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Cross-functional transferability in
foundation machine learning interatomic

potentials
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Xu Huang ® 2, Bowen Deng ® '?
Gerbrand Ceder ® '

, Peichen Zhong ® 2, Aaron D. Kaplan ®2, Kristin A. Persson® ' &

The rapid development of foundation potentials (FPs) in machine learning interatomic potentials
demonstrates the possibility for generalizable learning of the universal potential energy surface. The
accuracy of FPs can be further improved by bridging the model from lower-fidelity datasets to high-
fidelity ones. In this work, we analyze the challenge of this transfer learning (TL) problem within the
CHGNet framework. We show that significant energy scale shifts and poor correlations between GGA
and r’SCAN hinder cross-functional transferability. By benchmarking different TL approaches on the
MP-r?SCAN dataset, we demonstrate the importance of elemental energy referencing in the TL of FPs.
By comparing the scaling law with and without the pre-training on a low-fidelity dataset, we show that
significant data efficiency can still be achieved through TL, even with a target dataset of sub-million
structures. We highlight the importance of proper TL and multi-fidelity learning in creating next-

generation FPs on high-fidelity data.

Atomistic simulations provide a powerful framework for predicting and
virtually screening material properties and have led to multiple predictions
of interesting functional materials'”. These simulations are enabled by
accurate determination of the potential energy surface (PES) as a function of
atomic positions, permitting prediction of stability properties, reaction
mechanisms, and dynamic behavior'”.

Historically, two main approaches have been used to model the PES:
ab-initio quantum chemical calculations and empirical force fields’. Ab-
initio quantum chemical calculations such as density functional theory
(DFT) provide high accuracy and generality, but at a substantial compu-
tational cost. Furthermore, this cost scales rapidly with system size, typically,
~ O(N?) or O(N,logN,) with N, the number of electrons™", thereby
limiting the achievable length and time scales. In contrast, empirical force
fields typically trade accuracy and generality for speed, limiting their
applicability in complex systems.

To address these limitations, surrogate energy models such as
machine learning interatomic potentials (MLIPs) have been devel-
oped to accelerate atomistic simulations. MLIP methods aim to
disrupt the long-standing trade-off between accuracy and efficiency,
achieving near training set accuracy while offering a computational
cost reduction of several orders of magnitude compared to traditional
DFT methods'' and maintaining O(N) computational efficiency,
where N is the number of atoms".

MLIPs are parametrized to reproduce energies from ab-initio quantum
mechanical calculations, such as DFT. The total energy of a material system
is decomposed and predicted through a learnable mapping of atomic
positions and chemical species, where each atom’s contribution is deter-
mined by its surrounding local atomic configuration within a defined cutoff
radius:
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The learnable function ¢ maps the position vectors {7j}i and chemical
species {C;}, of neighboring atoms j to the energy contribution of atom .
Forces {f;} are derived as the negative gradient of the total energy with
respect to atomic coordinates. The choice of design features ¢ is crucial for
MLIPs to encode the system’s physical and chemical properties, such as
using equivariant feature encoding™'* and including atomic charge
information'>"".

Recently, foundation potentials (FPs) trained on millions of DFT cal-
culations demonstrate promising transferability in atomic simulations
across diverse chemical spaces. The FPs such as M3GNet'/, CHGNet",
MACE-MP-0", SevenNet-MF-0", and Orb® have been developed from
open-source materials databases such as the Materials Project’” and
Alexandria®. Industry FPs such as GNoME™, MatterSim”, and
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EquiformerV2-OMAT*® demonstrate improved PES predictability with
larger data and model sizes in various downstream materials modeling tasks
such as phonon spectra prediction, phase diagram construction, catalyst
screening, and molecular dynamics simulations” ",

Despite these successes in improving models and data, there remain
challenges for further improvements of FPs. One significant issue reported
by Deng etal.” shows a consistent underprediction of energies and forces in
FPs”, which calls for improved sampling in FP training datasets. The pre-
dominant approach to generate FP datasets relies on DFT calculations using
generalized gradient approximations (GGAs), limiting FPs to GGA-level
accuracy and posing potential challenges for migrating to higher-accuracy
functionals like meta-GGAs. Recently, Kaplan et al.” released the MatPES
dataset that incorporates regularized strongly constrained and appropriately
normed (*SCAN) meta-GGA functional calculations, which opens the
possibility for FPs to migrate to high level of theory. See ref. 33 for a defi-
nition of GGAs and meta-GGAs and Ref. 34 for an overview of their well-
established limitations in describing crystalline and molecular systems.

In this work, we discuss the challenges and practical approaches that
help better understand the fine-tuning process in FPs, particularly when
dealing with multi-fidelity data transferability across different functionals.
Successfully achieving this multi-fidelity data transferability is crucial, as it
can enable more accurate and efficient atomistic simulations without the
substantial computational costs typically associated with high-fidelity cal-
culations. By showing the correlation between the labels from different levels
of theory, we emphasize the importance of training at the right scale through
energy referencing when conducting transfer learning.

