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SUMMARY

This report describes the specimen loading order and documents all
preirradiation examination material property measurement data for graphite
specimens contained within the Second Advanced Graphite Capsule (AGC 2)
irradiation capsule. The AGC 2 capsule is the second in six planned irradiation
capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC
test series is used to irradiate graphite specimens in order to garner quantitative
data necessary for predicting the irradiation behavior and operating performance
of new nuclear grade graphites. This testing will ascertain the in service behavior
of the graphite for pebble bed and prismatic very high temperature reactor
designs. Similar to the First Advanced Graphite Capsule (AGC 1) preirradiation
examination report, material property tests were conducted on specimens from 18
nuclear grade graphite types. However, AGC 2 tested an increased number of
specimens (i.e., 512) prior to loading them into the AGC 2 irradiation assembly.
All AGC 2 specimen testing was conducted at Idaho National Laboratory from
July 2009 to August 2010.

This report also details the specimen loading methodology for graphite
specimens inside the AGC 2 irradiation capsule. The AGC 2 capsule design
requires “matched pair” creep specimens that have similar dose levels above and
below the neutron flux profile mid plane. This provides similar specimens with
and without an applied load. Analysis in this document utilizes the neutron flux
profile calculated for the AGC 2 capsule design, the capsule dimensions, and the
size (i.e., length) of the selected graphite specimens to create a stacking order that
produces “matched pairs” of graphite specimens above and below the AGC 2
capsule elevation mid point, thus providing specimens with similar neutron dose
levels.
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AGC-2 Graphite Preirradiation Data Analysis Report
1. INTRODUCTION

The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor
(VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural
and moderator material in both research and commercial high temperature gas-cooled reactor (HTGR)
designs.!"*! Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite
components, is no longer available. New nuclear graphites have been developed and are considered
suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core
components within a commercial reactor, a complete properties database must be developed for these
current grades of graphite. Quantitative data on in-service material performance is required for the
physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data
accounting for the life-limiting effects of irradiation creep on key physical properties of the NGNP
candidate graphites. Further details on the research and development activities and associated rationale
required to qualify nuclear-grade graphite for use within the NGNP are documented in the NGNP
graphite technology research and development plan.?**

Based on experience with previous graphite-core components, the phenomenon of irradiation-induced
creep within the graphite has been shown to be critical to the total useful lifetime of graphite components.
Irradiation-induced creep occurs under the simultaneous application of high temperatures, neutron
irradiation, and applied stresses within the graphite components. Significant internal stresses within the
graphite components can result from a second phenomenon—irradiation-induced dimensional change—
where the graphite physically changes (i.e., first shrinking and then expanding with increasing neutron
dose). This disparity in material-volume change can induce significant internal stresses within graphite
components. Irradiation-induced creep relaxes these large internal stresses, thus reducing the risk of crack
formation and component failure. Obviously, higher irradiation-creep levels tend to relieve more internal
stress, thus allowing the components longer useful lifetimes within the core. Determining the
irradiation-creep rates of nuclear-grade graphites is critical for determining the useful lifetime of graphite
components and is a major component of the Advanced Graphite Creep (AGC) experiment.

The AGC experiment is currently underway to determine the in-service behavior of these new
graphites for both pebble-bed and prismatic reactor designs. This experiment will examine properties and
behavior of nuclear-grade graphites over a large spectrum of temperatures, irradiation fluencies, and
applied stress levels that are expected to induce irradiation creep strains within a VHTR graphite
component. [rradiation data are provided through the AGC test series, which comprises six planned
capsules irradiated in the Advanced Test Reactor (ATR) in a large flux trap!®! at the Idaho National
Laboratory (INL) Site. This test series exposes the selected graphite specimens to temperatures and a
range of doses that are expected within a VHTR design. Each irradiation capsule consists of over
400 graphite specimens that are characterized before and after irradiation.

The First Advanced Graphite Capsule (AGC-1) of the AGC test series was initially characterized,
loaded into ATR, irradiated, and is currently undergoing post-irradiation examination (PIE).*”]
Characterization of the graphite specimens for the Second Advanced Graphite Capsule (AGC-2) was
recently completed, and the measurements are reported in this document. Data gathered for the
characterization of AGC-2 specimens is contained in Appendixes A, B, and C of this report. The original
design called for AGC-1 and -2 capsule irradiations to be as similar as possible—similar graphites,
irradiation temperatures, and loads applied to the creep specimens with the only difference being total
received dose to the specimens. Consequently, material property tests were conducted on specimens of
similar graphites as tested in the AGC-1 capsule, but on an increased number of specimens (i.e., 512) due



to a change in the stacking order of the specimens within the capsule. All AGC-2 specimen testing was
conducted from July 2009 to August 2010.1*

To achieve the proper irradiation conditions and applied loads to the creep specimens, an exact
specimen loading order is critical. Because irradiation creep is usually determined by the difference in
dimensional change occurring within specimens that have an applied load and those that do not, these
“matched pair” specimens are assumed to have the same irradiation dose and irradiation temperature
values. To achieve these similar irradiation conditions for “matched pairs,” a careful map of where each
specimen resides within the irradiation capsule is required. A detailed analysis of the reactor flux profile
is required to ascertain the dose levels for each specimen, as well as the designed loading configurations
within the capsule, in order to guarantee that the matched pairs experience the same temperature and dose
levels. This document discusses details of the specimen loading order, the capsule loading design, the flux
profile within ATR, and the resulting estimated dose profiles for each graphite specimen for the AGC-2
irradiation capsule.

2. DESCRIPTION OF THE ADVANCED GRAPHITE CREEP
EXPERIMENT

The AGC experiment is designed to establish the data necessary to determine the safe operating
envelope of graphite core components for a VHTR by measuring the irradiated material property changes
and behavior of several new nuclear grade graphites over a large range of temperatures, neutron fluencies,
and mechanical compressive loads. The experiment consists of three interrelated stages: preirradiation
characterization of the graphite specimens, the irradiation test series (designated as six separate irradiation
capsules), and PIE of the graphite specimens after irradiation. Separate reports for each distinct stage are
prepared after the activity is completed. The preirradiation examination (pre-IE) reports detail the total
number of graphites and specimens, the specimen loading configuration to expose all specimens to the
entire range of irradiation conditions, and the preirradiation material property testing results. The
irradiation test series reports detail the irradiation history of each capsule while in reactor, noting any
changes from the technical and functional specifications for each specific test series capsule, and
identifying the possible improvements to the next test series capsule design. The PIE reports detail the
changes in the specimen material property measurements, compare the results to the pre-IE material
property measurements, and analyze the data to assist in determining a credible safe operating envelope
for graphite core components in a VHTR design and licensing application.

2.1. Background Information for the Advanced Graphite Creep
Experiment

The AGC experiments will provide data on irradiated material properties for current graphites
available for use within a VHTR design. Due to volume limitations within typical material test reactors
(i.e. ATR), only a limited number of specimens can be irradiated, which are far fewer than can be used in
an accurate statistical specimen population analysis. Therefore, the AGC only measures the changes in
irradiated material properties and the behavior of relatively few specimens of new nuclear-grade graphites
over the anticipated range of operating temperatures, neutron fluence, and mechanical loads. The
experiment does generate quantitative material property change data (and limited irradiation creep data),
which will be used in conjunction with the as-fabricated material property to predict the in-service
behavior and operating performance of these new nuclear-grade graphites for pebble-bed and prismatic
reactor designs. Changes to key thermal, physical, and mechanical material properties are determined by
comparing the material properties of each specimen before and after irradiation. Differences measured
from the irradiation conditions will provide irradiation-behavior data for graphite, with a specific
emphasis on those data that account for the life-limiting effects of irradiation creep on key physical
properties of several candidate graphites for use in NGNP.



The critical component of the AGC experiment is the irradiation test series, which irradiates the
graphite specimens after pre-IE characterization has been completed. The AGC test series comprises six
planned irradiation capsules, which are irradiated in ATR in a large flux trap, as described in the Graphite
Technology Development Plan.*) The test series exposes test specimens of the selected nuclear-grade
graphites to temperatures and the range of doses that are expected within an VHTR design. Specifically,
graphite specimens will be exposed to fast neutron dose ranging from 1 to 7 displacements per atom (dpa)
and temperatures of 600, 900, and 1200°C, as shown in Figure 1. Similar to the AGC-1 irradiation
capsule, AGC-2 was designed to be irradiated within the ATR’s South Flux Trap."”! Generally,
irradiations within the South Flux Trap require approximately 175 effective full-power days to provide a
nominal fast-neutron-dose range (in graphite) of 1-3.5 dpa. For those capsules requiring a 3.5-7.0-dpa
dose range, the irradiation capsule (containing the graphite specimens) is irradiated for twice as long
inside the ATR, for approximately 350 effective full-power days.
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Figure 1. Irradiation dose and temperature parameters of the AGC test series.

The AGC test series dedicates a significant amount of scope to determining rates of
irradiation-induced creep for different nuclear-grade graphite. The traditional method for measuring
irradiation-induced creep is to apply a significant load to half the specimens during irradiation while
leaving the remaining half of the specimens unloaded. The resulting difference in dimensional change
between the loaded and unloaded specimens (assuming that temperature and dose levels are the same)
provides the amount of irradiation-induced strain for each “matched pair” of graphite specimens. From
this strain level, a creep rate for each graphite grade can be calculated as a function of dose if both
specimens were irradiated at the same constant temperature. Thus, each capsule is designed to be
irradiated at a constant temperature, allowing only the dose and applied mechanical load to vary within
the test train of each test-series capsule. With all graphite specimens at a constant temperature, only the
applied load and dose will affect the calculated creep rate of each graphite grade within a test series
capsule.



To ascertain the temperature dependency of irradiation-induced material property changes, the creep
rates of similar graphite specimens, at similar dose and load levels, must be compared between capsules.
This implies that similar graphite grades must be in the same locations in every capsule to receive similar
dose and load levels at different temperatures.

To provide all necessary material property tests in the AGC experiments, each test-series capsule
contains two primary specimens: (1) creep specimens, providing irradiation creep-rate values as well as
mechanical properties, and (2) “piggyback” specimens, providing thermal material property changes to
the graphite. Generally, the creep specimens are larger (25.4 mm tall) and are irradiated in the
mechanically loaded outer stack positions of the capsule body where an applied load can be imposed upon
half of the specimens. Piggyback specimens are short (i.e., 6 mm tall) button specimens that reside in the
axial spine of the capsule or the lower half of the outer stack positions—receiving no applied load and
subjected only to neutron irradiation at high operating temperatures—to assess the effects of a reactor
environment on the specific graphite grade. Together, both types of specimens provide the changes in
material properties for stressed and unstressed graphite grades. The physical dimensions for both “Creep”
and “Piggy-back” specimens are shown in INL Drawing 600786, Rev. 2.[%

2.2. Description of AGC-2 Test Series

AGC-2 was originally designed to be the longer duration irradiation capsule providing specimens
irradiated at the 3.5-7.0-dpa dose level (see Figure 1) at the 600°C temperature conditions. However, due
to issues with temperature control within the first AGC-1 capsule,® it was decided during AGC-1
irradiation to hold the capsule inside ATR as long as possible to ascertain the viability of the capsule
design at high dose levels. Therefore, the irradiation dose levels for AGC-1 were changed to the longer
duration irradiation (i.e., 3.5-7.0 dpa) at the 600°C temperature conditions.

Because the AGC-1 specimen temperature limits exceeded the technical specifications, determining
material property changes and creep rates at a constant temperature proved to be difficult. Therefore, an
intermediate, 1.5-5-dpa dose level, irradiated at 600°C, was selected as the final irradiation condition for
the AGC-2 test series to bridge between the two original 600°C test-series capsules, Figure 2. It was
assumed that some of the specimens from AGC-1 could be utilized in conjunction with the AGC-2
graphite specimens to produce more reliable material property changes at the constant 600°C-temperature
condition. While not optimal, it was determined that providing graphite specimens, irradiated over this
overlapping dose level at a more consistent temperature condition, would be sufficient to ascertain the
irradiation creep and material property changes for the selected graphites.
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Figure 2. Revised irradiation dose and temperature parameters of the AGC test series. Note the gray area
between AGC-1 and AGC-2 is the expected dose overlap between capsule irradiation.

Additionally, one of the graphite grades was changed by request of the graphite vendor (Mersen,
USA). Piggy-back specimens of graphite grade 2114 were directly substituted for graphite grade 2020
and irradiated within the AGC-2 central stack (axial spine of capsule). All other graphites irradiated
within AGC-2 were similar to the graphites in AGC-1. To duplicate the specimen stacking order as in the
AGC-1 test series capsule, the AGC-2 capsule contained the following major graphite grades NBG-17,
NBG-18, PCEA, 1G-430, H-451, and IG-110. The minor grades of graphite (i.e., “piggyback” specimens)
included NBG-25, PCIB, PPEA, NBG-10, BAN, HLM, PGX, 2114, HOPG, and A3 Matrix.

2.21. Establishing the Capsule’s Physical Centerline to the Core Neutron Flux
Mid-Plane

The capsule elevation sketch provided in Figure 3 was generated from a number of AGC-2 capsule
and ATR core drawings and used to determine the position of each specimen in the capsule as a function
of height above and below the mid-plane of the core neutron flux profile.!'"'! Other considerations
included the size of each creep specimen, the need for periodically placed spacers containing flux wires,
and the space requirements in the top of the stacks for the push rods. The core flux mid-plane, in relation
to the capsule arrangement, was established so that the reactor neutron flux field could be correlated to the
physical elevations and positions in the capsule.
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Figure 3. Elevation sketch of the Advanced Graphite Creep capsule.




2.2.2. Establishing the Dose Levels as a Function of Position within the
Capsule

Once the physical elevation dimensions were established and correlated to the reactor core centerline,
the dose as a function of distance from the core centerline needed to be determined. The estimated AGC-2
experiment fluence profiles were calculated by Reactor Engineering utilizing a Monte Carlo Neutral
Particle (transport code) model based on the known neutron flux profile of ATR, the position of the
experiment in the South Flux Trap, and the number of effective full-power days planned for the test-series
capsule.

Irradiation dose values, as a function of distance from the reactor core centerline, were calculated
from the total estimated fluence, using standard conversion factors for carbon in a fast neutron irradiation
field (E > 0.1 MeV).["®! There is a neutron flux gradient across the capsule thickness requiring the capsule
to be rotated 180 degrees at the irradiation mid-point. This rotation results in a uniform neutron-fluence
profile for all stacks, regardless of their position within the capsule, as shown in Figure 4. Because all
stacks within the capsule are estimated to have similar dose profiles after complete irradiation, the dose
profile for the center stack within the capsule was used to determine the proper stacking order and
specimen offset position in the lower half of the irradiation capsule.
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Figure 4. Calculated dose levels for AGC-2 after 140 effective full-power days.



As described in Section 1, Introduction, of this report and as shown in Figure 4, the ATR neutron flux
profile is not completely symmetrical along the vertical axis. Thus, to produce matched-pair specimens
that have similar dose profiles both above and below the core mid-plane, an offset from the mid-plane is
required. This offset adjusts the specimen positions and to matches the dose levels for “matched pair”
specimen. For AGC-2, the offset spacing was determined using the accumulated dose levels from the
central stack profile, both below and above the core mid-plane. Average dose values at 0.25-in.
increments (i.e. height of a piggyback specimen) were calculated along both top and bottom curves
allowing for direct comparison between matched positions within each stack.

The dose profiles for the lower and upper core were superimposed upon each other, as shown in
Figure 5. To determine the length of the offset space, the dose values above and below the core mid-plane
were compared, and the specimens in the bottom half of the AGC capsule were moved farther away from
the mid-plane, Figure 5. An offset of 1.25 inches from the core mid-plane for the bottom creep specimens
produced the closest dose matches between specimens.
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Figure 5. Advanced Test Reactor flux profile, as a function of core mid-plane position.

While it was impossible to exactly match both the upper and lower specimens, the dose levels for
each specimen pair were fairly close, ranging from 0—11%. In addition, over time, the specimens in the
top stacks should dimensionally shrink more than the bottom specimens (during irradiation) due to the
compressive load applied. This effectively moves the top specimens closer to the centerline, thus creating
a closer dose match to the specimens in the bottom stack. While this irradiation-induced shrinkage of the
top stack of specimens is anticipated to be relatively small at the end of irradiation (i.e., <6 mm for the
total stack of specimens), the dose levels do slightly converge rather than diverge.



It should be noted here that the specimen offset distance/position in the lower half of the AGC-1
capsule is significantly different from these offset calculations for the AGC-2 capsule."*'>) AGC-1 used
an older ATR flux profile that did not accurately reflect the current flux profiles within the South Flux
Trap. Consequently, the offset was approximately 3.75 in. (i.e., 15 piggyback specimen heights), leading
to slightly larger differences between the upper and lower matched-specimen pairs than expected for
AGC-2, as shown in Table 1. This will need to be addressed in detail in the AGC-1 PIE report to be
issued after PIE is complete.

