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Radioisotope Identification with List-Mode Gamma-Ray Data
Assessing the Value of Temporal Information Applied to Radioisotope Identification

Lekha Patel, Efrain H. Gonzalez, Ryan J. Kamm, and Aaron J. Hill

Sandia National Laboratories, Albuquerque, NM, USA

ABSTRACT

This work explores the potential of utilizing temporal data from gamma-ray detectors, known as
list-mode data, to enhance radioisotope identification. Traditional identification methods, which
rely on full gamma-ray spectrum analysis, often require long dwell times and struggle with spectra
containing similarly spaced spectral peaks. We hypothesize that by leveraging the probabilistic
nature of nuclear decay and the time-encoded information from decay sequences and interactions
with surrounding materials, we can improve classification accuracy over static spectral analysis.
This research examines the temporal content of list-mode data through exploratory data analysis
via correlation discovery and qualitative distribution analysis. Additionally, we propose a probabil-
istic classification model that can utilize spectral data, temporal data, or both to determine if the
incorporation of temporal information improves radioisotope identification. Our findings suggest
that the temporal information present in list-mode gamma-ray data has merit and should be fur-
ther investigated to develop more robust and optimal methods for utilizing this temporal informa-
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tion in applications requiring radioisotope identification.

Introduction

Radioisotope identification (RIID) is fundamental to nuclear
security, safeguards verification, and environmental monitor-
ing, as it enables the rapid and accurate identification of
radioactive materials for detecting illicit nuclear material,
verifying declared nuclear activities, and responding to
radiological emergencies (U.S. Environmental Protection
Agency 2025; Pakari et al. 2024). When radioactive nuclei
decay, they emit gamma rays at characteristic energies
unique to each isotope. A gamma-ray spectrum, which is a
histogram of detected gamma-ray counts as a function of
energy, serves as a fingerprint for identifying the radioactive
materials present (Glenn 2010; High resolution gamma-ray
spectrometry analyses for normal operations and radiological
incident response 2019). These spectra are formed by accu-
mulating individual detection events over time, where each
event represents the energy of a gamma ray recorded by the
detector (Glenn 2010). Handheld RIID instruments are
widely deployed by law enforcement and first responders for
these purposes (U.S. Environmental Protection Agency 2025;
Mirion Technologies 2025). The challenge lies in conducting
RIID under
including weak signals, high background radiation, multiple
overlapping sources, and varying measurement geometries
that can render traditional methods unreliable or require

successful diverse operational conditions,

impractically long measurement times (Tom and Michael
2009).

Classical identification methods have evolved from simple
peak-fitting algorithms to sophisticated statistical approaches
over several decades. Region-of-interest (ROI) and peak-
matching techniques identify isotopes by detecting charac-
teristic gamma lines within energy tolerance windows.
While computationally efficient and intuitive, these methods
require well-resolved peaks and sufficient counting statistics,
often necessitating extended measurement times in low-
count or high-background environments (Tom and Michael
2009). Consequently, full-spectrum template matching has
improved upon ROI methods by comparing entire measured
spectra against reference libraries using correlation or chi-
square metrics, leveraging continuum regions and tolerating
minor calibration shifts (Tom and Michael 2009; Jeffcoat
et al. 2010; Mitchell et al. 2014). Nevertheless, both
approaches struggle with source mixtures and spectrally
similar “confuser” nuclides, such as Pu-239 versus I-131 or
U-238 versus Ra-226, where overlapping peaks lead to mis-
identification, often necessitating long dwell times to resolve
ambiguities (High resolution gamma-ray spectrometry analy-
ses for normal operations and radiological incident response
2019; Tom and Michael 2009).

Advanced physics-based approaches, exemplified by
Sandia National Laboratory’s Gamma Detector Response
and Analysis Software (GADRAS), employ library fitting
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with detector response functions to perform multiple linear
regression across candidate isotopes (Jeffcoat et al. 2010;
Mitchell et al. 2014). GADRAS accounts for detector-specific
energy response characteristics enabling simultaneous identi-
fication of multiple isotopes through composite spectral fit-
ting. While more robust to spectral overlaps than peak
matching, these methods depend critically on accurate
detector models and calibration. Performance typically
degrades when deployment conditions including distance
geometry, shielding, or background conditions, deviate from
library assumptions. Further, the computational demands of
fitting large isotope libraries can limit real-time application.
To deal with this, statistical decomposition methods devel-
oped over the past two decades offer data-driven alterna-
tives. As one example, non-negative matrix factorization
(NMEF) learns basis spectra representing background compo-
nents and source signatures, enabling detection and identifi-
cation of weak or mixed sources through additive
reconstruction (Bilton et al. 2019). On the other hand,
wavelet-based approaches have been employed for spectral
denoising and feature extraction (Sullivan et al. 2006). These
methods naturally handle overlapping spectra by attributing
counts across multiple components and adapt to background
variability better than fixed thresholds, yet their iterative
optimization requirements and computational complexity
often necessitate significant processing resources that limits
their applicability to real-time field deployment.