Results

Data challenges in existing foundation potentials

An essential component in building improved FPs comes from reliable
datasets. The current FP datasets applicable to crystalline materials are
predominantly composed of GGA and GGA + U-level DFT
calculations'"”'"**. While GGA-based training data is widely available and
computationally efficient to generate, several limitations of GGA are
known™ and other functionals are now available® ™. A widely used
method to alleviate some of the self-interaction in GGA is the Hubbard U
correction”', which adds an energy correction to localized electron states
(e.g., d or forbitals). The use of + U is particularly important when dealing
with metal oxidation/reduction in formation enthalpies, reaction energies,
or electrochemical potentials’*. At the same time, the application of + U'is
not appropriate for metallic systems where electron delocalization is
appropriate. Because of these conflicting requirements, compatibility
schemes between GGA and GGA + U have been designed" and some
datasets contain a mixture of GGA and GGA + U calculations. We call
attention to three data challenges in existing FPs, which were primarily
trained with a mixture of GGA/GGA + U DFT calculations.

Firstly, GGA/GGA + U exhibit lower transferability across chemical
bonding environments”. The Perdew-Burke-Ernzerhof (PBE) GGA* is
found to have a mean absolute error (MAE) of 194 meV/atom dominated by
the large error in oxides and strongly bound systems, in a large-scale test on
the formation energy of 987 compounds®. In contrast, the SCAN meta-
GGA functional developed by Sun et al.” predicts formation energies with
an MAE of 84 meV/atom. Isaacs and Wolverton® also demonstrate that
SCAN is more accurate in predicting formation energy for strongly bound
compounds, crystal volumes, magnetism, and band gaps, as compared to
the PBE GGA. The r"SCAN" revision of the SCAN meta-GGA balances
numerical stability with high general accuracy” and has therefore become
the preferred method to evaluate thermophysical properties of
materials*****. While the demonstrated prediction errors in Ref. 45 are high,
it is worth noting that many of the compounds included have formation
reactions from molecular species such as H,, N,, O,, and thereby are more
similar to cohesive energies. When evaluating only solid-state reactions,
energy errors are typically smaller for GGA”.

Secondly, the application of the Hubbard U correction to mitigate self-
interaction errors in GGA is inherently semi-empirical and non-universal.

GGA + U fails to predict accurate energy differences between some com-
pounds with localized electronic states and those with delocalized electronic
states”. There is also no precise definition of an “optimal” U, and approa-
ches such as the linear response method™ suggest that such an optimal U
would be system-dependent. However, the GGA/GGA + U FP datasets
were generated using the same U value for each element regardless of the
local environment or formal valence state, calibrated to minimize dis-
crepancies between DFT-calculated oxidation energies and experimental
measurements for a limited number of 3d transition metal oxides™".

Thirdly, to correct for some of the self-interaction error in GGA which
is particularly large when calculating the energy of reactions that reflect
charge transfer such as oxide formation enthalpies, an ad hoc scheme of
mixing GGA and GGA + U calculations is typically used to bridge the gap
between GGA and GGA + U"". Such coarse-grained, non-universal
adjustments can potentially cause issues when fitting a FP, such as sudden
jumps of potential energy at the scale of a few hundred meV per atom when
moving between training data computed with these mixing schemes. Last,
there is no corresponding mixing scheme applied to the GGA/GGA + U
interatomic forces and stresses. This may be less of an issue as both are
derivative properties of a given functional, and thus should be independent
of the energy scale of the underlying DFT approximation. However, this has
not been formally verified.

Overall, the use of approximate exchange-correlation functionals,
combined with the non-universality of Hubbard U corrections and com-
patibility adjustments, leads to less accurate and somewhat noisy data within
the GGA/GGA + U framework. Such data noise makes it challenging for
graph neural network models (GNNG) to accurately learn and capture the
underlying interactions within materials.

Cross-functional transferability challenges in foundation
potentials

One possible solution to overcome the challenges of GGA and GGA + U'is
to shift the FP training and benchmarking dataset to DFT calculations
performed with higher-fidelity functionals. These higher-fidelity calcula-
tions come with higher computational costs, leading to challenges in con-
structing datasets on a substantial scale. One possible solution is to leverage
existing lower-fidelity GGA and GGA + U calculations and existing pre-
trained FPs as a starting point.

There are three main strategies to achieve explicit or implicit trans-
ferability between multi-fidelity DFT datasets: transfer learning, multi-
fidelity learning, and mixed multi-fidelity training.

Transfer learning (TL) involves pre-training a large neural network on
extensive lower-fidelity datasets. The pretrained weights from this network
are then transferred to initialize machine-learning tasks on smaller, higher-
fidelity datasets. This approach is both computationally efficient and data-
efficient™”. However, if the correlation between the two different fidelity
datasets is not strong enough, TL is not effective and can even deteriorate the
learning performance, known as negative transfer™.

Multi-fidelity learning can be conducted either at the feature (input)
level or at the label (output) level®, i.e., low-fidelity data is utilized as input
features to predict high-fidelity data, or the task of learning high-fidelity data
can be transformed into learning the difference between high-fidelity and
low-fidelity data, an approach known as A-machine learning™®*’. Multi-
fidelity learning tends to be more computationally expensive than TL™.
When applying multi-fidelity learned models to make real predictions for
unknown cases, one must first calculate low-fidelity data to obtain input
features (input level) or use it to add the predicted difference to get the final
high-fidelity prediction (output level).