Table 1. Typical dose differences between matched pairs in the AGC-1 test-series capsule.

Representative Stack
(Stack No. 1)
AGC-1 Estimated Dose
Matched Pairs Difference (%)

1S1/1U1 0.34

1S2/1U2 0.69

1S3/1U3 2.11

1S4/1U4 1.81

1S5/1U5 2.57

1S6/1U6 3.01

1S7/1U7 1.54

1S8/1U8 5.76

1S9/1U9 6.55
1S10/1U10 9.43
1S11/1U011 13.40
1S12/1U11 3.09
1S13/1U12 5.23
1S14/1U13 3.33
1S15/1U14 1.53

2.2.3. Determining the Physical Positions of Irradiation Creep Specimens in
the Stacks

Once the specimen-position offset was established for the bottom half of the specimens, the number
of total creep specimens for each grade of graphite was determined. To increase the number of creep
specimens in the AGC-2 test-series capsule, the 0.25-in.-tall NBG-25 graphite spacers between creep
specimens were eliminated. This decision to eliminate the spacers increased the total number of
specimens by over 20 in the entire capsule. This allowed more specimens per graphite grade to be
irradiated within the AGC-2 capsule.



A further decision was made to increase the creep specimen number population for the newer graphite
grades because little-to-no irradiation data are available on these grades. Specifically, more specimens of
graphite grades NBG-18 and PCEA were chosen to be irradiated than the IG-110, 1G-430, and NBG-17
graphite grades. NBG-18 and PCEA were determined to have 16 specimens per applied stress level, for a
total of 48 specimens within AGC-2. Graphite grades 1G-110 and 1G-430 were represented by only
12 specimens per applied stress level, for a total of 36 specimens within AGC-2. Table 2 shows the total
number of specimens irradiated per graphite grade.

Table 2. Total number of irradiated creep specimens in the AGC-2 test-series capsule.

Total Number of

Graphite Grade Creep Specimens
PCEA 48
NBG-18 48
IG-110 36
1G-430 36
NBG-17 24
H-451 24

Other factors had to be considered before the stacking order for each stack could be finalized. First,
three load levels are applied to the specimens in the loaded upper parts of the stacks (i.e., loads of 13.8,
17.2, and 20.7 MPa). The six outer stacks in the capsule allow the specimens in two of the stacks to be
loaded at 13.8 MPa, while the other two pairs of stacks are loaded at 17.2 and 20.7 MPa, respectively.
Because two stacks are at similar applied stress levels, the specimen loading order can be shifted between
the two stacks, allowing the same grade of graphite loaded at the specimen stress levels to be exposed
over a broader neutron dose range, as shown in Figure 6. Assuming that both stacks will have the same
applied stress level, receive similar dose levels per position, and have a constant temperature allows for
this shifting of the specimens, and consequently more uniform, smoother dose profile for each graphite
grade.
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Figure 6. Typical AGC-2 dose profile for creep-graphite specimens utilizing similar applied stress levels
in matched stacks.

A further consideration is the grain orientation of the specimens. A decision was made to have
approximately 75% of the specimens be orientated in the “with-grain” (WQG) direction and 25% of the
specimens be “against-grain” (AG). However, in the case of the vibration-molded graphites (i.e., NBG-17
and -18), there are actually two with-grain directions and one against-grain direction as a consequence of
the fabrication process. As such, it was logical to split the with-grain and against-grain specimens evenly
(i.e., 50/50 ratio) rather than following the 75/25 ratio established for the other specimens.

Once these considerations were accounted for, the dose-level profiles were determined for each
graphite grade and within each stack. The estimated creep specimen dose profiles for each graphite grade
for each stress level are illustrated in Figure 7a, 7b, and 7c.
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Figure 7a. Estimated creep-specimen dose profiles for each major graphite grade.
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Figure 7b. Estimated creep-specimen dose profiles for each major graphite grade.
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Figure 7c. Estimated creep-specimen dose profiles for each major graphite type.

The final loading configuration for the outer stacks was established once a smooth dose profile was
achieved for each graphite grade, Figure 7a, 7b, and 7c. The lower stack offset, the flux wire spacers,
creep specimens, and specimen symmetry above and below the capsule mid-plane were mapped for each
graphite specimen in Table 3.
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Table 3. Final loading configuration for AGC-2 creep specimens in outer stacks.

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5 Stack 6
1D# Graphite Height 1D# Graphite Height 1D# Graphite Height 1D# Graphite Height 1D# Graphite Height 1D# Graphite Height
CW101 H-451 19.63 EW0301 1G-110 19.63 CW1202 H-451 19.63 EW0601 1G-110 19.63 CW301 H-451 19.63 EW0901 1G-110 19.63
Flux wire Flux wire Flux wire Flux wire Flux wire Flux wire
DWI101 PCEA 18.63 FWO0301 1G-430 18.63 DW1203 PCEA 18.63 FW0602 1G-430 18.63 DW1504 PCEA 18.63 FW0903 1G-430 18.63
BWI101 NBG-18 17.63 DA402 PCEA 17.63 BW1301 NBG-18 17.63 DA503 PCEA 17.63 BW201 NBG-18 17.63 DA303 PCEA 17.63
EW102 1G-110 16.63 BP402 NBG-18 16.63 EW0403 IG-110 16.63 BP503 NBG-18 16.63 EW0703 IG-110 16.63 BP401 NBG-18 16.63
FW101 1G-430 15.63 AWI103 NBG-17 15.63 FW0401 1G-430 15.63 AW1103 NBG-17 15.63 FW0703 1G-430 15.63 AW1303 NBG-17 15.63
DW102 PCEA 14.63 EW0302 1G-110 14.63 DW1204 PCEA 14.63 EW0602 1G-110 14.63 DW1601 PCEA 14.63 EW0902 1G-110 14.63
Flux wire Flux wire Flux wire Flux wire Flux wire Flux wire
BW102 NBG-18 13.38 DW1103 PCEA 13.38 BW1302 NBG-18 13.38 DW1403 PCEA 13.38 BW202 NBG-18 13.38 DW201 PCEA 13.38
FW102 1G-430 12.38 BW1103 NBG-18 12.38 FW0402 1G-430 12.38 BW1503 NBG-18 12.38 FW0704 1G-430 12.38 BW403 NBG-18 12.38
EW104 1G-110 11.38 CW1003 H-451 11.38 EW0404 IG-110 11.38 CW1303 H-451 11.38 EW0704 IG-110 11.38 CW402 H-451 11.38
DW1001 PCEA 10.38 AWI1001 NBG-17 10.38 DW1301 PCEA 10.38 AW1201 NBG-17 10.38 DW1602 PCEA 10.38 AW1401 NBG-17 10.38
BW103 NBG-18 9.375 EW0303 1G-110 9.375 BW1303 NBG-18 9.375 EW0603 1G-110 9.375 BW203 NBG-18 9.375 EW0903 1G-110 9.375
FW103 1G-430 8.375 DA403 PCEA 8.375 EW0404 1G-430 8.375 DA601 PCEA 8.375 FW0801 1G-430 8.375 DA302 PCEA 8.375
Flux wire Flux wire Flux wire Flux wire Flux wire Flux wire
CwW102 H-451 7.125 BP403 NBG-18 7.125 CW1203 H-451 7.125 BP601 NBG-18 7.125 CW302 H-451 7.125 BP303 NBG-18 7.125
EW0201 1G-110 6.125 FW0302 1G-430 6.125 EW0501 IG-110 6.125 FW0603 1G-430 6.125 EWO0801 IG-110 6.125 FW0904 1G-430 6.125
DW1002 PCEA 5.125 AP402 NBG-17 5.125 DW1302 PCEA 5.125 AP501 NBG-17 5.125 DW1603 PCEA 5.125 AP503 NBG-17 5.125
BW1001 NB-18 4.125 CW1101 H-451 4.125 BW1401 NB-18 4.125 CW201 H-451 4.125 BW301 NB-18 4.125 CW403 H-451 4.125
FW0104 1G-430 3.125 DW1104 PCEA 3.125 FWO0501 1G-430 3.125 DW1404 PCEA 3.125 FW0802 1G-430 3.125 DW202 PCEA 3.125
Flux wire Flux wire Flux wire Flux wire Flux wire Flux wire
AW101 NBG-17 2.125 BW1201 NBG-18 2.125 AWI1101 NBG-17 2.125 BW1601 NBG-18 2.125 AWI1301 NBG-17 2.125 BWS501 NBG-18 2.125
0 0 Centerline 0 0 0 0
AW102 NBG-17 2.125 BW1202 NBG-18 2.125 AW1102 NBG-17 2.125 BW1602 NBG-18 2.125 AW1302 NBG-17 2.125 BW502 NBG-18 2.125
Flux wire Flux wire Flux wire Flux wire Flux wire Flux wire
FW0201 1G-430 3.125 DW1201 PCEA 3.125 FW0502 1G-430 3.125 DW1502 PCEA 3.125 FW0803 1G-430 3.125 DW203 PCEA 3.125
BW1002 NB-18 4.125 CW1102 H-451 4.125 BW1402 NB-18 4.125 CW202 H-451 4.125 BW302 NB-18 4.125 CW501 H-451 4.125
DW1003 PCEA 5.125 AP403 NBG-17 5.125 DW1303 PCEA 5.125 AP502 NBG-17 5.125 DW1604 PCEA 5.125 AP601 NBG-17 5.125
EW0202 1G-110 6.125 FW0303 1G-430 6.125 EW0502 IG-110 6.125 FW0604 1G-430 6.125 EW0802 IG-110 6.125 FW1001 1G-430 6.125
CW103 H-451 7.125 BP501 NBG-18 7.125 CW1301 H-451 7.125 BP602 NBG-18 7.125 CW303 H-451 7.125 BP302 NBG-18 7.125
Flux wire Flux wire Flux wire Flux wire Flux wire Flux wire
FW0202 1G-430 8.375 DA501 PCEA 8.375 FW0503 1G-430 8.375 DA602 PCEA 8.375 FW0804 1G-430 8.375 DA203 PCEA 8.375
BW1003 NBG-18 9.375 EW0304 1G-110 9.375 BW1403 NBG-18 9.375 EW604 1G-110 9.375 BW303 NBG-18 9.375 EW0904 1G-110 9.375
DW1004 PCEA 10.38 AW1002 NBG-17 10.38 DW1304 PCEA 10.38 AW1202 NBG-17 10.38 DW1701 PCEA 10.38 AW1402 NBG-17 10.38
EW0203 1G-110 11.38 CW1103 H-451 11.38 EW0503 IG-110 11.38 CW203 H-451 11.38 EW0803 IG-110 11.38 CW503 H-451 11.38
FW0203 1G-430 12.38 BW1203 NBG-18 12.38 FW0504 1G-430 12.38 BW1603 NBG-18 12.38 FW0901 1G-430 12.38 BWS503 NBG-18 12.38
BW1101 NBG-18 13.38 DW1202 PCEA 13.38 BW1501 NBG-18 13.38 DW1503 PCEA 13.38 BW401 NBG-18 13.38 DW204 PCEA 13.38
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Stack 1 Stack 2 Stack 3 Stack 4 Stack 5 Stack 6
1D# Graphite Height 1D# Graphite Height ID# Graphite Height 1D# Graphite Height 1D# Graphite Height 1D# Graphite Height
Flux wire Flux wire Flux wire Flux wire Flux wire Flux wire
DW1101 PCEA 14.63 EW0401 1G-110 14.63 DW1401 PCEA 14.63 EW0701 1G-110 14.63 DW1702 PCEA 14.63 EW1001 1G-110 14.63
FW0204 1G-430 15.63 AW1003 NBG-17 15.63 FW0601 1G-430 15.63 AW1203 NBG-17 15.63 FW0902 1G-430 15.63 AW1403 NBG-17 15.63
EW0204 1G-110 16.63 BP502 NBG-18 16.63 EW0504 1G-110 16.63 BP603 NBG-18 16.63 EW0804 1G-110 16.63 BP301 NBG-18 16.63
BW1102 NBG-18 17.63 DAS502 PCEA 17.63 BW1502 NBG-18 17.63 DA701 PCEA 17.63 BW402 NBG-18 17.63 DA202 PCEA 17.63
DW1102 PCEA 18.63 FW0304 1G-430 18.63 DW1402 PCEA 18.63 FWO0701 1G-430 18.63 DW1704 PCEA 18.63 FW1002 1G-430 18.63
Flux wire Flux wire Flux wire Flux wire Flux wire Flux wire
CW1002 H-451 19.63 EW0402 1G-110 19.63 CW1302 H-451 19.63 EW0702 1G-110 19.63 CW401 H-451 19.63 EW1002 1G-110 19.63

NBG-17 specimen - AW### = “against-grain”, AP### = “with-grain”

NBG-18 specimen - BW### = “against-grain”, BP### = “with-grain”

H-451 specimen - CW### = “with-grain”, CA### = “against-grain”

PCEA specimen - DW### = “with-grain”, DA### = “against-grain”

IG-110 specimen - EW#### = “with-grain” (isotropic so no “against grain” direction)
1G-430 specimen - FW#### = “with-grain” (isotropic so no “against grain” direction)
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224. Determining the Physical Positions of Piggyback Specimens in the
Central Stack

Similar to the AGC-1 design, the AGC-2 piggyback specimens were contained within the central
stack and did not have an applied stress imposed. Because AGC-2 has the same number of major and
minor graphite types as the AGC-1 design, the same piggyback stacking order was used.['*!”]

One major change to AGC-2 piggy-back specimens was the elimination of a central hole through
each graphite-type specimen. AGC-1 piggyback had a central hole to allow a series of SiC temperature
monitors to be placed down the central spine of the experiment to provide independent temperature
measurements from the capsule thermocouples (TC). Unfortunately, this central hole in the specimens
precluded thermal diffusivity testing on the specimens above room temperature.

A decision was made to not machine a central hole in the AGC-2 piggyback specimens and allow
each to be tested for high temperature thermal diffusivity. This eliminated the independent temperature
monitoring capability for the AGC-2 capsule, but it was determined that being able to measure the
changes to the thermal diffusivity at high temperatures was of more importance.

3. GENERAL TESTING PROVISIONS

A significant level of preparation was needed to meet Nuclear Quality Assurance Level 2 quality
requirements prior to actual material property testing. An approved characterization plan was developed
that was dependent upon the two graphite specimens’ geometry and on the material properties to be
measured. In general, all testing was performed through ASTM approved standards; however, due to
small size of the graphite specimens some methods required modifications and variations of the testing
standards. Details of these testing standard variations along with equipment calibration, personnel training
on testing methodology, and data acquisition are provided.

3.1. Characterization Plans and Work Procedures

The AGC-2 specimens have been characterized in accordance with PLN-3267, “AGC-2
Characterization Plan.”!'®) This plan describes thermal, physical, and mechanical measurement methods
used to characterize the graphite specimens and is intended to meet the requirements of MCP-1380,
“Research and Development Test Control.”!'” Described within the plan are the instruments, fixtures, and
methods used for preirradiation material-property measurements of bulk density, thermal diffusivity,
coefficient of thermal expansion (CTE), elastic modulus, and electrical resistivity.

All work was performed in accordance with LWP-21220, “Work Management.”!'® All records
designated in implementing documents as Quality Assurance records were controlled in accordance with
PLN-3319, “Records Management Plan for the VHTR Technology Development Office Program.”!!]

Data resulting from the preirradiation characterization are plotted in Appendix A and listed in
Appendix C. Statistical evaluation has been performed using an inner quartile range analysis to identify
levels of uncertainty and outliers in the data. The measured properties and characteristics of different
graphite types will be compared along with the effect of grain orientation.

17



3.2. Specimen Description and Preparation

The major grades of the nuclear graphite to be tested in AGC-2 are NBG17, NBG-18, PCEA, 1G-430,
H-451, 2114, and 1G-110. Minor grades of graphite include NBG-25, PCIB, PPEA, NBG-10, BAN,
HLM, PGX, 2114, HOPG, and A3 Matrix. All major grades have been characterized fully in accordance
with PLN-3267, and the minor grades have only had dimensional, density, and thermal diffusivity
measurements performed on them. The two primary specimen types in the AGC experiments are creep
specimens and piggyback specimens. “Creep” specimens from major grade graphite types are shown in
INL Drawing 600786, Rev. 1, “ATR Advanced Graphite Capsule (AGC-2) Graphite Specimen
Machining Details,”!*”! and will be subjected to a mechanical load during irradiation to induce irradiation
creep within the specimens. “Piggyback” specimens from both major and minor grade graphite types are
shown in INL Drawing 600786, Rev. 1. They are not subjected to a mechanical load and are subjected
only to neutron irradiation at high operating temperatures to assess the effects of a reactor environment on
the specific graphite grade.

