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ABSTRACT

Ferritic-martensitic steels are key structural materials for advanced reactors but experience time-
dependent deformation and damage under prolonged high temperature and irradiation, leading to creep-
driven crack initiation and growth. High-fidelity models—crystal plasticity with irradiation mechanisms,
phase-field for microstructural evolution, and continuum-damage viscoplasticity—capture the underly-
ing physics but are too computationally intensive for broad design-space exploration and uncertainty
quantification. This milestone advances a scalable alternative by integrating a microstructure-sensitive
surrogate creep model into the Multiphysics Object-Oriented Simulation Environment (MOOSE) finite
element framework and extending it to fracture via the extended finite element method (XFEM). The
surrogate model, developed with collaborators at Sandia and Los Alamos National Laboratories, maps
relevant microstructural descriptors to the viscoplastic response of HT9. We embed this surrogate within
a coupled deformation-damage workflow in MOOSE/XFEM to simulate creep-driven crack initiation and
propagation. Implementation enhancements include updates to the material interface, a plastic correction
phase involving microstructure evolution, and fracture criteria to ensure numerical robustness and compat-
ibility with the surrogate structure. Demonstrations on canonical creep benchmarks spanning uniaxial and
multiaxial states show that the surrogate reproduces key trends of high-fidelity models while substantially
reducing computational cost. The resulting capability bridges physics fidelity and performance, providing
a practical path to a predictive, microstructure-aware assessment of creep and fracture in reactor materials.
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Surrogate Model Integration with MOOSE XFEM for Creep
Crack Growth

1. INTRODUCTION

Alloys deployed for structural components in advanced nuclear reactors have demanding requirements due
to their operating environment, which can include a combination of exposure to radiation, high temperature,
and corrosive materials [1, 2]. Because of this, a limited set of alloys is currently available for high-temperature
nuclear applications. Under prolonged exposure to elevated temperatures and neutron irradiation, these alloys
undergo time-dependent deformation (creep). Additionally, when internal stresses exceed the material strength,
creep damage can occur, in a process that involves nucleating and growing microcracks, and can eventually
lead to component failure. The macroscopic response of high-temperature alloys is strongly influenced by
their evolving microstructure, including dislocation networks, grain boundaries, and precipitate populations
[3, 4].

Experimental programs are essential for model calibration and validation. However, the high cost, long
duration, and limited flexibility of creep testing constrain coverage of the full design space [5, 6]. Consequently,
modeling and simulation play a key role in accelerating materials qualification and providing predictive
capabilities that can be applied to understand the performance of components under reactor conditions.
This report documents progress on developing engineering-scale capabilities for modeling creep and creep
crack growth in high-temperature alloys for the Simulation of the Response of Structural Metals in Molten
Salt Environment project under the U.S. Department of Energy’s Scientific Discovery through Advanced
Computing (SciDAC) program. Because of the availability of relevant models and data, initial efforts in
this project, including those documented here, have focused on the HT9 alloy, and later in this project these
methods and tools will be applied to Alloy 617.

Modeling creep in HT9 across relevant length and time scales is challenging due to the coupled action
of dislocation glide/climb, grain-boundary sliding, and void nucleation [7]. Mechanistic approaches have
previously been developed to capture these processes with high fidelity. For example, crystal-plasticity
frameworks incorporating dislocation-climb laws informed by rate theory have been used to simulate thermal
and irradiation creep in HT9, including stress-induced preferential absorption and other irradiation-specific
effects [8]. Phase-field models have been employed to simulate microstructural evolution under creep—such as
void nucleation/growth, grain coarsening, and damage localization—enabling spatially resolved predictions of
damage and crack initiation [9, 10]. Continuum damage mechanics–based viscoplastic models also describe
the coupling between creep deformation and damage evolution, particularly under multiaxial and cyclic
loads [11]. Despite their physical rigor, these models are computationally intensive and often impractical for
large-scale simulations or design optimization over many loading scenarios.

To address these limitations and enable accurate component-scale simulations, surrogate models have
emerged as a promising approach. They can emulate high-fidelity behavior at a fraction of the computational
cost to enable rapid design exploration and uncertainty quantification. In this project, a microstructure-
sensitive surrogate creep model has been developed by collaborators at Sandia and Los Alamos National
Laboratories. This model, which is based on a Mixture of Experts (MoE) approach, was previously tested in a
standalone constitutive driver code and in a Python finite element (FE) code to facilitate initial testing [12]. For
practical component-scale simulations, it is important to have this model integrated into a high-performance
FE code.

The effort documented here builds on the prior work through developments in two key areas. First, we
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integrated the microstructure-sensitive MoE surrogate creep model into the Multiphysics Object-Oriented
Simulation Environment (MOOSE) FE framework (Section 2). This model captures the viscoplastic response
of HT9 as a function of microstructural descriptors. Second, we utilized this surrogate in conjunction with the
extended finite element method (XFEM) in MOOSE to simulate creep-driven crack propagation (Section 3).
To enable these capabilities, we implemented enhancements for compatibility with the surrogate’s structure,
including updates to the material interface, time-integration schemes, and crack-growth criteria. Collectively,
these advances represent important steps toward enabling accurate and computationally efficient simulations
of creep and fracture in reactor alloys.
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2. CREEP SURROGATE MODELING

Recently, Sandia National Laboratories and Los Alamos National Laboratory collaborated to create an
MoE [13] machine learning (ML) model [14], trained on data from visco-plastic self consistent (VPSC)
[4, 15] mesoscale simulations, to predict the elasto-viscoplastic behavior of HT9 steel under reactor operating
conditions, where each expert is a neural network. Still, this model must be seamlessly integrated into an
FE framework in a manner that would enable us to leverage its superior predictive ability for simulating a
realistic physical component. Regarding the integration of ML surrogates into the FE method, most existing
approaches remain largely restricted to fully offline coupling (where the results obtained beforehand from
the ML surrogate are fed to the FE solver). This necessitates either extra post-processing before the FE
solution is carried out, employing on straightforward data sampling strategies wherein the ML constitutive
model is employed to build the database, or eliminating plastic correction steps altogether. In the current
literature, implicit integration schemes that incorporate ML models as constitutive relations within the return
mapping framework for iterative plastic correction are rarely used. Consequently, in this effort we successfully
implemented an implicit integration of the said model, adapting the method of radial return (RR) in an FE
framework. In addition to our previous implementation [12] in a standalone Python-based FE code, PyFEM,
the open-source MOOSE [16] was selected as a host FE framework due to its ease of scalability, modularity,
and multiphysics coupling. Details of the MoE model development effort are described as follows: Section
2.1 describes its mathematical formulations and accompanying algorithms. Section 2.2 discusses the careful
verification of our implementations over the range of the ML model’s input space. Section 2.3.1 describes how
the MoE surrogate model and its FE integration surpass its predecessor response surface method (RSM)-based
surrogate. Finally, Section 2.4 provides concluding remarks and addresses limitations and future work.

2.1. Methods and Algorithms

2.1.1. Mathematical Preliminaries

We start by providing the governing equation associated with the quasistatic elasto-viscoplastic problem
of our domain. This is the well-known equation of stress analysis given in Equation 1, where 𝒃 denotes the
body forces and 𝝈 denotes the Cauchy stress tensor.

∇ ⋅ 𝝈 + 𝒃 = 0 (1)
In its simplest form, neglecting body forces, we have the Cauchy equilibrium force balance equation expressed
as [17]

∇ ⋅ 𝝈 =

⎡
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= 0, (2)

where 𝝈 obeys the constitutive relation expressed in Equation 3. Here,  is the fourth-order elasticity or
stiffness tensor relating elastic strain to stress. In all succeeding simulations presented here, isotropic material
response is assumed. Therefore, the fourth-order stiffness tensor  can essentially be expressed in terms of
only two elastic constants [18].