Mixed multi-fidelity training aims to simultaneously learn and predict
datasets of varying fidelity levels. Chen et al.”” encoded the fidelity of each
dataset and embedded the dataset type as a vector in the global state feature
input to the M3GNet model for band gap prediction. Ko and Ong® adopted
this method to construct highly accurate GNN-based interatomic potentials
for two model systems—silicon and water. Allen et al.*" used meta-learning
techniques to build pre-trained potentials that simultaneously incorporate
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information from multiple large organic datasets, calculated at different
levels of theory. Kim et al.” developed a high-fidelity MLIP by one-hot
encoding each fidelity, concatenating it to the scalar part of the input node
feature at each linear layer, and adding different atomic energy shift scale
blocks for each fidelity database to the SevenNet model. Similar to TL,
mixed-fidelity training tends to be computationally expensive when addi-
tional poorly correlated data are added to the trained model.

Each of the three strategies presents its own advantages and challenges.
So far, no clear evidence exists that TL consistently outperforms multi-
fidelity learning or mixed multi-fidelity approaches, or vice versa. In this
work, we focus on how to tackle the transferability challenges of efficient TL
across GGA/GGA + Umixed data and r’SCAN data in the CHGNet model,
though our conclusion should hold more generally for other FPs.

MP-r>SCAN dataset

We use a ’'SCAN dataset, MP-r’'SCAN, parsed from Materials Project’"*
r’SCAN relaxation trajectories, for high-fidelity training tasks. Following the
data parsing criteria described in Data preparation, we obtain 34,927
material IDs with 238,247 structures. Compared to the MPtrj Dataset”’,
which has 145,923 materials IDs with 1,580,395 structures, the MP-r’'SCAN
is significantly smaller in size.

Figure 1 a presents the element distribution in the MP-r’SCAN dataset
with a total of 238,247 structures. The color of each element indicates the
total number of times each element is present in the MP-r*SCAN dataset,
with a lower cutoff of 1000. Elements with 1000 or fewer occurrences all
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Fig. 1 | Statistical analysis of the energy data. a Element distribution of the MP-
r’SCAN dataset of 238,247 structures. The color indicates the total number of
occurrences of an element in the MP-r’SCAN dataset with a lower cutoff of 1000.
b Total Energy of materials computed from GGA/GGA+U vs. ’'SCAN functionals.
Each point represents a material with a materials ID that has ’'SCAN calculations in
Materials Project, with the x-axis showing the total energy after r’SCAN structure
relaxation and the y-axis showing the total energy after GGA/GGA+U structure
relaxation. The marginal histograms on the top and right illustrate the distributions
of total energies for the same collection of materials, as calculated by ’SCAN and

share the same color. The MP-r*SCAN dataset covers 88 elements in the
periodic table.

Energy differences across two functionals

Machine learning transferability can be quantified by assessing the corre-
lations between the source and target datasets™. To investigate the feasibility
and effectiveness of TL between DFT functionals, we analyze the scale of the
total energy differences between r’SCAN and GGA/GGA + U.

Figure 1 b presents the comparison of the relaxed total energies cal-
culated using r’SCAN (x-axis) and GGA/GGA + U (y-axis), which repre-
sent the training label of most FPs. In Fig. 1b, each point represents a single
compound from the Materials Project, and the corresponding GGA/GGA
+ U energies have applied anion and compatibility corrections”’. The
marginal histograms on the top and right side show the distributions of
energies calculated using ’'SCAN and GGA/GGA + U, respectively, for all
’'SCAN materials IDs in Materials Project. As depicted in Fig. 1b, the total
energy of ’'SCAN and GGA/GGA + U are distributed on different scales.
The shift from the GGA/GGA + U to r’'SCAN is at the scale of 0-70 eV/
atom, which is significantly larger than the energy accuracy of FPs ( ~
30meV/atom), indicating these r*SCAN energy labels are not directly
transferrable without proper reference or normalization.

These eV/atom scale energy shifts between functionals are related to
the ambiguity in the Kohn-Sham energy levels which have an arbitrary
reference energy” . These energy shifts are well understood in electronic
structure theory and do not contribute to any physical quantities due to the
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GGA/GGA + U, respectively. ¢, d Feature importance in the formation energy
differences between GGA/GGA + U mixing and r’SCAN. Each element is treated as
a feature, with its importance indicated by colors on the periodic table. Higher values
correspond to greater importance and therefore larger energy difference between
GGA/GGA + U and r’SCAN. Panel ¢ presents the feature importance when anion
and compatibility corrections are included in the mixed GGA/GGA + U data, and
d presents the feature importance without these adjustments. Compositional cor-
rections are applied primarily to pnictogens, chalcogens, and halogens.
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cancellation of energy references in any physical property. The total energy
itself is not a physically measurable quantity, as it is “gauge dependent” on
the vacuum level, but energy differences such as the cohesive energy are
measurable and gauge invariant”. Because MLIPs are typically trained on
absolute total energies, these eV/atom scale energy differences from GGA/
GGA + Uand r’SCAN can cause significant challenges in TL.

One method to remove the significant total energy shifts is by fitting the
MLIPs with physical quantities such as formation energies, which has been
shown to be easier to transfer in crystal graph attention networks™**. The
formation energies describe the strengths of the interactions that form the
compound from pure elemental phases and are better correlated between
different functionals than the total energy labels, although small deviations
can still be present due to the different levels of accuracy.