All specimens are 12.7 mm in diameter, with the creep specimens being 25.4 mm long and the
piggyback specimens being 6 mm long (INL Drawing 600786, Rev. 2).!'” Details of how specimens were
cut from the graphite blocks are contained in INL Drawing 600787, Rev. 3.1*!!

Immediately after being machined, each specimen is placed in an individual container that is bar
coded with a unique identification number, in accordance with INL Drawing 600787, Rev. 3. Each
graphite specimen is then laser-engraved with that same unique identification number around the
circumference at one end. Prior to any material property measurement, each specific specimen is
identified by its unique identification number, and the data are recorded/stored under this identification
number. After the specimens have been laser-engraved, they are ultrasonically cleaned, as follows:

Handle the specimens only while wearing cotton or powder-free nitrile gloves
Remove all dust and debris using an aerosol pressurized dust-off product
Ultrasonically clean specimens for 20 minutes in deionized water

Rinse specimens in ethyl alcohol to help displace water

Allow to air dry

Place specimens in a laboratory oven at 130°C for 2 hours.

N kD

Allow specimens to cool in a desiccator and retain there in storage until resistivity or bulk density
measurements are taken.

It should be noted that irradiated specimens are not washed again prior to characterization
measurements. However, for measurements of density and resistivity, Steps 6 and 7 above are followed
(i.e., irradiated specimens are dried in a laboratory oven at 130°C for 2 hours and allowed to cool in a
desiccators, where they are retained until resistivity and/or bulk density measurements are performed).

3.3. Personnel and Training

Personnel who perform the measurements identified in this report are qualified in accordance with
MCP-3052, “VHTR TDO Personnel Qualification and Certification.”” Their ability to adequately
perform measurements described in this report is demonstrated by instrument manufacturers’ training and
certification and/or performance of an instrument/measurement operational validation. Personnel
qualifications are reviewed by the NGNP Graphite Research and Development Technical Lead and
documented in the laboratory notebooks.
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3.4. Variations, Exceptions, and Discrepancies

Several variations, exceptions, and discrepancies may occur. The first is a known departure from the
applicable American Society for Testing and Materials (ASTM) standard. These departures are typically
related to geometrical constraints. All currently known departures or exceptions taken to the ASTM
standard are described in detail in Section 3 of this plan. Any departure not captured in this plan will be
recorded in laboratory notebooks associated with the measurement. In most cases, the effects of the
exception or departure from the ASTM method/standard on the measured value are not well understood.
When possible, sensitivity studies will be performed and documented in laboratory notebooks to
understand the impact of these exceptions and departures.

It is likely that the ASTM standards and/or test methods will be revised and improved during the
10+ year AGC experiment cycle. Each revision or development will be evaluated for how it could impact
future measurements and their consistency with measurements made under previous revisions or
techniques. A programmatic determination will be made whether to continue with the current version of
the ASTM method or use the updated version. This determination will be documented in laboratory
notebooks associated with the affected measurement.

While measurements are being made, it is possible that something out of the ordinary may occur. Any
unusual event that occurs during a measurement will be documented in the laboratory notebook
associated with that specific measurement and duly noted within the database associated with the data
generated for this program. The principal investigator will be notified of the event and will determine
what impact it has on the data. The significance of the result will be documented in the laboratory
notebook by the principal investigator.

3.5. Calibration and Functional Validation

The measurement protocol consists of calibration, functional validation, and data acquisition.
Functional validations established for each measurement, in collaboration with the instrument
manufacturer, will be performed periodically to ensure that accurate and consistent data are acquired. All
validations will be performed on traceable standards and documented in retrievable laboratory notebooks
associated with each measurement. In the event that an instrument functional validation fails, the reason
for the failure will be investigated and resolved prior to that measurement being used for further
characterization. Upon resolution, a determination will be made as to the impact the failure might have
had on data taken prior to the failure and back to the last valid measurement. If it is determined the data
captured during this interval are suspect, the impacted data will be evaluated for accuracy.

MCP-3066, “VHTR TDO Control of Measuring and Test Equipment,”** will be followed for
calibration standards, methods, and frequencies that have been established for each measurement. Where
it is not possible to use the INL Standards and Calibration Laboratory, calibration by user procedures will
be established, based on ASTM standards and manufacturers’ instructions and performed against
international standards. These procedures will be documented in laboratory notebooks associated with
each measurement.

4. GRAPHITE STANDARDS AND METHODS

A brief summary of the AGC specimen testing methods is included in Table 4 and includes precise
dimensional measurements (before and after heating to 1000°C in the dilatometer) and nondestructive
characterization of the physical properties. A detailed description of each preirradiation testing method is
provided in Section 5, “Detailed Description of Test Methods.”
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Table 4. NGNP graphite specimen measurement and test equipment.

Measurement

Standard

Instrumentation

Calibration Method

Result

Physical
dimensions and
mass

ASTM C559-90
(reapproved 2010)

Mitutoyo Micrometer
121-155

INL ID: 725884

INL ID: 727312
Mitutoyo Caliper CD-6 in
CSX

INL ID: 725813

INL ID: 726607

INL ID: 727194
Sartorius Scale ME235P
INL ID: 412642

INL ID: 415907

INL Standards and
Calibration Laboratory

Bulk density

Fundamental
frequency

ASTM C747-93124
(reapproved 2010)
ASTM
C1259-081

J. W. Lemmens
Grindosonic
INL ID: 412850

No calibration required
per instrument
manufacturer

Elastic
modulus

Sonic velocity

ASTM C769-0912¢]

Olympus NDT Sq. Wave
Pulser/Receiver 5077PR
INL ID: 728024
National Instruments
Digitizer USB 5133

INL ID: 726725

INL ID: 415868

INL Standards and
Calibration Laboratory

Young’s
modulus, Shear
modulus,
Poisson ratio

INL ID: 727884
INL ID: 727502

Four-point ASTM C611-98 Kiethly 6220 Precision INL Standards and Electrical
electrical (reapproved 2010) | Current Source Calibration Laboratory |resistivity
resistivity INL ID: 725865

INL ID: 727290

Kiethly 2182A Nano

Voltmeter

INL ID: 725866

INL ID: 727289
Laser flash ASTM E1461-07 | Netzsch LFA 457 2 ea. Calibration by user per | Thermal
diffusivity INL ID: 412855 manufacturer’s diffusivity

INL ID: 412864 instructions
Push rod ASTM E228-06 Netzsch DIL 402 C 2 ea. |Calibration by user per | Coefficient of
dilatometry INL ID: 412860 manufacturer’s thermal

INL ID: 412861 instructions expansion
Environmental | All Visala Pressure, Humidity |INL Standards and Laboratory
monitoring and Temperature PTU301 |Calibration Laboratory |environmental

INL ID: 726912 conditions
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The equipment necessary for the measurements listed in Table 4 are segregated into individual
stations. Each station has a bar scanner for reading unique specimen identification bar codes, a computer
for automated data acquisition, and the test equipment. The bar code of the individual specimen container
is read, and the file for that specimen is automatically opened for data input prior to each measurement.
Associated with each measurement type/station is a unique laboratory notebook maintained in accordance
with MCP-2875, “Maintaining Laboratory Notebooks,*”! and PLN-2690, “VHTR Technology
Development Office Quality Assurance Program Plan,”** paragraph 3.3. Accepted data are stored in the
NGNP Data Management and Analysis System, a satellite file location for NGNP. Data are transmitted in
standardized Excel file format to the NGNP Data Management and Analysis System using Form 435.78,
“VHTR Technology Development Office Information Input Sheet,”” in accordance with PLN-3319.

In addition to data stored in laboratory notebooks, the specific measuring instruments are networked
to a server computer where the measurement data are automatically stored. This has been implemented in
the INL Carbon Characterization Laboratory where custom LabVIEW software was written to facilitate
automated data acquisition. This software comprises five main programs: Manufacturers Data, Physical
and Dimensional Measurements, Electrical Resistivity Measurements, Sonic Resonance (Fundamental
Frequency) Measurements, and Sonic Velocity Measurements. These five programs acquire data from
instrumentation or user input and record the results in an Excel spreadsheet located on a server computer.
In the case of thermal expansion and thermal diffusivity measurements, two other LabVIEW programs
have also been written to parse vendor software-acquired data into Excel spreadsheets. MCP-3058,
“VHTR TDO Software Quality Assurance,”% and FRM-959, “VHTR Software Management Plan,”B!
are currently used to govern the development, accuracy, and configuration control of this software.

Measurements are made in the following sequence:

1. Wash and dry — all specimens

2. Mass and dimensions — all specimens

3. Thermal diffusivity — piggyback specimens

4. Elastic modulus by sonic resonance — creep specimens

5. Electrical resistivity — creep specimens

6. FElastic modulus by measurement of sonic velocity — creep specimens
7. Wash and dry to remove couplant — creep specimens

8. Coefficient of thermal expansion — creep specimens

9. Postcharacterization of mass and dimensions — all specimens.

5. DETAILED DESCRIPTION OF TEST METHODS

Before any measurements are made, specimen numbers and basic information about each type of
graphite will be entered into the manufacturer’s data program. Once basic information about the graphite
type has been recorded, it will be automatically saved to an Excel spreadsheet file, and the individual
specimen numbers will be entered using a bar code reader. Following the initial input of general
information, individual material property measurements will be made, starting with mass and dimensional
measurements for determining bulk density.
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5.1. Mass, Dimensions, and Bulk Density

Dimensional change is one of the key parameters affecting the performance of graphite in a neutron
environment. Determining volumetric and linear dimension as a function of temperature and radiological
dose is necessary to understand critical performance measures (e.g., dimensional change turnaround,
irradiation creep, and internal stresses imposed upon graphite components). Dimensional and mass
measurements will be performed to ASTM Standard C559-90, “Standard Test Method for Bulk Density
by Physical Measurements of Manufactured Carbon and Graphite Articles” (reapproved 2010),7% which
describes in detail the procedure for making dimensional measurements and calculating bulk density.

The accuracy of the dial micrometers used here is stated by the manufacture to be 2 pm. For the
larger graphite creep specimens with a 25.4 mm length measurement this corresponds to a 0.008%
accuracy for this technique. However, when evaluating the uncertainty of the density determination other
factors must be considered, such as, the hardness of the material and the force with which the micrometer
blade is engaged with the material, specimen temperature variation, technician skill, etc. These and other
factors were considered in a propagation of error analysis to arrive at an uncertainty of 0.08% with the
measurement of the specimen diameter being the largest contributor to the error.

5.2. Electrical Resistivity

Electrical resistivity is used as a rapid, simple means to determine grain orientation, structure, and
crystallinity of graphite. In conjunction with optical microscopy, it can be used to determine the
microstructural texture of graphite components without much specimen preparation work. Resistivity is
measured following ASTM C611-98, “Standard Test Method for Electricity Resistivity of Manufactured
Carbon and Graphite Articles at Room Temperature” (reapproved 2010).5% The measurement technique
is commonly referred to as “four-point probe.” It consists of passing a known current through the
specimen and measuring the voltage across the specimen at known locations. Based on Ohms law, the
resistance is determined, and the resistivity is calculated from Equation (1):

p=R-A/L 0
where
p = Electrical resistivity

R =  Measured resistance
A = Cross sectional area
L = Length over which the voltage is measured.

Figure 8 shows a test fixture fabricated at INL that allows a specimen to be rotated for multiple
measurements of voltage around its periphery.
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Figure 8. Electrical resistivity measurement station.

Uncertainty in the resistivity measurement is mainly comprised of the contact resistance between the
specimen and the contacting blades for the voltage measurement. Specimen temperature and the
temperature of other bimetal junctions in the voltage measuring leads are also significant factors. These
effects are minimized by passing the current through the sample in two directions and averaging the
measured voltage for each direction. In this way any thermoelectric or small differences in junction
resistances will cancel. A round robin test series reported in ASTM C 611 precision and bias section
states a lab to lab variability of 2.5%. A round robin test series such as this would take into account the
variables discussed above and is considered a good estimate of the measurement uncertainty.

5.3. Approximation of Elastic Modulus from the
Measurement of Sonic Velocity

The mechanical properties of graphite are necessary to determine the structural integrity of graphite
components. These properties are vital to determining the viability of the structural strength and integrity
of the reactor core. The as-received and irradiated values are needed for whole-core models, which will be
used for the graphite design code. This test is carried out in accordance with ASTM C 769-09, “Standard
Test Method for Sonic Velocity in Manufactured Carbon and Graphite Materials for Use in Obtaining
Young’s Modulus.”?® In this measurement, the transmitting piezoelectric transducer sends a 2.25-MHz
sound wave through the specimen. At the opposite end of the specimen, the acoustic wave is received by
another piezoelectric transducer. The sonic velocity of the specimen is the ratio of specimen length to the
signal time lapse between transducers. An approximate value for Young’s modulus, E, can be obtained
from Equation (2):

E=pV’ 2)
where

E = Young’s modulus

p = Specimen density

V = Sonic velocity.
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Figure 9 shows the sonic velocity measurement station. In the foreground are fixtures for clamping
the specimen between the transducer and receiver. These fixtures have unique features that improve
measurement accuracy, precision, and efficiency. Specimens are easily and rapidly loaded into the fixture
using the cam-operated clamp. Measurement precision is improved because the spring-loaded clamp
applies consistent pressure between the transducers and specimen, resulting in repeatable couplant
thickness.

As specified in paragraphs 8.1 and 8.5.1 of ASTM C 769-09, a suitable coupling medium should be
used and reported with the data. Here, “Shear Gel,” manufactured by Sonotech, Inc., is used for a shear
wave couplant, and “Ultra Gel I1,” also manufactured by Sonotech, Inc., is used for the transverse wave
couplant.

Figure 9. Sonic velocity measurement station.

Figure 9 shows the LabVIEW software user interface display for sonic velocity measurements after
scanning the bar code of the specimen to be tested. This screen is used to acquire sonic velocity
measurements of a specimen in both the longitudinal and shear directions. Operating much like an
oscilloscope, the cursors automatically mark the time between the transmitted wave and the received
wave. Also shown in Figure 10 are two examples of the shear wave and transverse wave timing locations
for properly coupled specimens. The specimen length divided by this transit time yields the sonic
velocity.

The uncertainty in determining of elastic moduli from the measurement of sonic velocity comes from
several sources. First there is the effect of material and geometry related dispersion of the transmitted
wave. ASTM C-769 provides guidance on how to minimize this problem by choosing the correct
frequency. This technique also assumes linear elastic behavior and graphite is not completely linearly
elastic. And finally, the operator’s judgment on the positions of the timing cursors is somewhat objective.
Clean wave forms to base these judgments on are highly dependent on the quality of the
transducer-material coupling. These sources of error are difficult to quantify and therefore difficult to
combine in a propagation of error analysis. However, ASTM C769 describes in some detail a round robin
test series between different labs. Using round robin test data to determine a coefficient of variation
(COV) is a good means of estimating the measurement uncertainty. With caution, the COV of 3.8%
(reported in C769) is taken here to be representative of the uncertainty for these measurements. When
considering a single material and making comparisons between the pre and post irradiation signal values
the precision of these measurements is good enough to consider differences greater than 4% significant.
However, one is cautioned to refrain from using the values here as absolute or better than + 10% accurate.
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Figure 10. Sonic velocity measurement user interface.

After the longitudinal and shear modulus values have been determined, each specimen Poisson’s ratio
can be calculated from these results through equation (3):

v=li
where:

v -
E =
G =

]-1

Poisson’s ratio
Elastic modulus

Shear modulus
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5.4. Modulus of Elasticity by Measurement of
Fundamental Frequency

Understanding the mechanical properties of graphite is necessary to determine the structural integrity
of graphitic components. These properties are vital to determining the viability of the structural strength
and integrity of the reactor core. This test method measures the fundamental resonant frequency of test
specimens of suitable geometry by exciting them mechanically with a singular elastic strike. Specimen
supports, impulse locations, and signal pick-up points are selected to induce and measure specific modes
of the transient vibration of the specimen. The transient signals are analyzed, and the fundamental
resonant frequency is isolated and measured by the signal analyzer. The measured fundamental resonant
frequency, specimen dimensions, and mass are used to calculate the dynamic Young’s modulus, shear
modulus, and Poisson’s ratio in accordance with ASTM C747-93, “Standard Test Method for Moduli of
Elasticity and Fundamental Frequencies of Carbon and Graphite Materials by Sonic Resonance,”
(reapproved 2010) in combination with apparatus and calculations described in ASTM C1259-08,
“Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for
Advanced Ceramics by Impulse Excitation of Vibration.”” The fundamental frequency measurement
station is shown in Figure 11.

Figure 11. Fundamental frequency measurement station.