𝝈 =  ∶ 𝜺𝑒 (3)
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The strain tensor 𝜺 can be additively decomposed into its elastic and plastic parts:
𝜺 = 𝜺𝑒 + 𝜺𝑝. (4)

For our material of interest, plasticity includes the viscoplastic behavior as well. Therefore, all forthcoming
formulations consider viscoplastic cases, where 𝜺𝒗𝒑 denotes the viscoplastic strain tensor. Hence, Equation 3
becomes

𝝈 =  ∶ (𝜺 − 𝜺𝑣𝑝) . (5)
In incremental form, Equation 5 can be written for the stress tensor at the current time step 𝑖 + 1 as follows:

𝝈𝑖+1 = 𝝈𝑖 + Δ𝝈 = 𝝈𝑖 +  ∶ (Δ𝜺 − Δ𝜺𝑣𝑝) . (6)

We determine the incremental viscoplastic strain tensor, Δ𝜺𝑣𝑝, from the scalar incremental viscoplastic
strain, Δ𝑝, by using the Prandtl–Reuss normality rule from the flow rule below:

Δ𝜺𝑣𝑝 = 3
2
Δ𝑝 𝑺

𝜎𝑒
, (7)

where 𝑺 is the deviatoric stress tensor and 𝜎𝑒 denotes the effective stress. The key remaining task is then to
determine the scalar incremental viscoplastic strain, Δ𝑝, by utilizing an appropriate constitutive relationship
(in contrast to a consistency condition used for rate-independent plasticity) that is representative of the material
at hand (in our case, HT9 steel). The viscoplastic rate, characterized by Δ𝑝, evolves for any non-zero stress.
In this endeavor, we replace this constitutive relationship with an ML surrogate model, , described in the
following equation:

 ∶
(

𝜎𝑒, 𝑇 , 𝜀𝑣𝑚, 𝜌𝑐 , 𝜌𝑤, Φ
)

↦
(

𝜀̇𝑣𝑝, 𝜌̇𝑐 , ̇𝜌𝑤
)

. (8)
This maps the state variables effective stress, 𝜎𝑒; temperature, 𝑇 ; effective von Mises strain, 𝜀𝑣𝑚; dislocation
density at cell, 𝜌𝑐; dislocation density at cell wall, 𝜌𝑤; and neutron flux, Φ, to the rate-related information
(i.e., elasto-viscoplastic strain rate, 𝜀̇𝑣𝑝, and the dislocation density change rates, 𝜌̇𝑐 and ̇𝜌𝑤).

2.1.2. Implicit Integration Schemes

As the yield surface is smeared into the elasto-viscoplastic constitutive surrogate model,  for any
non-zero stress, and normality is imposed through Equation 7, we follow the RR method [17] to implicitly
integrate the elasto-viscoplastic constitutive relation. At the start of the return mapping, we assume the entire
strain increment to be fully elastic. Therefore, the (𝑖 + 1)𝑡ℎ current stress tensor at time step 𝑖 + 1 is given by

𝝈𝑡𝑟
𝑖+1 = 𝝈𝑡𝑟

𝑖 +  ∶ Δ𝜺𝑡𝑜𝑡𝑎𝑙. (9)
Consequently, we inform the initial state variables:

𝜎𝑒 = 𝜎𝑡𝑟
𝑒 ; 𝑺 = 𝑺 𝑡𝑟.

We also linearize the elasto-viscoplastic constitutive equation in time to obtain the scalar incremental
viscoplastic strain, Δ𝑝, and update the state variables (dislocation densities in the case of the current model)
for a given increment. After determining Δ𝑝 using an iterative Newton–Raphson (NR) process, the actual
effective stress is calculated as follows according to the return-mapping formalism [17]:

𝜎𝑒 = 𝜎𝑡𝑟
𝑒 − 3𝐺Δ𝑝. (10)
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The viscoplastic strain increment, Δ𝑝, is always implicitly updated using an NR iteration scheme. However,
depending on the choice of updating dislocation densities (explicitly or implicitly), we proposed two formu-
lations along with their accompanying algorithms, namely radial return with univariate Newton–Raphson
(UNR-RR) (also known as scalar-valued return mapping) and radial return with multivariate Newton–Raphson
(MNR-RR) (also known as general return mapping). While the univariate approach (UNR-RR) adapted to the
previous RSM surrogate was previously implemented, the multivariate formulation (MNR-RR) is a novel
addition proposed in this work. It is superior in terms of accuracy compared to the UNR-RR, which has
been used for its predecessors [19, 20] and in previous investigations [12]. The UNR-RR and MNR-RR
formulations are outlined in Algorithms 1 and 2, respectively.
Algorithm 1 UNR-RR Scheme

1: Input: Shear modulus 𝜇, Temperature 𝑇 , Initial dislocation densities (𝜌𝑐 , 𝜌𝑤), Neutron flux Φ
2: Output: Stress 𝝈, Visco-plastic strain 𝜀𝑣𝑝, Updated dislocation densities
3: Load ML Model from file (only once)
4: initQpStatefulProperties()→ Initialize 𝜌𝑐 = 𝜌𝑐0, 𝜌𝑤 = 𝜌𝑤0

computeQpStress():
5: for each quadrature point do
6: Compute Elastic Strain Increment: Δ𝜺𝒇𝒖𝒍𝒍𝒚_𝒆𝒍𝒂𝒔𝒕𝒊𝒄 = 𝜺𝒏𝒆𝒘𝒎𝒆𝒄𝒉 − 𝜺𝒐𝒍𝒅𝒎𝒆𝒄𝒉
7: Compute Trial Stress: 𝝈𝒕𝒓𝒊𝒂𝒍 = 𝝈𝒐𝒍𝒅 +  ∶ Δ𝜺𝒕𝒐𝒕𝒂𝒍
8: Compute Effective Stress: 𝜎𝑒 =

√

3
2
𝑺 ∶ 𝑺

9: if 𝜎𝑒 > 1 + tolerance then
10: Prepare Input for Model: 𝓘 = [𝜎𝑒, 𝑇 , 𝜀𝑜𝑙𝑑𝑣𝑚 , 𝜌

𝑜𝑙𝑑
𝑐 , 𝜌𝑜𝑙𝑑𝑤 ,Φ)]𝑇

11: Predict Creep Rate 𝜀̇𝑣𝑝 using ML Model
12: Perform Return Mapping (Newton-Raphson Iteration):
13: while Residual > 𝑡𝑜𝑙 or first iteration do
14: Residual: 𝑟𝑒𝑠 = Δ𝑝 − 𝜀̇𝑣𝑝Δ𝑡
15: Update: Δ𝑝 ← Δ𝑝 − 𝑟𝑒𝑠

𝐽16: Recompute Visco-plastic Rate with updated input
17: end while
18: Update State Variables:

𝜀𝑣𝑚 = 𝜀𝑜𝑙𝑑𝑣𝑚 + Δ𝑝

𝜌𝑐 = 𝜌𝑜𝑙𝑑𝑐 + 𝜌̇𝑐Δ𝑡

𝜌𝑤 = 𝜌𝑜𝑙𝑑𝑤 + ̇𝜌𝑤Δ𝑡

19: end if
20: Compute Incremental Viscoplastic Strain Tensor: Δ𝜺𝒗𝒑 = 3

2 Δ𝑝
𝑺𝒕𝒓

𝜎𝑡𝑟𝑒21: Compute Final Stress: 𝝈 = 𝝈𝒐𝒍𝒅 +  ∶ (Δ𝜺𝒕𝒐𝒕𝒂𝒍 − Δ𝜺𝒗𝒑)
22: end for
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Algorithm 2 MNR-RR Scheme
1: Input: Shear modulus 𝜇, Temperature 𝑇 , Initial dislocation densities (𝜌𝑐 , 𝜌𝑤), Neutron flux Φ
2: Output: Stress 𝝈, Visco-plastic strain 𝜀𝑣𝑝, Updated dislocation densities
3: Load ML Model from file (only once)
4: initQpStatefulProperties()→ Initialize 𝜌𝑐 = 𝜌𝑐0, 𝜌𝑤 = 𝜌𝑤0

computeQpStress():
5: for each quadrature point do
6: Compute Elastic Strain Increment: Δ𝜺𝑓𝑢𝑙𝑙𝑦_𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝜺𝑛𝑒𝑤𝑚𝑒𝑐ℎ − 𝜺𝑜𝑙𝑑𝑚𝑒𝑐ℎ
7: Compute Trial Stress: 𝝈𝑡𝑟𝑖𝑎𝑙 = 𝝈𝑜𝑙𝑑 +  ∶ Δ𝜺𝑡𝑜𝑡𝑎𝑙
8: Compute Effective Stress: 𝜎𝑒 =