To determine which elements contribute most to the formation
energy differences between r’'SCAN and GGA/GGA + U calculations, we
queried the formation energies from Materials Project and fitted decision
tree models on the formation energy differences through scikit-
learn®. The input to this model is the compositional fraction matrix of
all materials with r’SCAN materials IDs in Materials Project, and the
target variable is the formation energy difference between the two
functionals. We calculated the feature importance (see Feature impor-
tance) for each element and plotted the strength of the importance
through the color bar in the periodic table in Fig. lc and d. The
importance of a feature is computed as the normalized total reduction of
the criterion brought by that feature. The higher the value the more
important the feature. Figure 1c presents the feature importance with
GGA/GGA + U mixing and anion corrections included, and Fig. 1d
includes the same analysis but with uncorrected GGA/GGA + U for-
mation energies.

In Fig. 1c, we observe that d-block elements such as V, Cr, Mn, Fe, Co,
Ni, Mo, and W exhibit high importance, indicating they significantly con-
tribute to the formation energy differences between GGA/GGA + U and
’SCAN. These are precisely the elements for which Hubbard U corrections
and compatibility adjustments are applied in transition metal oxides and
fluorides. Similarly, p-block elements with high importance—O, F, S, Cl, Se,
Br, and Te—also undergo compatibility corrections when they serve as
anions in compounds. Notably, Cl exhibits a very high feature importance.
We can attribute the relatively higher feature importance of Cl to two
sources: (i) the compatibility scheme imposed on GGA/GGA + U energies
places the second largest correction ( —0.614 eV/atom in magnitude) to Cl,
second only to oxides ( — 0.687 eV/atom in magnitude); (ii) PBE struggles to
describe the weaker covalency and van der Waals interactions typical of
ionic crystals”, whereas ’'SCAN describes both covalent and ionic bonding
reasonably well”” and improves the description of medium-range van der
Waals interactions””. The differences in Fig. 1c and d show clearly that the
removal of the corrections scheme almost eliminates the higher feature
importance of the chalcogens and halogens seen in Fig. 1c. Without the
energy correction scheme, the eight transition metals, O, and F remain a
higher feature importance (see Fig. 1d).

TL with different atomic reference energies

Shifting the PES with a constant value for each element is an effective and
commonly used approach in training GNN-based MLIPs. As described in
Fig. 2a, in CHGNet and other models like M3GNet, NequIP"* and CACE",
the prediction of total energies (per atom) is divided into two parts: Eatomref
and Egny 7. First, the composition row vector ¢, and atomic reference
energies (AtomRef) E,j,, are obtained, and their dot product gives EatomRef-
The composition vector cgenm, represents the fraction of each element in the
structure, and in CHGNet, its dimension is 1 x 94. Next, a composition
model is used to fit a linear regression of total energies, where Eg,y, are the

weights:
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Fig. 2 | Illustration of AtomRef and correlation improvement through scaled
energies. a Schematic representation of the role and application of AtomRef in
calculating total energies. The energy contribution from AtomRef is obtained by
taking the dot product of the composition row vector (with LiCoO, used here as an
example) and the AtomRef vector. b The correlation between the scaled energies of
GGA/GGA + U and r’SCAN (total energies with the respective AtomRefs sub-
tracted). The marginal histograms on the top and right illustrate the distributions of
r’'SCAN and GGA/GGA + U scaled energies, respectively, for the same collection of
materials.

Here, A is the composition matrix obtained by stacking Cejem, for all struc-
tures in the training set, and Ey, is the matrix of total energies. Subse-
quently, the remaining fine-grained energy is predicted by GNNs. Overall,
the total energy prediction of a structure can be expressed using E;o s = Celem
- Egem + Egnns Both AtomRef, which represent the weights of the
composition model, and GNNs can be trainable.

For cross-functional TL on a FP with a fitted AtomRef from GGA/
GGA + U total energies, one can refit the FP’s AtomRef to shift the FP’s
energy to the scale of new DFT labels and, in principle, improve the cor-
relation between pre-training and fine-tuning datasets. Refitting the
AtomRef essentially replaces the fitted GGA/GGA + U AtomRef with the
fitted 'SCAN AtomRef and shifts the FP’s predicted energy scale to
r’'SCAN. Figure 2b shows that, after replacing the AtomRef, a stronger
correlation between GGA/GGA + U and r’SCAN total energies can be
achieved.

Indeed, the Pearson’s correlation coefficient p improves from 0.0917
between the unmodified GGA/GGA + U and r’SCAN datasets to 0.9250
between the r’'SCAN energies (with ’'SCAN AtomRef subtracted) and the
GGA/GGA + U energies (with GGA/GGA + U AtomRef subtracted).
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To compare in more detail how well various strategies for aligning
energies from different functionals perform, we performed an ablation study
using four training strategies to either pre-train or fine-tune CHGNet on the
MP-r"SCAN dataset.

In Method 1 (Training from scratch), we first fitted AtomRef using the
’SCAN total energies, randomly initialized the GNN parameters of
CHGNet, and then trained the GNNs on the MP-r*SCAN dataset while
keeping the ’'SCAN AtomRef frozen.

In Method 2 (TL with trainable AtomRef), we started from the GGA/
GGA + U-pre-trained CHGNet and allowed both the GNN parameters and
the AtomRef to be trainable during TL. In this manner, the AtomRef,
initially set to the fitted GGA/GGA + U AtomRef, was gradually updated
throughout the TL process.