After placing a specimen in the test fixture, the user excites it by lightly tapping it with a small
mechanical impulse. A consistent impulse is achieved by placing the ball hammer onto a lever that rotates
out from under the hammer as it is raised. The specimen is supported in such a way that it vibrates at its
natural frequency. A microphone placed underneath one end of the specimen, in combination with the
Grindosonic electronics, measures this frequency, which is recorded and displayed by the computer. The
modulus of elasticity is calculated and displayed next to the newly acquired frequency. If the results are
satisfactory, the user can press the “Save 1% Frequency” button and go on to the next measurement.
Following the recommendations of ASTM C-1259-08, 10 readings of the fundamental frequency are
measured before the results of the test are written to the applicable Excel spreadsheet.
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ASTM C-1259 describes in detail a round robin test series using ceramic materials along with an
analysis of the propagation of errors in the calculation of moduli from the measurement of resonant
frequency, geometry and mass of the sample. This error analysis shows the major sources of experimental
variation are the measurement of the fundamental frequency and the smallest dimension (diameter) of the
specimens due to their higher exponent in the modulus calculations. Both the propagation of error
analysis and round robin data indicated an uncertainty of less than 2%. However, the creep specimens
tested here do not meet the geometry requirements of C-1259. With the current specimen
length-to-diameter ratio of only 2 (rather than 5 as specified) the AGC-2 graphite specimens are, at times,
difficult to excite consistently and in a single mode of vibration. After significant training, an experienced
operator was able to consistently obtain a resonant frequency within 2% uncertainty for the flexural mode
of vibration within the specimens.

5.5. Thermal Expansion

Understanding the CTE for graphite components is critical for determining the dimensional changes
that occur as a result of temperature cycles. Localized external stresses can be imposed upon
mechanically interlocked graphite-core components because the individual pieces suffer differential
thermal expansion. Internal stresses can occur within larger graphite components if there is a temperature
gradient causing differential expansion within the piece (i.e., one side has a higher temperature than the
other). Finally, the thermal expansion is highly dependent upon the graphite microstructure
(e.g., orientation/anisotropy, pore size and distribution, and crystallinity). Irradiation damage can
significantly alter graphite microstructure and thus CTE values. Determining the extent of the changes as
a function of irradiation dose and temperature will be a key parameter for reliable calculation of stress
states within graphite components, volumetric changes, and irradiation creep rates.

The CTE measured here follows ASTM E228-06, “Standard Test Method for Linear Thermal
Expansion of Solid Materials with a Push-Rod Dilatometer.”**! This test method uses a push-rod type
dilatometer to determine the change in length of a graphite specimen relative to that of the holder as a
function of temperature from the specified reference temperature. The temperature is varied over the
desired range at a slow, constant heating or cooling rate. The linear thermal expansion and mean CTE, o,
are calculated from the recorded data using Equation (4):

q— LAL
L, AT )
where
o =  Mean CTE
Lo = Specimen initial length
AL = Change in length
AT =  Temperature difference between a specified reference temperature and the temperature at

which the change in length was measured.

The Netzsch DIL 402 C commercial system, shown in Figure 12, currently used at INL does not have
the capability to cool the specimen below ambient temperature. Therefore, the initial length at 20°C is
linearly extrapolated from expansion data between 100 and 150°C, and the mean CTE is calculated from
a 20°C reference temperature.
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Figure 12. Commercial push rod dilatometer for measuring the coefficient of thermal expansion.

The greatest source of experimental error in the dilatometry method described here is the correction
made for the expansion of the specimen holder and push rod/LVDT mechanism. This differential between
the specimen and the apparatus must be accounted for in order to isolate the specimen expansion only.
Studies reported in the precision and bias section of ASTM E228 have indicated that this type of
dilatometry can be accurate to 4% when calibrations are performed carefully.

5.6. Thermal Diffusivity

The ability to conduct heat through the graphite core is critical to the passive removal of decay heat.
Reduction of the thermal conductivity within graphite can have a significant effect on the passive
heat-removal rate and thus the peak temperature that the core and, subsequently, the fuel particles will
experience during off-normal events. Determining changes to the conductivity as a function of irradiation
dose and temperature is important for the HTGR safety analysis. Here, ASTM E1461-07, “Standard Test
Method for Thermal Diffusivity by the Flash Method,” **! is followed for calculating thermal diffusivity
and conductivity. Thermal diffusivity (5) is measured and defined as the ratio of thermal conductivity to
volumetric heat capacity, as shown in Equation (5):

s=_F_
PC 5)
where
) = Thermal diffusivity
k = Thermal conductivity
p = Density
Cpr = Specific heat.
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The measurement is performed on small, thin, disk-shaped specimens. A pulsed laser is used to
subject one surface of the specimen to a high-intensity, short-duration energy pulse. The energy of this
pulse is absorbed on the front surface of the specimen, and the resulting rise in rear-face temperature is
recorded. The thermal diffusivity is calculated from the specimen thickness and the time required for the
rear-face temperature to reach 50% of its maximum value. Figure 13 shows a commercially available
laser flash apparatus, complete with vendor-developed software for instrument control and data
acquisition.
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Figure 13. Laser flash apparatus measurement station for determining thermal diffusivity.

Uncertainty in the measurement of thermal diffusivity occurs from specimen heat loss and
temperature measurement. Specimen temperature measurement is performed with a calibrated type S
thermocouple in the near vicinity of the specimen. Being a relatively straight forward, the specimen
temperature measurement is typically a small contribution to the overall measurement error or
uncertainty.

The main contributor to the measurement uncertainty is heat loss from the specimen. Because this
measurement technique depends on the assumption of one-dimensional heat transfer from the flat face
receiving the laser pulse to the flat face radiating to the detector, heat loss errors are mainly attributed to
radiative heat loss from the circumference of the specimen at temperatures above 300°C. Typically
provided with the instrument software are several correction models to account for this heat loss. As the
specimen diameter to thickness ratio decreases the heat loss increases to the point that the correction
models no longer can account for the error. A study was performed to gain a fuller understanding of the
limits of the models made available with the NETZSCH LFA and the dependence of the diameter to
thickness ratio on measurement error. In this study the heat loss models were applied to data taken on
specimens with various diameter to thickness ratios and at specimen temperatures between 25°C and
1000°C. It was determined that the Cowan*® model along with diameter to thickness ratios greater than
or equal to 2 resulted in determination of the diffusivity within ASTM E1461 and the manufactures
specified uncertainties of 4% and 3%, respectively. This was further verified by instrument functional
tests performed monthly on a pure iron validation sample for which the diffusivity was determined to be
within 3% of the Touloukian*” values between 100°C and 700°C.

29



6. DATA ANALYSIS

Data gathered for the characterization of AGC-2 specimens is contained in the appendixes of this
report. Appendix A contains plots of the individual data points for each specimen. Shown by the dashed
lines in each plot are the upper and lower limits of the interquartile range (IQR). These limits are
established by the lesser of either the least or greatest value in the data or by multiplying the interquartile
range by 1.5 and adding or subtracting this value from the third and first quartile. Any datum value
outside of these limits is a suspected outlier of the established pattern. However, it is important to note
that these outlying values are not only subject to measurement variability but also material variability and,
therefore, cannot necessarily be discarded. These outlying values are examined in the context of the entire
data set and will be evaluated further following irradiation. Other statistical parameters are calculated and
presented in the tables of Appendix B. The mean, standard deviation and coefficient of variance are all
calculated for the different measurement data sets and graphite types. Upper and lower limits called out in
the tables of Appendix B are the IQR limits described above. Appendix C contains all of the raw data,
including parameters specified by the applicable ASTM standard (e.g., dates, performer identifier, and
room conditions).

There are many ways to combine and compare the data presented here. In doing so, the validity of the
data is exercised and scrutinized. First, the data sets are considered independently with the statistical
analysis described above. Additionally, a limited comparison of the absolute property values is performed
between different graphite types and grades. The degree of isotropy is also evaluated for a limited number
of grades by calculating the anisotropy ratio, as shown in Equation (6).

Value of the property in the against - grain direction

Anisotr tio= - - ST :
TISOUOPY TAUO =7y e of the property in the with - grain direction (6)

Note that in the case of isostatically molded graphite “with-grain” and “against-grain” indicate
specimens taken from orthogonal planes in the billet.

6.1. Analysis of Mass, Dimensions, and Density Data

Plots of the measured mass, dimensions, and density for all AGC-2 specimens are shown in
Figures A-1 through A-88 (see Appendix A). Beginning with graphite grade H-451, the calculated density
of with-grain specimens has a higher degree of scatter as compared to the against-grain specimens (see
Figure A-1). Both length and mass measurements for the with-grain specimens have relatively high COV
(see Figures A-23 and A-67, respectively), but do not compensate for each other in the distribution of
density. The higher scatter in density is most likely a result of material variation in the area of the billet
from which these specimens were machined; however, it is difficult to completely rule out measurement
inaccuracies. Therefore, the with-grain specimen length and mass measurements should be treated with
caution. Comparison to the postirradiation measurements should provide more information on this
observation.

Similar variations in density were observed in graphite grade NBG-17. In this case, a bimodal
distribution in density was observed for both with- and against-grain specimens (see Figure A-4).
Dimensional measurements were consistent and well-behaved for all specimens, but the bimodal
distribution was observed in the mass measurements. To understand this unusual distribution, a study was
completed to investigate the density as a function of depth in the NBG-17 billet. Twenty-three specimens
(12 x 12 x 5.5 mm thick) were cut from the top of the billet to a depth of ~125 mm (see Figure 14).
Figure 15 shows the density of specimens as a function of depth from the surface. In just 25 mm, the
density increases 3%. This low-density area or area of inconsistent properties at the outer surface of the
billet is often referred to as the skin effect of the billet.
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Figure 14. Schematic showing location and dimensional details of NBG-17 billet density investigation.
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Figure 15. Density of NBG-17 as a function of depth in the billet.
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Initially, it appeared unfortunate that specimens were taken from the skin of the billet, but in
hindsight, this provided a variation in a significant property. With specimens of the same graphite type
(i.e., coke, binder, and particle size) other material variables are held constant. This makes it possible to
correlate the effect of density on other intrinsic properties (e.g., resistivity, elastic modulus, and
diffusivity). Figure 16 shows an example of this for the resistivity measurements of the NBG-17
specimens. The expected difference in resistivity due to grain orientation is shown for the specimens at a
similar density of ~1.864 g/cc. The higher resistivity for low-density against-grain specimens compared to
the higher density specimens is most likely a result of higher porosity or micro-crack density inhibiting
the flow of electrons. Further discussion of the resistivity data is provided in Section 6.2 of this report.
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Figure 16. Resistivity of NBG-17 as a function of density.

Occasions arise when the determination of bulk density can be used to evaluate outliers or data that
are near the IQR limits in either the dimensional or mass measurements. For example, Figures A-24,
A-27, and A-28 show several data values for IG-110, NBG-18 and PCEA dimensional measurements that
are near or outside the IQR limits. Evaluation of the corresponding density plots, Figures A-5 and A-16,
show that all values fall within the quartile limits, with relatively low COVs. From this, it can be
concluded that the dimensional outliers are simply specimens that were machined with different
dimensions, resulting in them being outside or near the limit of the quartile analysis.

The density data of all other graphite grades (i.e., 2114, IG-110, NBG-18, NBG-25, BAN, HLM,
1G-430, NBG-10, PCIB, PPEA, A3 Matrix, and New Matrix) is well-behaved and consistent with what
was expected. The fact that these density data are so well-behaved indicates any outliers found in the
associated dimensional or mass data are simply a result of machining tolerances and are valid.

Additionally, the dimensions and mass were measured following the thermal measurement of the
CTE and diffusivity. These measurements were performed up to 1000°C, and concerns existed that the
specimens maintained some residual stress due to the machining operations and that this stress would
relax during the thermal cycle to 1000°C. Figures A-137 through A-202 contain plots of a comparison
between the pre and post thermal treatment dimensions and mass. The comparison plots of specimen
length show a slight trend of shrinkage of approximately 0.03%. For a 25-mm specimen, the accuracy of
the dial micrometers used is 0.01%. Uncertainty in the measurement comprises not only accuracy of the
dial micrometer but also other variables (e.g., room temperature, micrometer clutch wear, micrometer
blade design, and velocity of blade approach) relative to the specimen hardness. Although there is a
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definite trend to the decrease in length measurements after the thermal measurements, it is difficult to
draw concrete conclusions, considering that the length change is probably on the order of the
measurement uncertainty. Furthermore, the annealing of residual stress would tend to increase the size of
the specimen, not decrease it. However, oxidation could decrease the size of the specimen during the
thermal measurements if the furnace is not purged of all air; and indeed, the post mass measurements
trend to lower values by ~0.03% on average, indicating that a very small amount of oxidation was
occurring. Several specimens of graphite type 2114 (specimen numbers TP19 and TP21 were used as
filler piggybacks in capsules 2 and 4, respectively, and TP21 was not used in the irradiation experiment)
and NBG-18 (specimen number BP502 was not used in the irradiation experiment) displayed mass loss in
excess of 0.5% (see Figures A-185 and A-187). This suspected oxidation is corroborated in the relatively
large reduction in length and diameter of these specimens. In the analysis of postirradiation dimensional
change, these specimens will require careful evaluation, using the post thermal measurement dimensions,
if they are used for any calculation of irradiation creep.

6.2. Electrical Resistivity

Plots of electrical resistivity are shown in Figures A-119 through A-124 for graphite grades of PCEA,
NBG-18, H-451, 1G-110, IG-430, and NBG-17. All of the resistivity measurements were performed on
the creep specimens only. Several noteworthy observations resulted from the statistical analysis, and all
are related to billet density variations discussed in Section 6.1. Looking at Figure A-122, resistivity
measurements for NBG-17 were only performed on the with-grain specimens taken from central locations
in the billet where the density is consistent (refer to INL Drawing 600787, Rev. 3). In this case, the
resistivity values are extremely consistent, with a coefficient of variance of 0.3%, which is well below the
2.5% uncertainty reported in a round robin test series of ASTM C611-98. The COV of against-grain
specimens is much higher than the with-grain specimens at 2.2%. Although this value is relatively high,
analysis of the data clearly shows a correlation of specimen density to resistivity (see Figure 15), and
therefore, the high COV is a result of material density variation. A similar conclusion can be drawn for
the spread of resistivity shown in Figure A-124 for the against-grain specimens of PCEA.

An example of a simple comparison between graphite grades and grain orientation is shown in
Figure 17. Here, the resistivity values of several primary grades of graphite are plotted for both grain
orientations, and the anisotropy ratio is displayed above the bars. It is interesting to note that all current
grades of graphite have improved resistivity isotropy. This plot also shows that there is a 30% difference
in resistivity for the current graphite types of interest.
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Figure 17. Electrical resistivity for several nuclear-grade graphite types. The anisotropy ratio is called out
above each set of data bars.
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6.3. Approximation of Elastic Modulus from the
Measurement of Sonic Velocity

Figures A-125 through A-136 are plots of Young’s and shear moduli determined from the
measurement of sonic velocity. Statistical parameters are shown in Tables C-10 and C-11 for Young’s
and shear moduli, respectively. The IQR analysis does not reveal any inconsistency or outlier problems.
As with resistivity, the moduli are easily correlated with the density of the specimens. Figure 18 shows
that the sonic velocity increases with density for NBG-17. Therefore, in the calculation of the elastic
modulus (i.e., density x the velocity squared), the density effect is compounded. This known behavior
results from the fact that material containing more porosity and cracks (lower density) is more compliant
and, therefore, will have a lower modulus of elasticity. The bimodal distribution of moduli resulting from
density variations in the NBG-17 and PCEA specimens is clearly seen in Figures A-128, A-130,
and A-134.
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Figure 18. Measured longitudinal velocity as a function of density for NBG-17 creep specimens.

Table 5 shows Young’s modulus measured using the sonic velocity technique. Although the COV
includes potential material variability, these values compare favorably to a COV of 3.8% reported in the
precision and bias section of ASTM C769. Consistent with the discussion of the effects of density here, it
is observed that the highest-density graphite (i.e., NBG-17 and -18) produce the highest moduli. With the
exception of 1G-430, the modulus isotropy of the relevant graphite grades characterized here is better than
the historical grade of H-451.
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Table 5. Young’s modulus by measurement of sonic velocity.

