FERMILAB-PUB-25-0495-STUDENT

Abstract:

Benchmarks provide a standardized method for evaluating different Al models, enabling
reproducibility and comparison between models, and facilitating scientific progress. As Al
models continue to develop rapidly, incorporating new datasets, capabilities, and architectures
becomes more complicated. Therefore, the current static benchmarks become increasingly
irrelevant. The MLCommons team argues that to make Al benchmarks more relevant, it involves
making the benchmarks themselves more dynamic, as well as technical innovations that make it
easier for scientists and researchers at all levels to use and contribute to the benchmarks. The
current progress in technical innovation is a software that allows for a detailed view of a
collection of Al benchmarks to be output in various formats that are easily readable and
accessible.

Introduction:
A. What is benchmarking in relation to Al, and how is it used?

Al benchmarking is a method for evaluating the effectiveness of an Al model, such as
ChatGPT, using a set of standardized metrics, for example, high school-level math questions.
These benchmarks and their results will enable ranking various Al models based on their
effectiveness in performing specific tasks. One caveat with these benchmarks is that developers
of Al models might focus too much on optimizing their models to perform better on the
benchmark itself, rather than on performance when deployed in real-world scenarios. Therefore,
it is essential to provide a diverse range of benchmarks to assess the model’s performance
based on the type of task.

B. Scope

This report focuses on the methods for collecting and validating Al benchmarks, as well
as the process of developing software to output the collected information in a readable format.
The scope of this work includes researching various benchmarks, testing them, and writing
Python code to create software that outputs information about the benchmarks based on an
argument from the console. This was done during a 10-week internship, alongside the ML
Commons team.

C. Purpose
Our software is designed to make it easier for scientists and researchers to determine

which Al models will be most useful for their specific task, based on the data and ratings
provided for a wide variety of benchmarks.

This manuscript has been authored by Fermi Forward Discovery Group, LLC under Contract No. 89243024CSC000002 with the U.S. Department of
Energy, Office of Science, Office of High Energy Physics.

Methods:

1. Benchmark Data Collection

To begin, we used ChatGPT to compile data on a list of benchmarks provided by the
MLCommons team. We then reviewed the output information and wrote it as a YAML file
containing metadata for each benchmark, including fields such as benchmark name, task type,
evaluation metrics, Al capabilities measured, citation information, and available model results.

2. Benchmark Validation and Standardization

To ensure consistency across all benchmark entries, we developed and applied a validation
script that checks each YAML file for required fields and correct formats. The script identifies
missing or malformed entries and provides helpful error messages, enabling contributors to
easily correct them. This step helps maintain the uniformity across all entries in all the input files.

3. Software Development for Displaying Benchmarks

To make the information easily accessible and readable, we wrote code that converts the YAML
format input file to Markdown and LaTeX formats. These formats can be specified using flags in
the console, such as “--format .tex”. This script also supports options like filtering columns,
combining datasets, and producing standalone or PDF outputs. Both formats included BibTeX
citations, which were created and added at the end of the file.

4. Added additional features

We also added additional features, like required and optional fields, author truncation, including
BibTeX citations, and checking the format of the input files. These features could be accessed
using the console flags that we added documentation for in the GitHub repository.

5. Testing and Iteration

Throughout the development process, we tested the software on multiple real and mock
benchmark files to ensure it worked correctly and met the needs of the MLCommons team.
Additionally, we have added ratings for every benchmark, using a standard scoring criterion.
These ratings were based on the problem specification and constraints, the dataset,
performance metrics, the reference solution, and a reproducible protocol. These ratings were
created to help contributors understand the effectiveness of each benchmark in the list.

Results:

During the internship, we processed and validated 75 benchmark entries. The Python scripts we
created successfully generated the specific file format and also included features that optimized

and made the data easier to read. The command-line prompt features that we implemented are
listed below,

-files / -i
Specifies the YAML file(s) to be processed. This argument is required and can accept
one or more files.

--format / -f
Sets the desired output format: either md for Markdown or tex for LaTeX. This is a
required argument.

--outdir / -0
Indicates the directory where output files should be saved. This allows users to control
where their processed files go.

--authortruncation
Truncates the number of authors displayed in index or summary tables to keep the
output clean and concise. Useful for long author lists.

--columns
Let users specify a subset of columns to include in the output, using a
comma-separated list (e.g., --columns name,date, domain). This supports custom views.

--check
Runs validation checks on the YAML input files to ensure all required fields and
formatting rules are met. This mode does not produce an output file.

--index
Generates individual pages for each benchmark entry.

--noratings
Removes the rating columns from the output file. This is useful if the user wants a
simpler view of the benchmark information.

--required
When used with --columns, it treats all listed columns as required and checks that they
are present in every YAML file.

--standalone / -s
For LaTeX output, it includes the complete LaTeX document structure (preamble,
document environment), making it ready to compile directly.

--withcitation
Adds a BibTeX citation row to the Markdown output. This is particularly helpful for

researchers who need to locate citation information quickly.

