
Abstract: 

Benchmarks provide a standardized method for evaluating different AI models, enabling 
reproducibility and comparison between models, and facilitating scientific progress. As AI 
models continue to develop rapidly, incorporating new datasets, capabilities, and architectures 
becomes more complicated. Therefore, the current static benchmarks become increasingly 
irrelevant. The MLCommons team argues that to make AI benchmarks more relevant, it involves 
making the benchmarks themselves more dynamic, as well as technical innovations that make it 
easier for scientists and researchers at all levels to use and contribute to the benchmarks. The 
current progress in technical innovation is a software that allows for a detailed view of a 
collection of AI benchmarks to be output in various formats that are easily readable and 
accessible.  

Introduction: 

A. What is benchmarking in relation to AI, and how is it used?

AI benchmarking is a method for evaluating the effectiveness of an AI model, such as
ChatGPT, using a set of standardized metrics, for example, high school-level math questions. 
These benchmarks and their results will enable ranking various AI models based on their 
effectiveness in performing specific tasks. One caveat with these benchmarks is that developers 
of AI models might focus too much on optimizing their models to perform better on the 
benchmark itself, rather than on performance when deployed in real-world scenarios. Therefore, 
it is essential to provide a diverse range of benchmarks to assess the model’s performance 
based on the type of task.    

B. Scope

This report focuses on the methods for collecting and validating AI benchmarks, as well
as the process of developing software to output the collected information in a readable format. 
The scope of this work includes researching various benchmarks, testing them, and writing 
Python code to create software that outputs information about the benchmarks based on an 
argument from the console. This was done during a 10-week internship, alongside the ML 
Commons team.  

C. Purpose

Our software is designed to make it easier for scientists and researchers to determine
which AI models will be most useful for their specific task, based on the data and ratings 
provided for a wide variety of benchmarks.  
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Methods:  
 

1. Benchmark Data Collection 
To begin, we used ChatGPT to compile data on a list of benchmarks provided by the 
MLCommons team. We then reviewed the output information and wrote it as a YAML file 
containing metadata for each benchmark, including fields such as benchmark name, task type, 
evaluation metrics, AI capabilities measured, citation information, and available model results.  

2. Benchmark Validation and Standardization 

To ensure consistency across all benchmark entries, we developed and applied a validation 
script that checks each YAML file for required fields and correct formats. The script identifies 
missing or malformed entries and provides helpful error messages, enabling contributors to 
easily correct them. This step helps maintain the uniformity across all entries in all the input files.  

3. Software Development for Displaying Benchmarks 

To make the information easily accessible and readable, we wrote code that converts the YAML 
format input file to Markdown and LaTeX formats. These formats can be specified using flags in 
the console, such as “--format .tex”. This script also supports options like filtering columns, 
combining datasets, and producing standalone or PDF outputs. Both formats included BibTeX 
citations, which were created and added at the end of the file.  

 4. Added additional features  

We also added additional features, like required and optional fields, author truncation, including 
BibTeX citations, and checking the format of the input files. These features could be accessed 
using the console flags that we added documentation for in the GitHub repository.  

5. Testing and Iteration 

Throughout the development process, we tested the software on multiple real and mock 
benchmark files to ensure it worked correctly and met the needs of the MLCommons team. 
Additionally, we have added ratings for every benchmark, using a standard scoring criterion. 
These ratings were based on the problem specification and constraints, the dataset, 
performance metrics, the reference solution, and a reproducible protocol. These ratings were 
created to help contributors understand the effectiveness of each benchmark in the list.  

 

Results:  

During the internship, we processed and validated 75 benchmark entries. The Python scripts we 
created successfully generated the specific file format and also included features that optimized 



 

and made the data easier to read. The command-line prompt features that we implemented are 
listed below,  

●​ --files / -i​
 Specifies the YAML file(s) to be processed. This argument is required and can accept 
one or more files.​
 

●​ --format / -f​
 Sets the desired output format: either md for Markdown or tex for LaTeX. This is a 
required argument.​
 

●​ --outdir / -o​
 Indicates the directory where output files should be saved. This allows users to control 
where their processed files go.​
 

●​ --authortruncation​
 Truncates the number of authors displayed in index or summary tables to keep the 
output clean and concise. Useful for long author lists.​
 