While these spectral methods have proven valuable, the
construction of a spectrum inherently discards temporal
information as gamma-ray counts are summed over time
across energy bins-a fact that has been theoretically quanti-
fied (Clarkson and Kupinski 2020). In fact, nuclear decay is
a probabilistic process that follows well-characterized decay
sequences and known mean decay times—information that
is not present in a spectrum (Gilmore and Joss 2008).
Interactions of decay radiation with materials surrounding a
source cause subsequent emissions with time-encoded infor-
mation that can be attributed to geometry and materials.
For instance, the interarrival time distribution between
detection events provides information orthogonal to spectral
features, as nuclear decay follows Poisson processes with
isotope-specific rates (Glenn 2010). This temporal informa-
tion remains discriminative even when spectral peaks over-
lap or when counting statistics are limited. For this reason,
temporal data has been used for Compton imaging with
known isotopes and for fissile material characterization via
active interrogation (Wilderman et al. 2000; Williford 2013).
Thus, utilizing the full temporal and sequential data from a
detector, known as list-mode data, on its own or in combin-
ation with a spectrum, may improve methods for RIID by
reducing long dwell time requirements and improving
accuracy.

More recently, machine learning approaches have begun
exploring temporal dynamics through time-binned represen-
tations. For instance, Convolutional neural networks
(CNNs) operating on two-dimensional “waterfall” plots,
where events are binned in time and energy—have demon-
strated improved classification over static spectra,

particularly for low-count scenarios (Moore et al. 2019;
Moore et al. 2020). However, these approaches still discretize
the temporal domain, potentially losing fine-scale temporal
structure. To the authors” knowledge, list-mode data has not
been used successfully for passive gamma-ray-based RIID.

This work presents a point process framework that oper-
ates directly on event-level list-mode data, preserving the
full temporal resolution of the detection process. Our
approach models the observed decay events as a superpos-
ition of isotope-specific Poisson processes, each with unique
temporal and spectral signatures. This formulation enables
principled likelihood-based classification that systematically
compares RIID performance using energy alone, time alone,
or both modalities combined. Further, we introduce an
adaptive scaling parameter to account for varying signal-to-
noise ratios between training and deployment conditions,
addressing a critical limitation in field applications. Last, the
decomposed estimation strategy achieves deployment-
suitable computational efficiency through closed-form rate
estimates and convex optimization.

This article is organized as follows. Section 2 provides
details on the datasets that were created for this study.
Section 3 focuses on the use of data analysis techniques to
characterize the temporal content of our datasets. This was
attempted by using standard methods for correlation discov-
ery and qualitative distribution analysis. Section 4 develops
the marked point process model that jointly leverages spec-
tral and temporal information. Finally, Section 5 discusses
the results obtained from using the aforementioned models
for RIID.

2. Datasets

Our work utilizes four different datasets’ (U.S.
Environmental Protection Agency 2025), which come from
radioactive sources collected with a 2} x 4} x 16} low reso-
lution inorganic scintillator (Sodium Iodide (Nal) or Cesium
Iodide (CsI)) connected to a commercial multichannel ana-
lyzer (MCA)—Canberra/Micron Osprey or digiBase. For all
datasets, we did not utilize the first 100 s of data due to this
period of time being reserved for experiment setup. All col-
lections were performed with a stationary detector and a sta-
tionary source. Table 1 details each dataset’s sources as well
as the date that they were collected. Additionally, relevant
details regarding the nature of each collection are included
below.

When configuring the equipment, effort was made to
achieve a dynamic range of approximately 3 MeV. Because
no rigorous energy calibration was implemented in our col-
lection system or post-processing, we here use the resultant
raw channel data from the instrument. In Figure 1, we show
an example of the raw spectra of the Cs137 source from
Dataset A based on 20s worth of events.

2.1. Dataset A

This dataset consists of five collections across four different
sources, with the fifth collection being a combination of two
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Table 1. The date at which each dataset was collected and the sources in each collection. An empty cell implies that no

additional source was collected.