We also have a Makefile that facilitates the creation of necessary files more easily, eliminating
the need to remember the above flags and the project's directory structure. These
command-line prompts allow for multiple YAML files filled with benchmark data to be output in
MD and TeX formats with different features to make it easier to read.

Ratings:
We also evaluated benchmarks across five dimensions using a 0—10 scale (O=lowest and 10 =
highest).

1. Problem Specification & Constraints — Clarity of task, input/output formats, and
system constraints (e.g., latency, hardware).

2. Dataset (FAIR Principles) — Assessment of findability, accessibility, interoperability, and
reusability, including versioning and split structure.

3. Performance Metrics — Use of well-defined, quantitative metrics aligned with task goals.

4. Reference Solution — Presence and quality of a reproducible baseline or model
implementation.

5. Reproducible Protocol — Availability of code, environment setup, and instructions to
reproduce results.

Each score reflects how completely and transparently the benchmark supports evaluation and
replication. We reviewed the documentation and ran these benchmarks on our local Python
environment to rate them according to the scale shown above.

Example input and output files are shown below:

One input listing with a few columns shown below (YAML format):

date: '2024-05-01'

description: The date of availability of the benchmark. If an official release date is not available, use the date of
adding the entry.

condition: required

version: TODO

description: The version number of the benchmark

condition: optional

last_updated: 2024-05

description: 'The date when the entry was last updated. Format: YYYY-mm-dd

condition: optional

expired: null

description: An indication if the benchmark is no longer valid.

condition: optional

valid: 'yes'

description: Identifies if the benchmark is valid at the time of review.

condition: required

name: Jet Classification

description: The name of the benchmark.

condition: required

url: https://github.com/fastmachinelearning/fastml-science/tree/main/jet-classify

description: The main URL for this benchmark.

condition: required

doi: TODO

description: A DOI number that may be associated with the benchmark.
condition: optional

domain: Particle Physics

description: The scientific domain this benchmark belongs to.
condition: required

focus: Real-time classification of particle jets using HL-LHC simulation features
description: Short summary of the focus of this benchmark.
condition: required

keywords:

- classification

- real-time ML

- jet tagging

- QKeras

description: List of keywords relevant for the benchmark.

condition: '>=1'

1. @article{h

Jet
Classification

Irregular
Sensor Data
Compression

Beam Control

ks2022fastml, title:
iv.

domain

Particle Physics

Particle Physics

Accelerators and
Magnets

Machine Learning for Science: Benchmarks and D

focus

Real-time
classification of
particle jets
using HL-LHC
simulation
features

Real-time
compression of
sparse sensor
data with
autoencoders

Reinforcement
learning control
of accelerator
beam position

keywords

classification,
real-time ML, jet
tagging, QKeras

compression,
autoencoder,
sparse data,

irregular sampling

RL, beam
stabilization,
control systems,
simulation

task_types

Classification

Compression

Control

Output MD format (3 listings with a few columns shown, and one citation in the footnotes is
shown below):

metrics

Accuracy, AUC

MSE, Compression

ratio

Stability, Control
loss

awks, Ben and Tran, Nhan and others}, year={2022}, url=

Output Latex format in PDF view (11 listings shown and references are below):

Date Name Domain Focus Task Types Metrics Models Citation
2020-09-07 MMLU (Mas- | Multidomain Academic Multiple choice Accuracy GPT-40, Gem- | [1] =
sive Multitask knowledge ini 1.5 Pro, ol,
Language Under- and reason- DeepSeek-R1
standing) ing across 57
subjects
2023-11-20 GPQA Diamond Science Graduate- Multiple choice, Multi- | Accuracy ol, DeepSeeck- | [2] =
level scientific | step QA R1
reasoning
2018-03-14 | ARC-Challenge Science Grade-school Multiple choice Accuracy GPT-4, Claude | [3] =
(Advanced Rea- science with
soning Challenge) reasoning
emphasis
2025-01-24 Humanity’s Last | Multidomain Broad cross- | Multiple choice Accuracy [=
Exam domain aca-
demic reason-
ing
2024-11-07 FrontierMath Mathematics Challenging Problem solving Accuracy 5] =
advanced
mathematical
reasoning
2024-07-18 | SciCode Scientific Pro- | Scientific code | Coding Solve rate (| Claude3.5- 6] =
gramming generation percent) Sonnet
and problem
solving
2025-03-13 | AIME (Ameri- | Mathematics Pre-college Problem solving Accuracy M=
can Invitational advanced prob-
Mathematics lem solving
Examination)
2025-02-15 MATH-500 Mathematics Math reason- | Problem solving Accuracy 8] =
ing generaliza-
tion
2024-04-02 | CURIE (Scientific | Multidomain Long-context Information extrac- | Accuracy 9] =
Long-Context Un- | Science scientific rea- | tion, Reasoning,
derstanding, Rea- soning Concept tracking,
soning and Infor- Aggregation, Algebraic
mation Extraction) manipulation, Multi-
modal comprehension
2023-01-26 FEABench (Finite | Computational | FEA simula- | Simulation, Perfor- | Solve time, Er- | FEniCS, [10] =
Element Analysis | Engineering tion accuracy | mance evaluation ror norm deal.IT
Benchmark) and perfor-
mance
2024-07-12 SPIQA (Scientific | Computer Sci- | Multimodal Question answer- | Accuracy, F1 | Chain-of- 11 =
Paper Image Ques- | ence QA on scien- | ing, Multimodal QA, | score Thought
tion Answering) tific figures Chain-of-Thought models, Mul-
evaluation timodal QA