√

3
2𝑺 ∶ 𝑺

9: if 𝜎𝑒 > 1 + tolerance then

10: Define vector of QoI: 𝒒 =
⎡

⎢

⎢

⎣

Δ𝑝
Δ𝜌𝑐
Δ𝜌𝑤

⎤

⎥

⎥

⎦

11: Prepare Input for Model: 𝓘 = [𝜎𝑒, 𝑇 , 𝜀𝑜𝑙𝑑𝑣𝑚 , 𝜌
𝑜𝑙𝑑
𝑐 , 𝜌𝑜𝑙𝑑𝑤 ,Φ)]𝑇

12: Predict Outputs/Rate vector using ML Model: 𝓞(𝒒) =
⎡

⎢

⎢

⎣

𝜀̇𝑣𝑝
𝜌̇𝑐
𝜌̇𝑤

⎤

⎥

⎥

⎦

=  (𝓘)

13: Perform Return Mapping (Newton-Raphson Iteration):
14: while Residual norm > 𝑡𝑜𝑙 or first iteration do
15: Residual: 𝒓(𝒒) = 𝒒

Δ𝑡
−𝓞

16: Construct Jacobian: 𝑱 = 1
Δ𝑡𝑰 −

⎡

⎢

⎢

⎢

⎢

⎣

−3𝐺 𝜕𝜀̇𝑣𝑝
𝜕𝜎𝑒

𝜕𝜀̇𝑣𝑝
𝜕𝜌𝑐

𝜕𝜀̇𝑣𝑝
𝜕𝜌𝑤

−3𝐺 𝜕𝜌̇𝑐
𝜕𝜎𝑒

𝜕𝜌̇𝑐
𝜕𝜌𝑐

𝜕𝜌̇𝑐
𝜕𝜌𝑤

−3𝐺 𝜕𝜌̇𝑤
𝜕𝜎𝑒

𝜕𝜌̇𝑤
𝜕𝜌𝑐

𝜕𝜌̇𝑤
𝜕𝜌𝑤

⎤

⎥

⎥

⎥

⎥

⎦

17: Update: 𝒒 ← 𝒒 − 𝒓(𝒒)
𝑱

18: Recompute Outputs/Rate vector with updated input, 𝓘𝑛+1

19: end while
20: Update State Variables:

𝜀𝑣𝑚 = 𝜀𝑜𝑙𝑑𝑣𝑚 + Δ𝑝

𝜌𝑐 = 𝜌𝑜𝑙𝑑𝑐 + Δ𝜌𝑐

𝜌𝑤 = 𝜌𝑜𝑙𝑑𝑤 + Δ𝜌𝑤
21: end if
22: Compute Incremental Viscoplastic Strain Tensor: Δ𝜺𝑣𝑝 = 3

2
Δ𝑝 𝑺 𝑡𝑟

𝜎𝑡𝑟𝑒23: Compute Final Stress: 𝝈 = 𝝈𝑜𝑙𝑑 +  ∶ (Δ𝜺𝑡𝑜𝑡𝑎𝑙 − Δ𝜺𝑣𝑝)
24: end for
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2.2. Verification of Implementations

The proposed algorithms, which incorporate the surrogate elasto-viscoplastic constitutive model, have
been thoroughly verified, and the corresponding results are outlined in this section. A total of nine verifi-
cation cases were considered, each defined by distinct initial and boundary conditions, spanning the full
stress–temperature input domain of the surrogate. These conditions were carefully chosen from the VPSC
simulations originally employed to generate the surrogate’s training dataset and are summarized in Table
1. In every case, a neutron flux, Φ, of 1 × 10−9 dpa/sec was prescribed. The MOOSE simulation data were
obtained by modeling a single eight-noded hexahedral (HEX8) element subjected to uniaxial constant stress
at a specified temperature. These simulation outcomes were directly compared against both the surrogate
model predictions and the reference VPSC simulation results. The MoE surrogate responses were determined
through direct time-domain integration of the model using the scipy.integrate.solve_ivp function with
the LSODA solver option. LSODA serves as a Python interface to the Fortran ODEPACK package [21], which
adaptively alternates between the non-stiff Adams method and the stiff backward differentiation formula,
as originally introduced in [22]. Furthermore, the time evolutions of dislocation densities derived from the
MOOSE simulations were systematically benchmarked against those predicted by the MoE surrogate model.
Table 1. Initial and boundary conditions used for the verification cases.

Case Effective Stress Temperature Effective Strain Dislocation Densities
at Cell at Cell Wall

# 𝜎𝑒 (𝑀𝑃𝑎) 𝑇 (𝐾) 𝜀𝑣𝑚 𝜌𝑐 (𝑚−2) 𝜌𝑤 (𝑚−2)
1 50 683 2.1590 × 10−14 5999999999923.7 9999999999985.1
2 50 850 1.1001 × 10−11 5999999980883.5 9999999964211.5
3 50 1016 3.7299 × 10−9 5999998717975.1 9999981465412.1
4 150 683 1.2609 × 10−11 5999999994152.9 9999999992757.3
5 150 850 1.2609 × 10−11 5999999994152.9 9999999992757.3
6 150 1016 3.7874 × 10−6 6000005571349.8 9997755861825.3
7 250 683 5.6498 × 10−9 5999999622770.7 9999996865525.4
8 250 850 2.7214 × 10−8 5999998968779.3 9999984768044.6
9 250 1016 1.2765 × 10−7 5999997505542.9 9999927814437.0

The verification results for the nine cases listed in Table 1 are shown in Figures 1, 2, and 3, in the same
order in which they are listed in Table 1. It must be noted that presently the single measure of success for our
implementations is how closely the MOOSE responses match the MoE surrogate responses. The observed
deviations from the reference VPSC results are entirely attributed to the ML model, not to the algorithms
proposed in this work. As mentioned earlier, the development and verification of the developed ML surrogate
are presented in a separate work [14]. The presented verification plots demonstrate that the MOOSE responses
are commensurate with the surrogate responses for all cases except Case 9.

Case 9 represents a combination of the highest stress and temperature of all the scenarios considered, and
it is important to note that the surrogate model integration response using scipy.integrate.solve_ivp
fails for Case 9. Although the MOOSE response does not entirely fail, and it provides a response that is closer
to the reference solution, its error is significant. We present this case to emphasize that there are bounds to
the stress and temperature regime that is applicable to this model. Even though the MOOSE responses might
seem reasonable, in regions of extremely high stress and temperature, the results cannot be trusted. Additional
data under those conditions will be needed to retrain the ML model to expand its region of applicability.
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Figure 1. Comparison between the SciPy time integration of the surrogate (—) and the one-element (HEX8)
response of the MOOSE (—) implementation for 𝜎𝑣𝑚 = 50 MPa at different temperatures. The reference (- -)
represents the VPSC data used for the MoE surrogate training.
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Figure 2. Comparison between the SciPy time integration of the surrogate (—) and the one-element (HEX8)
response of the MOOSE (—) implementation for 𝜎𝑣𝑚 = 150 MPa at different temperatures. The reference
(- -) represents VPSC data used for the MoE surrogate training.
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Figure 3. Comparison between the SciPy time integration of the surrogate (—) and the one-element (HEX8)
response of the MOOSE (—) implementation for 𝜎𝑣𝑚 = 250 MPa at different temperatures. The reference
(- -) represents the VPSC data used for the MoE surrogate training.
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2.3. Comparison Between the Univariate and Multivariate Schemes

This section summarizes an analysis of the accuracy of MNR-RR for the implicit integration proposed in
this work, as compared to UNR-RR, which was used by the MoE surrogate model’s predecessors [19, 20] and
previous investigations of the current MoE model [12]. By design, MNR-RR is, mathematically speaking,
expected to be more accurate than UNR-RR. On the other hand, solving for three quantities of interest
(QoIs) is computationally more expensive than solving for only one. However, as will be made evident by
the subsequent results and discussion, in most cases the difference in accuracy is too significant to ignore.
Moreover, the computational cost associated with MNR-RR can be partially—if not completely—offset by
the use of the larger time-step size enabled by MNR-RR during the initial load ramp.

