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Radioisotope Identification with List-Mode Gamma-Ray Data
Assessing the Value of Temporal Information Applied to Radioisotope Identification  

Lekha Patel, Efrain H. Gonzalez, Ryan J. Kamm, and Aaron J. Hill 

Sandia National Laboratories, Albuquerque, NM, USA 

ABSTRACT 
This work explores the potential of utilizing temporal data from gamma-ray detectors, known as 
list-mode data, to enhance radioisotope identification. Traditional identification methods, which 
rely on full gamma-ray spectrum analysis, often require long dwell times and struggle with spectra 
containing similarly spaced spectral peaks. We hypothesize that by leveraging the probabilistic 
nature of nuclear decay and the time-encoded information from decay sequences and interactions 
with surrounding materials, we can improve classification accuracy over static spectral analysis. 
This research examines the temporal content of list-mode data through exploratory data analysis 
via correlation discovery and qualitative distribution analysis. Additionally, we propose a probabil
istic classification model that can utilize spectral data, temporal data, or both to determine if the 
incorporation of temporal information improves radioisotope identification. Our findings suggest 
that the temporal information present in list-mode gamma-ray data has merit and should be fur
ther investigated to develop more robust and optimal methods for utilizing this temporal informa
tion in applications requiring radioisotope identification.
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Introduction

Radioisotope identification (RIID) is fundamental to nuclear 
security, safeguards verification, and environmental monitor
ing, as it enables the rapid and accurate identification of 
radioactive materials for detecting illicit nuclear material, 
verifying declared nuclear activities, and responding to 
radiological emergencies (U.S. Environmental Protection 
Agency 2025; Pakari et al. 2024). When radioactive nuclei 
decay, they emit gamma rays at characteristic energies 
unique to each isotope. A gamma-ray spectrum, which is a 
histogram of detected gamma-ray counts as a function of 
energy, serves as a fingerprint for identifying the radioactive 
materials present (Glenn 2010; High resolution gamma-ray 
spectrometry analyses for normal operations and radiological 
incident response 2019). These spectra are formed by accu
mulating individual detection events over time, where each 
event represents the energy of a gamma ray recorded by the 
detector (Glenn 2010). Handheld RIID instruments are 
widely deployed by law enforcement and first responders for 
these purposes (U.S. Environmental Protection Agency 2025; 
Mirion Technologies 2025). The challenge lies in conducting 
successful RIID under diverse operational conditions, 
including weak signals, high background radiation, multiple 
overlapping sources, and varying measurement geometries 
that can render traditional methods unreliable or require 

impractically long measurement times (Tom and Michael 
2009).

Classical identification methods have evolved from simple 
peak-fitting algorithms to sophisticated statistical approaches 
over several decades. Region-of-interest (ROI) and peak- 
matching techniques identify isotopes by detecting charac
teristic gamma lines within energy tolerance windows. 
While computationally efficient and intuitive, these methods 
require well-resolved peaks and sufficient counting statistics, 
often necessitating extended measurement times in low- 
count or high-background environments (Tom and Michael 
2009). Consequently, full-spectrum template matching has 
improved upon ROI methods by comparing entire measured 
spectra against reference libraries using correlation or chi- 
square metrics, leveraging continuum regions and tolerating 
minor calibration shifts (Tom and Michael 2009; Jeffcoat 
et al. 2010; Mitchell et al. 2014). Nevertheless, both 
approaches struggle with source mixtures and spectrally 
similar “confuser” nuclides, such as Pu-239 versus I-131 or 
U-238 versus Ra-226, where overlapping peaks lead to mis
identification, often necessitating long dwell times to resolve 
ambiguities (High resolution gamma-ray spectrometry analy
ses for normal operations and radiological incident response 
2019; Tom and Michael 2009).

Advanced physics-based approaches, exemplified by 
Sandia National Laboratory’s Gamma Detector Response 
and Analysis Software (GADRAS), employ library fitting 
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with detector response functions to perform multiple linear 
regression across candidate isotopes (Jeffcoat et al. 2010; 
Mitchell et al. 2014). GADRAS accounts for detector-specific 
energy response characteristics enabling simultaneous identi
fication of multiple isotopes through composite spectral fit
ting. While more robust to spectral overlaps than peak 
matching, these methods depend critically on accurate 
detector models and calibration. Performance typically 
degrades when deployment conditions including distance 
geometry, shielding, or background conditions, deviate from 
library assumptions. Further, the computational demands of 
fitting large isotope libraries can limit real-time application. 
To deal with this, statistical decomposition methods devel
oped over the past two decades offer data-driven alterna
tives. As one example, non-negative matrix factorization 
(NMF) learns basis spectra representing background compo
nents and source signatures, enabling detection and identifi
cation of weak or mixed sources through additive 
reconstruction (Bilton et al. 2019). On the other hand, 
wavelet-based approaches have been employed for spectral 
denoising and feature extraction (Sullivan et al. 2006). These 
methods naturally handle overlapping spectra by attributing 
counts across multiple components and adapt to background 
variability better than fixed thresholds, yet their iterative 
optimization requirements and computational complexity 
often necessitate significant processing resources that limits 
their applicability to real-time field deployment.

While these spectral methods have proven valuable, the 
construction of a spectrum inherently discards temporal 
information as gamma-ray counts are summed over time 
across energy bins–a fact that has been theoretically quanti
fied (Clarkson and Kupinski 2020). In fact, nuclear decay is 
a probabilistic process that follows well-characterized decay 
sequences and known mean decay times—information that 
is not present in a spectrum (Gilmore and Joss 2008). 
Interactions of decay radiation with materials surrounding a 
source cause subsequent emissions with time-encoded infor
mation that can be attributed to geometry and materials. 
For instance, the interarrival time distribution between 
detection events provides information orthogonal to spectral 
features, as nuclear decay follows Poisson processes with 
isotope-specific rates (Glenn 2010). This temporal informa
tion remains discriminative even when spectral peaks over
lap or when counting statistics are limited. For this reason, 
temporal data has been used for Compton imaging with 
known isotopes and for fissile material characterization via 
active interrogation (Wilderman et al. 2000; Williford 2013). 
Thus, utilizing the full temporal and sequential data from a 
detector, known as list-mode data, on its own or in combin
ation with a spectrum, may improve methods for RIID by 
reducing long dwell time requirements and improving 
accuracy.

More recently, machine learning approaches have begun 
exploring temporal dynamics through time-binned represen
tations. For instance, Convolutional neural networks 
(CNNs) operating on two-dimensional “waterfall” plots, 
where events are binned in time and energy—have demon
strated improved classification over static spectra, 

particularly for low-count scenarios (Moore et al. 2019; 
Moore et al. 2020). However, these approaches still discretize 
the temporal domain, potentially losing fine-scale temporal 
structure. To the authors’ knowledge, list-mode data has not 
been used successfully for passive gamma-ray-based RIID.