Datasets
Dataset name: A C D
Date created: July 2022 April 2024 August 2024 August 2024
Source 1: Cs-137 Ba-133 Cs-137 Cs-137
Source 2: Y-88 U-232 Y-88 Y-88
Source 3: Ba-133 Ba-133 +U-232 Ba-133 Ba-133
Source 4: U-232 Cs-137 4 Ba-133 Cs-137 +Ba-133
Source 5: Ba-133 4-U-232
Spectrum for Cs137 to achieve a nominal count rate of between 1200 and 1400.
: The dataset derived from using these distances is referred to
8 ﬂL as Dataset D. Collection periods were not controlled. For
o M} completeness, Table A2 found in Appendix A makes record
S || of the MCA settings used for this collection.
2. | i
88 ‘» 3. Exploratory Data Analysis
\
8 [ \Jl In this section, we explore the relationship between time
o ﬁ’ 0 Jﬁ and energy in the list-mode data that was collected. Section
® i g n 3.1 shows the results of correlation analysis on Datasets A
it " . . N
o | I it i and B and Section 3.2 discusses the results of the distribu-

T T T T T
0 200 400 600 800 1000
Channel

Figure 1. This plot shows the raw and uncalibrated spectrum associated with
Cs137. The list-mode data associated with this plots is from Dataset A.

of the sources. The collection was performed with a station-
ary detector and a stationary source. Collection periods were
for approximately three hours. No calibration for drift was
performed on this detector, and as such any data beyond
20 min was not used.

2.2. Dataset B

This dataset consists of three collections across two different
sources, with the third collection being a combination of the
two unique sources. The collection was performed with a
stationary detector and a stationary source. Collection peri-
ods were not controlled. Calibration of the detector was per-
formed to account for drift from long dwell times.

2.3. Datasets C and D

These datasets were produced as a result of our initial
experiments on the first two data sets. Because each source
has a distinctly different gross count rate, we were con-
cerned that the classifier may be exploiting the gross count
difference as a discriminator. To test this hypothesis, these
datasets placed the sources at different distances to make the
gross count rate of each collection approximately the same.
Table A1 of Appendix A details the distances at which each
source was placed from the detector and the corresponding
gross count rate achieved. Distance 1 in the table refers to
the set of distances necessary in order to achieve a nominal
count rate of between 1600 to 1800. The dataset derived
from using these distances is referred to as Dataset C.
Distance 2 refers to the set of distances necessary in order

tion analysis that was conducted on Dataset A. Datasets C
and D were not analyzed because they do not contain any
substantial differences over Datasets A and B as it relates to
the analysis of this section.

3.1. Correlation

We analyzed a 20s sample from each Datasets A and B. To
assess the relationship between interarrival time and energy,
we used two correlation measures: Pearson’s correlation
coefficient and Spearman’s rho. Here we define interarrival
time as the time in microseconds between consecutive
energy readings of gamma particle detections (i.e. consecu-
tive events). Pearson’s correlation coefficient quantifies the
strength and direction of a linear relationship between two
variables, ranging from —1 to 1, with values near zero indi-
cating no linear relationship (Tamhane and Dunlop 2000).
As expected, the Pearson correlation between interarrival
time and energy was nearly zero for all sources, as shown in
Table 2, confirming the absence of a linear relationship in
our datasets. Spearman’s rho, which measures the strength
and direction of a monotonic relationship between two vari-
ables using ranks and average ranks (Jay Conover 1999),
similarly showed no significant monotonic relationship
between interarrival time and energy, as validated by the
results in Table 2.

Given that these datasets represent time-series data, we
explored two correlation metrics specific to time-series ana-
lysis: autocorrelation and cross-correlation. Autocorrelation
measures the strength and direction of the linear relation-
ship between a variable at one time point and the same vari-
able at another time point (Shumway and Stoffer 2005). It
quantifies how well a linear function can predict the
(j+ k)™ element in a series based on the j element, with
values ranging from —1 to 1, where larger magnitudes indi-
cate stronger linear relationships. We analyzed interarrival
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Table 2. The different correlation metrics that were used to analyze the list-mode datasets.

Relationship between interarrival time and energy

Pearson’s correlation

Spearman’s Rho

Autocorrelation (time, energy) Cross-correlation

Dataset A
Background —0.0028 —0.0007
Y88 —0.0019 —0.0004
Cs137 —0.0029 0.0009
U232 —0.0037 —0.0017
Ba133 0.01 0.0085
U232 and Ba133 —0.0003 —0.0044
Dataset B
Background —0.0092 —0.0218
U232 —0.0041 —0.0138
Ba133 —0.0077 —0.0107
U232 and Bai33 —0.0077 —0.0187

(0.0151, 0.0083) 0.0147
(0.0142, 0.0136) 0.0156
(0.0115, 0.009) 0.0127
(0.0071, 0.0068) 0.0059
(0.0077, 0.0089) 0.0118
(0.004, 0.004) 0.0063
(0.0196, 0.0154) 0.0166
(0.0144, 0.012) 0.0145
(0.013, 0.0105) 0.0123
(0.0088, 0.0132) 0.0129

times and energy separately, hypothesizing that autocorrel-
ation values would be near zero due to the lack of linear
relationships in list-mode data. As shown in Table 2, the
maximum autocorrelation values for interarrival times and
energy, calculated over lags k € 1, ...,42, confirmed a lack of
correlation across all datasets.