In Figure 4, the left column presents the evolution of the elasto-viscoplastic strain and dislocation
densities, as compared to the true evolution calculated by directly integrating the surrogate using the
scipy.integrate.solve_ivp function at 160 MPa and 750 K with constant time-step sizes. In these
investigations, the load was applied at the first time step and kept constant throughout, without any ramping
up. Given that a converged solution is obtainable at a particular time-step size, the time step was also kept
constant throughout. Figures 4(a), (c), and (e) clearly show that a meaningful converged solution can be
obtained at a time-step size of up to 14 seconds when using the MNR-RR scheme. Although a negligible
time discretization error could be observed (as evidenced by the difference between solutions using 5- and
14-second time steps), the trend is always maintained. However, the first converged solution obtained at a
time-step size of 5 seconds using UNR-RR is grossly wrong. While a better solution could be obtained by
reducing the time-step size to 1 second, that solution is unrepresentative of the actual one. Using the UNR-RR
scheme, a representative and physically meaningful result is not obtained until decreasing the time-step size
to 0.01 second. Even then, a significant discrepancy is observed in Figure 4(c) in the evolution of mobile
dislocations in comparison to the actual surrogate response indicated by “Model.” This is due to the fact that
we are not actually solving for dislocation densities in the first place with UNR-RR, but rather updating them
explicitly. In essence, the left column in Figure 4 shows that, compared to UNR-RR, MNR-RR can provide
an accurate solution with a 14∕0.01 = 1, 400 times larger time-step size thanks to its intrinsically higher level
of accuracy.

Next, we determined the difference in overall accuracy under an adaptive time-stepping scheme in which
the time step was adjusted based on nonlinear iteration counts in the nonlinear FE problem for a stress of 200
MPa at 850 K, shown in the right-hand column of Figure 4. Here, both the schemes were started from an
initial small time step of 0.005 second and were allowed to grow until reaching the maximum time step size of
100 seconds. While the MNR-RR results exactly match the surrogate response, a stark difference is observed
for UNR-RR. Although the elasto-viscoplastic strain evolution in Figure 4(b) approaches the true solution
over time, it is easy to imagine that it could again diverge from the true solution over a longer simulation time.
Much larger discrepancies are observed for the dislocation densities shown in Figure 4(d) and (f). These
discrepancies arise due to the explicit updates contributing to the deviation of the elasto-viscoplastic strain
from the true solution path, despite the fact that we are solving for it implicitly with the UNR-RR approach.

However, the more traditionally used scalar-valued UNR-RR is not without merit. At this point of our
discussion, it is very apparent that the accuracy of the UNR-RR scheme is highly dependent on its time-step
size. The smaller the time-step size, the lower the error introduced to the dislocation updates. In turn, this
contributes to less deviation from the true solution. Therefore, at higher stress and temperature regimes,
where the nonlinearity of the model outputs is extremely high, both schemes require an exceedingly small
time-step size to converge within the primary creep regimes. In such a situation, the differences between the
UNR-RR and MNR-RR responses vanish, and the UNR-RR approach proves itself beneficial thanks to its low
computational overhead. In one such case, previously shown in Figure 3, the cases for all temperatures were
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Figure 4. Comparison of the MNR-RR, UNR-RR, and baseline surrogate model responses (integrated with
scipy.integrate.solve_ivp), with (left column) constant time steps and (right column) adaptive time
steps restricted to 100 seconds.
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simulated using UNR-RR, and no appreciable difference from the true solutions was observed for either 683
or 850 K.

2.3.1. Performance Analyses

While the implemented ML model’s input space covers a much larger range of stress and temperature than
does its predecessor reduced order model (ROM) implementation HT9LaRomance (available in the MOOSE-
based fuel performance code BISON and developed using RSM [20]), it also outperforms the previous
ROM within their common input space in terms of prediction accuracy and reliability, and its predictions are
physically reasonable based on the mechanisms governing creep deformations at high temperature and/or
stress. Comparisons will be made here both in the primary and secondary creep regions. However, before
discussing the scenarios in which the MoE surrogate surpasses the RSM surrogate, we provide a base case to
establish that both models provide more or less similar responses for the initial conditions at which they are
known to perform well. To this end, a common set of initial and boundary conditions, shown in Table 2, was
used to compare both models. The corresponding responses are shown in Figure 5. Both models provide
similar responses. The negligible discrepancies are due to slight differences between the VPSC datasets on
which the models were trained. Note that the y-axis of the strain rate presented in Figure 5(a) is plotted in
logarithmic scale to better amplify the negligible response differences.
Table 2. Initial and boundary conditions for the base case.

Initial Conditions Symbols Values
Effective stress 𝜎𝑒 128.7 MPa
Temperature 𝑇 789 K

Effective strain 𝜀𝑣𝑚 0.0
Dislocation densities at cell 𝜌𝑐 5.85 × 1012 𝑚−2

Dislocation densities at cell wall 𝜌𝑤 8.66 × 1012 𝑚−2

Neutron flux Φ 3.82 × 10−8 dpa/s
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Figure 5. Comparison of RSM and ML surrogate model predictions of (a) effective strain rate and dislocation
densities at the (b) cell and (c) cell wall under a stress of 127.8 MPa and at 789 K, simulated for 1,500 hours.
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2.3.1.1. Primary Creep Rates

One limitation of the previous RSM-based surrogate is that it performs poorly in the transition regions
where the dominant deformation mechanism changes from one creep mechanism to another. This is evident
from the primary creep rate presented in Sweet and Novascone [19]. The irregularity in the primary creep
strain rates is due to the presence of regions in which the creep rates do not increase with increasing stress or
temperature—as they generally should do as long as the mechanisms and physics behind the deformations are
in effect—and vice versa. To demonstrate this, we chose a temperature of 810 K, which is well within the
transition region where the activation energy of the creep mechanism transitions from the activation energy
for the grain boundary diffusion, 𝑄𝐺𝐵, to the activation energy for the lattice diffusion, 𝑄𝐿. Generally, our
choices of applied stress were not high enough to free up the dislocations altogether to fully change the creep
mechanism. However, for increasing stress at this constant temperature, the dominant creep mechanism shifts
from the point defect diffusion-based viscous creep toward the dislocation-based power-law creep. Figure 6
shows the results of the comparison between the RSM and implemented ML model for constant uniaxially
applied stresses ranging from 40–70 MPa. All cases were simulated for 20 days to capture the trends in
primary creep rates only. For the RSM case in Figure 6(a), the aforementioned anomaly is easily observed.
While the primary creep rate does increase for 50 MPa compared to 40 MPa, it decreases unreasonably—and
perhaps nonphysically—for 60 and 70 MPa. On the other hand, in Figure 6(b), the primary creep rates
increase with increasing stress for the MoE model, clearly demonstrating the improved behavior of the ML
surrogate compared to the previous ROM in handling transitions.
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Figure 6. (a) RSM and (b) ML surrogate model primary creep rates for a range of applied stress at 810 K,
simulated for 20 days.