Young’s Young’s
Graphite Modulus Modulus
Type and Against-Grain | Against-Grain | With-Grain | With-Grain
Process Mean Cov Mean COov Young’s Modulus
Method (GPa) (%) (GPa) (%) Anisotropy Ratio
H451
extruded-hist 10.29 0.94 12.06 2.94 0.85
1G-110 11.20 3.97 10.81 3.08 1.04
iso-molded
1G-430 12.01 1.94 10.46 2.54 115
iso-molded
NBG-17
vibra-molded 14.31 4.86 14.23 0.72 1.01
NBG-18
vibra-molded 15.46 1.70 16.11 1.08 0.96
PCEA 11.76 0.97 12.47 1.40 0.94
extruded
COV = coefficient of variation
GPa = gigapascals

6.4. Modulus of Elasticity by Measurement of
Fundamental Frequency

Young’s modulus, determined by measurement of fundamental frequency, is plotted in Figures A-113
through A-118, and the statistical data are contained in Table B-8. Statistically, these data are
well-behaved, with the IQR analysis showing no problems with outliers. Again, a bimodal effect of
density is shown for the against-grain specimens of NBG-17 (see Figure A-116).

Table 6 shows a comparison of Young’s modulus from the measurement of fundamental frequency
for the primary grades of graphite. The COVs for all except the against-grain specimens of PCEA
compare favorably with ~3% uncertainty in the measurement technique. The scatter in modulus values for
the against-grain specimens can be seen in Figure A-118. It was noted throughout the resonance testing of
PCEA that achieving consistent values for the resonant frequency was difficult. More than 100 strikes
were necessary to obtain 10 consistent values, and the average standard deviation of the frequencies
measured was an order of magnitude higher than that of the other graphite grades. This can only be
explained by the relatively large elongated porosity that existed in the PCEA graphite billet tested. This
porosity is termed “wiggler porosity,” and based on the testing in this program, the manufacturer has
since corrected this problem in their manufacturing process. These elongated pores appear as cracks that
run parallel to the grain and extrusion direction. In against-grain specimens, the size of these cracks or
flaws can be on the order of the diameter of the specimen and run perpendicular to the direction of the
flexural vibration mode, causing very inconsistent damping of the vibrational energy.

Also shown in Table 6 is the consistent fact that the new grades of graphite being tested exhibit better
isotropy.
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Table 6. Young’s modulus by measurement of fundamental frequency.

Young’s Young’s
Graphite Modulus Modulus
Type and Against-Grain | Against-Grain | With-Grain With-Grain
Process Mean Cov Mean CoVv Young’s Modulus
Method (GPa) (%) (GPa) (%) Anisotropy Ratio
H451
extruded-hist 8.01 1.64 9.94 3.07 0.80
IG-110 9.99 2.92 9.65 3.16 1.04
iso-molded
1G-430 10.64 2,07 9.39 2.43 113
iso-molded
NBG-17
vibra-molded 11.28 451 11.16 0.29 1.01
NBG-13 11.99 1.59 12.42 0.84 0.97
vibra-molded
PCEA 8.73 2335 9.92 2.38 0.87
extruded
COV = coefficient of variation
GPa = gigapascals

6.5. Thermal Expansion

Mean CTE data are plotted in Figures A-89 through A-112. A statistical evaluation of the CTE data
was performed at three discrete temperatures (i.e., 100, 500, and 900°C) for each graphite type. Again, the
dashed lines in these plots indicate the upper and lower IQR limits, and there are no outliers to consider.
Tables B-5 through B-7 (see Appendix B) contain the mean, standard deviation, and COV values for data
evaluated at the discrete temperatures. With the exception of PCEA, all COVs are below or on the order
of the £3% measurement uncertainty when calculated for the with- and against-grain specimen groups
individually.

Figure 19 shows the average of all specimens for several of the primary grades of graphite, with error
bars indicating £1 standard deviation. All increase with temperature in a near-linear fashion between
100 and 1000°C. As an example of how these data may be used in future reactor designs, engineers will
need to account for the fact that NBG-18 has a mean CTE that is ~50% higher than the historical grade
H-451 if that grade is chosen for the core material.
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Figure 19. Mean coefficient of thermal expansion for several types of nuclear-grade graphite as a function
of temperature. Error bars represent +1 standard deviation in the data used to obtain the averages plotted.

Measurements of CTE were performed on both with-grain and against-grain specimens. Figure 20

shows the CTE anisotropy ratio for the same primary grades of graphite as a function of temperature. All
are relatively constant with temperature. As in other properties, the new grades are more isotropic.
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6.6. Thermal Diffusivity

Plots of thermal diffusivity are shown in Figures A-203 through A-266. As with the CTE data,
discrete temperatures of 100, 500, and 1000°C were statistically evaluated. Table B-16a through B-18c
contain values of the mean, standard deviation, and COV. Four graphite types show COVs that are higher
than the measurement uncertainty of +3%. Graphite types A3 Matrix and New Matrix are both extremely
small-batch graphite specimens, mixed and pressed individually with intentional variations in their
composition. Therefore, it is not surprising that these specimens vary in their thermal diffusivity. The
variation in diffusivity of PCEA is most likely due to the material variable called wiggler porosity
discussed in Section 3.1, and it is speculated that the variation in H-451 is also due to material variability
in the billet. For the most part, the diffusivity data are well-behaved, with only a few values that
somewhat exceed the IQR limits and again are most likely a result of slight material variability.

Figure 21 shows the average thermal diffusivity for four of the primary graphites of interest. Error
bars are +1 standard deviation and, in most cases, are smaller than the plotted symbol. Also shown on the
alternate ordinate is the percent difference between the historical grade of graphite H-451 and the
relatively new grade, IG-110. The current grades of graphite all have a lower diffusivity than the
historical grade, H-451, with IG-110 being 20-33% lower, depending on the temperature. H-451 is an
extruded grade graphite made with relatively large filler coke particle size (0.5 mm). IG-110 is an
isomolded graphite and has a filler particle size of 20 microns. This is why H-451 has a high diffusivity in
the with-grain orientation. As seen in the CTE measurements, these differences in diffusivity are
significant and will need to be considered in future reactor designs.

Figure 22 shows the anisotropy ratio for the same graphite grades. The anisotropy for all grades of
graphite are constant with temperature, and as with the other properties, the current grades of graphite
show much-improved isotropy of thermal diffusivity.
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Appendix A

AGC-2 Pre-irradiation Data
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Figure A-1. H-451 Creep Pre Thermal Measurement Density.
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Figure A-2. 1G-110 Creep Pre Thermal Measurement Density.
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Figure A-3. IG-430 Creep Pre Thermal Measurement Density.
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Figure A-4. NBG-17 Creep Pre Thermal Measurement Density.
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Figure A-5. NBG-18 Creep Pre Thermal Measurement Density.
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Figure A-6. PCEA Creep Pre Thermal Measurement Density.
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Figure A-7. 2114 Piggyback Pre Thermal Measurement Density.
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1.93

Figure A-8. A3 Matrix Piggyback Pre Thermal Measurement Density.
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Figure A-9. BAN Piggyback Pre Thermal Measurement Density.
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Figure A-10. H-451 Piggyback Pre Thermal Measurement Density.
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Figure A-11. HLM Piggyback Pre Thermal Measurement Density.
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Figure A-12. 1G-110 Piggyback Pre Thermal Measurement Density.
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Figure A-13. 1G-430 Piggyback Pre Thermal Measurement Density.
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Figure A-14. NBG-10 Piggyback Pre Thermal Measurement Density.
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Figure A-15. NBG-17 Piggyback Pre Thermal Measurement Density.
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Figure A-16. NBG-18 Piggyback Pre Thermal Measurement Density.
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Figure A-17. NBG-25 Piggyback Pre Thermal Measurement Density.
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Figure A-18. New Matrix Piggyback Pre Thermal Measurement Density.
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Figure A-19. PCEA Piggyback Pre Thermal Measurement Density.
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Figure A-20. PCIB Piggyback Pre Thermal Measurement Density.
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Figure A-21. PGX Piggyback Pre Thermal Measurement Density.
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Figure A-22. PPEA Piggyback Pre Thermal Measurement Density.
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Figure A-23. H-451 Creep Pre Thermal Measurement Length.

53



Against Grain Data

With Grain Data

Against Grain Upper

Against Grain Lower

With Grain Upper

With Grain Lower

25.44

25.42

25.40

25.38

(ww) y18uan

25.36

25.34

25.32

25.30

Specimen|ID

Figure A-24. 1G-110 Creep Pre Thermal Measurement Length.
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Figure A-25. 1G-430 Creep Pre Thermal Measurement Length.
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Figure A-26. NBG-17 Creep Pre Thermal Measurement Length.
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Figure A-27. NBG-18 Creep Pre Thermal Measurement Length.
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Figure A-28. PCEA Creep Pre Thermal Measurement Length.
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Figure A-29. 2114 Piggyback Pre Thermal Measurement Length.
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Figure A-30. A3 Matrix Piggyback Pre Thermal Measurement Length.
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Figure A-31. BAN Piggyback Pre Thermal Measurement Length.
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Figure A-32. H-451 Piggyback Pre Thermal Measurement Length.
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Figure A-33. HLM Piggyback Pre Thermal Measurement Length.
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Figure A-34. 1G-110 Piggyback Pre Thermal Measurement Length.
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Figure A-35. 1G-430 Piggyback Pre Thermal Measurement Length.
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Figure A-36. NBG-10 Piggyback Pre Thermal Measurement Length.
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Figure A-37. NBG-17 Piggyback Pre Thermal Measurement Length.
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Figure A-39. NBG-25 Piggyback Pre Thermal Measurement Length.
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Figure A-40. New Matrix Piggyback Pre Thermal Measurement Length.
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Figure A-41. PCEA Piggyback Pre Thermal Measurement Length.
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Figure A-42. PCIB Piggyback Pre Thermal Measurement Length.
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Figure A-43. PGX Piggyback Pre Thermal Measurement Length.
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Figure A-44. PPEA Piggyback Pre Thermal Measurement Length.
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Figure A-45. H-451 Creep Pre Thermal Measurement Diameter.
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Figure A-46. 1G-110 Creep Pre Thermal Measurement Diameter.
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Figure A-47. 1G-430 Creep Pre Thermal Measurement Diameter.
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Figure A-48. NBG-17 Creep Pre Thermal Measurement Diameter.
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Figure A-49. NBG-18 Creep Pre Thermal Measurement Diameter.
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Figure A-50. PCEA Creep Pre Thermal Measurement Diameter.
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Figure A-51. 2114 Piggyback Pre Thermal Measurement Diameter.
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Figure A-52. A3 Matrix Piggyback Pre Thermal Measurement Diameter.
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Figure A-53. BAN Piggyback Pre Thermal Measurement Diameter.
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Figure A-54. H-451 Piggyback Pre Thermal Measurement Diameter.
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Figure A-55. HLM Piggyback Pre Thermal Measurement Diameter.

69




- e e = e e e e = e e e m e e e e e e e = e = o e = = e = e = = = -

- o e e o = e o e mm o e o e e wm m e e e e e e = = e = -

12.75

12.74

12.74

{wiw) sayawe)q

12.73

12.73

12.72

60 FIAT

Z0STAT

TTrTAd

S05TA

ZTSTAd

90 FTAMI

20 FTAT

B05TAT

TosTAMg

FOSTAG

0T FEAT

T0rTA

60STA

TT5TAd

0TSTAMI

a05TMI

E0FIAT

E0STAG

0PI

ETFIAg

LOSTAT

0 FTAT

S0FTA

L0PTAT

SpecimenID

Figure A-56. 1G-110 Piggyback Pre Thermal Measurement Diameter.
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Figure A-57. 1G-430 Piggyback Pre Thermal Measurement Diameter.
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Figure A-60. NBG-18 Piggyback Pre Thermal Measurement Diameter.

12.77

12.76

12.75

12.74
12.73

{ww) J21a1we)q

12.72

12.71

12.70

12.69

90-TIN

B0-TIN

rO-ZIN

EO-TIN

ED-TIN

£0-TIN

90-ZIN

LO0-ZIN

0T-TI

SO-ZIN

TO-TIN

ZT-TIN

B60-TIN

B0-TIN

60-TIN

ET-TW

E0-TIN

TO-ZN

E0-ZIN

FO-TIN

0Tz

TT-TIN

TT-TIN

S0-TIN

SpecimenID

Figure A-61. NBG-25 Piggyback Pre Thermal Measurement Diameter.
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Figure A-63. PCEA Piggyback Pre Thermal Measurement Diameter.
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Figure A-64. PCIB Piggyback Pre Thermal Measurement Diameter.
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Figure A-65. PGX Piggyback Pre Thermal Measurement Diameter.
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Figure A-67. H-451 Creep Pre Thermal Measurement Mass.




il o [ [ [ |
] L] 1l
L/ FT
g
! . 18 =& 5 g
.. M a 8 3 3 a 3
.. e & £ g 518
52§ F 2 o
_- i [[| &.m&&m.m
" o WozdEE g
1 » 1l 525§ EE
® € 2 a4 a = =
1| e [l 11
° L ] I
| L ._. [ I I |
1| e (i
1 ¢ F'l
]
.- ]|
] * [[|
]
...- 1l
I|e ]|
.
1 o Il
L
1 L e Il
... ]|
] [[|
.
... 1l
] .O ]|
1| e 1
Y [
.
(. [
] L] [[|
°
l. [[|
e [[|
]
Il e [l
°
| o __o
.o. "
" e “
°
.... [l
1 ® 1l
°
1 P
]
1® 4 [
®
_. L 1l
] ]|
)
.. L [[|
1 ol
°
1| e 1l
°
[ o [
I b [l
1| @ [[|
°
.. [} [[|
(L ]|
L
] _m..
S 0 W & o O 0 W s ~N O 00 W s ™~ O 0
e T T B B T R R O T B S Tt B B
[ o T o T o X o T o T ¥ o T o T ¥ o T o ¥ o T ¥ o T ™ o ¥ o T o N o I s I o ]

(8) ssel

SpecimenID

Figure A-68. IG-110 Creep Pre Thermal Measurement Mass.
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Figure A-69. 1G-430 Creep Pre Thermal Measurement Mass.
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Figure A-71. NBG-18 Creep Pre Thermal Measurement Mass.
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Figure A-72. PCEA Creep Pre Thermal Measurement Mass.
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Figure A-73. 2114 Piggyback Pre Thermal Measurement Mass.
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Figure A-75. BAN Piggyback Pre Thermal Measurement Mass.
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Figure A-76. H-451 Piggyback Pre Thermal Measurement Mass.
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Figure A-77. HLM Piggyback Pre Thermal Measurement Mass.
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Figure A-78. 1G-110 Piggyback Pre Thermal Measurement Mass.
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Figure A-79. 1G-430 Piggyback Pre Thermal Measurement Mass.
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Figure A-80. NBG-10 Piggyback Pre Thermal Measurement Mass.
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Figure A-81. NBG-17 Piggyback Pre Thermal Measurement Mass.
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Figure A-82. NBG-18 Piggyback Pre Thermal Measurement Mass.
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Figure A-83. NBG-25 Piggyback Pre Thermal Measurement Mass.
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Figure A-84. New Matrix Piggyback Pre Thermal Measurement Mass.
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Figure A-85. PCEA Piggyback Pre Thermal Measurement Mass.
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Figure A-86. PCIB Piggyback Pre Thermal Measurement Mass.
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Figure A-87. PGX Piggyback Pre Thermal Measurement Mass.
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. PPEA Piggyback Pre Thermal Measurement Mass.

6.0E-06

5.0E-06

4.0E-06

3.0E-06

T. Alpha/{1/K)

2.0E-06

1.0E-06

0.0E+00

CW - with grain specimen
CA- against grain specimen

200

400

600

Temperature (°C)

800 1000

1200

m—t—C A3 01
=—l=—CA3 02
e C A 03
m——C A3 04
|t C W 01
e CW1 02
s C W1 03
—CW2Z D1
—CW2 02
s C W2 03
el CW3 D1
e CW3 D1
| C W10 02
e C W10 03
CWI101
| m——C W11 02
—CWA1 03
CW1202
CW1203
CWIZ 01
CW1302
CW1303
CW302
cwaos
cwia01
cWa02
cwiao0z
Cw301
CW303

Figure A-89. H-451 Creep Coefficient of Thermal Expansion.
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Figure A-90. H-451 Creep Coefficient of Thermal Expansion @ 100°C.
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Figure A-91

. H-451 Creep Coefficient of Thermal Expansion @ 500°C.
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Figure A-92. H-451 Creep Coefficient of Thermal Expansion @ 900°C.
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Figure A-93. IG-110 Creep Coefticient of Thermal Expansion.
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Figure A-94. 1G-110 Creep Coeftficient of Thermal Expansion @ 100°C.
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Figure A-95. 1G-110 Creep Coefficient of Thermal Expansion @ 500°C.
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Figure A-96. 1G-110 Creep Coefficient of Thermal Expansion @ 900°C.
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Figure A-97. 1G-430 Creep Coefficient of Thermal Expansion.
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Figure A-98. 1G-430 Creep Coefficient of Thermal Expansion @ 100°C.
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Figure A-99. 1G-430 Creep Coefficient of Thermal Expansion @ 500°C.
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Figure A-100. IG-430 Creep Coefficient of Thermal Expansion @ 900°C.
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Figure A-101. NBG-17 Creep Coefficient of Thermal Expansion.
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Figure A-102. NBG-17 Creep Coefficient of Thermal Expansion @ 100°C.

