
Order Short-range Long-range 8; ’19., po o
-
w *
Diffusion 1 l "

Radiolytically speaking, primary transients induced by gamma
radiation are essentially the same in both states, with
expected spectroscopical differences.

5 2Wu, F., et al. (2020). "Temperature Dependence of Short and Intermediate Range Order in Molten
MgCI12 and Its Mixture with KC1." The Journal of Physical Chemistry B 124(14): 2892-2899.
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Solid-state
Pulse-radiolysis
Steady state
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Solid

Solid-state
radiolysis
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Discrete energies (narrower peaks)
Analysis under milder condition
Identification of aggregates or
secondary intermediates

Radiation chemistry of
molten salts

NiZ*+2e” > Ni°

Phenomena and kinetic properties are better
approximated if treated as an extension of the
theory of formation of defects in the solid-state

Pulse radiolysis
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Time scale

Monitor the production and decay
of primary (short-lived)
transients like solvated electrons

(ey) andlé (ns and ps).

* Conrad et al,, Phys. Chem. Chem.
Phys. 2023, 25, 16009.

Liquid

Steady-state irradiation

_ LiKI 1
I electron imadiated

—— 0 MGy
—— 49 MGy

T
300 400 500 600 700

Wavelength {(nm}

Monitor the concentration of
radiation-induced steady-
state transients

L+~ 213
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Experimental methods:
Bl Diffuse Reflectance

3D Printed sample holder
135° diffuse angle

Probe 6 illumination fibers
1 detection fiber

How do we investigate radiation-induced
transients trapped in the crystal lattice with
minimum perturbation to the system?

» Diffuse Reflectance
(defects absorbing in the UV-Vis)
 Electron Paramagnetic Resonance
(radical species)
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Bruker EPR FTS 817 gamma

7 irradiator High-temperature spectroscopy
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High-temperature experimental
S@tl]lp fOI' El@CtI‘OI‘]//iOI‘] irradli@tiOn Elucidate their reaction kinetics,

mechanisms, and chemical transport
Irradiation cell as a function of temperature, dose,
: ' impurities, and base salt composition

Energy (eV)
65 4 3 2 15 1
LiCI-KCI ——0min
electron irradiated —— 1min
166.9 Gy/pulse —— 2 min
—— 3 min
Energy (eV)
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2 1.6 T T T T T T
375 nm-390 nm
14 LiCI-KClI —— 0 min
electron irradiated
12 166.9 Gy/pulse
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400 600 800 © 10
Wavelength (nm) Z
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g. cl,
0 061
!
< 0.4 -
0.2
)
N Real-time monitoring of Rk ; - . - ;
: &7 S . absorption spectroscopy is 0 o0 00
Shielded - orp P Py Wavelength (nm)
spectroscopy setup possible through our custom-
made high temperature
8 irradiation cell (up to 700 C).
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Radiation-Induced transients (RIT)
- in solid Iodides

- = F center [
a center
v} -
Empty anion Bi@
| vacancy |

How the exposition to ionizing radiation
fields modifies the iodine-iodide-triiodide
equilibrium in limited diffusion media?
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Main gamma radiation-induced aoaeanm L T 1
transients on monovalent (K) iodides 3
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- Gamma-irradiation Monovalent (Solid) lodides K|

Irradiation i
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o Gamma-irradiation Monovalent (Solid) lodides il
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* Less stability of trapped electrons « Oxidation decreases with heating up

to 200 °C 12 >

» Crystals at 200 ° C for longer times
Gardner, J. M., et al. (2009)." Journal ofthe American increases 13—

Chemical Society 131(44): 16206-16214. IDAHO NATIONAL LABORATORY

11




Lil-KI

- Gamma-irradiation Eutectic (Solid) lodides
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- lodine photolysis ¥

I —I;
« UV light delivers enough energy to B + _
ionize ™. [mw [ +e
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Halide mixtures- lodide in
Chloride media Solid radiolysis
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* In chloride media, enhanced production of I3 .




Electron irradiation of Molten iodides
Steady-State

LiCI-KCI (10 wt% KI)

4 Lil-KI (KCI 10 wt%)
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« Formation of colloidal phase.
15 « Slow dissolution after irradiation.
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Temperature and dopant effect ion iodide speciation

Energy (eV)
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« Structural heterogeneity observed for Ni2* in iodide.
16 * Ni-I charge transfer. Temperature dependent
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I Summary

Objectives:

* Impact of composition, absorbed

dose and temperature on lodine

speciation, specifically |5

 |dentification of characteristic

absorption features.

Approach:

- Solid-state radiolysis for
* Speciation
- Steady-state irradiation of
lodides
+ Changes on
2L 21
* High-temperature

spectroscopy
17
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Outcome:

- Establish a technical capabilities for high temp
UV-Vis for molten iodides.

 Triiodide (I3") identification in molten salts
(chlorides and iodides).

« Temperature and radiation increase triiodide

concentration.

* Insoluble phase after irradiation, possible

polyiodides

* Nil, complexes dependent on temperature and

concentration.
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