
UC Berkeley
UC Berkeley Previously Published Works

Title
Cross-functional transferability in foundation machine learning interatomic potentials

Permalink
https://escholarship.org/uc/item/62z1k3bv

Journal
npj Computational Materials, 11(1)

ISSN
2057-3960

Authors
Huang, Xu
Deng, Bowen
Zhong, Peichen
et al.

Publication Date
2025

DOI
10.1038/s41524-025-01796-y

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/62z1k3bv
https://escholarship.org/uc/item/62z1k3bv#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


npj | computationalmaterials Article
Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-025-01796-y

Cross-functional transferability in
foundation machine learning interatomic
potentials

Check for updates

Xu Huang 1,2, Bowen Deng 1,2 , Peichen Zhong 1,2, Aaron D. Kaplan 2, Kristin A. Persson 1,2 &
Gerbrand Ceder 1,2

The rapid development of foundation potentials (FPs) in machine learning interatomic potentials
demonstrates the possibility for generalizable learning of the universal potential energy surface. The
accuracy of FPs can be further improved by bridging the model from lower-fidelity datasets to high-
fidelity ones. In this work, we analyze the challenge of this transfer learning (TL) problem within the
CHGNet framework.We show that significant energy scale shifts and poor correlations betweenGGA
and r2SCAN hinder cross-functional transferability. By benchmarking different TL approaches on the
MP-r2SCANdataset, we demonstrate the importance of elemental energy referencing in the TL of FPs.
By comparing the scaling law with and without the pre-training on a low-fidelity dataset, we show that
significant data efficiency can still be achieved through TL, even with a target dataset of sub-million
structures. We highlight the importance of proper TL and multi-fidelity learning in creating next-
generation FPs on high-fidelity data.

Atomistic simulations provide a powerful framework for predicting and
virtually screening material properties and have led to multiple predictions
of interesting functional materials1–3. These simulations are enabled by
accurate determination of the potential energy surface (PES) as a function of
atomic positions, permitting prediction of stability properties, reaction
mechanisms, and dynamic behavior4–7.

Historically, two main approaches have been used to model the PES:
ab-initio quantum chemical calculations and empirical force fields8. Ab-
initio quantum chemical calculations such as density functional theory
(DFT) provide high accuracy and generality, but at a substantial compu-
tational cost. Furthermore, this cost scales rapidlywith system size, typically,
� OðN3

e Þ or OðNe logNeÞ with Ne the number of electrons9,10, thereby
limiting the achievable length and time scales. In contrast, empirical force
fields typically trade accuracy and generality for speed, limiting their
applicability in complex systems.

To address these limitations, surrogate energy models such as
machine learning interatomic potentials (MLIPs) have been devel-
oped to accelerate atomistic simulations. MLIP methods aim to
disrupt the long-standing trade-off between accuracy and efficiency,
achieving near training set accuracy while offering a computational
cost reduction of several orders of magnitude compared to traditional
DFT methods11 and maintaining OðNÞ computational efficiency,
where N is the number of atoms12.

MLIPs are parametrized to reproduce energies fromab-initio quantum
mechanical calculations, such as DFT. The total energy of amaterial system
is decomposed and predicted through a learnable mapping of atomic
positions and chemical species, where each atom’s contribution is deter-
mined by its surrounding local atomic configuration within a defined cutoff
radius:

Ê ¼
Xn

i

ϕðf r!jgi; fCjgiÞ; f̂ i ¼ � ∂Ê
∂ri

ð1Þ

The learnable function ϕ maps the position vectors f r!jgi and chemical
species fCjgi of neighboring atoms j to the energy contribution of atom i.
Forces ff̂ ig are derived as the negative gradient of the total energy with
respect to atomic coordinates. The choice of design features ϕ is crucial for
MLIPs to encode the system’s physical and chemical properties, such as
using equivariant feature encoding13,14 and including atomic charge
information15,16.

Recently, foundation potentials (FPs) trained on millions of DFT cal-
culations demonstrate promising transferability in atomic simulations
across diverse chemical spaces. The FPs such as M3GNet17, CHGNet15,
MACE-MP-018, SevenNet-MF-019, and Orb20 have been developed from
open-source materials databases such as the Materials Project21,22 and
Alexandria23. Industry FPs such as GNoME24, MatterSim25, and
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EquiformerV2-OMAT26 demonstrate improved PES predictability with
larger data andmodel sizes in various downstreammaterialsmodeling tasks
such as phonon spectra prediction, phase diagram construction, catalyst
screening, and molecular dynamics simulations27–31.

Despite these successes in improving models and data, there remain
challenges for further improvements of FPs. One significant issue reported
byDeng et al.27 shows a consistent underprediction of energies and forces in
FPs27, which calls for improved sampling in FP training datasets. The pre-
dominant approach to generateFPdatasets relies onDFT calculations using
generalized gradient approximations (GGAs), limiting FPs to GGA-level
accuracy and posing potential challenges for migrating to higher-accuracy
functionals like meta-GGAs. Recently, Kaplan et al.32 released the MatPES
dataset that incorporates regularized strongly constrained and appropriately
normed (r2SCAN) meta-GGA functional calculations, which opens the
possibility for FPs to migrate to high level of theory. See ref. 33 for a defi-
nition of GGAs and meta-GGAs and Ref. 34 for an overview of their well-
established limitations in describing crystalline and molecular systems.

In this work, we discuss the challenges and practical approaches that
help better understand the fine-tuning process in FPs, particularly when
dealing with multi-fidelity data transferability across different functionals.
Successfully achieving this multi-fidelity data transferability is crucial, as it
can enable more accurate and efficient atomistic simulations without the
substantial computational costs typically associated with high-fidelity cal-
culations. By showing the correlationbetween the labels fromdifferent levels
of theory,we emphasize the importance of training at the right scale through
energy referencing when conducting transfer learning.