This work presents a point process framework that oper
ates directly on event-level list-mode data, preserving the 
full temporal resolution of the detection process. Our 
approach models the observed decay events as a superpos
ition of isotope-specific Poisson processes, each with unique 
temporal and spectral signatures. This formulation enables 
principled likelihood-based classification that systematically 
compares RIID performance using energy alone, time alone, 
or both modalities combined. Further, we introduce an 
adaptive scaling parameter to account for varying signal-to- 
noise ratios between training and deployment conditions, 
addressing a critical limitation in field applications. Last, the 
decomposed estimation strategy achieves deployment- 
suitable computational efficiency through closed-form rate 
estimates and convex optimization.

This article is organized as follows. Section 2 provides 
details on the datasets that were created for this study. 
Section 3 focuses on the use of data analysis techniques to 
characterize the temporal content of our datasets. This was 
attempted by using standard methods for correlation discov
ery and qualitative distribution analysis. Section 4 develops 
the marked point process model that jointly leverages spec
tral and temporal information. Finally, Section 5 discusses 
the results obtained from using the aforementioned models 
for RIID.

2. Datasets

Our work utilizes four different datasets1 (U.S. 
Environmental Protection Agency 2025), which come from 
radioactive sources collected with a 2}� 4}� 16} low reso
lution inorganic scintillator (Sodium Iodide (NaI) or Cesium 
Iodide (CsI)) connected to a commercial multichannel ana
lyzer (MCA)—Canberra/Micron Osprey or digiBase. For all 
datasets, we did not utilize the first 100 s of data due to this 
period of time being reserved for experiment setup. All col
lections were performed with a stationary detector and a sta
tionary source. Table 1 details each dataset’s sources as well 
as the date that they were collected. Additionally, relevant 
details regarding the nature of each collection are included 
below.

When configuring the equipment, effort was made to 
achieve a dynamic range of approximately 3 MeV. Because 
no rigorous energy calibration was implemented in our col
lection system or post-processing, we here use the resultant 
raw channel data from the instrument. In Figure 1, we show 
an example of the raw spectra of the Cs137 source from 
Dataset A based on 20s worth of events.

2.1. Dataset A

This dataset consists of five collections across four different 
sources, with the fifth collection being a combination of two 
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of the sources. The collection was performed with a station
ary detector and a stationary source. Collection periods were 
for approximately three hours. No calibration for drift was 
performed on this detector, and as such any data beyond 
20 min was not used.

2.2. Dataset B

This dataset consists of three collections across two different 
sources, with the third collection being a combination of the 
two unique sources. The collection was performed with a 
stationary detector and a stationary source. Collection peri
ods were not controlled. Calibration of the detector was per
formed to account for drift from long dwell times.

2.3. Datasets C and D

These datasets were produced as a result of our initial 
experiments on the first two data sets. Because each source 
has a distinctly different gross count rate, we were con
cerned that the classifier may be exploiting the gross count 
difference as a discriminator. To test this hypothesis, these 
datasets placed the sources at different distances to make the 
gross count rate of each collection approximately the same. 
Table A1 of Appendix A details the distances at which each 
source was placed from the detector and the corresponding 
gross count rate achieved. Distance 1 in the table refers to 
the set of distances necessary in order to achieve a nominal 
count rate of between 1600 to 1800. The dataset derived 
from using these distances is referred to as Dataset C. 
Distance 2 refers to the set of distances necessary in order 

to achieve a nominal count rate of between 1200 and 1400. 
The dataset derived from using these distances is referred to 
as Dataset D. Collection periods were not controlled. For 
completeness, Table A2 found in Appendix A makes record 
of the MCA settings used for this collection.

3. Exploratory Data Analysis

In this section, we explore the relationship between time 
and energy in the list-mode data that was collected. Section 
3.1 shows the results of correlation analysis on Datasets A 
and B and Section 3.2 discusses the results of the distribu
tion analysis that was conducted on Dataset A. Datasets C 
and D were not analyzed because they do not contain any 
substantial differences over Datasets A and B as it relates to 
the analysis of this section.

3.1. Correlation

We analyzed a 20s sample from each Datasets A and B. To 
assess the relationship between interarrival time and energy, 
we used two correlation measures: Pearson’s correlation 
coefficient and Spearman’s rho. Here we define interarrival 
time as the time in microseconds between consecutive 
energy readings of gamma particle detections (i.e. consecu
tive events). Pearson’s correlation coefficient quantifies the 
strength and direction of a linear relationship between two 
variables, ranging from −1 to 1, with values near zero indi
cating no linear relationship (Tamhane and Dunlop 2000). 
As expected, the Pearson correlation between interarrival 
time and energy was nearly zero for all sources, as shown in 
Table 2, confirming the absence of a linear relationship in 
our datasets. Spearman’s rho, which measures the strength 
and direction of a monotonic relationship between two vari
ables using ranks and average ranks (Jay Conover 1999), 
similarly showed no significant monotonic relationship 
between interarrival time and energy, as validated by the 
results in Table 2.

Given that these datasets represent time-series data, we 
explored two correlation metrics specific to time-series ana
lysis: autocorrelation and cross-correlation. Autocorrelation 
measures the strength and direction of the linear relation
ship between a variable at one time point and the same vari
able at another time point (Shumway and Stoffer 2005). It 
quantifies how well a linear function can predict the 
ðjþ kÞth element in a series based on the jth element, with 
values ranging from −1 to 1, where larger magnitudes indi
cate stronger linear relationships. We analyzed interarrival 

Table 1. The date at which each dataset was collected and the sources in each collection. An empty cell implies that no 
additional source was collected.

Datasets

Dataset name: A B C D

Date created: July 2022 April 2024 August 2024 August 2024
Source 1: Cs-137 Ba-133 Cs-137 Cs-137
Source 2: Y-88 U-232 Y-88 Y-88
Source 3: Ba-133 Ba-133þU-232 Ba-133 Ba-133
Source 4: U-232 Cs-137þ Ba-133 Cs-137þ Ba-133
Source 5: Ba-133þU-232

Figure 1. This plot shows the raw and uncalibrated spectrum associated with 
Cs137. The list-mode data associated with this plots is from Dataset A.
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times and energy separately, hypothesizing that autocorrel
ation values would be near zero due to the lack of linear 
relationships in list-mode data. As shown in Table 2, the 
maximum autocorrelation values for interarrival times and 
energy, calculated over lags k 2 1, :::, 42; confirmed a lack of 
correlation across all datasets.

Cross-correlation was used to test for linear relationships 
between the series of interarrival times and energy channels. 
The maximum cross-correlation values, calculated between 
x½t þ k� (interarrival time for the tth event with lag 
k 2 −42, :::, 42) and y[t] (energy channel for the tth event), 
are presented in Table 2. All values indicate no linear rela
tionship between the two variables. This analysis supports 
the assumption that interarrival times and energy channels 
are linearly independent; a critical notion leveraged in the 
development of our classifier in Section 4.

3.2. Distributions

Although we were unable to establish the existence of a rela
tionship between interarrival time and energy channel in the 
previous section, we investigated the energy and interarrival 
time distributions separately in order to evaluate whether or 
not there are sufficient differences in the distributions of 
each of these variables for each of the classes. This investiga
tion was conducted by generating box plots from the 20s 
samples that we had used in the previous section. Box plots 
are a visual representation of the “five-number summary,” 
which includes the first (Q1), second (Q2), and third quartile 
(Q3) as well as the upper and lower fence. The second quar
tile is usually referred to as the median, and the upper and 
lower fences are calculated by using the following equations:

upper fence : Q3 þ 1:5� IQR (1) 

lower fence : Q1 − 1:5� IQR (2) 

IQR ¼ Q3 − Q1 (3) 

where IQR is called the interquartile range. Values outside 
of the fences are considered to be outliers.

