

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Reference herein to any social initiative (including but not limited to Diversity, Equity, and Inclusion (DEI); Community Benefits Plans (CBP); Justice 40; etc.) is made by the Author independent of any current requirement by the United States Government and does not constitute or imply endorsement, recommendation, or support by the United States Government or any agency thereof.

Enhancing Power Resilience for Remote Communities: A Comprehensive Renewable Energy Solution for Itbayat Island

INL/RPT-25-83061

Integrating Solar PV, Battery Storage, and Microgrid Controls to Overcome Energy Challenges in the Philippines

JANUARY 2025

Ryan Z. Davis

Idaho National Laboratory

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Enhancing Power Resilience for Remote Communities: A Comprehensive Renewable Energy Solution for Itbayat Island

**Integrating Solar PV, Battery Storage, and Microgrid Controls to
Overcome Energy Challenges in the Philippines**

**Ryan Z. Davis
Idaho National Laboratory**

January 2025

**Idaho National Laboratory
Idaho Falls, Idaho 83415**

<http://www.inl.gov>

**Prepared for the
U.S. Department of Defense
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517**

Page intentionally left blank

EXECUTIVE SUMMARY

The island of Itbayat, Philippines, faces significant challenges in maintaining a reliable and resilient power supply due to its current reliance on a vulnerable power distribution system managed by a local Electric Cooperative. The existing infrastructure, which includes diesel generators and a radial network configuration with some above-ground lines, is highly susceptible to frequent typhoons and adverse weather conditions. These factors, combined with inadequate staffing and high operational costs, result in frequent power outages that disrupt daily life and hinder economic development.

This white paper proposes a comprehensive solution to enhance the resilience and reliability of Itbayat's power system by integrating renewable energy sources, specifically solar photovoltaic (PV) systems, battery storage, and a microgrid controller. The proposed solution aims to reduce dependency on diesel fuel, optimize energy use, and provide a sustainable and robust power supply for the island. Key components of the solution include:

1. **Solar PV Installation:** Deploying solar PV panels to harness abundant solar energy, reducing reliance on diesel fuel.
2. **Battery Storage Systems:** Installing battery storage to store excess solar energy and ensure a continuous power supply during low solar generation periods.
3. **Microgrid Controller:** Implementing a microgrid controller to manage and optimize the integration of solar PV, battery storage, and existing diesel generators.

The proposed solution addresses several critical issues, including inadequate staffing, system vulnerability, generator dependency, and operational inefficiencies. By adopting this innovative approach, Itbayat Island can achieve a more resilient, efficient, and sustainable energy infrastructure, ensuring a stable power supply for its residents and enhancing overall energy security.

AKNOWLEDGEMENTS

The author would like to express sincere gratitude to Maj Tom Myers of the US Marine Corps for his invaluable support and coordination in facilitating the visit to Itbayat Island. His assistance was instrumental in gathering the on-site data and insights that were crucial for the development of this white paper.

Page intentionally left blank

CONTENTS

EXECUTIVE SUMMARY	v
AKNOWLEDGEMENTS.....	vi
ACRONYMS.....	x
1. INTRODUCTION.....	12
2. PROBLEM STATEMENT	12
3. RESEARCH AND ANALYSIS.....	13
3.1. Methodology	13
3.2. Data and Evidence Supporting the Analysis	14
3.3. Key Findings	14
4. PROPOSED SOLUTION	15
4.1. Benefits and Advantages.....	16
4.2. Implementation Strategy	16
4.3. Difficulties in Execution	17
5. CONCLUSION	17

Page intentionally left blank

ACRONYMS

Co-Op	Electric Cooperative
INL	Idaho National Laboratory
kW	Kilowatt
kWh	Kilowatt-Hour
PV	Photovoltaic
USD	United States Dollar

Page intentionally left blank

Enhancing Power Resilience for Remote Communities: A Comprehensive Renewable Energy Solution for Itbayat Island

Integrating Solar PV, Battery Storage, and Microgrid Controls to Overcome Energy Challenges in the Philippines

1. INTRODUCTION

Ensuring a reliable and resilient power supply is a critical challenge for remote communities, and the island of Itbayat, Philippines, is no exception. The island's power distribution system, managed by a local Electric Cooperative (Co-Op), faces numerous vulnerabilities, including inadequate staffing, a lack of system redundancy, and a heavy reliance on diesel generators. Frequent typhoons and adverse weather conditions further exacerbate these issues, leading to power outages that disrupt daily life and hinder economic development.