●​ --columns​
 Let users specify a subset of columns to include in the output, using a 
comma-separated list (e.g., --columns name,date, domain). This supports custom views.​
 

●​ --check​
 Runs validation checks on the YAML input files to ensure all required fields and 
formatting rules are met. This mode does not produce an output file.​
 

●​ --index​
 Generates individual pages for each benchmark entry.​
 

●​ --noratings​
 Removes the rating columns from the output file. This is useful if the user wants a 
simpler view of the benchmark information.​
 

●​ --required​
 When used with --columns, it treats all listed columns as required and checks that they 
are present in every YAML file.​
 

●​ --standalone / -s​
 For LaTeX output, it includes the complete LaTeX document structure (preamble, 
document environment), making it ready to compile directly.​
 

●​ --withcitation​
 Adds a BibTeX citation row to the Markdown output. This is particularly helpful for 



 

researchers who need to locate citation information quickly.​
 
 

We also have a Makefile that facilitates the creation of necessary files more easily, eliminating 
the need to remember the above flags and the project's directory structure. These 
command-line prompts allow for multiple YAML files filled with benchmark data to be output in 
MD and TeX formats with different features to make it easier to read.   
 
Ratings:  
 

We also evaluated benchmarks across five dimensions using a 0–10 scale (0=lowest and 10 = 
highest). 

1.​ Problem Specification & Constraints – Clarity of task, input/output formats, and 
system constraints (e.g., latency, hardware).​
 

2.​ Dataset (FAIR Principles) – Assessment of findability, accessibility, interoperability, and 
reusability, including versioning and split structure.​
 

3.​ Performance Metrics – Use of well-defined, quantitative metrics aligned with task goals.​
 

4.​ Reference Solution – Presence and quality of a reproducible baseline or model 
implementation.​
 

5.​ Reproducible Protocol – Availability of code, environment setup, and instructions to 
reproduce results.​
 

Each score reflects how completely and transparently the benchmark supports evaluation and 
replication. We reviewed the documentation and ran these benchmarks on our local Python 
environment to rate them according to the scale shown above.  

 
  
Example input and output files are shown below: 
 
 
 
 
 
 
 
 
 



One input listing with a few columns shown below (YAML format): 



 

 
 
Output MD format (3 listings with a few columns shown, and one citation in the footnotes is 
shown below): 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Output Latex format in PDF view (11 listings shown and references are below): 



Ratings are shown as radar plots in the output for both Markdown and LaTeX formats: 



Radar Plots and Citations: 

Radar plots provide an at-a-glance comparison of each benchmark's strengths and 
weaknesses. For instance, benchmarks with strong datasets but weak reproducibility protocols 
are immediately identifiable by their skewed plot shapes. In Markdown, each benchmark is also 
accompanied by footnote citations and links. While in LaTeX, each benchmark is also 
accompanied by references and links.   

Evaluation: 

Based on the features we added, we successfully output the proper information for all 75 
benchmarks, including a rating. We were also able to begin testing these benchmarks to ensure 
they work on a standard Python environment, such as Conda. Based on the feedback we 
received on our software, the software that we developed was able to output the data from each 
benchmark in an easy-to-read format.  

Design tradeoffs and justification: 

We decided to use LaTeX and Markdown files instead of the more popular JSON format 
because JSON does not allow multiline text, reading JSON is more difficult as it includes { }, no 
comments are allowed in the file, and the syntax of YAML is cleaner/more straightforward. So, 
we decided to use these two formats as the possible output formats that can be specified by the 
user.  

Potential limitations and future goals: 

The main limitation of this project is that we were unable to thoroughly test every benchmark to 
make sure they work on our local Python environment due to time constraints. This would be 
something we could do in the future to ensure that software users are assured that each 
benchmark contains all the necessary information. Several entries also required additional 
metadata from their sources. These were flagged with TODOs in the YAML and will be 
prioritized for future validation. 

Conclusion: 

Overall, this project provided a valuable opportunity to explore the intersection of AI evaluation, 
reproducible research, and software engineering. By building tools that simplify benchmarking, 
we contribute to the broader goal of making AI research more transparent, accessible, and 
impactful. 
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