2.3.1.2. Secondary Creep Rates

Similarly, several irregularities were previously observed for secondary creep rates over the ROM feature
space for the RSM surrogate. The most prominent was a sudden drop in creep rate to almost zero for uniaxial
tensile cases below a stress of 40 MPa and a temperature of 700 K [19]. This phenomenon is corroborated in
the RSM’s secondary creep predictions, as shown in Figure 7(a), while the corresponding results from the
ML surrogate model in Figure 7(b) show that the ML surrogate overcomes these issues. All three cases were
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simulated for 350 days, which ensured that a steady-state creep regime was reached.
Well within the steady-state region, anomalies in handling transitions between creep mechanisms are

also prevalent for the RSM. This is shown in Figure 8, which shows the results of a simulation in which a
stress of 115 MPa was applied; this stress was selected to fall within the transition region of viscous creep to
power-law creep. Under this constant stress, the temperature was raised from 680 to 715 K to change the
activation energy governing the dominant creep mechanism. Within the secondary creep regime, the creep
strain rate of the higher-temperature case was found to unrealistically drop below the lower-temperature case.
This is evident in the crossing of the plots of the effective creep rates predicted at 680 and 715 K, shown
in Figure 8(a), in which only the secondary creep regimes that were simulated for 450 days are shown to
highlight this behavior. On the other hand, in Figure 8(b), the implemented MoE model’s response shows
reasonable and consistent predictions; it maintains more physically realistic trends in creep rates without the
crossover behavior observed for the RSM.
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Figure 7. Comparison of secondary creep rates between the (a) RSM and (b) ML surrogate model simulated
for 350 days for stresses and temperatures at and below 40 MPa and 700 K.
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Figure 8. Comparison of secondary creep rates between the (a) RSM and (b) ML surrogate model simulated
for 450 days for a stress of 115 MPa and temperatures of 680 K and 715 K.
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2.3.1.3. Computational Overhead

While the ML-based constitutive laws and flow rates have been shown to offer improved accuracy
over a feature space encompassing multiple scales and mechanisms, their applications to realistic problem
simulations are scarce due to the prohibitively large computational overhead associated with them. Naturally,
closed-form mathematical expressions are many times faster than a trained neural network with numerous
intrinsic computations. Depending on the context and operational requirements, in many applications the
benefits of improved accuracy can easily offset the higher computational times required. Therefore, we
compared the RSM surrogate against the MoE ML surrogate to gain insights into the related computational
costs. The comparison was made for a stress of 150 MPa and a temperature of 683 K across an increasing
number of elements under uniaxial tensile loading. The results are presented in Figure 9. All cases were
simulated for 20 days.

Figure 9(a) shows the wall time (with the y-axis using a log scale) as a function of the number of elements,
while Figure 9(b) shows how each model fares when the model size is increased (and the number of degrees
of freedom (DOFs) is scaled up). As expected, the ML model requires considerably more computational time
than the RSM. Notably, even the most optimal variant of the ML model, which utilized the “trace” method
in the libTorch package it was developed in, falls behind the ROM in terms of evaluation speed. Moreover,
more overhead is added as the number of elements increases, although Figure 9(b) clearly shows that the
added per-DOF overhead saturates and plateaus with increasing DOFs for the ML surrogate. Performance of
an ML surrogate integrated into an FE framework is expected to be improved through vectorization of all
the quadrature points and simultaneous computation through a graphics processing unit. Moreover, further
pruning the MoE surrogate by removing unnecessary weights and neurons for improved optimization is
expected to lead to faster inference with reduced overhead.
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Figure 9. Comparison of the RSM and ML surrogate showing (a) wall time and (b) wall time per DOF for a
stress of 150 MPa and a temperature of 683 K simulated for 20 days.

2.4. Summary and Future Work

In this report, we introduced two implicit integration schemes for incorporating the ML constitutive
relation, designed to predict the elasto-viscoplastic response of HT9 steel within the MOOSE framework,
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by adapting the RR method for iterative stress correction. In both formulations, the viscoplastic strains
were updated implicitly, but the schemes are distinguished as univariate and multivariate depending on the
procedure used for updating dislocation densities. The newly proposed multivariate formulation exhibited
superior accuracy relative to the univariate scheme, which has conventionally been employed to integrate
its RSM-based predecessor. A comprehensive set of cases was examined, covering the entire input domain
of the MoE surrogate, to rigorously verify the performance of the implementations. The FE responses
of a single HEX8 element from MOOSE under uniaxial loading were benchmarked against both VPSC
reference simulations and surrogate model predictions. The surrogate model responses were obtained by time
integration using the well-established SciPy package [23]. The verification outcomes demonstrated excellent
agreement, remaining within the surrogate’s trusted domain. Moreover, we showed that the developed MoE
ML surrogate and its implementations effectively address the known shortcomings of the earlier RSM-based
surrogate and the FE implementation, HT9LaRomance.

Nevertheless, the verification study also revealed the breakdown of both the surrogate and the FE predic-
tions at high-stress and high-temperature regimes, such as in Case 9. In this range, the strong nonlinearities
induced by stress and temperature variations are considerably more difficult for the surrogate model to learn
and accurately reproduce. Expanding the number of trainable parameters in the ML model may help mitigate
this limitation. In addition, the relatively higher computational cost compared to its predecessor introduces a
trade-off between predictive accuracy and computational efficiency in engineering-scale simulations. This
issue, however, can be effectively resolved by vectorizing all quadrature points to leverage graphics processing
unit acceleration and/or by optimizing the surrogate through model pruning. While the first challenge must
be addressed during surrogate development, the second pertains to implementation. Both are important
directions for future work.
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3. XFEM DEVELOPMENT AND INTEGRATION WITH CREEP MODELS

In addition to being able to predict creep deformation in high-temperature alloys in nuclear applications,
it is important to be able to predict the growth of cracks in those alloys. Cracks can nucleate in regions of
local imperfections, potentially aided by corrosion processes, and then propagate in a process known as creep
crack growth (CCG). It is important to ensure that postulated cracks or cracks detected during in-service
inspections would propagate slowly enough that component integrity is not compromised. Creep deformation
has a significant influence on CCG, and this project aims to utilize the surrogate creep model presented in the
previous section to model creep deformation within CCG simulations.

The XFEM [24] is an attractive approach for representing fracture in engineering-scale fracture simulations
within the FE method because it permits fractures to propagate in a manner that is independent of the underlying
FE mesh and allows the asymptotic stress concentrations that occur near the crack tip to be modeled, and it
incurs relatively little computational overhead in doing so. Because of these advantages of XFEM, this project
is pursuing an approach where the surrogate creep model is used in conjunction with XFEM to model CCG.

In this section, we present our recent progress in CCG modeling using the aforementioned approach. The
summary of this effort provided here is organized into five key components:

• Numerical integration of strain energy release density (SERD): We developed new implementations
for computing SERD, which serves as the driving force for CCG. For simple creep laws, such as
the power-law model, closed-form solutions for SERD integration are readily available. However,
for more complex creep laws—particularly those represented by surrogate models lacking explicit
formulations—analytical integration becomes infeasible, necessitating numerical approaches.

• Enhancement of XFEM in the MOOSE framework: We updated the current XFEM implementation in
MOOSE to allow crack tips to be positioned arbitrarily within FEs using near-tip enrichment functions
for inelastic models. The prior implementation restricted crack advancement to element edges, which
is unsuitable for CCG simulations in which crack extension depends on the continuous evaluation of
contour integrals derived from SERD.

• Automatic differentiation for robustness: We introduced a new implementation of near-tip enrichment
using automatic differentiation, which significantly improves the robustness and accuracy of the XFEM
code when using near-tip enrichment.

• Verification and validation: We verified the newly implemented features against analytical solutions
and benchmark results, and validated them against experimental data to ensure accuracy and reliability.

• Integration of surrogate models: We demonstrated the capability to integrate surrogate models into the
XFEM framework, enabling the simulation of CCG driven by complex, data-informed creep behavior.