Cross-correlation was used to test for linear relationships
between the series of interarrival times and energy channels.
The maximum cross-correlation values, calculated between
x[t+ k] (interarrival time for the t" event with lag
k € —42,...,42) and y[t] (energy channel for the " event),
are presented in Table 2. All values indicate no linear rela-
tionship between the two variables. This analysis supports
the assumption that interarrival times and energy channels
are linearly independent; a critical notion leveraged in the
development of our classifier in Section 4.

3.2. Distributions

Although we were unable to establish the existence of a rela-
tionship between interarrival time and energy channel in the
previous section, we investigated the energy and interarrival
time distributions separately in order to evaluate whether or
not there are sufficient differences in the distributions of
each of these variables for each of the classes. This investiga-
tion was conducted by generating box plots from the 20s
samples that we had used in the previous section. Box plots
are a visual representation of the “five-number summary,”
which includes the first (Q;), second (Q,), and third quartile
(Q3) as well as the upper and lower fence. The second quar-
tile is usually referred to as the median, and the upper and
lower fences are calculated by using the following equations:

upper fence : Q3 + 1.5 X IQR (1)
lower fence : Q; — 1.5 X IQR 2)
IQR=Q; - Q (3)

where IQR is called the interquartile range. Values outside
of the fences are considered to be outliers.

If the minimum value in a dataset exceeds the calculated
lower fence, the lower fence is set to the dataset’s minimum
value. Similarly, if the maximum value is smaller than the
calculated upper fence, the upper fence is set to the dataset’s

maximum value. In our datasets, the lower fence adjustment
was common due to the smallest possible interarrival time
being 1 microsecond. Figure 2 presents the initial distribution
of energy channels and interarrival times for each source. As
expected, the energy channel distribution varies by radio-
logical source, which explains why the spectrum is effective
for radioisotope identification. Surprisingly, a similar variabil-
ity is present in the case of interarrival times, suggesting that
there is potential utility in using interarrival time data in a
model intended for radioisotope identification.

Our study focused on leveraging the time dimension of
list-mode data for radioisotope identification, which
required examining the stability of interarrival time distribu-
tions. We analyzed how the distribution changes across 80
different 20s windows and as the size of the sampling win-
dow varies. When varying sampling window sizes, we used
the formula 20/d, where d € 1,...,100, resulting in window
sizes ranging from 20s to 0.2s. Each window size was
assigned an interval length index, with d =1 corresponding
to 20s and d = 100 corresponding to 0.2s. For this analysis,
data below channel number 200 were removed to reduce
background events. Figure 3 summarizes the analysis that
we conducted by presenting the distribution of the median
and interquartile range of each source as the 20s sampling
window was changed and as the sampling window size was
varied. Due to the difference in the range of values across
the different sources, the median and interquartile range val-
ues were log jo-scaled.

Figures 3(a and b) indicate that the interarrival time dis-
tribution remains stable across the 80 20 s windows, whereas
Figures 3(c and d) show increased variability as the sam-
pling window size changes. This stability across 20s win-
dows suggests that variability in interarrival times across
sources is consistent regardless of the chosen window.

4. Probabilistic Classifier Model

In this section, we develop a novel probabilistic framework
for RIID based on the well-established Poisson process rep-
resentation of radioactive decay (Gilmore and Joss 2008).
The Poisson process provides a natural mathematical model
for the physics of radioactive decay, where detectors collect
list-mode data recording individual decay events as
timestamp-energy pairs. In environments with multiple
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Figure 2. (a) and (b) display the distribution of energy and interarrival time on a per source basis over the 20s window that was used for the correlation analysis

presented in the previous subsection.

isotopes and background radiation, we model the observed
decay events as a superposition of independent Poisson
processes, each corresponding to a different source with
unique temporal and spectral signatures. By incorporating
energy levels as marks within a marked point process
approach, we enable likelihood-based classification that can
compare RIID performance using (1) energy levels alone,
(2) event timestamps alone, or (3) both measurements com-
bined. We further extend our methodology to handle vary-
ing signal-to-noise ratios between training and testing
environments by introducing a scaling factor on the Poisson
rate parameter, learned via maximum a posteriori estimation
with an appropriate prior. This enables robust RIID across
changing measurement conditions.