Results
Data challenges in existing foundation potentials
An essential component in building improved FPs comes from reliable
datasets. The current FP datasets applicable to crystalline materials are
predominantly composed of GGA and GGA + U-level DFT
calculations15,17,18,20. While GGA-based training data is widely available and
computationally efficient to generate, several limitations of GGA are
known35–37 and other functionals are now available38–40. A widely used
method to alleviate some of the self-interaction in GGA is the Hubbard U
correction41, which adds an energy correction to localized electron states
(e.g., d or f orbitals). The use of+U is particularly important when dealing
with metal oxidation/reduction in formation enthalpies, reaction energies,
or electrochemical potentials36,42. At the same time, the application of+U is
not appropriate for metallic systems where electron delocalization is
appropriate. Because of these conflicting requirements, compatibility
schemes between GGA and GGA + U have been designed43 and some
datasets contain a mixture of GGA and GGA + U calculations. We call
attention to three data challenges in existing FPs, which were primarily
trained with a mixture of GGA/GGA + U DFT calculations.

Firstly, GGA/GGA + U exhibit lower transferability across chemical
bonding environments37. The Perdew-Burke-Ernzerhof (PBE) GGA44 is
found tohave ameanabsolute error (MAE)of 194meV/atomdominatedby
the large error in oxides and strongly bound systems, in a large-scale test on
the formation energy of 987 compounds45. In contrast, the SCAN meta-
GGA functional developed by Sun et al.38 predicts formation energies with
an MAE of 84 meV/atom. Isaacs and Wolverton46 also demonstrate that
SCAN is more accurate in predicting formation energy for strongly bound
compounds, crystal volumes, magnetism, and band gaps, as compared to
the PBE GGA. The r2SCAN39 revision of the SCAN meta-GGA balances
numerical stability with high general accuracy45 and has therefore become
the preferred method to evaluate thermophysical properties of
materials45,47,48.While thedemonstratedprediction errors inRef. 45 arehigh,
it is worth noting that many of the compounds included have formation
reactions frommolecular species such as H2, N2, O2, and thereby are more
similar to cohesive energies. When evaluating only solid-state reactions,
energy errors are typically smaller for GGA49.

Secondly, the application of the HubbardU correction tomitigate self-
interaction errors in GGA is inherently semi-empirical and non-universal.

GGA + U fails to predict accurate energy differences between some com-
poundswith localized electronic states and those with delocalized electronic
states43. There is also no precise definition of an “optimal” U, and approa-
ches such as the linear response method50 suggest that such an optimal U
would be system-dependent. However, the GGA/GGA + U FP datasets
were generated using the same U value for each element regardless of the
local environment or formal valence state, calibrated to minimize dis-
crepancies between DFT-calculated oxidation energies and experimental
measurements for a limited number of 3d transition metal oxides42,43.

Thirdly, to correct for some of the self-interaction error in GGAwhich
is particularly large when calculating the energy of reactions that reflect
charge transfer such as oxide formation enthalpies, an ad hoc scheme of
mixing GGA and GGA+ U calculations is typically used to bridge the gap
between GGA and GGA + U43,51. Such coarse-grained, non-universal
adjustments can potentially cause issues when fitting a FP, such as sudden
jumps of potential energy at the scale of a few hundredmeVper atomwhen
moving between training data computed with these mixing schemes. Last,
there is no corresponding mixing scheme applied to the GGA/GGA + U
interatomic forces and stresses. This may be less of an issue as both are
derivative properties of a given functional, and thus should be independent
of the energy scale of the underlyingDFT approximation.However, this has
not been formally verified.

Overall, the use of approximate exchange-correlation functionals,
combined with the non-universality of Hubbard U corrections and com-
patibility adjustments, leads to less accurate and somewhatnoisydatawithin
the GGA/GGA + U framework. Such data noise makes it challenging for
graph neural network models (GNNs) to accurately learn and capture the
underlying interactions within materials.

Cross-functional transferability challenges in foundation
potentials
One possible solution to overcome the challenges of GGA and GGA+U is
to shift the FP training and benchmarking dataset to DFT calculations
performed with higher-fidelity functionals. These higher-fidelity calcula-
tions come with higher computational costs, leading to challenges in con-
structing datasets on a substantial scale. One possible solution is to leverage
existing lower-fidelity GGA and GGA + U calculations and existing pre-
trained FPs as a starting point.

There are three main strategies to achieve explicit or implicit trans-
ferability between multi-fidelity DFT datasets: transfer learning, multi-
fidelity learning, and mixed multi-fidelity training.

Transfer learning (TL) involves pre-training a large neural network on
extensive lower-fidelity datasets. The pretrained weights from this network
are then transferred to initialize machine-learning tasks on smaller, higher-
fidelity datasets. This approach is both computationally efficient and data-
efficient52,53. However, if the correlation between the two different fidelity
datasets is not strong enough,TL is not effective and can evendeteriorate the
learning performance, known as negative transfer54.

Multi-fidelity learning can be conducted either at the feature (input)
level or at the label (output) level55, i.e., low-fidelity data is utilized as input
features to predict high-fidelity data, or the task of learninghigh-fidelity data
can be transformed into learning the difference between high-fidelity and
low-fidelity data, an approach known as Δ-machine learning56,57. Multi-
fidelity learning tends to be more computationally expensive than TL58.
When applying multi-fidelity learned models to make real predictions for
unknown cases, one must first calculate low-fidelity data to obtain input
features (input level) or use it to add the predicted difference to get the final
high-fidelity prediction (output level).