4.6E-06 —

4.4E-06 |—

4.2E-06

€0 9dY
0 94v
T09dv
€0 6dv
0 6dv
T05dY
£0 bdv
70 dv
L0 9T MY
TO 9TV
£0 ETAMY
70 €TV
TO9MV
€0 SMY
TWSMV
TOSMY
€0 PV
0 Y
TO AV
€0 9TMY
£0STMY
0 5TMY
TOSTMY
£0 VT MY
0 FI MY
T0 vTMY
T0 €ETMY
£0 TTMY
0 TTMY
T0 TTMv
0 TTMY
T0TTMY
£0 0TV
0 0T MY
€0 TTMY
TO 0TV
€0 EMY
0 EMY
TO EMV
€0 TMY
WMV
TO ZTMY
0 TMV
W TMY
TO TV

Specimen ID

Figure A-103. NBG-17 Creep Coefficient of Thermal Expansion @ 500°C.
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Figure A-104. NBG-17 Creep Coefficient of Thermal Expansion @ 900°C.
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Figure A-105. NBG-18 Creep Coefficient of Thermal Expansion.
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Figure A-106. NBG-18 Creep Coefficient of Thermal Expansion @ 100°C.
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Figure A-107. NBG-18 Creep Coefficient of Thermal Expansion @ 500°C.
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Figure A-108. NBG-18 Creep Coefficient of Thermal Expansion @ 900°C.
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Figure A-109. PCEA Creep Coefficient of Thermal Expansion.
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Figure A-111. PCEA Creep Coefficient of Thermal Expansion @ 500°C.
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Figure A-112. PCEA Creep Coefficient of Thermal Expansion @ 900°C.
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Figure A-113. H-451 Creep Modulus by Sonic Resonance.
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Figure A-114. 1G-110 Creep Modulus by Sonic Resonance.
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Figure A-115. 1G-430 Creep Modulus by Sonic Resonance.
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Figure A-116. NBG-17 Creep Modulus by Sonic Resonance.
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Figure A-117. NBG-18 Creep Modulus by Sonic Resonance.
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Figure A-118. PCEA Creep Modulus by Sonic Resonance.

Figure A-119. H-451 Creep Resistivity.
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Figure A-120. IG-110 Creep Resistivity.
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Figure A-121. 1G-430 Creep Resistivity.
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Figure A-122. NBG-17 Creep Resistivity.
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Figure A-123. NBG-18 Creep Resistivity.
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Figure A-124. PCEA Creep Resistivity.
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Figure A-125. H-451 Creep Young’s Modulus by Sonic Velocity.
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Figure A-126. IG-110 Creep Young’s Modulus by Sonic Velocity.
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Figure A-127. 1G-430 Creep Young’s Modulus by Sonic Velocity.
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Figure A-128. NBG-17 Creep Young’s Modulus by Sonic Velocity.
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Figure A-129. NBG-18 Creep Young’s Modulus by Sonic Velocity.
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Figure A-130. PCEA Creep Young’s Modulus by Sonic Velocity.
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Figure A-131. H-451 Creep Shear Modulus by Sonic Velocity.

107



I I,

e
e e e e e e e e e r e e e e e e e e e e m e e m - - -

@ Against Grain

@ With Grain

== == Against Grain UL

== == Against Grain LL

== == With Grain UL

== = With Grain LL

5.3

—
[Ep]

@
<

M~ [Fp} [ae}

< < <

(edD) sninpo A seays

4.1

3.9

3.7

35

33

£060M3
0 E0MI
Z00TMI
TooTAMI
0 a0M3
E090M3
£09omd
T090M3
#050MT
£050M3
Z05oMm3
ToS0M3
0 FOMI
£0 FoM3
0 bom3
T0 FOM3
O EOMI
E0EOMT
Z0E0MI
ToEOMT
FOZOMI
E0ZOAMT
Z0zZom3
TozZom3
0 TOMI
£0TOMI
Z0ToMm3
To60MI
Z060M3
FO80MI
£080M3
Zo8om3
To80M3
0 L0MT
E0L0M3
Z0fom3
T0Z0M3
[u-E)

To6Y3

Zoev3

Toeva

[ FA-F]

T0iv3

Z0av3

Specimen D

Figure A-132. 1G-110 Creep Shear Modulus by Sonic Velocity.
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Figure A-133. 1G-430 Creep Shear Modulus by Sonic Velocity.
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Figure A-134. NBG-17 Creep Shear Modulus by Sonic Velocity.
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Figure A-135. NBG-18 Creep Shear Modulus by Sonic Velocity.
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Figure A-136. PCEA Creep Shear Modulus by Sonic Velocity.
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Figure A-137. H-451 Creep Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-139. IG-430 Creep Pre vs. Post Thermal Measurement Length Comparison.

111




Specimen

25.41 0.00
25.40 &
I -0.01
2539 S .
23
*
__ 2538 - Eog ¥ E 5
E 3 . a A L 0.02 &
E_ 3 ™ A s o @ o 9
c 25.37 s i—; H | - Py =
t s @ 3 8 o}
e B t 3 o I i ¥ g
] ]
= 2536 §—# — A = = 003 B
A
A A
25.35 L .
A A
A A L 0.04
25.34 A
A
25.33 # Pre Thermal Measurement Length
I -0.05
M Post Thermal Measurement Length A
25.32
A % Difference
25.31 T T T T T T T T T T T T T T T T T T T T T T T -0.06
SR ¢ & ¢ & P & g & & & & & & & & & & & g &
T I s T e S R L I PN
Specimen
Figure A-140. NBG-17 Creep Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-141. NBG-18 Creep Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-142. PCEA Creep Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-143. 2114 Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-144. A3 Matrix Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-145. BAN Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-146. H-451 Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-147. HLM Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-148. 1G-110 Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-149. IG-430 Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-150. NBG-10 Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-151. NBG-17 Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-152. NBG-18 Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-153. NBG-25 Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-154. New Matrix Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-155. PCEA Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-156. PCIB Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-157. PGX Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-158. PPEA Piggyback Pre vs. Post Thermal Measurement Length Comparison.
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Figure A-159. H-451 Creep Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-160. IG-110 Creep Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-161. IG-430 Creep Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-162. NBG-17 Creep Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-163. NBG-18 Creep Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-164. PCEA Creep Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-165. 2114 Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-166. A3 Matrix Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-167. BAN Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-168. H-451 Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-169. HLM Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-170. IG-110 Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-171. IG-430 Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-172. NBG-10 Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-173. NBG-17 Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-174. NBG-18 Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-175. NBG-25 Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-176. New Matrix Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-177. PCEA Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-178. PCIB Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-179. PGX Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-180. PPEA Piggyback Pre vs. Post Thermal Measurement Diameter Comparison.
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Figure A-181. H-451 Creep Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-182. 1G-110 Creep Pre vs. Post Thermal Measurement Mass Comparison.
5.90 0.05
5.85
N . . A A - 0.00
A At ‘ A
5.80 7'y X w x A A—
a A A . 4 L
" o e, ° -..i‘ ) - 005 X
IR .~y S i 5
2 A . " A B . a : : -® &
o] . @
3 g . g
5.70 010 ®
A
5.65
- -0.15
5.60 # Pre Thermal Measurement Mass
M Post Thermal Measurement Mass
‘ - -0.20
555 A % Difference
5.50 -0.25

Figure A-183. IG-430 Creep Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-184. NBG-17 Creep Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-185. NBG-18 Creep Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-186. PCEA Creep Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-187. 2114 Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-188. A3 Matrix Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-189. BAN Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-190. H-451 Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-191. HLM Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-192. 1G-110 Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-193. IG-430 Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-194. NBG-10 Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-195. NBG-17 Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-196. NBG-18 Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-197. NBG-25 Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-198. New Matrix Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-199. PCEA Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-200. PCIB Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-201. PGX Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-202. PPEA Piggyback Pre vs. Post Thermal Measurement Mass Comparison.
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Figure A-203. 2114 Piggyback Diffusivity.
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Figure A-204. 2114 Piggyback Diffusivity @ 100°C.
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Figure A-205. 2114 Piggyback Diffusivity @ 500°C.
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Figure A-206. 2114 Piggyback Diffusivity @ 900°C.
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Figure A-207. A3 Matrix Piggyback Diffusivity.
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Figure A-208. A3 Matrix Piggyback Diffusivity @ 100°C.
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Figure A-209. A3 Matrix Piggyback Diffusivity @ 500°C.
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Figure A-210. A3 Matrix Piggyback Diffusivity @ 900°C.
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Figure A-211. BAN Piggyback Diffusivity.
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Figure A-212. BAN Piggyback Diffusivity @ 100°C.
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Figure A-213. BAN Piggyback Diffusivity @ 500°C.
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Figure A-214. BAN Piggyback Diffusivity @ 900°C.
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Figure A-215. H-451 Piggyback Diffusivity.
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Figure A-216. H-451 Piggyback Diffusivity @ 100°C.
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Figure A-217. H-451 Piggyback Diffusivity @ 500°C.
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Figure A-218. H-451 Piggyback Diffusivity @ 900°C.
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Figure A-219. HLM Piggyback Diffusivity.
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Figure A-220. HLM Piggyback Diffusivity @ 100°C.
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Figure A-221. HLM Piggyback Diffusivity @ 500°C.
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Figure A-222. HLM Piggyback Diffusivity @ 900°C.
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Figure A-223. IG-110 Piggyback Diffusivity.
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Figure A-224. IG-110 Piggyback Diffusivity @ 100°C.
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Figure A-225. IG-110 Piggyback Diffusivity @ 500°C.
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Figure A-226. IG-110 Piggyback Diffusivity @ 900°C.
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Figure A-227. 1G-430 Piggyback Diffusivity.
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Figure A-228. IG-430 Piggyback Diffusivity @ 100°C.
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Figure A-229. IG-430 Piggyback Diffusivity @ 500°C.
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Figure A-230. 1G-430 Piggyback Diffusivity @ 900°C.
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Figure A-231. NBG-10 Piggyback Diffusivity.
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Figure A-232. NBG-10 Piggyback Diffusivity @ 100°C.
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Figure A-233. NBG-10 Piggyback Diffusivity @ 500°C.
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Figure A-234. NBG-10 Piggyback Diffusivity @ 900°C.
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Figure A-235. NBG-17 Piggyback Diffusivity.

159



81

80
__________ P = o am e e e n em e e e e en e m e e e e e am em e e
* e
w
% : .
o 79
E |
£
o L ]
8 78
-
@®
————————————————————————————— -.— — - — —
Z | CoSoooooooooooooooooooooooooonoos »->>:-3
s 77
&
(=] - o
© Against Grain Data
@ With Grain Data
== == Against Grain Upper
76 — = Against Grain Lower
== == With Grain Upper
== == With Grain Lower
75 T T T T v T r v
3 8 8 2 g 3 3 ] g
] o o] o o ] I I =
= = = = = = < < <
S e < = < <
Specimen ID
Figure A-236. NBG-17 Piggyback Diffusivity @ 100°C.
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Figure A-237. NBG-17 Piggyback Diffusivity @ 500°C.
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Figure A-238. NBG-17 Piggyback Diffusivity @ 900°C.
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Figure A-239. NBG-18 Piggyback Diffusivity.
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Figure A-240. NBG-18 Piggyback Diffusivity @ 100°C.
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Figure A-241. NBG-18 Piggyback Diffusivity @ 500°C.
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Figure A-242. NBG-18 Diffusivity @ 900°C.
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Figure A-243. NBG-25 Piggyback Diffusivity.
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Figure A-244. NBG-25 Piggyback Diffusivity @ 100°C.
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Figure A-245. NBG-25 Piggyback Diffusivity @ 500°C.
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Figure A-246. NBG-25 Piggyback Diffusivity @ 900°C.
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Figure A-247. New Matrix Piggyback Diffusivity.
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Figure A-250. New Matrix Piggyback Diffusivity @ 900°C.
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Figure A-251. PCEA Piggyback Diffusivity.
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Figure A-252. PCEA Piggyback Diffusivity @ 100°C.
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Figure A-253. PCEA Piggyback Diffusivity @ 500°C.
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Figure A-254. PCEA Piggyback Diffusivity @ 900°C.
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Figure A-255. PCIB Piggyback Diffusivity.
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Figure A-256. PCIB Piggyback Diffusivity @ 100°C.

32.0

[
I [
Il o |
1 I
[
I [
1® 0
(N
I [
1l
I [
le |
I [
e |
1 I
10
rog
1 I
| §
I f
e |
I [
I | ®
1 I
[
1o |
I [
I ol
1 [
e |
I [
1®
I [
1
g |
I [
1 el
1 I
1e|
I [
P I
I [
1® 0
g |
I [
le |

S = S S S S S S
P 2 & & P =2 & S

(zvwoas/ww) 2,005 @ Aaisnyia

F0-£d

£0-Ed

Z0-Ed

90-Ed

S0-Ed

20-Zd

L0-2d

a0-Zd

TOEd

0T-Zd
60-Zd

S0-Zd

t0-Zd

£0-2d
90-Td

S0-Td

+0-Td

Z0-Zd

TO0-Zd

0T-Td

60-Td

20-Td

L0-Td

£0-Td
Z0-Td

T0-Td

Specimen ID

Figure A-257. PCIB Piggyback Diffusivity @ 500°C.
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Diffusivity @ 900°C (mm/sec'2)
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Figure A-259. PGX Piggyback Diffusivity.
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Figure A-260. PGX Piggyback Diffusivity @ 100°C.
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Figure A-261. PGX Piggyback Diffusivity @ 500°C.
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Figure A-263. PPEA Piggyback Diffusivity.
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Figure A-264. PPEA Piggyback Diffusivity @ 100°C.
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Figure A-265. PPEA Piggyback Diffusivity @ 500°C.
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Figure A-266. PPEA Piggyback Diffusivity @ 900°C.
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Appendix B

Statistical Tables

Table B-1. Creep Pre Thermal Measurement Length (mm) Summary Statistics.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 25.387 0.0083 0.03 25.389 25.397 25.377
1G-110 25.379 0.0087 0.03 25.381 25.399 25.363
1G-430 25.382 0.0037 0.01 25.382 25.386 25.378
NBG-17 25.377 0.0052 0.02 25.378 25.390 25.364
NBG-18 25.365 0.0053 0.02 25.365 25.377 25.355
PCEA 25.379 0.0124 0.05 25.373 25.405 25.343

Against
Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 25.391 0.0032 0.01 25.391 25.396 25.386
1G-110 25.383 0.0064 0.03 25.385 25.388 25.375
1G-430 25.384 0.0010 0.00 25.384 25.386 25.383
NBG-17 25.377 0.0045 0.02 25.377 25.387 25.365
NBG-18 25.367 0.0020 0.01 25.368 25.371 25.362
PCEA 25.392 0.0070 0.03 25.396 25.403 25.374

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 25.382 0.0095 0.04 25.386 25.397 25.357
1G-110 25.376 0.0089 0.04 25.378 25.389 25.367
1G-430 25.381 0.0039 0.02 25.382 25.384 25.378
NBG-17 25.377 0.0057 0.02 25.378 25.390 25.365
NBG-18 25.364 0.0066 0.03 25.363 25.374 25.355
PCEA 25.375 0.0105 0.04 25.371 25.381 25.362
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Table B-2. Creep Pre Thermal Measurement Diameter (mm) Summary Statistics.

Combined
Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 12.740 0.0041 0.03 12.740 12.748 12.731
1G-110 12.734 0.0028 0.02 12.735 12.740 12.728
1G-430 12.731 0.0042 0.03 12.732 12.739 12.723
NBG-17 12.731 0.0043 0.03 12.730 12.740 12.721
NBG-18 12.730 0.0047 0.04 12.730 12.743 12.719
PCEA 12.737 0.0078 0.06 12.737 12.759 12.719
Against
Grain
Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 12.739 0.0044 0.03 12.738 12.748 12.733
1G-110 12.735 0.0030 0.02 12.735 12.740 12.730
1G-430 12.732 0.0022 0.02 12.732 12.735 12.729
NBG-17 12.729 0.0037 0.03 12.729 12.736 12.721
NBG-18 12.729 0.0028 0.02 12.729 12.736 12.725
PCEA 12.746 0.0031 0.02 12.746 12.751 12.739
With Grain
Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 12.740 0.0037 0.03 12.741 12.747 12.731
1G-110 12.734 0.0027 0.02 12.734 12.739 12.728
1G-430 12.731 0.0045 0.04 12.732 12.739 12.722
NBG-17 12.732 0.0043 0.03 12.732 12.741 12.723
NBG-18 12.731 0.0058 0.05 12.731 12.741 12.719
PCEA 12.734 0.0065 0.05 12.734 12.750 12.719
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Table B-3. Creep Pre Thermal Measurement Mass (g) Summary Statistics.