3.1. XFEM Formulations

3.1.1. Enriched Solutions

In XFEM, at a location 𝒙 ∈ 𝑅𝑑 , with 𝑑 being the problem dimension, the approximation for the vector-
valued displacement field 𝒖(𝒙) is expressed as [25]

𝑢ℎ𝑖 =
∑

𝐼∈𝑆𝑠

𝑁𝐼 (𝒙)𝑢𝐼𝑖 +
∑

𝐽∈𝑆𝑒𝑛

𝑁𝐽 (𝒙)
4
∑

𝐾=1
𝑀𝐾 (𝒙)𝑢𝐾𝐽𝑖, (11)
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where 𝑆𝑠 is the set of standard FE nodes, 𝑆𝑒𝑛 is the set of enriched nodes surrounding a crack tip, and 𝑖 is the
spatial index ranging from 1 to 𝑑. 𝑁(𝒙) denotes the standard FE shape functions, while the enriched shape
functions 𝑴(𝒙) are defined as

𝑴(𝒙) = {𝑟
1
𝑛 cos 𝜃

2
, 𝑟

1
𝑛 sin 𝜃

2
, 𝑟

1
𝑛 sin 𝜃

2
sin 𝜃, 𝑟

1
𝑛 cos 𝜃

2
sin 𝜃}, (12)

where 𝑟 is the radial distance from the crack tip, 𝜃 is the angle relative to the local crack direction, and 𝑛 is an
exponent that depends on the material behavior. For linear elasticity, 𝑛 = 2 is typically used and is consistent
with the degree of singularity observed in that case.

3.1.2. Governing Equations

Consider a solid body 𝐵 ∈ 𝑅𝑑 . The deformation of a material point at 𝒙 ∈ 𝐵 is described by the
displacement field 𝒖(𝒙) ∶ 𝑅𝑑 → 𝑅𝑑 . The governing equations for material deformation are given by

∇ ⋅ 𝝈 = 𝟎 in 𝐵, (13a)
𝒖 = 𝒖̄ on 𝜕𝐵𝑢, (13b)

𝝈 ⋅ 𝒏 = 𝒕̄ on 𝜕𝐵𝑡, (13c)
where 𝜕𝐵𝑢 ∩ 𝜕𝐵𝑡 = ∅ and 𝜕𝐵𝑢 ∪ 𝜕𝐵𝑡 ∪ 𝜕𝐵𝑐 = 𝜕𝐵. The weak form of Equation (13) is obtained by multiplying
with a test function 𝒖̇, yielding

(𝝐̇,𝝈)𝐵 −
(

𝒖̇, 𝒕̄
)

𝜕𝐵𝑡
= 0, (14)

where (⋅, ⋅)𝐵 denotes the integral over the domain 𝐵 and the strain tensor 𝝐 in the small strain setting is given
by 𝜖𝑖𝑗 = 0.5(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖). Discretizing Equation (14) using the approximation from Equation (11) for both 𝒖
and 𝒖̇, the residual vector is given by

𝑅𝑎 =
(

𝐵𝐼,𝑖𝑗𝑘, 𝜎𝑗𝑘
)

𝐵 −
(

𝑁𝐼 , 𝑡𝑖
)

𝜕𝐵𝑡
, (15)

where 𝐵𝐼,𝑖𝑗𝑘 represents the strain-displacement matrix components at node 𝐼 . The nodal solution 𝑢𝑏 is
obtained through an iterative update,

𝐾𝑎𝑏 =
𝜕𝑅𝑎

𝜕𝑢𝑏
, (16a)

𝒖𝑛+1 = −𝑹𝑲−1 + 𝒖𝑛, (16b)
where 𝑎 = 𝐼𝑖 + 4𝐽𝑖 is the degree-of-freedom index. For automatic differentiation (AD) implementations, the
explicit form of the stiffness matrix 𝑲 in Equation (16a) is not required to be implemented by the developer,
as it is computed through AD operations on the residual 𝑅𝑎 with respect to the nodal values 𝑢𝑏 [26]. Details
of the non-AD implementation of 𝑲 can be found in Sukumar et al. [24].

3.1.3. 𝐽 -Integral

The 𝐽 -integral is commonly used in fracture mechanics to quantify the energy release rate associated with
crack growth. It provides a path-independent measure of the intensity of the stress and strain field near the
crack tip, making it a valuable tool for evaluating crack driving forces in both linear and nonlinear materials
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[27]. Given the normal vector 𝒏 to the crack surface Γ, oriented along the 𝑥̂ − 𝑎𝑥𝑖𝑠 of a local Cartesian
coordinate system, the 𝐽 -integral is defined as

𝐽 = lim
Γ→0∫Γ

𝑇1̂𝑎̂𝑛𝑎̂𝑑Γ, (17)

where the Eshelby tensor 𝑇1̂𝑗 is given by
𝑇1̂𝑗 = 𝑤𝑒𝛿1̂𝑗 − 𝜎𝑖𝑗𝑢𝑖,1̂, (18)

with 𝑤𝑒 denoting the strain energy density, 𝛿1̂𝑗 the Kronecker delta, 𝜎𝑖𝑗 the Cauchy stress tensor, and 𝑢𝑖,1̂ the
derivative of the displacement field in the local x-direction.

3.1.4. C-Integral

The 𝐶(𝑡)-integral is introduced as a time-dependent counterpart to the classical 𝐽 -integral to account
for material behavior under creep conditions. While the 𝐽 -integral is path-independent and widely used for
characterizing crack tip fields in elastic and elastic-plastic materials under steady-state loading, it does not
capture the time-dependent nature of deformation in viscoelastic or creep-dominated materials.

In contrast, the 𝐶(𝑡)-integral incorporates the rate of energy dissipation due to creep through the SERD
𝑤̇𝑒, making it suitable for problems where time-dependent inelastic deformation mechanisms are significant.
The theoretical foundation for the 𝐶(𝑡)-integral was extensively developed in the works of Riedel and Nikbin
[28, 29]. The 𝐶(𝑡) integral is defined as

𝐶(𝑡) = lim
Γ→0∫Γ

𝑇̇1̂𝑎̂𝑛𝑎̂𝑑Γ, (19)

where
𝑇̇1̂𝑗 = 𝑤̇𝑒𝛿1̂𝑗 − 𝜎𝑖𝑗 𝑢̇𝑖,1̂. (20)

The strain rate energy density 𝑤̇𝑒 in Equation (19) takes the form of

𝑤̇𝑒 =

𝝐̇

∫
0

𝝈 ∶ d𝝐̇. (21)

In the case of uniaxial monotonic loading, Equation (21) simplifies to

𝑤̇𝑒 =

̇̄𝜖𝑒𝑞

∫
0

𝜎̄𝑒𝑞 d ̇̄𝜖𝑒𝑞, (22)

where 𝜎̄𝑒𝑞 =
√

3
2
𝒔 ∶ 𝒔 is the effective stress with 𝒔 = 𝝈 − 1

3
(𝝈 ∶ 𝑰)𝑰 being the deviatoric stress tensor, and

̇̄𝜖𝑒𝑞 =
√

2
3
𝝐̇ ∶ 𝝐̇ is the effective strain rate.

3.1.4.1. Incremental Evaluation

The integral in Equation (21) can be numerically calculated using an incremental form,
𝑤𝑒

𝑛+1 = 𝑤𝑒
𝑛 + Δ𝑤𝑒, (23)
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where the energy density increment is defined as

Δ𝑤𝑒 = 1
2
(𝝈𝑛+1 + 𝝈𝑛) ∶

(𝝐𝑛+1 − 𝝐𝑛)
Δ𝑡

. (24)
This incremental formulation is general and applicable to any constitutive relation between stress and strain.
It is particularly advantageous for integrating surrogate models into FE codes, where closed-form expressions
for energy density may not be available. In such cases, the incremental approach becomes the only feasible
option for implementation, as will be demonstrated in the next section.

3.1.4.2. Legendre-Based Evaluation

The incremental evaluation approach presented in Section 3.1.4.1 can introduce errors if time steps are
large. Numerically integrating the integral in Equation (22) can minimize those errors. The documentation for
the Abaqus code [30] indicates that a five-point Gauss rule is used in that code to numerically integrate that
equation, but doing so can be challenging for standard creep models that express the creep rate as a function
of the stress because that form requires stress as a function of strain.