Currently, the power system on Itbayat consists of a primary distribution line operating at 480 volts with secondary distribution lines using step-down transformers to reduce voltage to 240 volts. The network employs a radial configuration, with most lines underground except for some secondary lines, especially those feeding water pumps. The island's generation plant operates with diesel generators, which are subject to frequent breakdowns due to low-quality parts and long wait times for replacements.

The existing setup poses significant challenges, including overworked linemen who are on call 24/7, the vulnerability of above-ground lines to weather-related damage, and the high operational costs associated with diesel fuel. These factors collectively undermine the reliability of the power system, making it imperative to explore innovative solutions to enhance resilience.

This white paper proposes a transformative solution to address these challenges by integrating renewable energy in the form of solar photovoltaic (PV) systems, battery storage, and a microgrid controller. This comprehensive approach aims to reduce dependency on diesel fuel, optimize energy use, and provide a robust and sustainable power supply for Itbayat Island.

The following sections will detail the current state of the power system, the methodology used to assess its vulnerabilities, and the proposed solution, including its benefits, implementation strategy, and potential difficulties. By adopting this innovative solution, Itbayat Island can achieve a more resilient, efficient, and sustainable energy infrastructure, ensuring a stable power supply for its residents and enhancing overall energy security.

2. PROBLEM STATEMENT

The island of Itbayat, Philippines, relies on a power distribution system managed by a local Electric Co-Op that faces several critical challenges, impacting both civilian life and local operations.

The existing power distribution network, consisting of primary and secondary lines with step-down transformers, is highly vulnerable to disruption due to its radial configuration and above-ground

secondary lines that are frequently damaged during typhoons. Maintenance and repair efforts are severely hampered by the inadequate staffing of only three linemen, who, despite their ability and dedication in responding to outages, are overworked and have no time off as they are on call 24/7. The ideal staffing level has been identified as six to ten linemen to ensure efficient maintenance and quick emergency response, but the limited availability of trained personnel, and the limited training offered, exacerbates this issue.

The generation plant, which operates diesel generators with a combined capacity of 660 kW, faces its own set of operational challenges. These include difficulties in obtaining replacement parts, long wait times for shipments, reliance on low-quality parts leading to frequent breakdowns, and dependency on diesel fuel with fluctuating prices and supply constraints. These factors result in straining the plant's efficiency and reliability.

To enhance the resilience of Itbayat's power systems, several measures are proposed:

1. Moving all distribution lines underground to protect them from weather-related damage.
2. Increasing manpower by hiring additional trained linemen to improve maintenance and response times.
3. Stockpiling essential parts and ensuring faster delivery times for components to reduce downtime.
4. Using higher-quality parts to minimize the frequency of breakdowns.
5. Exploring alternative or supplementary energy sources to reduce dependency on diesel fuel.

Addressing these issues will significantly improve the reliability and efficiency of the power distribution system for the residents of Itbayat, ensuring a stable and resilient energy infrastructure for the island.

3. RESEARCH AND ANALYSIS

This section delves into the detailed examination of Itbayat Island's power system to uncover its vulnerabilities and identify opportunities for improvement. Through a combination of data collection, stakeholder interviews, field observations, and simulation models, a comprehensive assessment was conducted. The findings from this research provide the foundation for proposing solutions to enhance the resilience and reliability of the island's energy infrastructure.

3.1. Methodology

To assess the resilience of the power systems on Itbayat Island and identify areas for improvement, a comprehensive research methodology was employed. This included:

1. **Data Collection:** Gathering quantitative data on the power distribution network, generator performance, staffing levels, and maintenance records. Sources included the Electric Cooperative (Co-Op) reports, plant operator logs, and community feedback.
2. **Interviews:** Conducting structured interviews with key stakeholders, including the Co-Op manager, linemen, and plant operators to gather qualitative insights.

3. **Field Observations:** On-site inspection of the generator plant to assess physical condition and identify vulnerabilities.
4. **Simulation Models:** Using simple mathematical models to show the impact of various improvement scenarios on system reliability and resilience.

The methodology employed a multi-faceted approach to ensure a thorough understanding of the current power system's challenges and to identify practical solutions. By combining quantitative data with qualitative insights, the research aimed to provide a holistic view of the system's performance and potential areas for enhancement.