4.1. Modeling List-Mode Data

In RIID, detectors collect list-mode data containing decay
events as tuples: a timestamp paired with a discretized
energy measurement. Formally, a gamma-ray detector

records data {(E;T;)};_,, where T; denotes the timestamp
of the i-th decay event with T; > T; for i > j. Given T; = t,
the random variable E; = E(t) represents the discrete energy
recorded at time ¢, taking values in Z ..

Consider an environment containing K > 0 isotopes plus
background radiation. Each of these K+ 1 sources emits
gamma rays randomly and independently. While the
detector records decays from all sources, it cannot differenti-
ate between sources at measurement time. We model this
scenario using homogeneous Poisson processes (HPPs): let
N? ~ Poi(/gt) denote background decay counts, and N’ ~
Poi(A;t) denote decay counts from the i-th iso-
tope (i =1, ..., K).

Since distinct isotopes have unique decay rates (half-
lives), each of the K + 1 sources possesses a unique temporal
signature, implying A9 # A; # --- # Ax. The total decay
count recorded by the detector follows

K K
Ni=Y Nj~Poi| > Jit],
i=0 i=0

(4)
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Distribution of Median Interarrival Time Across 20s Intervals
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Distribution of the IQR of Interarrival Times with Changing Interval Size
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Figure 3. (a) and (c) display the distribution of the log 1o-scaled median interarrival times as the sampling window changes and as the size of the sampling window
changes, respectively. (b) and (d) display the change in the log jo-scaled interquartile range of the interarrival times as the sampling window changes and as the
size of the sampling window changes, respectively. The list-mode data associated with these plots is from Dataset A.

by the superposition property of Poisson processes. This
property also implies that a count from process N! is seen
in N; with mixing probability 7; = 4;/ E]’K:o Aj-

With this, one can show that the interarrival times
Xj, ..., X between successive decays follow exponential dis-
tributions:

K
Xi ~ EXP Zik > (5)

k=0

where X; = T; — T;_; and T, = 0.

4.1.1. Marked Point Process Setup

Due to the tuple of observations acquired at each observa-
tion time point, a marked point process setup is natural for
list-mode RIID. Specifically, let (£,7,P) denote a marked
point process with random counting measure A defined on
&€ x T, where: T is the underlying point process represent-
ing the locations of the points, £ is the set of possible
marks, P is the probability distribution of the marks;
N(B x A) denotes the number of points of 7 in A CT
with marks in B C &, and for any finite collection of pair-
wise disjoint sets {(B;, A;)|i € N}, the collection of random
variables {\(B; x A;)},y are mutually independent.

A marked point process on R>o X Z; is characterized by
its conditional intensity function (CIF) A*(e,t), such that for
each t € Ryg and e € Z,, 1*(e, t) > 0 represents the inten-
sity at temporal location ¢ with energy e. It satisfies

E [N (e+ de,t + 6t) — N (e, t)|H,]
oedt

2*(e,t) = lim
( ) ot —0
de — 0

>

where H; denotes the history up to time t. Specifically, the
CIF specifies the expected number of points in an infinitesi-
mal neighborhood of ¢t with mark e given H,.

To define the CIF of the list-mode marked process, we
note that

F(et) = pales (1),
where pgp(e; t) denotes the probability of observing mark e at

time t, and A(t) is the (temporal) CIF of the underlying
point process. Based on our correlation analysis in Section
3.1, which found no temporal-spectral dependence, we

assume pg(e; t) = pp(e) for the modeling herein.

4.2. Probabilistic Classification Framework

Building upon the Poisson process foundation, we now pre-
sent a probabilistic classification framework for radioisotope
identification from list-mode data. Our approach leverages
the marked point process representation to perform
likelihood-based classification using temporal information,
spectral information, or both modalities combined.

For parameter estimation, we assume access to training
data from each isotope of interest. Specifically, for K iso-
topes, we require K + 1 datasets:

{Dy, Dy, ..., D}, (6)



where D, contains background-only measurements and D
contains measurements from background plus isotope k.
Each dataset is defined as:

k) (k
D= {(e". 41, @)
where nj denotes the number of events, ¢ (k) represents time-
stamps, and ¢ M e Z. represents dlscretlzed energy

measurements, w1th (k) denoting observations taken from
dataset Dy.

4.2.1. Joint Log-Likelihood Decomposition

For data Dy with |Dy| = n containing background and iso-
tope k, observed over interval [0,T], the likelihood under
parameters 0 = {(4;.0p,)}ic(ox), Where 0, denotes the
parameters (or nonparametric specification) of the mark dis-
tribution pg, is:

L(0|Dy) = (H) ok tk ) exp ( JTZ(u)du>, with Z(t) = Ao +
(8)

as per the standard marked point process likelihood [see,
e.g. Daley and Vere-Jones 2003, Equation (7.3.5)]. Under
our independence assumption,

x/ (k k 4 k k
2P0 = G+ ap (),

)
k
P§s>(6) 1=y pr,(e) + Mk pr,(e)
where T : Ao s M= Aoikzk are the mixture weights.