In Method 3 (TL with frozen AtomRef), we again used the GGA/GGA
+ U-pre-trained CHGNet as the starting point, but only the GNN para-
meters were allowed to be trainable during TL. As a result, the AtomRef
remained fixed at the fitted GGA/GGA + U AtomRef, forcing the GNNs to
transfer and accommodate to the large energy differences observed in
Fig. 1b.

In Method 4 (TL with r’'SCAN AtomRef), we first replaced the GGA/
GGA + U AtomRef in the pre-trained CHGNet model with the r’'SCAN
AtomRef, and then performed TL on the GNNs while keeping the ’'SCAN
AtomRef frozen.

Table 1 presents the MAEs on the test set for energy, force, stress, and
magnetic moment (magmom) predictions (see Data preparation for details
on data splitting). Methods 2 and 3 (TL with trainable and frozen AtomRef,
respectively) yield similar performance across all metrics, with Method 1
(Training from scratch) achieving a comparable energy error (27 meV/
atom) but reduced force (45 meV/A) and stress error (0.239 GPa). This
suggests that without properly shifting the reference energy, neither Method
2 nor Method 3 benefits from the GGA/GGA + U pre-training. In contrast,
Method 4 (TL with ’'SCAN AtomRef) attained the lowest MAEs for energy,
force, and stress, indicating that the optimal approach to fine-tuning MLIPs
is to first shift the reference energy and then train the GNNs.

Figure 3 shows the model training gradients and training errors vs.
epochs for Method 3 and Method 4 during the TL. Figure 3a illustrates the
range of gradient values for several representative model layers. Gradient
values are recorded every 1/10 of an epoch for these model layers during the
first transfer learning epoch. We observe that Method 3 without refitting
AtomRef exhibits gradient magnitudes at least one order larger than those of
Method 4 with refitting. Figure 3b and c show the evolution of energy MAE
during the full training process of 50 epochs, without and with AtomRef
adjustments, respectively. Figure 3b displays larger initial and final energy
MAE, indicating a less effective training process. In contrast, Fig. 3c
demonstrates that refitting AtomRef results in a more stable and reliable
training history.

Stability prediction from MLIPs

As a more stringent prediction test, we evaluate relative stability of com-
pounds through the convex hull construction. Relative stability of a com-
pound can be measured by its decomposition energy, calculated by the total
energy difference between a given compound and its competing compounds

in a specific chemical space. This is a more stringent test than measuring
MAE, as the scale of decomposition energy is small and relies on significant
error cancellation in DFT"".

Figure 4 presents the general workflow for predicting decomposition
energy. Predicting decomposition energy with FPs is particularly challen-
ging as it depends not only on the energy of a single material but also on that
of the neighboring competing phases in a phase diagram”. The physical
outcome of decomposition energy is binary with negative values indicating
stable compounds and positive values indicating unstable or metastable
compounds. As such, small non-systematic energy errors from MLIPs will
easily alter the stable entries in the phase diagram, by changing the
decomposition energy from small negative values to positive values and vice
versa. This issue is further exacerbated by the fact that machine learning
models exhibit poorer error cancellation compared to DFT".

We constructed all phase diagrams in the chemical space of our dataset
using r’'SCAN DFT data and calculated the decomposition energy as the
ground truth. A similar phase diagram can be constructed by the fine-tuned
CHGNet, which allows the determination of CHGNet predicted decom-
position energy. The initial configurations for all structures are sourced from
Materials Project and further relaxed using the pre-trained or fine-tuned
CHGNet models of corresponding methods. This process relies solely on the
FP’s capability to obtain relaxed energies and relative stabilities between
polymorphs, without requiring additional information from the DFT phase
diagram.

Table 1 also presents benchmark results for the decomposition energy
prediction MAEs of four methods on the MP-r"SCAN test set (see Data
preparation for data splitting). The MAEs of Methods 2 and 3 (41.22 and
38.54 meV/atom, respectively) are slightly larger than that of Method 1
(37.44 meV/atom), again indicating no benefit from conventional TL
methods. In contrast, Method 4, which uses *'SCAN-specific AtomRef,
achieves an MAE of 23.66 meV/atom, at least 13.5 meV/atom lower than
the others. Additionally, Table 1 shows the formation energy MAEs for the
pre-trained or fine-tuned CHGNet models, where formation energy is
defined as the energy difference between a compound and its constituent
elements in their reference states. Method 4 again outperforms the other
methods, with an MAE of 29.38 meV/atom, at least 10 meV/atom
lower than the others. Method 2 has higher MAEs for both decom-
position and formation energies (41.22 and 52.43 meV/atom,
respectively) compared to other methods that freeze AtomRef during
training, suggesting that a trainable AtomRef may lead to less
accurate predictions in practice.

In the prediction of decomposition energies, we also observed that the
FP trained with Method 2 and Method 3 exhibited some failed ionic
relaxations. Specifically, we found that in Method 2, 40 out of 34,927
relaxations, and in Method 3, 30 out of 34,927 relaxations, resulted in at least
one atom being displaced more than 6 A away from its nearest neighbors,
creating an unrealistic atomic configuration that triggered the failure of
force field calculations. This is likely due to the unstable PES in the MLIP
created by the large gradient updates in TL without shifting the reference
energy (see Fig. 3). In contrast, Method 4 - TL with r’'SCAN AtomRef,
significantly improves prediction accuracy in this complex task of predicting
non-intrinsic properties.