If the minimum value in a dataset exceeds the calculated 
lower fence, the lower fence is set to the dataset’s minimum 
value. Similarly, if the maximum value is smaller than the 
calculated upper fence, the upper fence is set to the dataset’s 

maximum value. In our datasets, the lower fence adjustment 
was common due to the smallest possible interarrival time 
being 1 microsecond. Figure 2 presents the initial distribution 
of energy channels and interarrival times for each source. As 
expected, the energy channel distribution varies by radio
logical source, which explains why the spectrum is effective 
for radioisotope identification. Surprisingly, a similar variabil
ity is present in the case of interarrival times, suggesting that 
there is potential utility in using interarrival time data in a 
model intended for radioisotope identification.

Our study focused on leveraging the time dimension of 
list-mode data for radioisotope identification, which 
required examining the stability of interarrival time distribu
tions. We analyzed how the distribution changes across 80 
different 20s windows and as the size of the sampling win
dow varies. When varying sampling window sizes, we used 
the formula 20=d; where d 2 1, :::, 100; resulting in window 
sizes ranging from 20s to 0.2s. Each window size was 
assigned an interval length index, with d ¼ 1 corresponding 
to 20s and d ¼ 100 corresponding to 0.2s. For this analysis, 
data below channel number 200 were removed to reduce 
background events. Figure 3 summarizes the analysis that 
we conducted by presenting the distribution of the median 
and interquartile range of each source as the 20s sampling 
window was changed and as the sampling window size was 
varied. Due to the difference in the range of values across 
the different sources, the median and interquartile range val
ues were log 10-scaled.

Figures 3(a and b) indicate that the interarrival time dis
tribution remains stable across the 80 20 s windows, whereas 
Figures 3(c and d) show increased variability as the sam
pling window size changes. This stability across 20 s win
dows suggests that variability in interarrival times across 
sources is consistent regardless of the chosen window.

4. Probabilistic Classifier Model

In this section, we develop a novel probabilistic framework 
for RIID based on the well-established Poisson process rep
resentation of radioactive decay (Gilmore and Joss 2008). 
The Poisson process provides a natural mathematical model 
for the physics of radioactive decay, where detectors collect 
list-mode data recording individual decay events as 
timestamp-energy pairs. In environments with multiple 

Table 2. The different correlation metrics that were used to analyze the list-mode datasets.

Relationship between interarrival time and energy

Pearson’s correlation Spearman’s Rho Autocorrelation (time, energy) Cross-correlation

Dataset A
Background −0.0028 −0.0007 (0.0151, 0.0083) 0.0147
Y88 −0.0019 −0.0004 (0.0142, 0.0136) 0.0156
Cs137 −0.0029 0.0009 (0.0115, 0.009) 0.0127
U232 −0.0037 −0.0017 (0.0071, 0.0068) 0.0059
Ba133 0.01 0.0085 (0.0077, 0.0089) 0.0118
U232 and Ba133 −0.0003 −0.0044 (0.004, 0.004) 0.0063

Dataset B
Background −0.0092 −0.0218 (0.0196, 0.0154) 0.0166
U232 −0.0041 −0.0138 (0.0144, 0.012) 0.0145
Ba133 −0.0077 −0.0107 (0.013, 0.0105) 0.0123
U232 and Ba133 −0.0077 −0.0187 (0.0088, 0.0132) 0.0129
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isotopes and background radiation, we model the observed 
decay events as a superposition of independent Poisson 
processes, each corresponding to a different source with 
unique temporal and spectral signatures. By incorporating 
energy levels as marks within a marked point process 
approach, we enable likelihood-based classification that can 
compare RIID performance using (1) energy levels alone, 
(2) event timestamps alone, or (3) both measurements com
bined. We further extend our methodology to handle vary
ing signal-to-noise ratios between training and testing 
environments by introducing a scaling factor on the Poisson 
rate parameter, learned via maximum a posteriori estimation 
with an appropriate prior. This enables robust RIID across 
changing measurement conditions.

4.1. Modeling List-Mode Data

In RIID, detectors collect list-mode data containing decay 
events as tuples: a timestamp paired with a discretized 
energy measurement. Formally, a gamma-ray detector 

records data fðEi, TiÞg
n
i¼1; where Ti denotes the timestamp 

of the i-th decay event with Ti > Tj for i > j: Given Ti ¼ t;
the random variable Ei � EðtÞ represents the discrete energy 
recorded at time t, taking values in Zþ:

Consider an environment containing K � 0 isotopes plus 
background radiation. Each of these K þ 1 sources emits 
gamma rays randomly and independently. While the 
detector records decays from all sources, it cannot differenti
ate between sources at measurement time. We model this 
scenario using homogeneous Poisson processes (HPPs): let 
N0

t � Poiðk0tÞ denote background decay counts, and Ni
t �

PoiðkitÞ denote decay counts from the i-th iso
tope (i ¼ 1, :::, K).

Since distinct isotopes have unique decay rates (half- 
lives), each of the K þ 1 sources possesses a unique temporal 
signature, implying k0 6¼ k1 6¼ � � � 6¼ kK : The total decay 
count recorded by the detector follows

Nt ¼
XK

i¼0
Ni

t � Poi
XK

i¼0
ki t

 !

, (4) 

Figure 2. (a) and (b) display the distribution of energy and interarrival time on a per source basis over the 20s window that was used for the correlation analysis 
presented in the previous subsection.
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by the superposition property of Poisson processes. This 
property also implies that a count from process Ni

t is seen 
in Nt with mixing probability pi ¼ ki=

PK
j¼0 kj:

With this, one can show that the interarrival times 
X1, :::, Xn between successive decays follow exponential dis
tributions:

Xi � Exp
XK

k¼0
kk

 !

, (5) 

where Xi ¼ Ti − Ti−1 and T0 ¼ 0:

4.1.1. Marked Point Process Setup
Due to the tuple of observations acquired at each observa
tion time point, a marked point process setup is natural for 
list-mode RIID. Specifically, let ðE, T ,PÞ denote a marked 
point process with random counting measure N defined on 
E � T ; where: T is the underlying point process represent
ing the locations of the points, E is the set of possible 
marks, P is the probability distribution of the marks; 
NðB� AÞ denotes the number of points of T in A � T
with marks in B � E; and for any finite collection of pair
wise disjoint sets fðBi, AiÞji 2 Ng; the collection of random 
variables fN ðBi � AiÞgi2N are mutually independent.