Mixedmulti-fidelity training aims to simultaneously learn and predict
datasets of varying fidelity levels. Chen et al.59 encoded the fidelity of each
dataset and embedded the dataset type as a vector in the global state feature
input to theM3GNetmodel for band gap prediction. Ko andOng60 adopted
thismethod to construct highly accurateGNN-based interatomic potentials
for twomodel systems—silicon and water. Allen et al.61 usedmeta-learning
techniques to build pre-trained potentials that simultaneously incorporate
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information from multiple large organic datasets, calculated at different
levels of theory. Kim et al.19 developed a high-fidelity MLIP by one-hot
encoding each fidelity, concatenating it to the scalar part of the input node
feature at each linear layer, and adding different atomic energy shift scale
blocks for each fidelity database to the SevenNet model. Similar to TL,
mixed-fidelity training tends to be computationally expensive when addi-
tional poorly correlated data are added to the trained model.

Each of the three strategies presents its own advantages and challenges.
So far, no clear evidence exists that TL consistently outperforms multi-
fidelity learning or mixed multi-fidelity approaches, or vice versa. In this
work, we focus on how to tackle the transferability challenges of efficient TL
acrossGGA/GGA+Umixeddata and r2SCANdata in theCHGNetmodel,
though our conclusion should hold more generally for other FPs.

MP-r2SCAN dataset
We use a r2SCAN dataset, MP-r2SCAN, parsed from Materials Project21,22

r2SCANrelaxation trajectories, for high-fidelity training tasks. Following the
data parsing criteria described in Data preparation, we obtain 34,927
material IDs with 238,247 structures. Compared to the MPtrj Dataset15,
which has 145,923materials IDswith 1,580,395 structures, theMP-r2SCAN
is significantly smaller in size.

Figure 1 a presents the element distribution in theMP-r2SCANdataset
with a total of 238,247 structures. The color of each element indicates the
total number of times each element is present in the MP-r2SCAN dataset,
with a lower cutoff of 1000. Elements with 1000 or fewer occurrences all

share the same color. The MP-r2SCAN dataset covers 88 elements in the
periodic table.

Energy differences across two functionals
Machine learning transferability can be quantified by assessing the corre-
lations between the source and target datasets62. To investigate the feasibility
and effectiveness of TL betweenDFT functionals, we analyze the scale of the
total energy differences between r2SCAN and GGA/GGA + U.

Figure 1 b presents the comparison of the relaxed total energies cal-
culated using r2SCAN (x-axis) and GGA/GGA + U (y-axis), which repre-
sent the training label of most FPs. In Fig. 1b, each point represents a single
compound from the Materials Project, and the corresponding GGA/GGA
+ U energies have applied anion and compatibility corrections63. The
marginal histograms on the top and right side show the distributions of
energies calculated using r2SCAN and GGA/GGA+U, respectively, for all
r2SCANmaterials IDs in Materials Project. As depicted in Fig. 1b, the total
energy of r2SCAN and GGA/GGA + U are distributed on different scales.
The shift from the GGA/GGA + U to r2SCAN is at the scale of 0–70 eV/
atom, which is significantly larger than the energy accuracy of FPs ( ~
30meV/atom), indicating these r2SCAN energy labels are not directly
transferrable without proper reference or normalization.

These eV/atom scale energy shifts between functionals are related to
the ambiguity in the Kohn-Sham energy levels which have an arbitrary
reference energy64–66. These energy shifts are well understood in electronic
structure theory and do not contribute to any physical quantities due to the

Fig. 1 | Statistical analysis of the energy data. a Element distribution of the MP-
r2SCAN dataset of 238,247 structures. The color indicates the total number of
occurrences of an element in the MP-r2SCAN dataset with a lower cutoff of 1000.
b Total Energy of materials computed from GGA/GGA+U vs. r2SCAN functionals.
Each point represents a material with amaterials ID that has r2SCAN calculations in
Materials Project, with the x-axis showing the total energy after r2SCAN structure
relaxation and the y-axis showing the total energy after GGA/GGA+U structure
relaxation. The marginal histograms on the top and right illustrate the distributions
of total energies for the same collection of materials, as calculated by r2SCAN and

GGA/GGA + U, respectively. c, d Feature importance in the formation energy
differences between GGA/GGA+Umixing and r2SCAN. Each element is treated as
a feature, with its importance indicated by colors on the periodic table. Higher values
correspond to greater importance and therefore larger energy difference between
GGA/GGA + U and r2SCAN. Panel c presents the feature importance when anion
and compatibility corrections are included in the mixed GGA/GGA + U data, and
d presents the feature importance without these adjustments. Compositional cor-
rections are applied primarily to pnictogens, chalcogens, and halogens.
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cancellation of energy references in any physical property. The total energy
itself is not a physically measurable quantity, as it is “gauge dependent” on
the vacuum level, but energy differences such as the cohesive energy are
measurable and gauge invariant67. Because MLIPs are typically trained on
absolute total energies, these eV/atom scale energy differences from GGA/
GGA+ U and r2SCAN can cause significant challenges in TL.

Onemethod to remove the significant total energy shifts is byfitting the
MLIPs with physical quantities such as formation energies, which has been
shown to be easier to transfer in crystal graph attention networks52,68. The
formation energies describe the strengths of the interactions that form the
compound from pure elemental phases and are better correlated between
different functionals than the total energy labels, although small deviations
can still be present due to the different levels of accuracy.