Therefore, the likelihood simplifies to

L(6]Dx) = (ﬁ(ﬂo + ) pi (e )) exp [=T(%0 + 4)]-

i=1

(10)
Taking logs gives
/(0/Dy) = nylog (o + i) Efjlong (ef")
- T()\,() + Ak). (11)

This decomposition naturally separates temporal and
spectral components:

/temporal(}uo, 2k | D) = milog (Lo + Ak) = T(Ao + Ak),  (12)
- k), (k
/spectral(pEg’pEk |Dk> = Z logpg-j)(ez( )) (13)
i=1

For computational efficiency, we estimate the temporal
rates in closed form and the spectra via density estimation,
rather than performing a joint high-dimensional
optimization.

4.2.2. Temporal Parameter Estimation
The maximum likelihood estimate for the combined rate
)v{k,o} = Ao + A is:
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_ M
T
(]) _ 0 _ 8

where x; ; .y are interarrival times and l‘(()k> =0.
From the background-only dataset Dj:

;L{k,o} = (14)

~ nO
lop=——=. (15)
e 1
For each isotope k, we then obtain:
Ak = Aoy — Ao (16)

4.2.3. Spectral Parameter Estimation
For each dataset Di, we estimate the energy distribution
using kernel density estimation:

A(k)< ) _LiK e_el(k>
Pet) =m ™\ )

where K(+) is a kernel function and h is the bandwidth par-
ameter. Note that for k > 0, this represents the mixture dis-
tribution:

17)

Ak
P+ paleh (19)

2o +

where pg, is the background spectrum and pg, is the isotope
spectrum.

)o+/1k

4.2.4. Treatment of Isotope Mixtures

In our experimental validation, datasets containing mul-
tiple isotopes (e.g. U-232 + Ba-133) are treated as
distinct classes with their own characteristic temporal and
spectral signatures, rather than attempting spectral unmix-
ing. This simplification allows us to focus on validating
the core hypothesis about temporal information’s value for
RIID.

4.3. Classification of Unknown Sequences

Given the estimated parameters 0 = {i, ﬁj(sk)}szo from
the training  phase, e classify ~an  unknown
sequence Dieq = {(€.#))}, into one of K+1 classes:
background only (k=0) or background plus isotope
k (ked{1,...,K}).

4.3.1. Likelihood Computation

For each isotope hypothesis k € {1,...,K}, we compute the
log-likelihood of the test sequence under the model that
includes background and isotope k:

n

((Del) = 3 [1og (G + ) + logh ()

i=1
—(Go+ AT,

where T' is the observation period and

(19)
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A A
~ (k) 0 ~ k ~

e) == = e)+—=— e).
PE ( ) G0+ ig PEU( ) T + PEk( )

(20)

This can be equivalently written in terms of interarrival
times:

/1(Diea|0) = n'log (%o + 4) + > logpi (e))
i=1

1

ot Y @)
i=1

where x; = t] — t_, with t; = 0.

4.3.2. Decision Rule
The maximum likelihood classification rule assigns the test
sequence to isotope k* where:

k* =arg max /k(Dtestm).

22
ke{l,..,K} ( )

This decision rule minimizes the Bayes risk under 0-1
loss when the prior probabilities for each isotope are equal.
Specifically, under the 0-1 loss function L(k, k") = 1;.x, the
Bayes-optimal decision rule is:

Kpayes = arg mkaxP(k|Dtest) = arg mkaxp(Dtest|k)P(k). (23)

With uniform priors P(k) = 1/K, this reduces to max-
imum likelihood classification.

4.3.3. Modal Classification

To assess the relative importance of temporal and spectral
information, we can perform classification using each
modality independently. For temporal-only classification:

ki =arg max |n'log (ko + i) — (o + Ak) Zx; .
im1

kel ..., K}
(24)
For spectral-only classification:
- k
Lo g 2 e

The relative performance of these modal classifiers pro-
vides insight into the information content of different data
types for RIID.

4.4. Adaptive Signal-to-Noise Ratio Modeling

In operational settings, the signal-to-noise ratio between
training and deployment conditions often varies due to fac-
tors such as source-detector distance, shielding, and environ-
mental conditions. We address this challenge by introducing
a multiplicative scaling factor o > 0 that modulates the
observed isotope intensities while maintaining the back-
ground rate constant.