A marked point process on R�0 � Zþ is characterized by 
its conditional intensity function (CIF) k�ðe, tÞ; such that for 
each t 2 R�0 and e 2 Zþ; k�ðe, tÞ > 0 represents the inten
sity at temporal location t with energy e. It satisfies

k�ðe, tÞ ¼ lim
dt ! 0
de! 0

E Nðeþ de, t þ dtÞ −Nðe, tÞjHt
� �

dedt
, 

where Ht denotes the history up to time t. Specifically, the 
CIF specifies the expected number of points in an infinitesi
mal neighborhood of t with mark e given Ht:

To define the CIF of the list-mode marked process, we 
note that

k�ðe, tÞ ¼ pEðe; tÞ�kðtÞ, 

where pEðe; tÞ denotes the probability of observing mark e at 
time t, and �kðtÞ is the (temporal) CIF of the underlying 
point process. Based on our correlation analysis in Section 
3.1, which found no temporal-spectral dependence, we 
assume pEðe; tÞ � pEðeÞ for the modeling herein.

4.2. Probabilistic Classification Framework

Building upon the Poisson process foundation, we now pre
sent a probabilistic classification framework for radioisotope 
identification from list-mode data. Our approach leverages 
the marked point process representation to perform 
likelihood-based classification using temporal information, 
spectral information, or both modalities combined.

For parameter estimation, we assume access to training 
data from each isotope of interest. Specifically, for K iso
topes, we require K þ 1 datasets:

fD0,D1, :::,DKg, (6) 

Figure 3. (a) and (c) display the distribution of the log 10-scaled median interarrival times as the sampling window changes and as the size of the sampling window 
changes, respectively. (b) and (d) display the change in the log 10-scaled interquartile range of the interarrival times as the sampling window changes and as the 
size of the sampling window changes, respectively. The list-mode data associated with these plots is from Dataset A.
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where D0 contains background-only measurements and Dk 
contains measurements from background plus isotope k. 
Each dataset is defined as:

Dk ¼ fðe
ðkÞ
i , tðkÞi Þg

nk
i¼1, (7) 

where nk denotes the number of events, tðkÞi represents time
stamps, and eðkÞi 2 Zþ represents discretized energy 
measurements, with ðkÞ denoting observations taken from 
dataset Dk:

4.2.1. Joint Log-Likelihood Decomposition
For data Dk with jDkj ¼ nk containing background and iso
tope k, observed over interval ½0, T�; the likelihood under 
parameters h ¼ fðki , hpEi

Þgi2f0, kg; where hpEi 
denotes the 

parameters (or nonparametric specification) of the mark dis
tribution pEi is:

LðhjDkÞ ¼
Ynk

i¼1
k�ðeðkÞi , tðkÞi Þ

 !

exp −
ðT

0

�kðuÞdu

 !

, with �kðtÞ � k0 þ kk,

(8) 

as per the standard marked point process likelihood [see, 
e.g. Daley and Vere-Jones 2003, Equation (7.3.5)]. Under 
our independence assumption,

k�ðeðkÞi , tðkÞi Þ ¼ ðk0 þ kkÞp
ðkÞ
E eðkÞi

� �

,

pðkÞE ðeÞ :¼ p0 pE0ðeÞ þ pk pEkðeÞ,
(9) 

where p0 :¼ k0
k0þkk

, pk :¼ kk
k0þkk 

are the mixture weights. 
Therefore, the likelihood simplifies to

LðhjDkÞ ¼
Ynk

i¼1
ðk0 þ kkÞ pðkÞE ðe

ðkÞ
i Þ

 !

exp −Tðk0 þ kkÞ½ �:

(10) 

Taking logs gives

lðhjDkÞ ¼ nk log ðk0 þ kkÞ þ
Xnk

i¼1
log pðkÞE ðe

ðkÞ
i Þ

− Tðk0 þ kkÞ: (11) 

This decomposition naturally separates temporal and 
spectral components:

ltemporalðk0, kk j DkÞ ¼ nk log ðk0 þ kkÞ − Tðk0 þ kkÞ, (12) 

lspectralðpE0 , pEk j DkÞ ¼
Xnk

i¼1
log pðkÞE ðe

ðkÞ
i Þ: (13) 

For computational efficiency, we estimate the temporal 
rates in closed form and the spectra via density estimation, 
rather than performing a joint high-dimensional 
optimization.

4.2.2. Temporal Parameter Estimation
The maximum likelihood estimate for the combined rate 
kfk, 0g ¼ k0 þ kk is:

k̂fk, 0g ¼
nk

Pnk

i¼1
xðkÞi

, (14) 

where xðkÞi ¼ tðkÞi − tðkÞi−1 are interarrival times and tðkÞ0 ¼ 0:
From the background-only dataset D0:

k̂0 ¼
n0

Pn0

i¼1
xð0Þi

: (15) 

For each isotope k, we then obtain:

k̂k ¼ k̂fk, 0g − k̂0: (16) 

4.2.3. Spectral Parameter Estimation
For each dataset Dk; we estimate the energy distribution 
using kernel density estimation:

p̂ðkÞE ðeÞ ¼
1

nkh

Xnk

i¼1
K

e − eðkÞi
h

 !

, (17) 

where Kð�Þ is a kernel function and h is the bandwidth par
ameter. Note that for k > 0; this represents the mixture dis
tribution:

pðkÞE ðeÞ ¼
k0

k0 þ kk
pE0ðeÞ þ

kk

k0 þ kk
pEkðeÞ, (18) 

where pE0 is the background spectrum and pEk is the isotope 
spectrum.

4.2.4. Treatment of Isotope Mixtures
In our experimental validation, datasets containing mul
tiple isotopes (e.g. U-232 þ Ba-133) are treated as 
distinct classes with their own characteristic temporal and 
spectral signatures, rather than attempting spectral unmix
ing. This simplification allows us to focus on validating 
the core hypothesis about temporal information’s value for 
RIID.

4.3. Classification of Unknown Sequences

Given the estimated parameters ĥ ¼ fk̂k , p̂ðkÞE g
K
k¼0 from 

the training phase, we classify an unknown 
sequence Dtest ¼ fðe0i , t0iÞg

n0
i¼1 into one of K þ 1 classes: 

background only (k ¼ 0) or background plus isotope 
k (k 2 f1, :::, Kg).

4.3.1. Likelihood Computation
For each isotope hypothesis k 2 f1, :::, Kg; we compute the 
log-likelihood of the test sequence under the model that 
includes background and isotope k:

lkðDtestjĥÞ ¼
Xn0

i¼1
log ðk̂0 þ k̂kÞ þ log p̂ðkÞE ðe

0
iÞ

h i

− ðk̂0 þ k̂kÞT0, (19) 

where T0 is the observation period and
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p̂ðkÞE ðeÞ ¼
k̂0

k̂0 þ k̂k
p̂E0
ðeÞ þ

k̂k

k̂0 þ k̂k
p̂Ek
ðeÞ: (20) 

This can be equivalently written in terms of interarrival 
times:

lkðDtestjĥÞ ¼ n0 log ðk̂0 þ k̂kÞ þ
Xn0

i¼1
log p̂ðkÞE ðe

0
iÞ

− ðk̂0 þ k̂kÞ
Xn0

i¼1
x0i, (21) 

where x0i ¼ t0i − t0i−1 with t00 ¼ 0:

4.3.2. Decision Rule
The maximum likelihood classification rule assigns the test 
sequence to isotope k� where:

k� ¼ arg max
k2f1, :::, Kg

lkðDtestjĥÞ: (22) 

This decision rule minimizes the Bayes risk under 0–1 
loss when the prior probabilities for each isotope are equal. 
Specifically, under the 0–1 loss function Lðk, k0Þ ¼ 1k6¼k0 ; the 
Bayes-optimal decision rule is:

k�Bayes ¼ arg max
k

PðkjDtestÞ ¼ arg max
k

pðDtestjkÞPðkÞ: (23) 

With uniform priors PðkÞ ¼ 1=K; this reduces to max
imum likelihood classification.