To determine which elements contribute most to the formation
energy differences between r2SCAN and GGA/GGA+U calculations, we
queried the formation energies fromMaterials Project and fitted decision
tree models on the formation energy differences through scikit-
learn69. The input to this model is the compositional fraction matrix of
all materials with r2SCAN materials IDs in Materials Project, and the
target variable is the formation energy difference between the two
functionals. We calculated the feature importance (see Feature impor-
tance) for each element and plotted the strength of the importance
through the color bar in the periodic table in Fig. 1c and d. The
importance of a feature is computed as the normalized total reduction of
the criterion brought by that feature. The higher the value the more
important the feature. Figure 1c presents the feature importance with
GGA/GGA + U mixing and anion corrections included, and Fig. 1d
includes the same analysis but with uncorrected GGA/GGA + U for-
mation energies.

In Fig. 1c, we observe that d-block elements such as V, Cr, Mn, Fe, Co,
Ni, Mo, and W exhibit high importance, indicating they significantly con-
tribute to the formation energy differences between GGA/GGA + U and
r2SCAN. These are precisely the elements for whichHubbardU corrections
and compatibility adjustments are applied in transition metal oxides and
fluorides. Similarly, p-block elements with high importance—O, F, S, Cl, Se,
Br, and Te—also undergo compatibility corrections when they serve as
anions in compounds. Notably, Cl exhibits a very high feature importance.
We can attribute the relatively higher feature importance of Cl to two
sources: (i) the compatibility scheme imposed on GGA/GGA+U energies
places the second largest correction (−0.614 eV/atom in magnitude) to Cl,
secondonly tooxides (−0.687 eV/atom inmagnitude); (ii) PBE struggles to
describe the weaker covalency and van der Waals interactions typical of
ionic crystals70, whereas r2SCAN describes both covalent and ionic bonding
reasonably well39 and improves the description of medium-range van der
Waals interactions71,72. The differences in Fig. 1c and d show clearly that the
removal of the corrections scheme almost eliminates the higher feature
importance of the chalcogens and halogens seen in Fig. 1c. Without the
energy correction scheme, the eight transition metals, O, and F remain a
higher feature importance (see Fig. 1d).

TL with different atomic reference energies
Shifting the PES with a constant value for each element is an effective and
commonly used approach in training GNN-based MLIPs. As described in
Fig. 2a, in CHGNet and other models likeM3GNet, NequIP13 and CACE14,
the prediction of total energies (per atom) is divided into two parts: EAtomRef

and EGNNs
17,73. First, the composition row vector celem and atomic reference

energies (AtomRef)Eelem are obtained, and their dot product givesEAtomRef.
The composition vector celem represents the fraction of each element in the
structure, and in CHGNet, its dimension is 1 × 94. Next, a composition
model is used to fit a linear regression of total energies, where Eelem are the
weights:

Eelem ¼ ðATAÞ�1
ATEtotal ð2Þ

Here, A is the composition matrix obtained by stacking celem for all struc-
tures in the training set, and Etotal is the matrix of total energies. Subse-
quently, the remaining fine-grained energy is predicted by GNNs. Overall,
the total energy prediction of a structure can be expressed usingEtotal = celem
⋅ Eelem + EGNNs. Both AtomRef, which represent the weights of the
composition model, and GNNs can be trainable.

For cross-functional TL on a FP with a fitted AtomRef from GGA/
GGA + U total energies, one can refit the FP’s AtomRef to shift the FP’s
energy to the scale of new DFT labels and, in principle, improve the cor-
relation between pre-training and fine-tuning datasets. Refitting the
AtomRef essentially replaces the fitted GGA/GGA + U AtomRef with the
fitted r2SCAN AtomRef and shifts the FP’s predicted energy scale to
r2SCAN. Figure 2b shows that, after replacing the AtomRef, a stronger
correlation between GGA/GGA + U and r2SCAN total energies can be
achieved.

Indeed, the Pearson’s correlation coefficient ρ improves from 0.0917
between the unmodified GGA/GGA + U and r2SCAN datasets to 0.9250
between the r2SCAN energies (with r2SCAN AtomRef subtracted) and the
GGA/GGA+ U energies (with GGA/GGA+ U AtomRef subtracted).

Fig. 2 | Illustration of AtomRef and correlation improvement through scaled
energies. a Schematic representation of the role and application of AtomRef in
calculating total energies. The energy contribution from AtomRef is obtained by
taking the dot product of the composition row vector (with LiCoO2 used here as an
example) and the AtomRef vector. b The correlation between the scaled energies of
GGA/GGA + U and r2SCAN (total energies with the respective AtomRefs sub-
tracted). The marginal histograms on the top and right illustrate the distributions of
r2SCAN and GGA/GGA+U scaled energies, respectively, for the same collection of
materials.
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To compare in more detail how well various strategies for aligning
energies fromdifferent functionalsperform,weperformedanablation study
using four training strategies to either pre-train orfine-tuneCHGNet on the
MP-r2SCAN dataset.

InMethod 1 (Training from scratch), we first fittedAtomRef using the
r2SCAN total energies, randomly initialized the GNN parameters of
CHGNet, and then trained the GNNs on the MP-r2SCAN dataset while
keeping the r2SCAN AtomRef frozen.

In Method 2 (TL with trainable AtomRef), we started from the GGA/
GGA+U-pre-trainedCHGNet and allowedboth theGNNparameters and
the AtomRef to be trainable during TL. In this manner, the AtomRef,
initially set to the fitted GGA/GGA + U AtomRef, was gradually updated
throughout the TL process.

