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Advance Nuclear Reactors

1NEA. www.gen-4.org. Annual report 2020.

The  Generation IV International 
forum (GIF) has selected s ix reac tor 
te chnologie s for further research and 
development1: 

• Gas-cooled fast reactor (GFR), 
• Lead-cooled fast reactor (LFR), 
• Molte n sa lt re ac tor (MSR), 
• Sodium-cooled fast reactor (SFR), 
• Supercritical-water-cooled reactor 

(SCWR) 
• Very high-temperature  reactor 

(VHTR).

Riley, B. J ., e t al. (2019). "Molten salt reactor waste  and effluent management 
strategies: A review." Nuclear Engineering and Design 345: 94-109.

Nuclear fission reactor where  the  primary coolant (or 
even the  fuel itse lf) is a molte n sa lt

Conceptual schema of a molten salt reactor. (US Department 
of Energy Nuclear Energy Research Advisory Committee)
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Background –  Iodine in Molten Salt Reactors

• Advance technologies in Nuclear reactors 
demand proper monitor and speciation of iodine

• Iodine is a high-yield fission product of 
concern for environmental release due to uptake 
in the human thyroid gland.

Retrieved from: https://www.ensuringnuclearperformance.com/

• Compere et al. Fission product behavior in the Molten Salt Reactor Experiment. ORNL-4865, 1975. 

• Evaluate the impact of dissolved 
iodide ions or metal iodide species 
on the salt systems.

Redox 
potential

Diffusion

Kinetics-
stabilization of 

transients.

Speciation

EuCl3 in LiCl-KCl
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How to do it?

High Temperature

Liquid Solid

Dens ity ↓ ↑

Coordination ↓
(temperature)

↑
(fixed)

Order Short-range Long-range

Diffus ion ↑ ↓

Ionizing radiation fields
Molten FLiBe . ORNL, 2021

Speciation in 
conditions of

Radiolytically s peaking, primary trans ients  induced by gamma 
radiation are  es sentially the  s ame in both s tates , with 
expected s pectros copical differences . 

Liquid 2
Solid

2Wu, F., e t al. (2020). "Temperature  Dependence of Short and Intermediate  Range Order in Molten 
MgCl2 and Its Mixture with KCl." The Journal of Physical Chemistry B 124(14): 2892-2899.

• Solid-state
• Pulse-radiolysis
• Steady state

Approach
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Time scale

Radiation chemis try of 
molten s alts

Liquid Solid

Monitor the production and decay 
of primary (short-lived) 

trans ients  like solvated electrons  
(𝒆𝒆𝒔𝒔) and K4

ٱ  (ns  and µs ). 

Solid-s tate
rad iolys is Puls e  rad iolys is

• Discrete energies  (narrower peaks )
• Analys is  under milder condition
• Identification of aggregates  or 

s econdary intermediates

Phenomena and kinetic properties  are better 
approximated if treated as  an extens ion of the 

theory of formation of defects  in the solid-s tate

• Conrad et al., Phys. Chem. Chem. 
Phys. 2023, 25, 16009.

 

Monitor the concentration of 
radiation-induced s teady-

s tate trans ients

Ste ady-s tate  irrad iation

𝐼𝐼2 + 𝐼𝐼− ⇄ 𝐼𝐼3−
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Experimental methods : 
Diffus e Reflectance

• Diffuse Reflectance 
 (defects absorbing in the UV-Vis)

• Electron Paramagnetic Resonance 
(radical species) 

How do we investigate radiation-induced 
transients trapped in the crystal lattice with 
minimum perturbation to the system?

3D Printed sample holder
135° diffuse angle
Probe 6 illumination fibers
1 detection fiber 
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Real-time monitoring of 
absorption spectroscopy is 

possible through our custom-
made high temperature 

irradiation cell (up to 700 C).

Irradiation cell

Temperature 
control system

Shielded 
spectroscopy setup

Elucidate their reaction kinetics, 
mechanisms, and chemical transport 
as a function of temperature, dose, 
impurities, and base salt composition

High-temperature experimental 
s etup for Electron/ ion irradiation
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Radiation-Induced trans ients  (RIT) 
in s olid Iodides
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Main gamma radiation-induced 

transients on monovalent (K)  iodides

How the exposition to ionizing radiation 
fields modifies the iodine-iodide-triiodide 
equilibrium in limited diffusion media?

Primary 
Species

Secondary  
Species Aggregates

𝑀𝑀+𝐼𝐼−
ℎ𝜈𝜈

 excitons, 𝑒𝑒−, 𝐼𝐼�
∆𝑇𝑇
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𝐼𝐼2 𝑛𝑛, 𝑀𝑀0
𝑛𝑛

AToMS-INL
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Diffuse Reflectance-Absorption 

Gamma-irradiation Monovalent (Solid) Iodides KI
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Gamma-irradiation Monovalent (Solid) Iodides  

LiI

• Higher 𝐼𝐼3− concentration than KI.
• Less stability of trapped electrons

Irradiation
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• Oxidation decreases with heating up 
to 200 °C  I2  

• Crystals at 200 º C for longer times 
increases 𝐼𝐼3−  
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Absorption of iodine in acetonitrile (Gardner et al, 2019)

Gardner, J . M., e t al. (2009)." Journal of the American 
Chemical Society 131(44): 16206-16214.
 

LiI
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Gamma-irradiation Eutectic (Solid) Iodides  
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Iodine photolys is
• UV light delivers enough energy to 

ionize 𝐼𝐼−.

• Ionized electrons get trapped in 
anion vacancies (F-centers)

• Formation of 𝐼𝐼3−.
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• LiI-KI-Unstable trapped electrons13



Halide mixtures - Iodide in 
Chloride media Solid radiolys is
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Normalized spectra and kinetics after the 
electron pulse irradiation of 10 wt.% KI in 

LiCl-KCl eutectic at 400 º C

• Conrad et al., Phys. Chem. Chem. 
Phys. 2023, 25, 16009.
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• In chloride media, enhanced production of 𝐼𝐼3−.
• Suppression of 𝐶𝐶𝐶𝐶3− up to 50 kGy.14



Electron irradiation of Molten iodides
Steady-State
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• Formation of colloidal phase. 
• Slow dissolution after irradiation.15






Temperature and dopant effect ion iodide s peciation
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• Structural heterogeneity observed for Ni2+ in iodide.
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Summary

Objectives:

Approach:

• Establish a technical capabilities for high temp 
UV-Vis for molten iodides.

• Triiodide (𝐼𝐼3−) identification in molten salts 
(chlorides and iodides). 

• Temperature and radiation increase triiodide 
concentration. 

• Insoluble phase after irradiation, possible 
polyiodides

• NiI2 complexes dependent on temperature and 
concentration.• Solid-state radiolysis for

• Speciation
• Steady-state irradiation of 

Iodides
• Changes on
       𝐼𝐼3− ⇄ 𝐼𝐼2− ⇄ 𝐼𝐼2

• High-temperature 
spectroscopy 

• Impact of composition, absorbed 
dose and temperature on Iodine 
speciation, specifically I3-. 

• Identification of characteristic 
absorption features.

Outcome:
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