4.3.3. Modal Classification
To assess the relative importance of temporal and spectral 
information, we can perform classification using each 
modality independently. For temporal-only classification:

k�t ¼ arg max
k2f1, :::, Kg

n0 log ðk̂0 þ k̂kÞ − ðk̂0 þ k̂kÞ
Xn0

i¼1
x0i

" #

:

(24) 

For spectral-only classification:

k�e ¼ arg max
k2f1, :::, Kg

Xn0

i¼1
log p̂ðkÞE ðe

0
iÞ: (25) 

The relative performance of these modal classifiers pro
vides insight into the information content of different data 
types for RIID.

4.4. Adaptive Signal-to-Noise Ratio Modeling

In operational settings, the signal-to-noise ratio between 
training and deployment conditions often varies due to fac
tors such as source-detector distance, shielding, and environ
mental conditions. We address this challenge by introducing 
a multiplicative scaling factor a > 0 that modulates the 
observed isotope intensities while maintaining the back
ground rate constant.

4.4.1. Modified Observation Model
Under varying SNR conditions, the observed isotope rate for 
isotope k becomes:

kobs
k ¼ a ktrain

k , (26) 

where a > 0 is an unknown parameter denoting the propor
tion of the training rates uncorrupted by noise, while the 
background rate remains unchanged: kobs

0 ¼ ktrain
0 : The 

modified mixture energy distribution therefore becomes:

pðkÞE ðejaÞ ¼
k0

k0 þ akk
pE0ðeÞ þ

akk

k0 þ akk
pEkðeÞ: (27) 

4.4.2. Bayesian Estimation of a
We adopt a Bayesian framework for estimating a; placing a 
log-normal prior that encodes our expectation of moderate 
deviations from training conditions:

a � LogNormalðla, r2
aÞ, (28) 

where typically la ¼ 0 (corresponding to mean 1) and ra is 
chosen based on expected operational variability. In the 
results that follow, we fix la ¼ 0 and ra ¼ 1:

For each isotope hypothesis k and test sequence Dtest;

with jDtestj ¼ n0 over time ½0, T0�; the posterior distribution 
of a is:

pðajDtest, kÞ / pðDtestjk, aÞpðaÞ, (29) 

where the likelihood term is:

pðDtestjk, aÞ ¼ ðk0 þ akkÞ
n0 exp −ðk0 þ akkÞT0

� �Yn
0

i¼1
pðkÞE ðe

0
ijaÞ:

(30) 

4.4.3. MAP Estimation and Optimization
To enable probabilistic classification, we find the maximum 
a posteriori (MAP) estimate of a:

âk ¼ arg max
a>0

log pðajDtest, kÞ: (31) 

Here, the log-posterior objective function is: 

log pðajDtest, kÞ ¼ n0 log ðk0 þ akkÞ − ðk0 þ akkÞT0

þ
Xn0

i¼1
log pðkÞE ðe

0
ijaÞ −

ð log a − laÞ
2

2r2
a

− log aþ const:
(32) 

Under reasonable conditions (sufficient data and well- 
separated isotope signatures), a unique maximum exists. We 
employ Newton–Raphson iteration for efficient optimization.

4.4.4. Classification with Adaptive SNR
The final classification incorporates both the data likelihood 
and the prior on a:

k� ¼ arg max
k2f1, :::, Kg

log pðDtestjk, âkÞ þ log pðâkÞ
� �

: (33) 
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This adaptive approach automatically adjusts for varying 
measurement conditions while maintaining discriminative 
power between isotopes. Further, the inclusion of the prior 
term log pðâkÞ penalizes extreme values of a; promoting 
robust classification when limited data makes a estimation 
uncertain.

5. Classifier Analysis

Using the probabilistic classification models from Section 4
and the datasets described in Section 2, we conducted 
experiments to evaluate whether temporal information, in 
the form of interarrival times, provides an advantage over 
using energy information alone for classifying radiological 
source material. For each experiment, 100,000 consecutive 
events per source were selected with 70% (70,000 events) 
used for training. The test sets, while varying by experiment, 
consistently contained 3,333 samples per source, with each 
sample comprising 100 events. Accuracy results, shown in 
Table 3, reflect the model’s performance when the predicted 
class corresponds to the class with the highest likelihood.

5.1. Experimental Framework

Each experiment utilized a unique combination of training 
and test sets. For combination sources such as U-232 þ Ba- 
133 and Cs-137 þ Ba-133, these were treated as single iso
topes2 (2), allowing for individual isotope classification as 
described in Section 4.2. Experiments 1 and 2 tested the 
model using training and test sets from the same distribu
tion, with the detector positioned at the same distance from 
each source, serving as an initial evaluation of the utility of 
incorporating temporal information into radioisotope identi
fication. Experiments 3 and 6 assessed the model’s depend
ency on gross count rate for source identification. 
Experiments 4 and 5 evaluated the impact of variations in 
signal-to-noise ratio on model performance. Finally, 
Experiment 7 examined the effect of added variability by 
combining different distributions for the training and test 
sets. We note that for all experiments that relied on Datasets 
A and B, the source–detector standoff remained the same 

for all sources throughout acquisition; as such, distance is 
not a factor in the A-only and B-only analyses of 
Experiments 1 and 2. The only experiments which addressed 
standoff effects used Datasets C and D. Further details on 
all experiments and their results are provided below:

5.1.1. Experiment 1
In this experiment, Dataset A was used for training and test
ing. The test set for each source was derived from the 
30,000 events that were not used in the training set. 
Therefore, the test set and the training set come from the 
same data distribution.

5.1.2. Experiment 2
In this experiment, Dataset B was used for training and test
ing. The test set was derived in a similar way as that 
described in Experiment 1. Therefore, the test set and the 
training set come from the same data distribution.

5.1.3. Experiment 3
In this experiment, Dataset C was used for training and test
ing. The test set was derived in a similar way as that 
described in Experiment 1. Therefore, the test set and the 
training set come from the same data distribution which 
means that the distances at which the sources are placed is 
remaining constant from the training set to the test set.

5.1.4. Experiment 4
In this experiment, Dataset C was used as the training set 
whereas Dataset D was used as the test set. The test set for 
each source was derived from 30,000 events found in 
Dataset D. Therefore, the test set and the training set come 
from two different data distributions and the distances at 
which the sources are placed is increasing from the training 
set to the test set.

5.1.5. Experiment 5
In this experiment, Dataset D was used as the training set 
whereas Dataset C was used as the test set. The test set for 
each source was derived from 30,000 events found in 
Dataset C. Therefore, the test set and the training set come 
from two different data distributions and the distances at 
which the sources are placed is decreasing from the training 
set to the test set.