4.4.1. Modified Observation Model
Under varying SNR conditions, the observed isotope rate for
isotope k becomes:

10bs o }v}cram ,

A = (26)

where o > 0 is an unknown parameter denoting the propor-
tion of the training rates uncorrupted by noise, while the

background rate remains unchanged: 43> = 5" The
modified mixture energy distribution therefore becomes:
(x) 2o 7
= —_— . 27
PE (e|0€) )\'O + Ofllk pEO (e) + )vO + OC;Lk PEk (e) ( )

4.4.2. Bayesian Estimation of o

We adopt a Bayesian framework for estimating o, placing a
log-normal prior that encodes our expectation of moderate
deviations from training conditions:

o ~ LogNormal(,, 62), (28)

where typically u, = 0 (corresponding to mean 1) and g, is
chosen based on expected operational variability. In the
results that follow, we fix 4, =0 and g, = 1.

For each isotope hypothesis k and test sequence D,
with |Diet| = 1’ over time [0, T'], the posterior distribution
of o is:

P(|Drests k) o< p(Diest |k, ) m(et),

where the likelihood term is:

(29)

P(Dueselk, ) = (20 + i) exp [~ (20 + 0i) T'] T] o (€]]0).

i=1

(30)

4.4.3. MAP Estimation and Optimization
To enable probabilistic classification, we find the maximum
a posteriori (MAP) estimate of o:

o = arg max log p(ot| Dest k). (31)
Here, the log-posterior objective function is:
log p(0|Drest, k) = #'log (Ao + atly) — (Ao + otdy) T
d k (10 = :ua)z
+ " logpl (eo) - Fe
i=1 o
—log o + const.
(32)

Under reasonable conditions (sufficient data and well-
separated isotope signatures), a unique maximum exists. We
employ Newton-Raphson iteration for efficient optimization.

4.4.4. Classification with Adaptive SNR
The final classification incorporates both the data likelihood
and the prior on o

k' =arg max [logp(Dies |k, ) + logm(d)]. (33)

ke{l,..,K}



Table 3. The accuracy results that were obtained for each experiment. The
presence of o after the experimental number indicates that the extended o
model was tested using the experimental setup associated with that number.

Accuracy results

Experiment: Time model Energy model Energy and time model
1 0.7106 0.6917 0.7767
1-o 0.5966 0.6917 0.7288
2 0.8773 0.4782 0.6258
2-0 0.6850 0.4782 0.5390
3 0.4841 0.8570 0.8763
3-o 0.4186 0.8571 0.8752
4 0.3428 0.6412 0.7304
4-o 0.4131 0.6421 0.8160
5 0.3977 0.8883 0.9036
5-o0 03716 0.8883 0.8989
6 0.5157 0.7939 0.8512
6-00 0.4463 0.7938 0.8457
7 0.5038 0.8012 0.8312
7-o 0.4352 0.8012 0.8314

This adaptive approach automatically adjusts for varying
measurement conditions while maintaining discriminative
power between isotopes. Further, the inclusion of the prior
term logm(dy) penalizes extreme values of o, promoting
robust classification when limited data makes o estimation
uncertain.

5. Classifier Analysis

Using the probabilistic classification models from Section 4
and the datasets described in Section 2, we conducted
experiments to evaluate whether temporal information, in
the form of interarrival times, provides an advantage over
using energy information alone for classifying radiological
source material. For each experiment, 100,000 consecutive
events per source were selected with 70% (70,000 events)
used for training. The test sets, while varying by experiment,
consistently contained 3,333 samples per source, with each
sample comprising 100 events. Accuracy results, shown in
Table 3, reflect the model’s performance when the predicted
class corresponds to the class with the highest likelihood.

5.1. Experimental Framework

Each experiment utilized a unique combination of training
and test sets. For combination sources such as U-232 4 Ba-
133 and Cs-137 + Ba-133, these were treated as single iso-
topes® (2), allowing for individual isotope classification as
described in Section 4.2. Experiments 1 and 2 tested the
model using training and test sets from the same distribu-
tion, with the detector positioned at the same distance from
each source, serving as an initial evaluation of the utility of
incorporating temporal information into radioisotope identi-
fication. Experiments 3 and 6 assessed the model’s depend-
ency on gross count rate for source identification.
Experiments 4 and 5 evaluated the impact of variations in
signal-to-noise ratio on model performance. Finally,
Experiment 7 examined the effect of added variability by
combining different distributions for the training and test
sets. We note that for all experiments that relied on Datasets
A and B, the source-detector standoff remained the same
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for all sources throughout acquisition; as such, distance is
not a factor in the A-only and B-only analyses of
Experiments 1 and 2. The only experiments which addressed
standoff effects used Datasets C and D. Further details on
all experiments and their results are provided below:

5.1.1. Experiment 1

In this experiment, Dataset A was used for training and test-
ing. The test set for each source was derived from the
30,000 events that were not used in the training set.
Therefore, the test set and the training set come from the
same data distribution.