Table 1| Energy, force, stress, magnetic moment (magmom), decomposition energy, and formation energy prediction MAEs of

different methods

Methods Energy MAE Force MAE Stress MAE Magmom MAE Decomposition energy MAE Formation energy MAE
(meV/atom) (meV/A) (GPa) (uB) (meV/atom) (meV/atom)

Method 1 27 45 0.239 0.019 37.44 43.11

Method 2 26 54 0.266 0.027 41.22 52.43

Method 3 26 52 0.257 0.026 38.54 39.78

Method 4 17 38 0.167 0.023 23.66 29.38

Method 1: Training from scratch; Method 2: TL with trainable AtomRef; Method 3: TL with frozen AtomRef; Method 4: TL with PSCAN AtomRef.

Bold values indicate the lowest MAE among the methods.
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Density prediction from MLIPs

Apart from the above benchmarks that use DFT-calculated data as ground
truth, we further assess the MLIPs’ ability to predict materials’ density in
comparison with experimental values. ’SCAN is expected to outperform
GGA in this respect, as GGA functionals are known to more significantly
overestimate volumes compared to ’'SCAN". As a result, we expect that the
models fine-tuned on r’SCAN data will yield more accurate density pre-
dictions than the GGA/GGA + U pretrained CHGNet.

To perform this evaluation, we randomly selected 1000 ordered
structures from the Inorganic Crystal Structure Database’® (ICSD) database.
For each structure, all lattice vectors were strained by —10%, followed by
structure relaxations using each model with a 30 meV/A relaxation con-
vergence threshold. The converged densities were then compared to the
experimental values.

Figure 5 presents the distributions of the ratios between experimental
and predicted values for density, for the pretrained CHGNet and models
trained by Method 1, Method 2, Method 3, and Method 4. The plots also
report the MAE for each method in the upper left corner.

The results show that Method 4 achieves the lowest MAE. Further-
more, the distributions of the experimental-to-predicted ratios demonstrate
that the CHGNet model pretrained on GGA tends to underestimate den-
sities to a greater extent, whereas Method 4 yields distributions more tightly
centered around the ideal value (ratio = 1) than the other methods. These
findings indicate that our transfer learning approach from GGA to r’SCAN
is effective, and that models trained using Method 4 with ’SCAN data have
greater potential for accurate real-world volume and density predictions.

Scaling law on transfer learning

To evaluate the data efficiency improvement of Method 4, we analyzed its
scaling behavior on the MP-r"SCAN dataset. The neural scaling laws suggest
that model performance should improve steadily as the model size, dataset
size, and amount of computing used for training are increased’*”””*. The
performance is expected to follow a power-law relationship with each of
these factors, provided the other two are not limiting. We benchmarked the
energy and force MAEs on the validation set of MP-r’SCAN using either
Method 1 (Scratch) or Method 4 (Transfer). The resulting validation errors
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Fig. 5 | Density prediction benchmark. Distribution of the predicted density ratio
(experimental / predicted) for 1000 Inorganic Crystal Structure Database (ICSD)
structures, shown over the range 0.80-1.20. Results are given for Method 1: training
from scratch, Method 2: TL with trainable AtomRef, Method 3: TL with frozen
AtomRef, Method 4: TL with r’'SCAN AtomRef, and the GGA/GGA + U pretrained
CHGNet model. The MAE for density (in g/cm”) for each method is reported in the
upper left corner. The dashed vertical line indicates perfect prediction (ratio = 1).

vs. training sizes are shown in Fig. 6. For each curve in Fig. 6, we performed a
linear regression starting from the data point corresponding to more than
1000 training points on the x-axis, yielding the coefficient of determination
(R%) shown in the figures. The Linear fits demonstrate a linear scaling law
behavior for both training from scratch (orange) and transfer learning
(blue). The best-performing model for both energy and force predictions is
obtained by Transfer, with an energy MAE of 15 meV/atom and a force
MAE of 36 meV/A.

The superior data-efficiency of TL over training from scratch can be
found by the reduced MAE of TL in Fig. 6. For energy MAE in Fig. 6a, the
Scratch curve exhibits a log-log slope of -0.615 with an R® of 0.994, while the
Transfer curve has a log-log slope of -0.301 with an R* of 0.964. For force
MAE in Fig. 6b, the Scratch curve shows a log-log slope of -0.394 with an R*
of 0.978, while the Transfer curve has a log-log slope of -0.134 with an R of
0.997. The results indicate TL with merely 1K high-fidelity data points can
outperform training from scratch on a high-fidelity dataset with more than
10K data points, marking more than 10-fold data efficiency gained from the
GGA pre-training step.

Interestingly, we observe that the superior performance of Transfer
over Scratch does not saturate even given the full-sized MP-’'SCAN dataset
0f 0.24 million structures. Assuming the linear scaling trend of both Transfer
and Scratch, the superior performance of Transfer will only be saturated
after 719,996 training points for energy and 317,475 training points for
force. This result indicates TL remains data-efficient even with close-to-
million scale high-fidelity data points.