5.1.6. Experiment 6
In this experiment, Dataset D was used for training and test
ing. The test set was derived in a similar way as that 
described in Experiment 1. Therefore, the test set and the 
training set come from the same data distribution which 
means that the distances at which the sources are placed is 
remaining constant from the training set to the test set.

Table 3. The accuracy results that were obtained for each experiment. The 
presence of a after the experimental number indicates that the extended a 
model was tested using the experimental setup associated with that number.

Accuracy results

Experiment: Time model Energy model Energy and time model

1 0.7106 0.6917 0.7767
1-a 0.5966 0.6917 0.7288
2 0.8773 0.4782 0.6258
2-a 0.6850 0.4782 0.5390
3 0.4841 0.8570 0.8763
3-a 0.4186 0.8571 0.8752
4 0.3428 0.6412 0.7304
4-a 0.4131 0.6421 0.8160
5 0.3977 0.8883 0.9036
5-a 0.3716 0.8883 0.8989
6 0.5157 0.7939 0.8512
6-a 0.4463 0.7938 0.8457
7 0.5038 0.8012 0.8312
7-a 0.4352 0.8012 0.8314
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5.1.7. Experiment 7
In this experiment, Datasets C and D were combined and 
then used to create the training and test set. The test set for 
each source was derived from 30,000 events found in the 
combined dataset for each source. Therefore, the test set and 
the training set come from a combination of two different 
data distributions. This arrangement also means that the 
training and test sets are representative of the two different 
distances at which events were collected for each source.

5.2. Accuracy of Probabilistic Models

In Table 3, we present experimental results of all datasets 
when trained and tested on the initial probabilistic classifier 
developed, and the extended a model that incorporates vari
abilities in the SNRs between training and testing datasets.

The results demonstrate that, across all experiments, 
models incorporating both energy and time consistently out
performed energy-only models (i.e. spectral analysis) in 
terms of accuracy. However, the benefit of adding temporal 
information varied by experiment, largely due to differences 
in isotopes’ decay parameters. For instance, the improved 
performance of time-based models in Experiments 1 and 2 
may be attributed to their reliance on count rates for class 
differentiation. In Experiments 3 and 6, count rates were 
controlled by positioning sources at distances that ensured 
similar rates across sources, reducing the model’s ability to 
rely on count rate as a distinguishing feature. This likely 
explains the lower performance of time-based models in 
these experiments compared to Experiments 1 and 2.

Experiments 4 and 5 introduced additional performance 
drops, likely due to differences in data distributions between 
training and test sets. In these experiments, count rates were 
controlled similarly to Experiments 3 and 6, but Dataset D 
represented sources positioned farther from the detector 
than those in Dataset C. Consequently, Experiment 4’s train
ing set had a higher source-to-background ratio than its test 
set, while Experiment 50s training set had a lower ratio. 
These shifts in data distribution likely contributed to the 
observed performance differences between the models in 
Experiments 4 and 5.

The extended a model, designed to account for uncer
tainties in signal-to-noise ratios (SNRs) between training 
and test sets, significantly improved classifier performance, 
as evidenced by Experiment 4-a: Moreover, the extended a 

model often achieved comparable performance to the ori
ginal model, with only minor decreases in accuracy, demon
strating its robustness and potential for handling complex 
and varied data collection scenarios.

5.3. Receiver Operating Characteristic Curves

Receiver operating characteristic (ROC) curves are a tool 
used for assessing the performance of a binary classifier, 
comparing the performance of binary classifiers, and estab
lishing a threshold likelihood value at which a data point is 
said to belong to a specific class (Francis Sahngun 2022). 
The ROC curve typically has sensitivity on the y-axis and 

specificity or the false positive rate (FPR) on the x-axis. 
Sensitivity is defined as the ratio of the number of observa
tions that were correctly associated to the class of interest by 
the model to the total number of observations that belong 
to the class of interest. Specificity is defined as the ratio of 
the number of observations that were correctly associated to 
the class that was not of interest by the model to the total 
number of observations that do not belong to the class of 
interest (Ho Park et al. 2004).

Nonparametric ROC curves are generated by calculating 
sensitivity and specificity at various threshold values. Higher 
thresholds require larger likelihood values for classification 
into the class of interest, typically resulting in higher specifi
city and lower sensitivity. Points corresponding to higher 
thresholds appear closer to the lower left corner of the ROC 
curve, while lower thresholds result in the opposite.

The area under the ROC curve (AUC) is often used to 
summarize the curve and compare classifiers. Unlike accur
acy or error rate, AUC is independent of the threshold value 
(Hand and Till 2001). Let p̂ ¼ Pðx̂i ¼ 0jxi ¼ 1Þ be the esti
mated probability of incorrectly assigning a randomly 
chosen member of one class to another class and q̂ ¼
Pðx̂i ¼ 0jxi ¼ 0Þ be the estimated probability of correctly 
assigning a randomly chosen member of the other class, 
then the AUC can be defined as the probability that p̂ is 
smaller than q̂ (Hand and Till 2001). Therefore, better per
forming models are associated with larger AUC values, with 
AUC values ranging between 0 and 1 (Ho Park et al. 2004).

We applied ROC curve analysis to our experiments. 
Experiment 1’s ROC curves and associated AUC values are 
shown in Figure 4. Appendix B contains the AUC values for 
every source across each experiment. These ROC curves and 
AUC values were calculated by treating the class of interest 
as one class and grouping all other classes into a second 
class, ensuring a binary classification scenario.

Since AUC is only applicable to situations where there 
are only two classes, additional analysis was conducted using 
the M measure presented in (Hand and Till 2001), which is 
the average of all pairwise AUCs and can be calculated as 
shown in Equation (34). In Equation (34), s represents the 
number of classes and AUCij represents the pairwise AUC 
between the ith and jth classes. It is important to note that 
these pairwise AUCs are different from the AUCs shown in 
Figure 4 and those found in Appendix B. The M measure is 
also referred to as the “multi-class AUC” (Robin et al., 
2011).

M ¼
P

i6¼j AUCij

s s − 1ð Þ
(34) 

The results presented in Table 4 and the ROC curves and 
AUC values found in Appendix B indicate that the energy 
and time model outperforms the energy model in nearly 
every experiment. The extended a model seemed to perform 
reliably under all conditions. Our results highlight the flaw 
in the original model that we used, which exploits the pro
portion of background that is present in the signal for test
ing. When the proportion of background present in the 
signal increases from the training set to the test set, the 
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extended a model, which accounts for the SNR (different 
distances), has seemed to overcome the flaws of the original 
model and provides accurate classification.

To study the impact of distance on the AUC results, we 
estimate a smooth performance surface by fitting Gaussian- 
process (GP) regression to the logit of AUC as a function of 
inverse-squared distances, shown in Figure 5. For each 
experiment i, we set yi ¼ logitðAUCiÞ and inputs xi ¼

ð1=r2
train, i, 1=r2

test, iÞ; rescaled each coordinate to ½0, 1�; and 
used a squared-exponential kernel

kðx, x0Þ ¼ r2 exp −
X

j
ðxj − x0jÞ

2
=hj

� �

with a homoscedastic nugget on the logit scale. Kernel 
hyperparameters ðh1, h2, r2, r2

nuggetÞ are estimated by 

Figure 4. (a–e) display the ROCs associated with the performance of the time, energy, and energy & time models on the different sources. The list-mode data asso
ciated with these plots is from Dataset A.