InMethod 3 (TLwith frozenAtomRef), we again used the GGA/GGA
+ U-pre-trained CHGNet as the starting point, but only the GNN para-
meters were allowed to be trainable during TL. As a result, the AtomRef
remained fixed at the fittedGGA/GGA+UAtomRef, forcing the GNNs to
transfer and accommodate to the large energy differences observed in
Fig. 1b.

In Method 4 (TL with r2SCAN AtomRef), we first replaced the GGA/
GGA + U AtomRef in the pre-trained CHGNet model with the r2SCAN
AtomRef, and then performed TL on the GNNs while keeping the r2SCAN
AtomRef frozen.

Table 1 presents the MAEs on the test set for energy, force, stress, and
magnetic moment (magmom) predictions (see Data preparation for details
on data splitting).Methods 2 and 3 (TLwith trainable and frozenAtomRef,
respectively) yield similar performance across all metrics, with Method 1
(Training from scratch) achieving a comparable energy error (27 meV/
atom) but reduced force (45 meV/Å) and stress error (0.239 GPa). This
suggests thatwithout properly shifting the reference energy, neitherMethod
2 norMethod 3 benefits from theGGA/GGA+U pre-training. In contrast,
Method 4 (TLwith r2SCANAtomRef) attained the lowestMAEs for energy,
force, and stress, indicating that the optimal approach to fine-tuningMLIPs
is to first shift the reference energy and then train the GNNs.

Figure 3 shows the model training gradients and training errors vs.
epochs for Method 3 and Method 4 during the TL. Figure 3a illustrates the
range of gradient values for several representative model layers. Gradient
values are recorded every 1/10 of an epoch for thesemodel layers during the
first transfer learning epoch. We observe that Method 3 without refitting
AtomRef exhibits gradientmagnitudes at least one order larger than those of
Method 4 with refitting. Figure 3b and c show the evolution of energyMAE
during the full training process of 50 epochs, without and with AtomRef
adjustments, respectively. Figure 3b displays larger initial and final energy
MAE, indicating a less effective training process. In contrast, Fig. 3c
demonstrates that refitting AtomRef results in a more stable and reliable
training history.

Stability prediction fromMLIPs
As a more stringent prediction test, we evaluate relative stability of com-
pounds through the convex hull construction. Relative stability of a com-
pound can bemeasured by its decomposition energy, calculated by the total
energydifferencebetweena given compoundand its competing compounds

in a specific chemical space. This is a more stringent test than measuring
MAE, as the scale of decomposition energy is small and relies on significant
error cancellation in DFT74.

Figure 4 presents the general workflow for predicting decomposition
energy. Predicting decomposition energy with FPs is particularly challen-
ging as it depends not only on the energy of a singlematerial but also on that
of the neighboring competing phases in a phase diagram75. The physical
outcome of decomposition energy is binary with negative values indicating
stable compounds and positive values indicating unstable or metastable
compounds. As such, small non-systematic energy errors fromMLIPs will
easily alter the stable entries in the phase diagram, by changing the
decomposition energy from small negative values to positive values and vice
versa. This issue is further exacerbated by the fact that machine learning
models exhibit poorer error cancellation compared to DFT74.

We constructed all phase diagrams in the chemical space of our dataset
using r2SCAN DFT data and calculated the decomposition energy as the
ground truth. A similar phase diagram can be constructed by the fine-tuned
CHGNet, which allows the determination of CHGNet predicted decom-
position energy.The initial configurations for all structures are sourced from
Materials Project and further relaxed using the pre-trained or fine-tuned
CHGNetmodels of correspondingmethods.This process relies solelyon the
FP’s capability to obtain relaxed energies and relative stabilities between
polymorphs, without requiring additional information from theDFT phase
diagram.

Table 1 also presents benchmark results for the decomposition energy
prediction MAEs of four methods on the MP-r2SCAN test set (see Data
preparation for data splitting). The MAEs of Methods 2 and 3 (41.22 and
38.54 meV/atom, respectively) are slightly larger than that of Method 1
(37.44meV/atom), again indicating no benefit from conventional TL
methods. In contrast, Method 4, which uses r2SCAN-specific AtomRef,
achieves an MAE of 23.66meV/atom, at least 13.5meV/atom lower than
the others. Additionally, Table 1 shows the formation energyMAEs for the
pre-trained or fine-tuned CHGNet models, where formation energy is
defined as the energy difference between a compound and its constituent
elements in their reference states. Method 4 again outperforms the other
methods, with an MAE of 29.38 meV/atom, at least 10 meV/atom
lower than the others. Method 2 has higher MAEs for both decom-
position and formation energies (41.22 and 52.43 meV/atom,
respectively) compared to other methods that freeze AtomRef during
training, suggesting that a trainable AtomRef may lead to less
accurate predictions in practice.

In the prediction of decomposition energies, we also observed that the
FP trained with Method 2 and Method 3 exhibited some failed ionic
relaxations. Specifically, we found that in Method 2, 40 out of 34,927
relaxations, and inMethod 3, 30 out of 34,927 relaxations, resulted in at least
one atom being displaced more than 6 Å away from its nearest neighbors,
creating an unrealistic atomic configuration that triggered the failure of
force field calculations. This is likely due to the unstable PES in the MLIP
created by the large gradient updates in TL without shifting the reference
energy (see Fig. 3). In contrast, Method 4 – TL with r2SCAN AtomRef,
significantly improves predictionaccuracy in this complex taskof predicting
non-intrinsic properties.