Combined
Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 5.485 0.0360 0.66 5.473 5.561 5.424
1G-110 5.654 0.0225 0.40 5.661 5.701 5.597
1G-430 5.764 0.0205 0.36 5.767 5.809 5.711
NBG-17 5.867 0.0694 1.18 5.909 5.935 5.740
NBG-18 5.948 0.0075 0.13 5.948 5.965 5.929
PCEA 5.657 0.0234 0.41 5.653 5.691 5.617
Against
Grain
Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 5.465 0.0117 0.21 5.466 5.491 5.444
1G-110 5.656 0.0234 0.41 5.662 5.701 5.602
1G-430 5.770 0.0101 0.17 5.773 5.785 5.750
NBG-17 5.879 0.0575 0.98 5911 5.935 5.788
NBG-18 5.949 0.0056 0.09 5.948 5.961 5.939
PCEA 5.683 0.0282 0.50 5.671 5.727 5.652
With Grain
Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
HA451 5.505 0.0408 0.74 5.505 5.561 5.424
1G-110 5.652 0.0220 0.39 5.659 5.686 5.604
1G-430 5.762 0.0222 0.39 5.765 5.809 5.709
NBG-17 5.857 0.0077 1.32 5.904 5.934 5.740
NBG-18 5.948 0.0088 0.15 5.949 5.965 5.929
PCEA 5.649 0.0147 0.26 5.649 5.678 5.621
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Table B-4 Creep Pre Thermal Measurement Density (g/cm’, Summary Statistics.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 1.7217 0.0110 0.64 1.7180 1.7457 1.7041
1G-110 1.7779 0.0069 0.39 1.7802 1.7918 1.7591
1G-430 1.8132 0.0062 0.34 1.8141 1.8264 1.7974
NBG-17 1.8468 0.0216 1.17 1.8601 1.8675 1.8053
NBG-18 1.8720 0.0020 0.11 1.8720 1.8761 1.8673
PCEA 1.7769 0.0060 0.34 1.7758 1.7869 1.7665

Against
Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 1.7153 0.0038 0.22 1.7156 1.7248 1.7082
1G-110 1.7784 0.0072 0.41 1.7804 1.7918 1.7633
1G-430 1.8148 0.0031 0.17 1.8157 1.8197 1.8087
NBG-17 1.8509 0.0181 0.98 1.8610 1.8675 1.8220
NBG-18 1.8719 0.0016 0.09 1.8718 1.8759 1.8686
PCEA 1.7812 0.0091 0.51 1.7773 1.7954 1.7720

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 1.7283 0.0121 0.70 1.7292 1.7457 1.7041
1G-110 1.7775 0.0068 0.38 1.7801 1.7875 1.7629
1G-430 1.8127 0.0067 0.37 1.8133 1.8264 1.7974
NBG-17 1.8433 0.0237 1.28 1.8579 1.8661 1.8053
NBG-18 1.8722 0.0024 0.13 1.8725 1.8761 1.8656
PCEA 1.7756 0.0040 0.22 1.7755 1.7848 1.7669
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Table B-5. Creep Coefficient of Thermal Expansion (1/K) at 100°C Summary Statistics.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 3.18E-06 2.40E-07 7.54 3.12E-06 3.44E-06 2.90E-06
1G-110 3.87E-06 9.32E-08 241 3.84E-06 4.09E-06 3.70E-06
1G-430 4.16E-06 2.60E-07 6.26 4.24E-06 4.48E-06 3.74E-06
NBG-17 4.50E-06 1.36E-07 3.02 4.45E-06 4.86E-06 4.32E-06
NBG-18 4.85E-06 1.33E-07 2.75 4.85E-06 5.12E-06 4.55E-06
PCEA 3.92E-06 1.53E-07 3.89 3.89E-06 4.34E-06 3.69E-06

Against
Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 3.71E-06 1.26E-07 341 3.71E-06 3.86E-06 3.57E-06
1G-110 3.82E-06 6.01E-08 1.57 3.81E-06 3.90E-06 3.76E-06
1G-430 3.63E-06 1.45E-07 4.00 3.63E-06 3.89E-06 3.49E-06
NBG-17 4.45E-06 9.95E-08 223 4.42E-06 4.71E-06 4.32E-06
NBG-18 4.88E-06 1.14E-07 2.35 4.88E-06 5.12E-06 4.70E-06
PCEA 4.05E-06 2.09E-07 5.17 4.09E-06 4.35E-06 3.69E-06

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 3.09E-06 9.90E-08 3.20 3.12E-06 3.22E-06 2.90E-06
1G-110 3.88E-06 9.49E-08 245 3.86E-06 4.09E-06 3.70E-06
1G-430 4.25E-06 1.23E-07 2.90 4.28E-06 4.48E-06 3.97E-06
NBG-17 4.70E-06 1.01E-07 2.15 4.67E-06 4.86E-06 4.56E-06
NBG-18 4.76E-06 1.49E-07 3.12 4.74E-06 5.02E-06 4.55E-06
PCEA 3.87E-06 9.52E-08 2.46 3.87E-06 4.11E-06 3.74E-06
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Table B-6. Creep Coefficient of Thermal Expansion (1/K) at 500°C Summary Statistics.
Combined
Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 3.72E-06 2.30E-07 6.17 3.66E-06 3.86E-06 3.46E-06
1G-110 4.45E-06 8.61E-08 1.94 4.44E-06 4.64E-06 4.28E-06
1G-430 4.73E-06 2.25E-07 4.76 4.80E-06 5.01E-06 4.39E-06
NBG-17 5.06E-06 1.66E-07 3.27 5.09E-06 5.46E-06 4.78E-06
NBG-18 5.43E-06 8.72E-08 1.61 5.45E-06 5.58E-06 5.25E-06
PCEA 4.54E-06 1.39E-07 3.06 4.51E-06 4.77E-06 4.37E-06
Against
Grain
Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 4.25E-06 7.61E-08 1.79 4.23E-06 4.36E-06 4.19E-06
1G-110 4.38E-06 7.61E-08 1.74 4.38E-06 4.47E-06 4.29E-06
1G-430 4.27E-06 1.17E-07 2.74 4.25E-06 4.42E-06 4.11E-06
NBG-17 5.02E-06 1.41E-07 2.81 5.05E-06 5.21E-06 4.78E-06
NBG-18 5.45E-06 7.97E-08 1.46 5.48E-06 5.58E-06 5.25E-06
PCEA 4.69E-06 1.68E-07 3.57 4.77E-06 4.88E-06 4.42E-06
With Grain
Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 3.63E-06 7.18E-08 1.98 3.65E-06 3.77E-06 3.46E-06
1G-110 4.45E-06 8.46E-08 1.90 4.44E-06 4.64E-06 4.28E-06
1G-430 4.82E-06 9.88E-08 2.05 4.81E-06 5.01E-06 4.62E-06
NBG-17 5.25E-06 1.51E-07 2.88 5.21E-06 5.46E-06 5.08E-06
NBG-18 5.36E-06 7.79E-08 1.45 5.36E-06 5.49E-06 5.26E-06
PCEA 4.49E-06 7.97E-08 1.77 4.50E-06 4.67E-06 4.37E-06
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Table B-7. Creep Coefficient of Thermal Expansion (1/K) at 900°C Summary Statistics.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 4.20E-06 2.27E-07 5.40 4.12E-06 4.37E-06 4.02E-06
1G-110 4.88E-06 8.59E-08 1.76 4.87E-06 5.04E-06 4.69E-06
1G-430 5.17E-06 2.28E-07 4.42 5.24E-06 5.50E-06 4.86E-06
NBG-17 5.53E-06 1.55E-07 2.80 5.58E-06 5.89E-06 5.26E-06
NBG-18 5.89E-06 7.29E-08 1.24 5.91E-06 6.03E-06 5.72E-06
PCEA 5.03E-06 1.31E-07 2.60 5.00E-06 5.23E-06 4.87E-06

Against
Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 4.74E-06 6.13E-08 1.29 4.72E-06 4.82E-06 4.68E-06
1G-110 4.81E-06 5.88E-08 1.22 4.81E-06 4.87E-06 4.74E-06
1G-430 4.70E-06 1.03E-07 2.18 4.69E-06 4.86E-06 4.56E-06
NBG-17 5.49E-06 1.32E-07 2.41 5.54E-06 5.67E-06 5.26E-06
NBG-18 5.91E-06 6.16E-08 1.04 5.93E-06 6.03E-06 5.75E-06
PCEA 5.17E-06 1.68E-07 3.26 5.23E-06 5.40E-06 4.91E-06

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 4.11E-06 5.95E-08 1.45 4.1 1E-06 4.26E-06 4.02E-06
1G-110 4.88E-06 8.54E-08 1.75 4.88E-06 5.04E-06 4.69E-06
1G-430 5.26E-06 1.02E-07 1.93 5.26E-06 5.47E-06 5.06E-06
NBG-17 5.71E-06 1.32E-07 2.32 5.65E-06 5.89E-06 5.57E-06
NBG-18 5.82E-06 6.06E-08 1.04 5.83E-06 5.89E-06 5.72E-06
PCEA 4.99E-06 7.08E-08 1.42 4.98E-06 5.16E-06 4.87E-06
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Table B-8. Creep Modulus (GPa) by Sonic Resonance Summary Statistics.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 9.66 0.76 7.83 9.83 10.46 8.74
1G-110 9.71 0.33 3.38 9.75 10.29 9.00
1G-430 9.59 0.52 543 9.50 10.31 8.98
NBG-17 11.26 0.46 4.11 11.52 11.82 10.46
NBG-18 12.09 0.25 2.10 12.13 12.63 11.53
PCEA 9.65 1.08 11.23 9.93 10.62 9.19

Against
Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 8.01 0.13 1.64 8.03 8.15 7.83
1G-110 9.99 0.29 2.92 10.10 10.29 9.55
1G-430 10.64 0.22 2.07 10.69 10.89 10.38
NBG-17 11.28 0.51 4.51 11.56 11.82 10.46
NBG-18 11.99 0.19 1.59 12.02 12.35 11.53
PCEA 8.73 2.04 23.35 8.76 10.63 5.00

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 9.94 0.30 3.07 9.87 10.46 9.49
1G-110 9.65 0.30 3.16 9.74 10.09 8.93
1G-430 9.39 0.23 243 9.39 9.80 8.98
NBG-17 11.16 0.03 0.29 11.16 11.20 11.12
NBG-18 12.42 0.10 0.84 12.43 12.63 12.25
PCEA 9.92 0.24 2.38 9.94 10.41 9.43
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Table B-9. Creep Resistivity (

Lt0-m) Summary Statistics.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 7.75 0.38 4.86 7.65 8.27 7.39
1G-110 11.21 0.40 3.60 11.08 12.33 10.61
1G-430 9.60 0.50 5.19 9.66 10.25 8.74
NBG-17 9.59 0.23 243 9.51 9.90 9.18
NBG-18 9.48 0.18 1.90 9.56 9.69 9.21
PCEA 7.62 0.34 445 7.51 7.79 7.34

Against
Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 8.57 0.11 1.30 8.56 8.71 8.47
1G-110 10.98 0.32 2.88 11.09 11.43 10.61
1G-430 8.63 0.17 1.92 8.58 8.87 8.43
NBG-17 9.51 0.21 2.22 9.46 9.90 9.18
NBG-18 9.58 0.06 0.60 9.58 9.69 9.45
PCEA 8.02 0.51 6.39 8.29 8.59 7.38

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 7.61 0.15 1.94 7.62 7.90 7.39
1G-110 11.25 0.41 3.63 11.07 12.35 10.71
1G-430 9.79 0.25 2.56 9.78 10.25 9.29
NBG-17 9.85 0.03 0.28 9.84 9.90 9.81
NBG-18 9.17 0.05 0.53 9.15 9.25 9.10
PCEA 7.50 0.07 1.00 7.51 7.64 7.34
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Table B-10. Creep Young's Modulus (GPa) by Sonic Velocity.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 11.80 0.72 6.10 11.94 12.74 10.50
1G-110 10.87 0.38 3.46 10.91 11.83 10.13
1G-430 10.72 0.64 5.97 10.56 11.46 9.96
NBG-17 14.29 0.61 4.28 14.42 15.06 13.00
NBG-18 15.61 0.37 2.34 15.59 16.46 14.70
PCEA 12.30 0.58 4.70 12.47 12.96 11.68

Against
Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 10.29 0.10 0.94 10.32 10.38 10.16
1G-110 11.20 0.45 397 11.19 11.95 10.58
1G-430 12.01 0.23 1.94 12.04 12.37 11.70
NBG-17 14.31 0.70 4.86 14.64 15.06 13.00
NBG-18 15.46 0.26 1.70 15.48 16.09 14.88
PCEA 11.76 0.97 8.24 11.19 12.96 10.65

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 12.06 0.36 2.94 12.04 12.74 11.52
1G-110 10.81 0.33 3.08 10.83 11.29 10.13
1G-430 10.46 0.27 2.54 10.48 10.95 9.96
NBG-17 14.23 0.10 0.72 14.23 14.42 14.05
NBG-18 16.11 0.17 1.08 16.10 16.46 15.86
PCEA 12.47 0.17 1.40 12.50 12.85 12.10
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Table B-11. Creep Shear Modulus (GPa) by Sonic Velocity.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 441 0.15 3.36 443 4.62 4.10
1G-110 435 0.14 332 437 4.53 4.06
1G-430 436 0.12 2.72 434 4.62 420
NBG-17 4.83 0.17 3.43 4.88 5.11 451
NBG-18 5.25 0.05 1.03 5.24 5.35 5.15
PCEA 4.53 0.13 2.95 4.57 4.78 4.26

Against
Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 4.13 0.09 2.14 4.15 422 4.01
1G-110 4.39 0.14 3.19 4.38 4.52 4.12
1G-430 4.54 0.14 2.99 4.52 4.78 4.36
NBG-17 4.81 0.19 3.87 4.89 5.11 4.51
NBG-18 5.23 0.03 0.67 5.23 532 5.15
PCEA 447 0.20 4.43 4.38 4.78 4.26

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
H451 4.46 0.09 2.01 4.47 4.62 4.29
1G-110 4.34 0.15 335 4.37 4.53 4.06
1G-430 433 0.08 1.76 432 4.50 420
NBG-17 4.87 0.02 0.40 4.88 4.90 4.83
NBG-18 532 0.05 0.92 533 5.38 5.24
PCEA 4.55 0.10 2.24 4.57 4.68 431
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Table B-12a. Pigg

back Pre Thermal Measurement Length (mm) Summary Statistics.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114 6.330 0.007 0.11 6.330 6.341 6.314
A3 Matrix 6.325 0.009 0.14 6.323 6.331 6.317
BAN 6.329 0.007 0.11 6.330 6.338 6.323
H451 6.330 0.006 0.10 6.329 6.336 6.321
HLM 6.329 0.003 0.05 6.330 6.335 6.322
1G-110 6.347 0.004 0.06 6.346 6.353 6.340
1G-430 6.331 0.005 0.08 6.330 6.333 6.328
NBG-10 6.326 0.003 0.04 6.326 6.330 6.322
NBG-17 6.325 0.010 0.16 6.325 6.350 6.308
NBG-18 6.321 0.008 0.12 6.319 6.337 6.305
NBG-25 6.333 0.007 0.11 6.333 6.342 6.326
New Matrix 6.322 0.016 0.26 6.320 6.347 6.296
PCEA 6.340 0.012 0.20 6.339 6.349 6.330
PCIB 6.328 0.003 0.05 6.328 6.337 6.324
PGX 6.327 0.008 0.13 6.329 6.339 6.316
PPEA 6.328 0.004 0.06 6.328 6.334 6.321

Table B-12b. Piggyback Pre Thermal Measurement Length I mm) Summary Statistics.

Against
Grain
Specimens

Mean

Std Dev

CoV (%)

Median

Upper Limit

Lower Limit

2114

6.330

0.007

0.11

6.330

6.341

6.314

A3 Matrix

BAN

H451

6.330

0.005

0.08

6.329

6.332

6.327

HLM

1G-110

1G-430

NBG-10

NBG-17

6.329

0.010

0.16

6.330

6.345

6.315

NBG-18

6.324

0.005

0.07

6.325

6.330

6.315

NBG-25

New Matrix

PCEA

6.346

0.010

0.15

6.340

6.363

6.335

PCIB

PGX

PPEA
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Tab

Tab

le B-12¢. Piggyback Pre Thermal Measurement Length (mm) Summary Statistics.