3.2. Data and Evidence Supporting the Analysis

A detailed analysis of the collected data and evidence revealed several critical issues affecting the power system on Itbayat Island:

1. **Staffing Levels:** Data from the Co-Op shows that the current staffing level of three linemen is insufficient. Interviews with linemen reveal that they work every day of the week and are on call 24/7. This has the potential to lead to burnout and poor work performance. The Co-Op manager estimates that six to ten linemen would be ideal for optimal operation.
2. **System Configuration:** The power distribution network employs a radial configuration, which lacks redundancy. Without any loop configuration within the distribution network, there is no redundant power to various parts of the grid on the island. Although outages are rare, looping the distribution circuits would allow for less down time when performing maintenance.
3. **Generator Performance:** The plant operates with four diesel generators with a combined capacity of 660 kW. Data from plant logs shows that peak load has increased by 12% since 2021, with the highest peak loads occurring from May to July. The peak load of the island is estimated to be about 250 kW. The reliance on diesel fuel, with prices fluctuating around 113 pesos per liter (~\$7.52 USD/gal), and the difficulty in obtaining replacement parts, such as the broken pressure sensor causing one 100 kW generator to be non-operational, are significant challenges.
4. **Maintenance and Parts:** Interviews with plant operators and maintenance records highlight the difficulties in obtaining replacement parts, with wait times up to a month. The use of lower-quality parts has led to frequent breakdowns and extended downtime for critical components.

These insights underscore the pressing need for targeted improvements to address the staffing, configuration, dependency, and maintenance issues that currently hinder the power system's performance and reliability.

3.3. Key Findings

The analysis of the data and evidence led to several key findings that are critical to enhancing the resilience and reliability of Itbayat's power systems:

1. **Inadequate Staffing:** The current staffing level is insufficient to meet the maintenance and emergency response needs of the power distribution system. Increasing the number of

trained linemen to six to ten would reduce workload, prevent burnout, and improve response times to outages.

2. **System Vulnerability:** The radial configuration of the distribution network and the presence of above-ground secondary lines make the system highly vulnerable to disruptions, particularly during typhoons. Moving all lines underground would significantly enhance system reliability and reduce weather-related damage.
3. **Generator and Fuel Dependency:** The reliance on diesel generators and the challenges associated with fuel supply and part replacement are major vulnerabilities. Diversifying energy sources and maintaining a stockpile of essential parts would improve plant reliability and reduce dependency on external supply chains.
4. **Operational Efficiency:** Using higher-quality parts and ensuring faster delivery times for components would reduce the frequency of breakdowns and improve operational efficiency. This would also mitigate the impact of long wait times for replacement parts.

By addressing these key findings through targeted improvements, Itbayat Island can significantly enhance the resilience and reliability of its power systems, ensuring a stable and efficient energy infrastructure for its residents.

4. PROPOSED SOLUTION

To enhance the resilience and reliability of the power systems on Itbayat Island, we propose the implementation of a comprehensive energy solution that combines battery storage, renewable energy in the form of solar photovoltaic (PV) systems, and a microgrid controller. This integrated approach will reduce dependency on diesel fuel, improve system efficiency, and provide a robust and sustainable energy supply for the island.

1. **Solar PV Installation:** Deploy solar PV panels across suitable locations on the island to harness abundant solar energy. This renewable energy source will reduce the island's reliance on diesel generators, lower fuel consumption, and provide a clean, sustainable power supply.
2. **Battery Storage Systems:** Install battery storage systems to store excess energy generated by the solar PV panels. These batteries will ensure a continuous power supply during periods of low solar generation (e.g., nighttime or cloudy days) and provide backup power during outages, enhancing overall system reliability.
3. **Microgrid Controller:** Implement a microgrid controller to manage the integration and operation of the solar PV and battery storage systems with the existing diesel generators. The microgrid controller will optimize energy use, switch between power sources as needed, and ensure seamless operation of the entire power system.

Installing a 300 kW photovoltaic array, coupled with a 300 kW/300 kWh battery and a microgrid controller, extends the fuel supply at Itbayat from approximately two months to three months. This system ensures that Itbayat island can maintain continuous power throughout nearly the entire typhoon season without the need for refueling.

4.1. Benefits and Advantages

The proposed solution offers multiple benefits and advantages, including enhanced resilience, fuel savings, improved reliability, and sustainable energy. These benefits collectively contribute to the creation of a more robust and efficient power system for Itbayat Island.