Discussion

The FPs enable efficient predictions of energy across diverse chemical
environments, facilitating large-scale simulations with near GGA-level
accuracy. As the training of FPs is migrating toward higher levels of DFT
accuracy, optimal transferability strategies are needed. In this work, we
investigated and benchmarked different transfer learning methods for FPs
with multi-fidelity datasets. We demonstrate that the scale of atomic
reference energies varies significantly across different approximate density
functionals, leading to the non-trivial choice of fine-tuning and TL
approaches. We rationalized the importance of refitting the atomic refer-
ence energies when fine-tuning MLIPs across multi-fidelity datasets. To
further demonstrate the validity and generality of this transfer learning
approach, we present two additional experiments involving the transfer
learning on other datasets: a halide Van der Waals (vdW) dataset and an
HSEO6 dataset, which can be found in the supplementary information. The
results show that Method 4 consistently outperforms the other methods,
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Fig. 6 | Scaling law on r’SCAN data. a Energy MAE and b Force MAE on the MP-
r’'SCAN validation set using either Method 4, TL with ’'SCAN AtomRef (Transfer,
blue) or Method 1, training from scratch (Scratch, orange) methods. Zero training
points in Transfer refers to the performance of the GGA/GGA + U pre-trained
CHGNet with r’SCAN AtomRef. Linear fits are applied for x > 1000 to demonstrate
the neural scaling law, and the coefficients of determination (R®) are shown in the
figures.

The energy quantity that matters for physical behavior is always
referenced to some reference energies and not determined by total energies.
For example, the cohesive energy is referenced to the energy of neutral, free
atoms at infinite separation”’. The formation energy is referenced to the
energy of constituent elemental unaries in their reference states (solid or gas
phase)”™™, and decomposition energy is referenced to the energies of
competing compounds in a given chemical space’’. Consequently, the eV/
atom scale shifts in total energy from GGA/GGA + U'to r’SCAN do not lead
to any changes in the physical interaction and behavior of materials.
However, as energy is the training label for a ML model, the significant
difference in the energy scales leads to challenges in the convergence
of the TL.

Essentially, by using energy referencing, one can modify the energyloss
component in a model’s loss function during TL. For a FP with AtomRef,
the general formula for the modified energy error of a structure’s data is:

— target source source
Energy Error = E label (E GNNs T Celem * Eclem ) (3)
—c . (Etarget _ souroe)
elem ref ref ’
t: t . .o s . . .
where E,}%" is the target energy training label, which is often obtained from

high-fidelity calculations. Cep, is the composition row vector representing

achieving the lowest test MAEs for energy, force, and stress, as well as the  the number of each element in the structure. E3j\;° represents the AtomRef
most robust and smooth training dynamics. of the source dataset. N and ¢, - ESan” are the energy predictions of
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the GNN and AtomRef, which sum up to the energy prediction of the source
FP that has been pre-trained from a low-fidelity source dataset. Ef;;get and
EF™ are the energy referencing parts of the two functionals, with
dimensions Ngem X 1, representing the reference energies of the structures.
For cohesive energy, the reference energies are the energies of neutral free
atoms at rest; for formation energy, they are the energies of unaries in their
reference states. In our approach, they are also coming from the fitted
AtomRefs.

Energy referencing refers to replacing the AtomRef from E} to

(Egpree 4 E:Z'fget — E}°) before transferring a FP to the target level. After
energy referencing, the remaining contribution in the energy loss represents
the differences in atomic interactions approximated by the source (GGA/
GGA + U) versus the target (*'SCAN), which is the relevant part of the
energy that TL on GNNs aims to learn. Using AtomRef as E,.ris potentially
better than referencing related to cohesive or formation energy, as AtomRef
obtains atomic reference energies as statistical averages from all data in the
dataset that covers a vast chemical space.

We attribute the effectiveness of using AtomRef as E, ¢ for cross-
functional TL to two key factors. Firstly, the more than 10-fold improve-
ment in correlation from 0.0917 to 0.9250 (see TL with different atomic
reference energies) significantly enhances the effectiveness of TL. Secondly,
refitting AtomRef ensures gradual adjustments of the model weights, and
thus a more stable and reliable training process. Without refitting AtomRef,
energy shifts cause substantial discrepancies between predicted and target
energies, leading to very large prediction errors and high loss values initially.
This, in turn, produces large gradients that cause excessive changes with the
model weights, as illustrated in Fig. 3a and b.

According to Table 1, Method 4 (TL with ’SCAN AtomRef) is shown
to be most effective with the lowest energy MAE, consistent with the above
rationalization of this approach. The higher prediction MAEs of Methods 2
(TL with trainable AtomRef) and 3 (TL with frozen AtomRef) compared to
Method 4 - which integrates energy re-referencing with GNN-based TL -
highlight the challenges of conventional TL without refitting AtomRef in
FPs. Methods 2 and 3 exhibit similar MAEs since they both begin with
GGA/GGA + U AtomRef; and the large energy shifts between r’'SCAN and
GGA/GGA + U cause poor correlation and excessive weight adjustments
during early fine-tuning, driving model weights to suboptimal positions
where they can become trapped. Notably, their predictions for forces,
stresses, and magmoms are inferior to those of Method 1 (Training from
scratch), which uses *'SCAN data directly, free from GGA/GGA + U
influence. This underperformance is attributed to negative transfer”,
resulting from the weak correlation between source and target datasets
during GNN-based TL.