systems

References

[1] D. Hendrycks, C. Burns, S. Kadavath, et al., “Measuring massive multitask language understanding,”
arXiv preprint arXiw:2009.03300, 2021. [Online]. Available: https://arxiv.org/abs/2009.03300.

[2] D. Rein, B. L. Hou, A. C. Stickland, et al., Gpga: A graduate-level google-proof q and a benchmark,
2023. [Online]. Available: https://arxiv.org/abs/2311.12022.

[3] P. Clark, I. Cowhey, O. Etzioni, et al., “Think you have solved question answering? try arc, the ai2
reasoning challenge,” in EMNLP 2018, 2018, pp. 237-248. [Online]. Available: https://allenai.org/
data/arc.

[4] L. Phan, A. Gatti, Z. Han, et al., Humanity’s last ezam, 2025. [Online]. Available: https://arxiv.
org/abs/2501.14249.

[5] E. Glazer, E. Erdil, T. Besiroglu, et al., Frontiermath: A benchmark for evaluating advanced mathe-
matical reasoning in ai, 2024. [Online]. Available: https://arxiv.org/abs/2411.04872.

[6] M. Tian, L. Gao, S. Zhang, et al., Scicode: A research coding benchmark curated by scientists, 2024.
[Online]. Available: https://arxiv.org/abs/2407.13168.
[7] TBD, Aime, [Online accessed 2025-06-24], Mar. 2025. [Online]. Available: https://www.vals.ai/
benchmarks/aime-2025-03-13.
[8] HuggingFaceH4, Math-500,2025. [Online]. Available: https://huggingface.co/datasets/HuggingFaceH4/
MATH-500.
[9] T. A. authors, Scientific reasoning benchmarks from the curie dataset, 2024. [Online]. Available: https:
//arxiv.org/abs/2404.02029.
[10] A. Institute, Feabench: A finite element analysis benchmark, 2023. [Online]. Available: https://
github.com/alleninstitute/feabench.
[11] X. Zhong, Y. Gao, and S. Gururangan, “Spiqa: Scientific paper image question answering,” 2024.
[Online]. Available: https://arxiv.org/abs/2407.09413.

[12] D. Jin, Y. Li, Y. Zhang, et al., “What disease does this patient have? a large-scale open-domain
question answering dataset from medical exams,” 2020. [Online]. Available: https://arxiv.org/abs/
2009.13081.

Ratings are shown as radar plots in the output for both Markdown and LaTeX formats:

Ratings for Jet Classification

reference_spluti ecification

Figure 1: Jet Classification

Radar Plots and Citations:

Radar plots provide an at-a-glance comparison of each benchmark's strengths and
weaknesses. For instance, benchmarks with strong datasets but weak reproducibility protocols
are immediately identifiable by their skewed plot shapes. In Markdown, each benchmark is also
accompanied by footnote citations and links. While in LaTeX, each benchmark is also
accompanied by references and links.

Evaluation:

Based on the features we added, we successfully output the proper information for all 75
benchmarks, including a rating. We were also able to begin testing these benchmarks to ensure
they work on a standard Python environment, such as Conda. Based on the feedback we
received on our software, the software that we developed was able to output the data from each
benchmark in an easy-to-read format.

Design tradeoffs and justification:

We decided to use LaTeX and Markdown files instead of the more popular JSON format
because JSON does not allow multiline text, reading JSON is more difficult as it includes { }, no
comments are allowed in the file, and the syntax of YAML is cleaner/more straightforward. So,
we decided to use these two formats as the possible output formats that can be specified by the
user.

Potential limitations and future goals:

The main limitation of this project is that we were unable to thoroughly test every benchmark to
make sure they work on our local Python environment due to time constraints. This would be
something we could do in the future to ensure that software users are assured that each
benchmark contains all the necessary information. Several entries also required additional
metadata from their sources. These were flagged with TODOs in the YAML and will be
prioritized for future validation.

Conclusion:

Overall, this project provided a valuable opportunity to explore the intersection of Al evaluation,
reproducible research, and software engineering. By building tools that simplify benchmarking,
we contribute to the broader goal of making Al research more transparent, accessible, and
impactful.

Acknowledgments:

e This manuscript has been authored by Fermi Research Alliance, LLC under Contract No.
DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High
Energy Physics.

e This work was supported in part by the U.S. Department of Energy, Office of Science,
Office of Workforce Development for Teachers and Scientists (WDTS) under the
Community College Internship (CCI)

	1. Benchmark Data Collection
	2. Benchmark Validation and Standardization