Table 4. The multi-class AUC results computed for each experiment and 
model type.

Multi-class AUC results

Experiment: Time model Energy model Energy and time model

1 0.9454 0.9501 0.9713
1-a 0.9081 0.9501 0.9616
2 0.9742 0.7902 0.9870
2-a 0.9099 0.7902 0.8527
3 0.7882 0.9832 0.9857
3-a 0.7830 0.9832 0.9858
4 0.7426 0.9516 0.9574
4-a 0.8275 0.9516 0.9706
5 0.7457 0.9836 0.9848
5-a 0.7765 0.9836 0.9846
6 0.8281 0.9621 0.9718
6-a 0.8215 0.9621 0.9704
7 0.8049 0.9750 0.9801
7-a 0.7983 0.9750 0.9801
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maximum likelihood on the original model and then held 
fixed when predicting the extended-a model (to facilitate 
a shared-kernel comparison) so that any differences in the 
maps reflect the data, not different smoothness assump
tions. This formulation encodes the physical inverse- 
square law, assumed to hold for signal strength in this 
application. Consequently, the GP surface recovers the 
expected monotone degradation with increasing distance 
and allows us to assess robustness to train–test distance 
mismatch.

The GP fit uses only 16 points from 4 different experi
ments, hence the heatmaps are trend visualizations rather 
than precise estimates far from the sampled region. As 
such, predictions near the boundaries of the transformed 
space can revert toward the GP mean. Further, results 
depend on the logit link and the inverse-square feature 
choice, and alternative links or kernels are not explored 
here. Uncertainty bands are additionally not shown but 
are wider where sampling is sparse, emphasizing our focus 
on qualitative comparisons between models under a 
shared kernel.

Under a shared kernel and identical color scale 
(AUCs between 0.90–1.00), the extended-a model maintains 
near-unity AUC across a wider range of ðrtrain, rtestÞ pairs, 
particularly off the rtrain ¼ rtest diagonal, indicating greater 
robustness to distance misspecification while better preserv
ing the expected inverse-square pattern. On the other hand, 
the original model struggles to maintain the same pattern as 
a result of differing training and testing distances, with the 
greater testing distance to training distance scenario causing 
AUC jumps due to poor model calibration without account
ing for SNR degradation. It is well established that source 
intensity decreases proportionally to the inverse square of 
the distance from the detector. Consequently, model per
formance is expected to decline as the source distance from 
the detector increases. Our sparse sampling results support 
this expectation.

5.4. McNemar’s Test

The classifier results seem to indicate that a model that uses 
both interarrival time and energy channels in order to clas
sify the sources outperforms a model that only uses energy 
channels. In order to determine whether the two classifiers 
are significantly different from each other, McNemar’s Test 
is used. McNemar’s test has been used and is frequently rec
ommended as a nonparametric test for comparing the 
accuracy or error rate of two classifiers (Katarzyna Sta¸por 
2018; Dietterich 1998).

In order to stick to convention, we decided to set the 
level of significance, a; to 0.05 (Tamhane and Dunlop 2000). 
The P-values that were obtained for each of the respective 
experiments that were conducted were nearly zero. In this 
case, a P-value can be interpreted as the probability of 
observing at least x samples that were incorrectly classified 
by the energy model and correctly classified by the model 
that includes energy and temporal information given that 
p ¼ 1

2 : Therefore, under the hypothesis test that we con
ducted, the smaller the P-value the more significant the dif
ference between the two classifiers. This difference would 
indicate that the energy model performs significantly worse 
than the model that includes temporal and energy data.

The results for this test indicate that under each experi
ment the error rate for the energy model is significantly 
larger than the error rate for the energy & time model. 
These results seem to indicate that it is beneficial to include 
temporal information for the classification of radioactive 
material.

5.4.1. Power Analysis
In order to ensure that the McNemar’s tests were able to 
properly discriminate between the null and alternative 
hypotheses, we analyzed the power function for each test 
(Tamhane and Dunlop 2000). The plots of the power func
tion show how the probability of rejecting the null 

Figure 5. Gaussian-process smoothed AUC surfaces for the original classifier (left panel) and extended–a classifier (right panel) as functions of training and testing 
distances for each isotope measured. We model logitðAUCÞ with a squared-exponential Gaussian process in the inverse-square features ð1=r2

train, 1=r2
testÞ: Kernel 

hyperparameters are estimated on the original data and held fixed for the extended-a panel. Heatmaps show Gaussian-process posterior means on the same color 
scale (AUC 0.90–1.00). Black dots indicate the observed experiments, and the red dashed line marks equal training and testing distance.
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hypothesis changes as the number of observations that were 
incorrectly labeled by the energy model and correctly labeled 
by the energy & time model increases. An increase in p rep
resents an increase in the number of observations that were 
incorrectly labeled by the energy model and correctly labeled 
by the energy and time model. Figure 6 displays all plots of 
power as a function of p. The power plots indicate that the 
McNemar’s test is fairly sensitive to the change in p. These 
results provide evidence to our claim that the tests were able 

to effectively discriminate between the null and alternative 
hypotheses.

5.5. Sequence Length

In the above experiments the test sequences that needed to 
be classified all had a sequence length of 100. However, it is 
important to investigate the impact that varying the 
sequence length has on the performance of the different 

Figure 6. (a and b) display the power of the McNemar’s test as the value of the p parameter is increased. The colors in each figure are related to the experimental 
number. (a) shows the results when the original model is used whereas, (b) shows the results when the extended a model is used.

Figure 7. (a and b) display the impact that sequence length has on the AUC values for each class in Dataset A.

Figure 8. (a and b) display the impact that sequence length has on the accuracy of each classifier. The data in these figures is from Dataset A.
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models because this relates to dwell time requirements. In 
order to evaluate the impact that sequence length has on 
model performance we looked at the effect that sequence 
length had on the AUC values for each class under each 
model and the effect that it had on the accuracy of each 
classifier. Figures 7 and 8 are example plots that display the 
change in AUC or classifier accuracy as the sequence length 
is increased. As expected, model performance improves as 
the sequence length increases. Additionally, the model that 
relies on both energy and time always outperforms the 
energy model. Similar results are observed across all of the 
plots found in Appendix C. In each plot there is some vari
ation due to the dataset and some variation due to whether 
the extended a model is in use, but the general trend is that 
the energy and time models outperform the energy models 
when the sequence length is smaller.

6. Conclusion

In this work, we asked two simple questions, what is the 
nature of the temporal domain information of list-mode 
gamma-ray data and is that temporal domain information 
beneficial to the application of radioisotope identification. 
The nature of the time domain was first explored through the 
evaluation of different correlation metrics. The different met
rics indicated that there is no evidence of correlations 
between the time and energy space of our radiation datasets. 
Additionally, a distributional analysis of our data sets was 
conducted by inspecting the box plots to identify characteris
tics of the data sets that may lead to discernible discrimina
tors between radioactive sources. This analysis indicated that 
the distributions of interarrival times are relatively stable 
across consistent collection windows and that these distribu
tions show meaningful differences across radioactive sources. 
Little variation in the distributions for the same source 
occurred when collection windows increased or decreased.