As it is unlikely that one dataset will rule all of FPs, a well-founded
strategy to integrate diverse datasets, such as Materials Project’"”,
Alexandria®, OQMD", AFLOWLIB¥, NOMAD®, QM9*, JARVIS®,
0C20%, OMat24*, OCX24"Y, and MatPES”, will provide a promising
avenue for leveraging the broad spectrum of available information and
enable integration of future high quality data. Such integration will be
helpful to address the data-originated issues in FPs which are otherwise
challenging to solve by only model architecture improvements”. Our
scaling law analysis demonstrates the superior data efficiency gained from
pre-training on large-scale low-fidelity dataset when migrating to high-
fidelity ones.

As FP-training is expected to transfer to higher quantum chemistry
levels of theory, we also want to highlight the need to establish benchmark
tests tailored to these computationally demanding quantum mechanical
methods, such as r’'SCAN, coupled cluster methods (e.g., CCSD), and multi-
reference approaches. In this work, we exemplify this by introducing sta-
bility benchmarks based on decomposition energy and formation energy
predictions, as well as the density benchmark which uses experimental
values as ground truth. Current FP benchmarks such as Matbench
Discovery® are mostly limited to GGA/GGA + U tasks due to the dataset
limits. We advocate for more comprehensive benchmarking frameworks

that go beyond GGA/GGA + U and potentially integrate evaluations such
as kinetic properties and more complex material behavior to better assess
models across different functionals.

In summary, by examining how atomic reference energies influence
the performance of GGA/GGA + U to ’SCAN TL, we reiterate the
importance of establishing correlations between multi-fidelity datasets so
that they can benefit from TL. TL with refitting atomic reference energies
yields a stable and reliable MLIP for energy, interatomic forces, thermo-
dynamic stability, and density predictions. Our benchmark results and
scaling law analysis show that refitting atomic energy is data-efficient and
convinces fine-tuning FPs to be a practical way for various downstream
materials modeling tasks.

Methods

Data preparation

The r’'SCAN Dataset, MP-’SCAN, is parsed from the Materials Project
Database in March 2024. We collected all the ’'SCAN structure optimiza-
tion and static task trajectories under each material ID that contain these
tasks, and then followed similar criteria as those used in creating the MPtrj
Dataset: (1) Final frame energies were limited to within 20 meV/atom of the
primary task. (2) Structures missing energy, forces, or electronic con-
vergence were excluded. (3) Structures with energies > 1 eV/atom or <
10 meV/atom relative to Materials Project’s ThermoDoc relaxed structures
were filtered out to eliminate large energy differences resulting from var-
iations in DFT calculation settings. (4) Duplicate structures were removed
using pymatgen’s StructureMatcher and energy matcher”. For all 4 TL
models, we randomly split the MP-r’SCAN dataset into training, validation,
and test sets with an approximate ratio of 8:1:1 based on material IDs. The
training set contains 27,943 material IDs with 190,560 structures; the vali-
dation set contains 3492 material IDs with 23,888 structures; and the test set
contains 3492 material IDs with 23,799 structures. The energy, force, stress,
and magmom prediction MAEs are based on the test set’s 23,799 structures.
The decomposition energy prediction MAE was reported on the test set. The
formation energy prediction MAE was calculated on all 34,938 r’'SCAN
material IDs in the Materials Project.

Training scheme

We kept most of the settings the same as the pre-trained CHGNet model,
except for the following: we changed the fixed GGA/GGA + U AtomRef of
the model to r’SCAN AtomRef; a Huber loss with energy, force stress and
magmom loss ratio of 3:1:0.1:1 was used to train the model; we used a batch
size of 64 and a learning rate of 10~ that cosinely decays to 10~ in 50 epochs.

Feature importance

To determine which elements contribute most to the formation energy dif-

ferences between ’'SCAN and GGA/GGA + U (discussed in Section Energy

differences across two functionals), we used the attribute feature -

importances_in scikit-learn’s DecisionTreeRegressor.
The importance of each node on the decision tree can be calculated by

(assuming only two child nodes (binary tree)):

;= W;0; = Wieq()Olefi(j) — Wright(j) Tright() 4)

n; represents the importance of node j, w; is the weighted number of samples
reaching node j, o; denotes the impurity value (here it is variance) of node j,
left(j) refers to the child node from the left split on node j, and right(j) refers
to the child node from the right split on node j.

Feature importance is calculated by:

fi _ Zj:nodej splits on featureinj (5)

Zk:a]lnodes N

where f; represents the importance of feature i, and n; represents the
importance of node j.

npj Computational Materials | (2025)11:313


www.nature.com/npjcompumats

https://doi.org/10.1038/s41524-025-01796-y

Article

To obtain the normalized feature importance, each feature importance
was divided by the total number of atoms of this element in the dataset and
then multiplied by 9,000 for Fig. 1c and 500 for Fig. 1d to scale it back to the
range of 0-1. Finally, it was visualized on the periodic table.

Data availability
The MP-r’'SCAN dataset used to fine-tune CHGNet is available at https://
doi.org/10.6084/m9.figshare.28245650.v2”.

Code Availability

The model weights of fine-tuned CHGNet and training configuration using
Method 4 are available at https://github.com/CederGroupHub/chgnet/tree/
main/chgnet/pretrained/r2scan.
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