We address this challenge by evaluating the integral in Equation (22) using a Legendre transformation.
By applying integration by parts, Equation (22) becomes

𝑤̇𝑒 = 𝜎̄𝑒𝑞 ̇̄𝜖𝑒𝑞 −

𝜎̄𝑒𝑞

∫
0

̇̄𝜖𝑒𝑞(𝜎̄𝑒𝑞) d𝜎̄𝑒𝑞, (25)

where 𝜎̄𝑒𝑞 and ̇̄𝜖𝑒𝑞 are the equivalent stress and equivalent strain rate, respectively. The Legendre-based
formulation in Equation (25) requires an explicit expression for ̇̄𝜖𝑒𝑞 as a function of 𝜎̄𝑒𝑞 . Its accuracy depends
solely on the number of integration points used, which makes it a preferred method in practice when such a
relation is available.

We employ the following approach for numerically evaluating the integral using the numerical integration
approach. The second term in Equation (25), denoted as ̇̃𝑤𝑒, is computed numerically as

̇̃𝑤𝑒 =

𝜎̄𝑒𝑞

∫
0

̇̄𝜖𝑒𝑞(𝜎̄𝑒𝑞) d𝜎̄𝑒𝑞 (26)

using Gaussian quadrature. The procedure is as follows:
𝜎̄𝑒𝑞
𝑖 = 0.5(1 + 𝜉𝑖)𝜎̄𝑒𝑞, (27a)
𝐽 = 0.5𝜎̄𝑒𝑞, (27b)
̇̃𝑤𝑒 = 𝐽

𝑛𝑖𝑝
∑

𝑖=1

̇̄𝜖𝑒𝑞(𝜎̄𝑒𝑞
𝑖 )𝑤𝑖, (27c)

where 𝜉𝑖 and 𝑤𝑖 are the quadrature points and weights, and 𝑛𝑖𝑝 is the number of integration points. Based on
our numerical experience, using 𝑛𝑖𝑝 = 5 provides sufficient accuracy for most applications.

In our MOOSE-based code design, there are three options for computing the SERD 𝑤̇𝑒 in Equation (22).
The default option is to compute 𝑤̇𝑒 directly if a closed-form expression is available—for example, in the
case of a power-law creep model. Otherwise, numerical integration is performed using either the formulation
in Section 3.1.4.2 or, by default, the one in Section 3.1.4.1.
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3.1.5. Creep Growth Rate

Following Kumar and Singh [31] and Anderson [32], a Paris law-type relation is utilized to describe the
crack growth rate as a function of the 𝐶(𝑡)-integral,

Δ𝑎
Δ𝑡

= 𝐵[𝐶(𝑡)]𝑚, (28)

where Δ𝑎 is the crack extension over a time increment Δ𝑡, 𝐵 is the crack growth coefficient, and 𝑚 is the
material-dependent exponent that characterizes the nonlinearity of the crack growth behavior. Both 𝑚 and 𝐵
are considered material properties and must be calibrated against experimental data.

This CCG model was integrated into the MOOSE XFEM capability by using the mesh-based cutter, the
development of which is described in Bajpai et al. [33]. For 2D problems, a set of topologically 1D cutting
meshes are used to represent individual cracks, and the cutting mesh is incrementally extended as the cracks
propagate. For this application, the crack propagation increment is computed based on the Paris law for CCG.

3.2. Numerical Results

In this section, a series of 2D numerical examples is presented that verify and demonstrate the capabilities
of the newly developed code. First, we present the testing of the contour integral, for which a simple case
of linear elasticity was used to evaluate the J-integral. Next, we cover the verification of the computation
of the 𝐶(𝑡) integral using a power-law creep model. This is followed by a linear elasticity example of
crack propagation, which illustrates the effect of crack-tip enrichment on the computed J-integral. A similar
demonstration was extended to the 𝐶(𝑡) integral in a CCG simulation. Finally, the last example demonstrates
the feasibility of integrating the MoE model from Section 2 into the XFEM framework.

3.2.1. Verification for a Stationary Crack

3.2.1.1. Linear Elastic Material

A double-notched plate was considered, with a uniform vertical pressure of 𝜎̄ = 100MPa applied to its
top surface. Due to geometric symmetry, only half of the model was analyzed. The geometry and boundary
conditions are illustrated in Figure 10. The material was assumed to be linear elastic, with a Young’s modulus
of 𝐸 = 207, 000MPa and a Poisson’s ratio of 𝜈 = 0.3.

Figure 10. Geometry and boundary condition setup of the tensile test. All dimensions are in mm.

Figure 11 presents a convergence study of the 𝐽 -integral as the mesh size decreases from ℎ = 1 to
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1∕64mm. The numerical solutions (in blue) converge toward the analytical solution (in red), with a reference
value of 2.434MPa ⋅mm that was reported in Hinton and Ezatt [34].

Figure 11. Mesh size convergence study for the J-integral computed from the tensile test.

3.2.1.2. Power-Law Creep Material

The stationary crack problem was repeated using the same geometry and boundary conditions described
above; however, the material behavior was governed by a power-law creep model, defined as ̇̄𝜖𝑒𝑞 = 𝐶(𝜎̄𝑒𝑞)𝑛,
instead of linear elasticity. The computational domain was discretized using a mesh size of ℎ = 1∕4mm.
Using this setup with 𝐶 = 5 ⋅ 10−12 hr−1 ⋅MPa−n and 𝑛 = 3, the 𝐶(𝑡)-integral was evaluated to assess
time-dependent fracture behavior. We present results obtained using two numerical methods for evaluating
the SERD, as described in Equations (25) and (24). These results are compared with those from Abaqus,
which employs a five-point integration rule. Figure 12(a) compares the computed 𝐶(𝑡) values using different
radii, based on the method described in Section 3.1.4.2, against the Abaqus reference. As shown, 𝐶(𝑡) values
are sensitive to the chosen radii during the transitional phase from 𝑡 = 0 to 50 hours. Eventually, the values
converge to a steady state.

(a) Results from the five-point integration rule described
in Section 3.1.4.2. Here, 𝐶𝑛 denotes the contour area
associated with the n-th layer surrounding the crack tip,
where increasing 𝑛 corresponds to regions progressively
father from the tip.

(b) Results from the incremental approach described in
Section 3.1.4.1, utilizing the contour area 𝐶5, which cor-
responds to the fifth layer away from the crack tip, with
various time step sizes.

Figure 12. Numerical results from various integration schemes, contour sizes, and time steps for evaluation of
the contour integral 𝐶(𝑡) for the tensile test with a creep model, compared with results from the Abaqus code.
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Figure 12(b) compares the 𝐶(𝑡)-integral as a function of the SERD 𝑤̇𝑒, computed using the method
in Section 3.1.4.1, with the Abaqus reference from Figure 12(a) and the same contour radii. The results
indicate that 𝐶(𝑡) is slightly sensitive to the time step Δ𝑡. As the time step increases, the computed 𝐶(𝑡) time
history approaches the Abaqus result in the secondary creep regime, while the primary creep region exhibits
significant sensitivity with respect to the time step.

3.2.2. Effect of Crack Tip Enrichment in Problems of Crack Propagation

Here, we demonstrate the necessity of incorporating enriched functions into the approximate solutions. A
full model of the symmetric geometry and boundary conditions, as described in the previous section, was
considered and is shown in Figure 13(a). The material behavior was assumed to be linear elastic. An initial
crack, 5mm in length, was placed on the middle left side of the plate. This crack was represented using XFEM,
with the crack defined by the 1D cutting mesh, as described in Bajpai et al. [33]. The crack was prescribed to
grow incrementally each step; the increment of Δ𝑎 = 0.17mm was chosen because it ensures that the crack
tip extends arbitrarily within the computational domain. Nodal solutions in the elements surrounding the
crack tip were enriched by the second term in Equation (11), consistent with the XFEM framework. Figures
13(b) and 13(c) illustrate the crack evolution over time, showing the crack propagating horizontally from the
initial tip toward the opposite edge, as expected.