1. **Enhanced Resilience:** The combination of solar PV, battery storage, and a microgrid controller will create a more resilient power system capable of withstanding disruptions, including extreme weather events. Reduced reliance on a single power source will mitigate the impact of generator failures or fuel supply issues.
2. **Fuel Savings:** By leveraging renewable energy and battery storage, the island's diesel fuel consumption will decrease, extending the run time of the generators and reducing operational costs. This will also lower the environmental impact associated with diesel fuel use.
3. **Improved Reliability:** The microgrid controller will ensure optimal energy management, balancing the supply from solar PV, battery storage, and diesel generators. This will result in a more reliable power supply with fewer outages and quicker recovery times.
4. **Sustainable Energy:** The transition to renewable energy sources aligns with global sustainability goals and reduces the carbon footprint of the island's power system. Solar PV is a clean, renewable resource that will provide long-term environmental benefits.

The adoption of solar PV, battery storage, and a microgrid controller will bring about significant improvements in the island's energy resilience and sustainability. These advancements will not only reduce operational costs and environmental impact but also ensure a stable and reliable power supply for the community.

4.2. Implementation Strategy

A well-structured implementation strategy is essential for the successful deployment of the proposed energy solution. This strategy involves assessment and planning, designing a containerized system, procurement and installation, training and capacity building, and monitoring and optimization.

1. **Assessment and Planning:** Conduct a comprehensive evaluation of the island's energy requirements, solar potential, and optimal locations for solar PV installation. Develop a detailed implementation plan, including system design, component specifications, and a timeline for execution.
2. **Design a Containerized System:** Addressing the logistical challenges of transporting equipment to Itbayat is crucial for ensuring resilient power on the island. The system must be designed to be transported via small aircraft or hand-carried via boat, necessitating that components be packaged in small, lightweight containers.
3. **Procurement and Installation:** Source high-quality solar PV panels, battery storage systems, and microgrid controllers. Collaborate with experienced contractors to ensure proper installation and seamless integration of these components.
4. **Training and Capacity Building:** Provide comprehensive training for local linemen and plant operators on the operation and maintenance of the new systems. This will ensure a smooth

transition and empower local personnel to manage the upgraded power infrastructure effectively.

5. **Monitoring and Optimization:** Implement a monitoring system to track the performance of the solar PV, battery storage, and microgrid controller. Utilize this data to continuously optimize system operation and promptly address any issues that arise

Executing a comprehensive implementation strategy will ensure the smooth transition to a more resilient and sustainable power system on Itbayat Island. With careful planning and execution, the island can overcome logistical challenges and achieve long-term energy security and reliability.

4.3. Difficulties in Execution

While the proposed solution offers numerous benefits, it also presents certain challenges that need to be addressed. These include initial investment, logistics and supply chain issues, technical expertise, and ongoing maintenance and support.

1. **Initial Investment:** The upfront cost of procuring and installing solar PV panels, battery storage systems, and microgrid controllers can be significant. Securing funding and managing the financial aspects of the project will be a critical challenge.
2. **Logistics and Supply Chain:** The remote location of Itbayat Island presents logistical challenges for transporting equipment and components. Ensuring timely delivery and addressing potential delays in the supply chain will be essential.
3. **Technical Expertise:** Integrating advanced technologies such as microgrid controllers requires specialized technical expertise. Providing adequate training and support for local personnel will be crucial to ensure successful implementation and operation.
4. **Maintenance and Support:** Ongoing maintenance and support for the new systems will be necessary to ensure long-term reliability. Establishing a reliable supply chain for spare parts and developing a robust maintenance plan will be important to address this challenge.

By proactively addressing these potential difficulties, Itbayat Island can successfully implement the proposed energy solution, paving the way for a more resilient, efficient, and sustainable power system. Overcoming these challenges will ultimately benefit the local community and enhance overall energy security, ensuring long-term stability and reliability for the island's power infrastructure.

5. CONCLUSION

The current power distribution system on Itbayat Island faces multiple vulnerabilities, including an over-reliance on diesel generators, insufficient staffing, and a vulnerable radial network configuration. These factors collectively undermine the reliability and efficiency of the island's power supply, leading to frequent outages and high operational costs.

The proposed solution of integrating solar PV systems, battery storage, and a microgrid controller offers a transformative approach to addressing these challenges. By harnessing renewable energy and optimizing energy use, the island can significantly reduce its dependence on diesel fuel, enhance system resilience, and provide a sustainable and reliable power supply.

Key benefits of the proposed solution include enhanced resilience against weather-related disruptions, fuel savings, improved reliability, and alignment with global sustainability goals. However, successful implementation will require addressing challenges such as securing initial investment, managing logistics, providing technical expertise, and ensuring ongoing maintenance and support.

By adopting this comprehensive energy solution, Itbayat Island can achieve a more resilient and sustainable power infrastructure, benefiting both the local community and overall energy security.