Table 1 | Energy, force, stress, magnetic moment (magmom), decomposition energy, and formation energy predictionMAEs of
different methods

Methods Energy MAE Force MAE Stress MAE Magmom MAE Decomposition energy MAE Formation energy MAE
(meV/atom) (meV/Å) (GPa) (μB) (meV/atom) (meV/atom)

Method 1 27 45 0.239 0.019 37.44 43.11

Method 2 26 54 0.266 0.027 41.22 52.43

Method 3 26 52 0.257 0.026 38.54 39.78

Method 4 17 38 0.167 0.023 23.66 29.38

Method 1: Training from scratch; Method 2: TL with trainable AtomRef; Method 3: TL with frozen AtomRef; Method 4: TL with r2SCAN AtomRef.
Bold values indicate the lowest MAE among the methods.
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Density prediction fromMLIPs
Apart from the above benchmarks that use DFT-calculated data as ground
truth, we further assess the MLIPs’ ability to predict materials’ density in
comparison with experimental values. r2SCAN is expected to outperform
GGA in this respect, as GGA functionals are known to more significantly
overestimate volumes compared to r2SCAN45. As a result, we expect that the
models fine-tuned on r2SCAN data will yield more accurate density pre-
dictions than the GGA/GGA+ U pretrained CHGNet.

To perform this evaluation, we randomly selected 1000 ordered
structures from the InorganicCrystal StructureDatabase76 (ICSD) database.
For each structure, all lattice vectors were strained by −10%, followed by
structure relaxations using each model with a 30meV/Å relaxation con-
vergence threshold. The converged densities were then compared to the
experimental values.

Figure 5 presents the distributions of the ratios between experimental
and predicted values for density, for the pretrained CHGNet and models
trained by Method 1, Method 2, Method 3, and Method 4. The plots also
report the MAE for each method in the upper left corner.

The results show that Method 4 achieves the lowest MAE. Further-
more, the distributions of the experimental-to-predicted ratios demonstrate
that the CHGNet model pretrained on GGA tends to underestimate den-
sities to a greater extent, whereasMethod 4 yields distributionsmore tightly
centered around the ideal value (ratio = 1) than the other methods. These
findings indicate that our transfer learning approach fromGGA to r2SCAN
is effective, and thatmodels trained usingMethod 4with r2SCANdata have
greater potential for accurate real-world volume and density predictions.

Scaling law on transfer learning
To evaluate the data efficiency improvement of Method 4, we analyzed its
scaling behavior on theMP-r2SCANdataset. Theneural scaling laws suggest
that model performance should improve steadily as the model size, dataset
size, and amount of computing used for training are increased24,77,78. The
performance is expected to follow a power-law relationship with each of
these factors, provided the other two are not limiting.We benchmarked the
energy and force MAEs on the validation set of MP-r2SCAN using either
Method 1 (Scratch) orMethod 4 (Transfer). The resulting validation errors

Fig. 3 | Comparison of the model’s training per-
formance with and without AtomRef refitting.
a Gradient values recorded every 1/10 of an epoch
for various model layers during the first transfer
learning epoch, comparingmodels with andwithout
AtomRef refitting. The layers include “AtomEmb”
(atom embedding), “BondEmb” (bond embedding),
“AngleEmb” (angle embedding), “Atom-
Conv0_W0” and “AtomConv3_W3” (weights of the
two-body atom convolution layers), “Bond-
Conv0_W0” and “BondConv2_W3” (weights of the
two-body bond convolution layers), and
“MLP_Layer0” (weights of the first layer in the
multi-layer perceptron). b Energy training history
for Method 3, showing the lowest energy MAE of
18.37 meV/atom at the last epoch. c Energy training
history for Method 4, showing the lowest energy
MAE of 11.82 meV/atom at the last epoch.

Fig. 4 | Decomposition energy prediction work-
flow.The left plot shows a schematic of a convex hull
energy diagram constructed using r2SCAN DFT-
calculated data, providing decomposition energy
values based on competing phases identified in the
DFT phase diagram (e.g., for a2, the competing
phases are a1 and a3; for a4, they are a3 and a6). The
right plot schematically shows the convex hull
constructed by CHGNet-relaxed energies. The
decomposition energy and model-identified com-
peting phases differ from DFT.
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vs. training sizes are shown in Fig. 6. For each curve in Fig. 6, we performed a
linear regression starting from the data point corresponding to more than
1000 training points on the x-axis, yielding the coefficient of determination
(R2) shown in the figures. The Linear fits demonstrate a linear scaling law
behavior for both training from scratch (orange) and transfer learning
(blue). The best-performing model for both energy and force predictions is
obtained by Transfer, with an energy MAE of 15 meV/atom and a force
MAE of 36 meV/Å.

The superior data-efficiency of TL over training from scratch can be
found by the reduced MAE of TL in Fig. 6. For energy MAE in Fig. 6a, the
Scratch curve exhibits a log-log slope of -0.615 with an R2 of 0.994, while the
Transfer curve has a log-log slope of -0.301 with an R2 of 0.964. For force
MAE in Fig. 6b, the Scratch curve shows a log-log slope of -0.394 with an R2

of 0.978, while the Transfer curve has a log-log slope of -0.134 with an R2 of
0.997. The results indicate TL with merely 1K high-fidelity data points can
outperform training from scratch on a high-fidelity dataset with more than
10K data points, markingmore than 10-fold data efficiency gained from the
GGA pre-training step.

Interestingly, we observe that the superior performance of Transfer
over Scratch does not saturate even given the full-sizedMP-r2SCANdataset
of 0.24million structures.Assuming the linear scaling trendof bothTransfer
and Scratch, the superior performance of Transfer will only be saturated
after 719,996 training points for energy and 317,475 training points for
force. This result indicates TL remains data-efficient even with close-to-
million scale high-fidelity data points.