To evaluate the usefulness of temporal information for 
RIID, we developed a probabilistic classification method 
capable of using temporal data, spectral data, or the fusion 
of both. The classifier assumes independence between the 
spectral and time models, enabling us to test whether incor
porating temporal information improves RIID performance. 
Using distributional estimates of temporal and spectral 
domain data, we rigorously assessed the classifier’s perform
ance with interarrival time data alone, spectral data alone, 
and both combined. Performance was evaluated using accur
acy, ROC curves, and McNemar tests. Results showed that, 
in all cases, including temporal information improved classi
fication performance.

A critical aspect of our framework is that the marked 
point process model naturally highlights the interconnected
ness of spectral and temporal components. For computa
tional efficiency, however, we estimated their parameters 
independently. Our results show that fuzing spectral and 
temporal information far exceeds the performance of either 
modality alone. Moreover, our choice of a kernel density 
estimator for the spectral model is not essential; it can be 
substituted with more sophisticated approaches such as full- 

spectrum matching, non-negative matrix factorization, or 
neural network classifiers. Regardless of the spectral estima
tor chosen, this article has shown that temporal information 
provides additional classification value beyond what is cur
rently available in the field. This underscores the robustness 
of our approach and its potential for integration with both 
classical and modern RIID methodologies.

Several avenues for future research emerge from this 
work. Extending the probabilistic classifier to address source 
separation, applying these methods to non-stationary sour
ces, determining efficacy of temporal information on sources 
with spectrally similar peaks, and exploring alternative met
rics beyond interarrival time to identify discriminative tem
poral features for classification are promising directions. 
Finally, extending the classifier framework to higher dimen
sional representations of list-mode data—such as interarrival 
time distributions within individual energy bins, between 
pairs of bins, or across larger groupings—could further 
enhance the discrimination of temporal information content 
of the source.

The results of this study are promising and highlight the 
potential for further exploration of temporal domain infor
mation in RIID applications. GADRAS (Mitchell et al. 2014) 
is the defacto standard for RIID algorithms, with nearly 
40 years of continuous development and refinement, and we 
do not claim any comparison or advancements over 
GADRAS. Instead, we have provided evidence supporting 
the potential benefits of incorporating temporal information 
into RIID algorithms. Our findings warrant further investi
gation and offer a foundation for developing new methods 
or enhancing existing ones with temporal data to improve 
RIID for the broader community.

Notes 

1. The data that support the findings of this study are available 
from the corresponding author, AJH, upon reasonable 
request.

2. Classifying multiple isotopes within a single sample is a 
promising extension of the probabilistic classifier but is 
beyond the scope of this preliminary work.
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Appendix A. Dataset details 

Appendix B. AUC values 

Table A1. Distances used for each source to achieve specific count rate targets.

Distance 1 Distance 2

Source Distance Gross count rate Distance Gross count rate

Cs-137 10ft 2in 1598 15ft 2.5in 1181
Y-88 7ft 1.5in 1738 11ft 4in 1230
Ba-133 21ft 6in 1827 29ft 1381
Cs-137 & Ba-133 22ft 9in 1849 31ft 1350
Background 751

Table A2. MCA settings for the August 2024 collection.

Amplifier Gain 0.4
Shaping Time 2 l sec

ADC Lower Level Disk 17
Upper Level Disk 1023

High voltage Target 666

Table B1. The table displays the AUC results that were obtained for each experiment where the distribution of the training set and the distribution of the test 
set were the same. The presence of a after the experimental number indicates that the extended a model was tested using the experimental setup associated 
with that number.

AUC results

Experiment: Source Time model Energy model Energy and time model

1 Y88 0.8656 0.9079 0.9307
Cs137 0.9560 0.9703 0.9896
U232 0.9748 0.9571 0.9827
Ba133 0.9999 0.9995 1
U232þ Ba133 0.9748 0.9462 0.9827

1-a Y88 0.8601 0.9079 0.9274
Cs137 0.9375 0.9703 0.9877
U232 0.8252 0.9571 0.9593
Ba133 0.9495 0.9995 0.9999
U232þ Ba133 0.9748 0.9462 0.9541

2 U232 0.9390 0.8328 0.9628
Ba133 0.9619 0.8755 0.9934
U232þ Ba133 0.9958 0.5051 0.9918

2-a U232 0.7168 0.8328 0.9182
Ba133 0.9268 0.8755 0.9117
U232þ Ba133 0.9958 0.5051 0.5811

3 Y88 0.6664 1 1
Cs137 0.8119 1 1
Ba133 0.7278 0.9644 0.9650
Cs137þ Ba133 0.7351 0.9525 0.9636

3-a Y88 0.6500 1 1
Cs137 0.8022 1 1
Ba133 0.7278 0.9643 0.9650
Cs137þ Ba133 0.7351 0.9524 0.9636

6 Y88 0.7418 0.9947 0.9993
Cs137 0.8276 0.9964 0.9990
Ba133 0.7879 0.9314 0.9364
Cs137þ Ba133 0.7834 0.9050 0.9245

6-a Y88 0.7296 0.9947 0.9990
Cs137 0.8071 0.9964 0.9987
Ba133 0.7879 0.9314 0.9359
Cs137þ Ba133 0.7829 0.9050 0.9183

7 Y88 0.6974 0.9990 1
Cs137 0.8207 0.9995 0.9999
Ba133 0.7620 0.9487 0.9529
Cs137þ Ba133 0.7444 0.9332 0.9477

7-a Y88 0.6811 0.9990 1
Cs137 0.8039 0.9995 0.9999
Ba133 0.7620 0.9487 0.9526
Cs137þ Ba133 0.7444 0.9332 0.9481
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Appendix C. Effects of sequence length 

Table B2. The AUC results that were obtained for each experiment where the distribution of the training set was different from that of the test set. The pres
ence of a after the experimental number indicates that the extended a model was tested using the experimental setup associated with that number.

AUC results

Experiment: Source Time model Energy model Energy and time model

4 Y88 0.4871 0.9862 0.9760
Cs137 0.6268 0.9920 0.9713
Ba133 0.7896 0.9256 0.9322
Cs137þ Ba133 0.7836 0.8810 0.9074

4-a Y88 0.7349 0.9862 0.9977
Cs137 0.8295 0.9920 0.9972
Ba133 0.7896 0.9257 0.9352
Cs137þ Ba133 0.7836 0.8811 0.9233

5 Y88 0.6480 1 1
Cs137 0.7897 1 1
Ba133 0.7313 0.9627 0.9622
Cs137þ Ba133 0.5594 0.9560 0.9616

5-a Y88 0.6427 1 1
Cs137 0.7722 1 1
Ba133 0.7314 0.9627 0.9627
Cs137þ Ba133 0.7361 0.9560 0.9601

Figure C1. (a–f) display the impact that sequence length has on the AUC values for each class in the respective datasets.
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Figure C2. (a–f) display the impact that sequence length has on the AUC values for each class in the respective datasets.
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Figure C3. (a–f) display the impact that sequence length has on the accuracy of each classifier.
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Figure C4. (a–f) display the impact that sequence length has on the accuracy of each classifier.
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