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114
A3 Matrix
BAN 6.329 0.007 0.11 6.330 6.338 6.323
H451 6.330 0.007 0.12 6.329 6.340 6.317
HLM
1G-110 6.347 0.004 0.06 6.346 6.353 6.340
1G-430 6.331 0.005 0.08 6.330 6.333 6.328
NBG-10
NBG-17 6.322 0.010 0.15 6.321 6.342 6.311
NBG-18 6.320 0.009 0.14 6.318 6.332 6.308
NBG-25
New Matrix
PCEA 6.335 0.013 0.20 6.337 6.340 6.336
PCIB
PGX 6.327 0.008 0.13 6.329 6.339 6.316
PPEA

le B-13a. Piggyback Pre Thermal Measurement Diameter (mm) Summary Statistics.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114 12.726 0.005 0.04 12.726 12.735 12.713
A3 Matrix 12.720 0.006 0.05 12.719 12.729 12.713
BAN 12.721 0.005 0.04 12.722 12.734 12.710
H451 12.733 0.002 0.02 12.733 12.737 12.730
HLM 12.726 0.007 0.05 12.727 12.737 12.717
IG-110 12.734 0.002 0.01 12.735 12.738 12.731
1G-430 12.729 0.005 0.04 12.728 12.733 12.726
NBG-10 12.720 0.005 0.04 12.719 12.727 12.711
NBG-17 12.731 0.002 0.02 12.730 12.735 12.726
NBG-18 12.724 0.004 0.04 12.723 12.727 12.720
NBG-25 12.730 0.002 0.02 12.730 12.735 12.726
New Matrix 12.719 0.009 0.07 12.717 12.735 12.709
PCEA 12.733 0.005 0.04 12.733 12.744 12.726
PCIB 12.728 0.004 0.03 12.727 12.738 12.721
PGX 12.729 0.004 0.04 12.728 12.738 12.724
PPEA 12.728 0.005 0.04 12.729 12.741 12.721
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Table B-13b. Pigg

back Pre Thermal Measurement Diameter (mm) Summar

Statistics.

Against
Grain
Specimens

Mean

Std Dev

CoV (%)

Median

Upper Limit

Lower Limit

2114

12.726

0.005

0.04

12.726

12.735

12.713

A3 Matrix

BAN

H451

12.733

0.002

0.02

12.733

12.737

12.730

HLM

1G-110

1G-430

NBG-10

NBG-17

12.730

0.003

0.02

12.730

12.734

12.726

NBG-18

12.722

0.001

0.01

12.722

12.725

12.721

NBG-25

New Matrix

PCEA

12.733

0.005

0.04

12.734

12.742

12.726

PCIB

PGX

PPEA

Table B-13c Piggy

yback Pre Thermal Measurement Diameter (mm) Summary Statistics.

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114
A3 Matrix
BAN 12.721 0.005 0.04 12.722 12.734 12.710
H451 12.733 0.001 0.01 12.732 12.735 12.731
HLM
1G-110 12.734 0.002 0.01 12.735 12.738 12.731
1G-430 12.729 0.005 0.04 12.728 12.733 12.726
NBG-10
NBG-17 12.731 0.002 0.02 12.730 12.735 12.728
NBG-18 12.722 0.001 0.04 12.724 12.728 12.720
NBG-25
New Matrix
PCEA 12.733 0.005 0.04 12.732 12.744 12.727
PCIB
PGX 12.729 0.004 0.04 12.728 12.738 12.724
PPEA
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Table B-14a. Pigg

Tab

back Pre Thermal Measurement Mass (g) Summary Statistics.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114 1.462 0.01 0.49 1.461 1.472 1.454
A3 Matrix 1.143 0.03 2.74 1.135 1.205 1.090
BAN 1.475 0.01 0.61 1.473 1.498 1.460
H451 1.395 0.01 0.96 1.392 1.413 1.375
HLM 1411 0.00 0.19 1.412 1.416 1.406
1G-110 1.433 0.00 0.32 1.433 1.441 1.424
1G-430 1.460 0.00 0.29 1.459 1.467 1.454
NBG-10 1.438 0.00 0.29 1.438 1.444 1.428
NBG-17 1.500 0.01 0.39 1.501 1.505 1.494
NBG-18 1.502 0.00 0.18 1.501 1.508 1.497
NBG-25 1.486 0.00 0.15 1.485 1.489 1.482
New Matrix 1.386 0.04 2.86 1.399 1.445 1.337
PCEA 1.427 0.00 0.30 1.426 1.436 1.418
PCIB 1.474 0.00 0.24 1.474 1.479 1.465
PGX 1.423 0.00 0.24 1.424 1.430 1.414
PPEA 1.476 0.00 0.15 1.476 1.482 1.472

le B-14b. Piggyback Pre Thermal Measurement Mass (gl Summary Statistics.
Against
Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114 1.462 0.01 0.49 1.461 1.472 1.454
A3 Matrix
BAN
HA451 1.384 0.01 0.39 1.383 1.392 1.375
HLM
1G-110
1G-430
NBG-10
NBG-17 1.500 0.001 0.63 1.503 1.505 1.496
NBG-18 1.500 0.002 0.15 1.500 1.504 1.497
NBG-25
New Matrix
PCEA 1.428 0.00 0.32 1.427 1.436 1.421
PCIB
PGX
PPEA
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Tab

Tab

le B-14c¢. Piggyback Pre Thermal Measurement Mass (g) Summary Statistics.

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114
A3 Matrix
BAN 1.475 0.01 0.61 1.473 1.498 1.460
H451 1.408 0.00 0.18 1.408 1.413 1.405
HLM
1G-110 1.433 0.00 0.32 1.433 1.441 1.424
1G-430 1.460 0.00 0.29 1.459 1.467 1.454
NBG-10
NBG-17 1.500 0.003 0.20 1.500 1.504 1.493
NBG-18 1.502 0.003 0.17 1.502 1.508 1.498
NBG-25
New Matrix
PCEA 1.425 0.00 0.24 1.425 1.430 1.418
PCIB
PGX 1.423 0.00 0.24 1.424 1.430 1414
PPEA

le B-15a. Piggyback Pre Thermal Measurement Density ( g/cm’) Summary Statistics.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114 1.8164 0.0076 0.42 1.8168 1.8273 1.8062
A3 Matrix 1.4224 0.0384 2.70 1.4115 1.5000 1.3567
BAN 1.8341 0.0110 0.60 1.8313 1.8612 1.8127
H451 1.7307 0.0167 0.96 1.7260 1.7534 1.7060
HLM 1.7531 0.0037 0.21 1.7530 1.7591 1.7443
1G-110 1.7729 0.0057 0.32 1.7726 1.7827 1.7617
1G-430 1.8117 0.0062 0.34 1.8101 1.8237 1.8038
NBG-10 1.7884 0.0043 0.24 1.7877 1.7952 1.7810
NBG-17 1.8629 0.0063 0.34 1.8643 1.8705 1.8527
NBG-18 1.8683 0.0029 0.16 1.8685 1.8728 1.8619
NBG-25 1.8433 0.0023 0.12 1.8432 1.8481 1.8391
New Matrix 1.7255 0.0449 2.60 1.7370 1.7972 1.6736
PCEA 1.7673 0.0046 0.26 1.7670 1.7752 1.7584
PCIB 1.8302 0.0046 0.25 1.8300 1.8390 1.8207
PGX 1.7680 0.0032 0.18 1.7678 1.7732 1.7623
PPEA 1.8335 0.0033 0.18 1.8336 1.8395 1.8277
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Table B-15b. Piggyback Pre Thermal Measurement Density (g/cm’) Summary Statistics.

Against
Grain
Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit

2114 1.8164 0.0076 0.42 1.8168 1.8273 1.8062

A3 Matrix

BAN

H451 1.7165 0.0068 0.40 1.7166 1.7262 1.7060

HLM

1G-110

1G-430

NBG-10

NBG-17 1.8619 0.0100 0.54 1.8643 1.8705 1.8556

NBG-18 1.8659 0.0027 0.14 1.8657 1.8694 1.8619

NBG-25

New Matrix

PCEA 1.7678 0.0055 0.31 1.7682 1.7752 1.7584

PCIB

PGX

PPEA

Table B-15c. Piggyback Pre Thermal Measurement Density (g/cm3) Summary Statistics.

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114
A3 Matrix
BAN 1.8341 0.0110 0.60 1.8313 1.8612 1.8127
H451 1.7476 0.0029 0.17 1.7472 1.7504 1.7447
HLM
1G-110 1.7729 0.0057 0.32 1.7726 1.7827 1.7617
1G-430 1.8117 0.0062 0.34 1.8101 1.8237 1.8038
NBG-10
NBG-17 1.8634 0.0035 0.19 1.8641 1.8684 1.8569
NBG-18 1.8694 0.0023 0.12 1.8699 1.8728 1.8641
NBG-25
New Matrix
PCEA 1.7668 0.0036 0.20 1.7663 1.7722 1.7611
PCIB
PGX 1.7680 0.0032 0.18 1.7678 1.7732 1.7623
PPEA
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Table B-16a. Piggyback Diffusivity (mm?”/sec) at 100°C Summary Statistics.

Tab

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114 65.45 1.00 1.53 65.65 66.84 63.95
A3 Matrix 10.99 0.73 6.68 10.91 12.13 9.82
BAN 99.77 2.35 2.35 100.09 104.32 94.70
H451 97.10 6.25 6.44 97.10 104.36 90.57
HLM 110.02 2.60 2.36 110.01 113.60 104.61
1G-110 72.02 1.10 1.53 71.93 73.87 70.06
1G-430 79.15 1.28 1.62 78.93 81.15 76.75
NBG-10 80.79 0.50 0.61 80.95 81.32 79.94
NBG-17 78.67 1.03 1.31 79.23 79.81 77.33
NBG-18 79.72 1.63 2.04 79.13 81.82 77.50
NBG-25 68.11 0.28 0.40 68.08 68.71 67.54
New Matrix 16.37 0.89 541 16.25 17.91 15.36
PCEA 98.13 3.85 3.92 99.92 101.60 91.75
PCIB 71.77 0.64 0.89 71.88 72.53 70.59
PGX 71.17 0.46 0.64 71.25 72.22 70.13
PPEA 82.60 0.56 0.68 82.62 83.32 81.46

le B-16b. Piggyback Diffusivity (mm?*/sec) at 100°C Summary Statistics.
Against
Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114 65.45 1.00 1.53 65.65 66.84 63.95
A3 Matrix
BAN
H451 91.17 0.65 0.71 90.95 92.26 90.57
HLM
1G-110
1G-430
NBG-10
NBG-17 79.30 0.49 0.62 79.39 79.81 78.69
NBG-18 78.61 0.68 0.87 78.93 79.43 77.50
NBG-25
New Matrix
PCEA 91.51 0.36 0.39 91.60 91.81 91.11
PCIB
PGX
PPEA
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Table B-16¢. Piggyback Diffusivity (mm?”/sec) at 100°C Summary Statistics.

Tab

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114
A3 Matrix
BAN 99.77 2.35 2.35 100.09 104.32 94.70
H451 103.04 0.96 0.94 102.91 104.36 101.94
HLM
1G-110 72.02 1.10 1.53 71.93 73.87 70.06
1G-430 79.15 1.28 1.62 78.93 81.15 76.75
NBG-10
NBG-17 77.40 0.07 0.09 77.39 77.47 77.33
NBG-18 81.70 0.13 0.16 81.73 81.82 81.49
NBG-25
New Matrix
PCEA 100.12 0.84 0.84 100.16 101.36 98.58
PCIB
PGX 71.17 0.46 0.64 71.25 72.22 70.13
PPEA

le B-17a. Piggyback Diffusivity (mm”/sec) at 500°C Summary Statistics.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114 27.10 0.29 1.06 27.15 27.57 26.60
A3 Matrix 4.59 0.39 8.44 4.50 5.24 393
BAN 35.15 0.85 243 35.29 36.56 33.64
H451 34.16 232 6.79 34.20 37.28 31.68
HLM 37.39 0.92 247 37.57 38.79 35.61
1G-110 27.96 0.44 1.58 2797 28.56 27.10
1G-430 29.25 0.45 1.55 29.16 29.83 28.39
NBG-10 30.33 0.21 0.70 30.34 30.63 29.86
NBG-17 29.76 0.46 1.54 29.81 30.40 29.17
NBG-18 30.30 0.62 2.03 30.11 31.20 29.54
NBG-25 27.54 0.15 0.53 27.58 27.82 27.24
New Matrix 7.44 0.51 6.84 7.36 8.40 6.78
PCEA 35.63 1.48 4.14 36.31 36.80 33.18
PCIB 28.35 0.20 0.72 28.39 28.63 27.95
PGX 26.09 0.18 0.68 26.08 26.49 25.69
PPEA 31.53 0.18 0.58 31.56 31.87 31.19
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Table B-17b. Pigg

back Diffusivity (mm?/sec) at 500°C Summary Statistics.

Against
Grain
Specimens

Mean

Std Dev

CoV (%)

Median

Upper Limit

Lower Limit

2114

27.10

0.29

1.06

27.15

27.57

26.60

A3 Matrix

BAN

H451

31.97

0.23

0.72

31.92

32.30

31.68

HLM

1G-110

1G-430

NBG-10

NBG-17

30.04

0.25

0.82

30.06

30.40

29.72

NBG-18

29.88

0.26

0.85

29.97

30.17

29.54

NBG-25

New Matrix

PCEA

33.08

0.22

0.66

33.15

33.25

32.84

PCIB

PGX

PPEA

Table B-17c Piggy

yback Diffusivity (mm?/sec) at 500°C Summary Statistics

With Grain
Specimens

Mean

Std Dev

CoV (%)

Median

Upper Limit

Lower Limit

2114

A3 Matrix

BAN

35.15

0.85

243

35.29

36.56

33.64

H451

36.36

0.46

1.26

36.17

36.63

36.10

HLM

1G-110

27.96

0.44

1.58

27.97

28.56

27.10

1G-430

29.25

0.45

1.55

29.16

29.83

28.39

NBG-10

NBG-17

29.21

0.04

0.14

29.22

29.25

29.17

NBG-18

31.05

0.10

0.33

30.00

31.20

30.97

NBG-25

New Matrix

PCEA

36.40

0.27

0.74

36.41

36.80

35.84

PCIB

PGX

26.09

0.18

0.68

26.08

26.49

25.69

PPEA
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Table B-18a. Pigg

back Diffusivity (mm?/sec) at 900°C Summary Statistics.

Combined

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114 17.91 0.18 1.00 17.93 18.22 17.43
A3 Matrix 3.09 0.27 8.63 3.06 3.53 245
BAN 21.86 0.52 2.37 21.97 22.67 21.07
H451 21.33 1.46 6.85 21.39 23.17 19.79
HLM 23.03 0.56 245 23.09 23.86 22.02
1G-110 18.08 0.26 1.44 18.08 18.45 17.61
1G-430 18.54 0.29 1.55 18.54 18.99 18.08
NBG-10 19.35 0.14 0.74 19.35 19.63 19.11
NBG-17 19.03 0.33 1.72 19.05 19.46 18.59
NBG-18 19.42 0.38 1.98 19.36 20.05 18.95
NBG-25 18.05 0.11 0.60 18.07 18.24 17.79
New Matrix 5.10 0.48 9.40 5.13 5.96 4.44
PCEA 22.34 0.90 4.01 22.75 23.09 20.86
PCIB 18.38 0.14 0.76 18.41 18.61 18.05
PGX 16.57 0.12 0.72 16.58 16.82 16.33
PPEA 20.24 0.14 0.71 20.25 20.50 19.96

Table B-18b. Piggyback Diffusivity (mm?*/sec) at 900°C Summary Statistics.
Against
Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114 17.91 0.18 1.00 17.93 18.22 17.43
A3 Matrix
BAN
H451 19.94 0.16 0.82 19.87 20.19 19.79
HLM
1G-110
1G-430
NBG-10
NBG-17 19.23 0.18 0.94 19.26 19.46 18.98
NBG-18 19.17 0.18 0.92 19.18 19.37 18.95
NBG-25
New Matrix
PCEA 20.79 0.12 0.56 20.80 20.91 20.68
PCIB
PGX
PPEA
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Table B-18c. Piggyback Diffusivity (mm?/sec) at 900°C Summary Statistics.

With Grain

Specimens Mean Std Dev CoV (%) Median Upper Limit | Lower Limit
2114
A3 Matrix
BAN 21.86 0.52 2.37 21.97 22.67 21.07
H451 22.71 0.23 1.01 22.61 22.91 22.58
HLM
1G-110 18.08 0.26 1.44 18.08 18.45 17.61
1G-430 18.54 0.29 1.55 18.54 18.99 18.08
NBG-10
NBG-17 18.64 0.05 0.24 18.65 18.68 18.59
NBG-18 19.88 0.12 0.62 19.92 20.05 19.75
NBG-25
New Matrix
PCEA 22.80 0.18 0.79 22.79 23.09 22.44
PCIB
PGX 16.57 0.12 0.72 16.58 16.82 16.33
PPEA
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