Discussion
The FPs enable efficient predictions of energy across diverse chemical
environments, facilitating large-scale simulations with near GGA-level
accuracy. As the training of FPs is migrating toward higher levels of DFT
accuracy, optimal transferability strategies are needed. In this work, we
investigated and benchmarked different transfer learning methods for FPs
with multi-fidelity datasets. We demonstrate that the scale of atomic
reference energies varies significantly across different approximate density
functionals, leading to the non-trivial choice of fine-tuning and TL
approaches. We rationalized the importance of refitting the atomic refer-
ence energies when fine-tuning MLIPs across multi-fidelity datasets. To
further demonstrate the validity and generality of this transfer learning
approach, we present two additional experiments involving the transfer
learning on other datasets: a halide Van der Waals (vdW) dataset and an
HSE06 dataset, which can be found in the supplementary information. The
results show that Method 4 consistently outperforms the other methods,
achieving the lowest test MAEs for energy, force, and stress, as well as the
most robust and smooth training dynamics.

The energy quantity that matters for physical behavior is always
referenced to some reference energies and not determined by total energies.
For example, the cohesive energy is referenced to the energy of neutral, free
atoms at infinite separation67. The formation energy is referenced to the
energy of constituent elemental unaries in their reference states (solid or gas
phase)79,80, and decomposition energy is referenced to the energies of
competing compounds in a given chemical space74. Consequently, the eV/
atomscale shifts in total energy fromGGA/GGA+U to r2SCANdonot lead
to any changes in the physical interaction and behavior of materials.
However, as energy is the training label for a ML model, the significant
difference in the energy scales leads to challenges in the convergence
of the TL.

Essentially, by using energy referencing, one canmodify the energy loss
component in a model’s loss function during TL. For a FP with AtomRef,
the general formula for the modified energy error of a structure’s data is:

EnergyError ¼ Etarget
label � Esource

GNNs þ celem � Esource
elem

� �

�celem � Etarget
ref � Esource

ref

� �
;

ð3Þ

where Etarget
label is the target energy training label, which is often obtained from

high-fidelity calculations. celem is the composition row vector representing
the number of each element in the structure. Esource

elem represents the AtomRef
of the source dataset. Esource

GNNs and celem � Esource
elem are the energy predictions of

Fig. 5 | Density prediction benchmark. Distribution of the predicted density ratio
(experimental / predicted) for 1000 Inorganic Crystal Structure Database (ICSD)
structures, shown over the range 0.80–1.20. Results are given for Method 1: training
from scratch, Method 2: TL with trainable AtomRef, Method 3: TL with frozen
AtomRef, Method 4: TL with r2SCANAtomRef, and the GGA/GGA+U pretrained
CHGNet model. The MAE for density (in g/cm3) for each method is reported in the
upper left corner. The dashed vertical line indicates perfect prediction (ratio = 1).

Fig. 6 | Scaling law on r2SCAN data. a Energy MAE and b Force MAE on the MP-
r2SCAN validation set using either Method 4, TL with r2SCAN AtomRef (Transfer,
blue) or Method 1, training from scratch (Scratch, orange) methods. Zero training
points in Transfer refers to the performance of the GGA/GGA + U pre-trained
CHGNet with r2SCAN AtomRef. Linear fits are applied for x > 1000 to demonstrate
the neural scaling law, and the coefficients of determination (R2) are shown in the
figures.
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theGNNandAtomRef,which sumup to the energypredictionof the source
FP that has been pre-trained from a low-fidelity source dataset. Etarget

ref and
Esource
ref are the energy referencing parts of the two functionals, with

dimensions Nelem × 1, representing the reference energies of the structures.
For cohesive energy, the reference energies are the energies of neutral free
atoms at rest; for formation energy, they are the energies of unaries in their
reference states. In our approach, they are also coming from the fitted
AtomRefs.

Energy referencing refers to replacing the AtomRef from Esource
elem to

ðEsource
elem þ Etarget

ref � Esource
ref Þ before transferring a FP to the target level. After

energy referencing, the remaining contribution in the energy loss represents
the differences in atomic interactions approximated by the source (GGA/
GGA + U) versus the target (r2SCAN), which is the relevant part of the
energy that TL onGNNs aims to learn. Using AtomRef as Eref is potentially
better than referencing related to cohesive or formation energy, as AtomRef
obtains atomic reference energies as statistical averages from all data in the
dataset that covers a vast chemical space.

We attribute the effectiveness of using AtomRef as Eref for cross-
functional TL to two key factors. Firstly, the more than 10-fold improve-
ment in correlation from 0.0917 to 0.9250 (see TL with different atomic
reference energies) significantly enhances the effectiveness of TL. Secondly,
refitting AtomRef ensures gradual adjustments of the model weights, and
thus amore stable and reliable training process.Without refitting AtomRef,
energy shifts cause substantial discrepancies between predicted and target
energies, leading to very large prediction errors and high loss values initially.
This, in turn, produces large gradients that cause excessive changes with the
model weights, as illustrated in Fig. 3a and b.

According to Table 1, Method 4 (TL with r2SCANAtomRef) is shown
to be most effective with the lowest energy MAE, consistent with the above
rationalization of this approach. The higher predictionMAEs ofMethods 2
(TL with trainable AtomRef) and 3 (TL with frozen AtomRef) compared to
Method 4 – which integrates energy re-referencing with GNN-based TL –
highlight the challenges of conventional TL without refitting AtomRef in
FPs. Methods 2 and 3 exhibit similar MAEs since they both begin with
GGA/GGA+UAtomRef, and the large energy shifts between r2SCAN and
GGA/GGA + U cause poor correlation and excessive weight adjustments
during early fine-tuning, driving model weights to suboptimal positions
where they can become trapped. Notably, their predictions for forces,
stresses, and magmoms are inferior to those of Method 1 (Training from
scratch), which uses r2SCAN data directly, free from GGA/GGA + U
influence. This underperformance is attributed to negative transfer54,
resulting from the weak correlation between source and target datasets
during GNN-based TL.