(a) (b) (c)
Figure 13. Tensile test model: (a) mesh configuration with an embedded crack on the left side of the plate,
and (b–c) crack evolution over time visualized through the displacement field in the y-direction.

Figure 14(a) presents the time history of the J-integral for different implementations. First, we examine the
effect of incorporating enriched functions. Both implementations that include enriched functions–regardless
of whether AD was used–produced identical results, showing a smooth and continuous evolution of the
J-integral. In contrast, the non-enriched implementation exhibits a step-ladder pattern, indicating that the crack
tip is constrained to element boundaries. This highlights the importance of enriched functions, which allow
the crack tip to be positioned arbitrarily within elements, thereby improving the accuracy and smoothness of
the computed QoIs.

Next, we consider the role of AD. When enriched functions are included, both the AD and non-AD
implementations yield consistent results, demonstrating that AD does not affect the accuracy in this case.
However, AD offers advantages in terms of implementation simplicity and robustness, particularly when
dealing with complex constitutive models.

The effect of the enriched domain, defined by the radius 𝑟𝑖, on the J-integral is shown in Figure 14(b).
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(a) Comparison between AD and non-AD implementa-
tions with and without enriched functions.

(b) Comparison across different contour radii.

Figure 14. Comparisons of computed values of the J-integral for the tensile test with various modeling options.

When 𝑟𝑖 is set to one to two times the element size ℎ = 1, small fluctuations in the J-integral persist. However,
as 𝑟𝑖 increases to at least three times ℎ, these fluctuations disappear. Therefore, it is recommended to choose
𝑟𝑖 = 3ℎ in practice. Finally, we demonstrate the efficiency of the AD implementation compared to the existing
non-AD version. Figure 15(a) shows the total number of linear iterations for both approaches. In the AD
implementation, the number of iterations increases linearly over time, reaching 24 at the final time, 𝑡 = 7. In
contrast, the non-AD requires significantly more linear iterations at each load step, resulting in a total of 252
iterations—10 times greater than the AD counterpart. On the other hand, as shown in Figure 15(b), the total
number of nonlinear iterations remains the same for both implementations in this linear elastic problem.

(a) Total linear iterations. (b) Total nonlinear iterations.
Figure 15. Tensile test. Comparison of the performance of AD and non-AD implementations.

3.2.3. Validation

In this section, a compact-tension test specimen was used to evaluate the the capability of the developed
XFEM to simulate crack growth under inelastic material behavior. The geometry and boundary conditions are
illustrated in Figure 16(a). The specimen was subjected to a tensile load of 𝑃 = 205N applied at the upper
and lower pin holes. The mesh discretization, shown in Figure 16(b), features a finer resolution in the region
where crack propagation was expected.

A study on mesh convergence for both the crack length and the contour integral was conducted. The
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(a) Geometry and boundary conditions. (b) Mesh configuration.
Figure 16. Problem setup of the compact tension test. All dimensions are in mm.

results for crack length are shown in Figure 17(a), with mesh sizes of 0.16, 0.125, 0.1, and 0.075 mm. As the
mesh is refined, the results converge at ℎ = 0.1 mm. The material properties in Equation (28), which governs
the crack growth rate, were calibrated as 𝐵 = 9 × 10−4 and 𝑚 = 0.9. These calibrated values show good
agreement with experimental data for weld material in Zhao et al. [35].

(a) Accumulated crack length. (b) Contour integral C(t).
Figure 17. Compact tension test. Convergence study for crack length and contour integral 𝐶(𝑡).

Figure 17(b) presents the corresponding time history of the contour integral 𝐶(𝑡), which exhibits three
distinct creep stages: primary, secondary, and tertiary. During primary creep, 𝐶(𝑡) decreases, followed by
a plateau at a constant value 𝐶∗ during secondary creep, spanning from 𝑡 = 5 to 270 hours. In the tertiary
stage, 𝐶(𝑡) increases sharply, leading to crack extension, as is also observed in Figure 17(a).

Next, we demonstrate the robustness of the AD implementation compared to the non-AD version. Figure
18(a) shows the number of nonlinear iterations per step. On average, the AD implementation requires
about four iterations per step, while the non-AD version fluctuates at around 32. Figure 18(b) presents the
accumulated number of nonlinear iterations over time; the AD implementation reached 480 and the non-AD
version 4,280 at the final time of 𝑡 = 360.

In summary, the AD implementation significantly outperforms the non-AD version in terms of nonlinear
iteration efficiency. However, based on our numerical experience with other problems, if an exact Jacobian is
implemented, the non-AD version can be approximately twice as fast as the AD counterpart.

Finally, the importance of crack tip enrichment is demonstrated in Figure 19. In Figure 19(a), the time
history of the contour integral 𝐶(𝑡) exhibits noticeable oscillations in the case without enrichment (blue),
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(a) Nonlinear iterations per time step. (b) Total nonlinear iterations.
Figure 18. Comparison of total nonlinear iterations between the AD and non-AD implementation for the
compact tension test simulation.

whereas a smooth evolution is observed when enrichment is applied (purple). The latter behavior is desirable,
as it reduces the sensitivity of 𝐶(𝑡) to mesh size. The corresponding crack lengths for both cases are shown
in Figure 19(b). Due to the fluctuations in 𝐶(𝑡), the unenriched solution results in visible kinks in the crack
length evolution, highlighting the necessity of enrichment for accurate and stable crack growth simulation.

(a) Contour integral C(t). (b) Accumulated crack length.
Figure 19. Comparison of results with and without enriched solutions for the compact tension test.

3.2.4. Application of Surrogate Model for Simulating Crack Growth

Here we demonstrate the possibility of incorporating the MoE model for creep behavior, as described in
Section 2, into the XFEM framework (Section 3). To compute the 𝐶(𝑡) integral using the MoE, where an
explicit relationship between stress and strain is not provided, we used the incremental evaluation of SERD,
as presented in Section 3.1.4.1. The same problem setup presented in the previous section (compact tension
test) was used. Since the valid stress space in the MoE model exceeds the stress level resulting from the
applied load 𝑃 = 205N, a reduced load of 𝑃 = 30N was used in this example, with the material properties
in Equation (28) chosen as 𝐵 = 10 and 𝑚 = 0.9.

Figure 20(a) shows the time history of the accumulated crack length up to the point where the numerical
scheme fails in the secondary creep regime. The corresponding stress state in the y-direction at the failure
time is visualized in Figure 20(b), highlighting a stress concentration of 94MPa near the crack tip.
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(a) Accumulated crack length. (b) Contour plot of stress in the y-direction.
Figure 20. Results of compact tension test simulation using MoE model integrated into the MOOSE with
crack growth represented using XFEM.

3.3. Summary and Future Work

In this section, we presented our recent developments in modeling CCG using XFEM. Numerical results
were compared against analytical solutions and experimental data and demonstrated the capabilities of the
proposed fracture model. In particular, including enrichment functions in the regions around crack tips
enabled cracks to be placed arbitrarily within elements, making the method suitable for problems where crack
extension is driven by a fracture criterion such as the 𝐶(𝑡) integral.

The AD approach outperformed the non-AD version in terms of reducing the number of nonlinear
iterations. However, our numerical experience indicates that the non-AD implementation was two to three
times faster than the AD-based one.

To model CCG, the Paris law-type relation was employed to link crack increment to the 𝐶(𝑡) integral.
This required two additional calibration parameters. While we demonstrated the feasibility of incorporating a
MoE surrogate model into the XFEM framework, further validation against realistic data remains necessary.
Importantly, due to limitations in the valid stress space defined by the surrogate model, the XFEM code
failed when the applied load resulted in stress levels exceeding this limit. Major areas for future work in the
next stages of this project include calibrating the parameters for the CCG model against experimental data,
improving the robustness of the surrogate model for XFEM simulations, and applying the methods developed
here to Alloy 617.
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