As it is unlikely that one dataset will rule all of FPs, a well-founded
strategy to integrate diverse datasets, such as Materials Project21,22,
Alexandria23, OQMD81, AFLOWLIB82, NOMAD83, QM984, JARVIS85,
OC2086, OMat2426, OCX2487, and MatPES32, will provide a promising
avenue for leveraging the broad spectrum of available information and
enable integration of future high quality data. Such integration will be
helpful to address the data-originated issues in FPs which are otherwise
challenging to solve by only model architecture improvements27. Our
scaling law analysis demonstrates the superior data efficiency gained from
pre-training on large-scale low-fidelity dataset when migrating to high-
fidelity ones.

As FP-training is expected to transfer to higher quantum chemistry
levels of theory, we also want to highlight the need to establish benchmark
tests tailored to these computationally demanding quantum mechanical
methods, such as r2SCAN, coupled clustermethods (e.g., CCSD), andmulti-
reference approaches. In this work, we exemplify this by introducing sta-
bility benchmarks based on decomposition energy and formation energy
predictions, as well as the density benchmark which uses experimental
values as ground truth. Current FP benchmarks such as Matbench
Discovery88 are mostly limited to GGA/GGA + U tasks due to the dataset
limits. We advocate for more comprehensive benchmarking frameworks

that go beyond GGA/GGA+ U and potentially integrate evaluations such
as kinetic properties and more complex material behavior to better assess
models across different functionals.

In summary, by examining how atomic reference energies influence
the performance of GGA/GGA + U to r2SCAN TL, we reiterate the
importance of establishing correlations between multi-fidelity datasets so
that they can benefit from TL. TL with refitting atomic reference energies
yields a stable and reliable MLIP for energy, interatomic forces, thermo-
dynamic stability, and density predictions. Our benchmark results and
scaling law analysis show that refitting atomic energy is data-efficient and
convinces fine-tuning FPs to be a practical way for various downstream
materials modeling tasks.

Methods
Data preparation
The r2SCAN Dataset, MP-r2SCAN, is parsed from the Materials Project
Database in March 2024. We collected all the r2SCAN structure optimiza-
tion and static task trajectories under each material ID that contain these
tasks, and then followed similar criteria as those used in creating the MPtrj
Dataset: (1) Final frame energies were limited towithin 20meV/atomof the
primary task. (2) Structures missing energy, forces, or electronic con-
vergence were excluded. (3) Structures with energies > 1 eV/atom or <
10meV/atom relative to Materials Project’s ThermoDoc relaxed structures
were filtered out to eliminate large energy differences resulting from var-
iations in DFT calculation settings. (4) Duplicate structures were removed
using pymatgen’s StructureMatcher and energy matcher89. For all 4 TL
models, we randomly split theMP-r2SCANdataset into training, validation,
and test sets with an approximate ratio of 8:1:1 based on material IDs. The
training set contains 27,943 material IDs with 190,560 structures; the vali-
dation set contains 3492material IDswith 23,888 structures; and the test set
contains 3492material IDs with 23,799 structures. The energy, force, stress,
andmagmompredictionMAEs are based on the test set’s 23,799 structures.
Thedecomposition energypredictionMAEwas reportedon the test set. The
formation energy prediction MAE was calculated on all 34,938 r2SCAN
material IDs in the Materials Project.

Training scheme
We kept most of the settings the same as the pre-trained CHGNet model,
except for the following: we changed the fixedGGA/GGA+UAtomRef of
the model to r2SCAN AtomRef; a Huber loss with energy, force stress and
magmom loss ratio of 3:1:0.1:1 was used to train themodel; we used a batch
sizeof 64 anda learning rate of 10−3 that cosinelydecays to10−5 in 50 epochs.

Feature importance
To determine which elements contribute most to the formation energy dif-
ferences between r2SCAN and GGA/GGA+U (discussed in Section Energy
differences across two functionals), we used the attribute feature_-
importances_ in scikit-learn’s DecisionTreeRegressor.

The importance of each node on the decision tree can be calculated by
(assuming only two child nodes (binary tree)):

nj ¼ wjσ j � wleftðjÞσ leftðjÞ � wrightðjÞσrightðjÞ ð4Þ

nj represents the importance of node j,wj is theweighted number of samples
reaching node j, σj denotes the impurity value (here it is variance) of node j,
left(j) refers to the child node from the left split on node j, and right(j) refers
to the child node from the right split on node j.

Feature importance is calculated by:

f i ¼
P

j:node j splits on feature injP
k:allnodesnk

ð5Þ

where fi represents the importance of feature i, and nj represents the
importance of node j.
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To obtain the normalized feature importance, each feature importance
was divided by the total number of atoms of this element in the dataset and
thenmultiplied by 9,000 for Fig. 1c and 500 for Fig. 1d to scale it back to the
range of 0-1. Finally, it was visualized on the periodic table.

Data availability
The MP-r2SCAN dataset used to fine-tune CHGNet is available at https://
doi.org/10.6084/m9.figshare.28245650.v290.

Code Availability
Themodel weights of fine-tunedCHGNet and training configuration using
Method 4 are available at https://github.com/CederGroupHub/chgnet/tree/
main/chgnet/pretrained/r2scan.
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