5.1.2. Experiment 2

In this experiment, Dataset B was used for training and test-
ing. The test set was derived in a similar way as that
described in Experiment 1. Therefore, the test set and the
training set come from the same data distribution.

5.1.3. Experiment 3

In this experiment, Dataset C was used for training and test-
ing. The test set was derived in a similar way as that
described in Experiment 1. Therefore, the test set and the
training set come from the same data distribution which
means that the distances at which the sources are placed is
remaining constant from the training set to the test set.

5.1.4. Experiment 4

In this experiment, Dataset C was used as the training set
whereas Dataset D was used as the test set. The test set for
each source was derived from 30,000 events found in
Dataset D. Therefore, the test set and the training set come
from two different data distributions and the distances at
which the sources are placed is increasing from the training
set to the test set.

5.1.5. Experiment 5

In this experiment, Dataset D was used as the training set
whereas Dataset C was used as the test set. The test set for
each source was derived from 30,000 events found in
Dataset C. Therefore, the test set and the training set come
from two different data distributions and the distances at
which the sources are placed is decreasing from the training
set to the test set.

5.1.6. Experiment 6

In this experiment, Dataset D was used for training and test-
ing. The test set was derived in a similar way as that
described in Experiment 1. Therefore, the test set and the
training set come from the same data distribution which
means that the distances at which the sources are placed is
remaining constant from the training set to the test set.



10 L. PATEL ET AL.

5.1.7. Experiment 7

In this experiment, Datasets C and D were combined and
then used to create the training and test set. The test set for
each source was derived from 30,000 events found in the
combined dataset for each source. Therefore, the test set and
the training set come from a combination of two different
data distributions. This arrangement also means that the
training and test sets are representative of the two different
distances at which events were collected for each source.

5.2. Accuracy of Probabilistic Models

In Table 3, we present experimental results of all datasets
when trained and tested on the initial probabilistic classifier
developed, and the extended o model that incorporates vari-
abilities in the SNRs between training and testing datasets.

The results demonstrate that, across all experiments,
models incorporating both energy and time consistently out-
performed energy-only models (i.e. spectral analysis) in
terms of accuracy. However, the benefit of adding temporal
information varied by experiment, largely due to differences
in isotopes’ decay parameters. For instance, the improved
performance of time-based models in Experiments 1 and 2
may be attributed to their reliance on count rates for class
differentiation. In Experiments 3 and 6, count rates were
controlled by positioning sources at distances that ensured
similar rates across sources, reducing the model’s ability to
rely on count rate as a distinguishing feature. This likely
explains the lower performance of time-based models in
these experiments compared to Experiments 1 and 2.

Experiments 4 and 5 introduced additional performance
drops, likely due to differences in data distributions between
training and test sets. In these experiments, count rates were
controlled similarly to Experiments 3 and 6, but Dataset D
represented sources positioned farther from the detector
than those in Dataset C. Consequently, Experiment 4’s train-
ing set had a higher source-to-background ratio than its test
set, while Experiment 5's training set had a lower ratio.
These shifts in data distribution likely contributed to the
observed performance differences between the models in
Experiments 4 and 5.

The extended o model, designed to account for uncer-
tainties in signal-to-noise ratios (SNRs) between training
and test sets, significantly improved classifier performance,
as evidenced by Experiment 4-¢. Moreover, the extended o
model often achieved comparable performance to the ori-
ginal model, with only minor decreases in accuracy, demon-
strating its robustness and potential for handling complex
and varied data collection scenarios.

5.3. Receiver Operating Characteristic Curves

Receiver operating characteristic (ROC) curves are a tool
used for assessing the performance of a binary classifier,
comparing the performance of binary classifiers, and estab-
lishing a threshold likelihood value at which a data point is
said to belong to a specific class (Francis Sahngun 2022).
The ROC curve typically has sensitivity on the y-axis and

specificity or the false positive rate (FPR) on the x-axis.
Sensitivity is defined as the ratio of the number of observa-
tions that were correctly associated to the class of interest by
the model to the total number of observations that belong
to the class of interest. Specificity is defined as the ratio of
the number of observations that were correctly associated to
the class that was not of interest by the model to the total
number of observations that do not belong to the class of
interest (Ho Park et al. 2004).

Nonparametric ROC curves are generated by calculating
sensitivity and specificity at various threshold values. Higher
thresholds require larger likelihood values for classification
into the class of interest, typically resulting in higher specifi-
city and lower sensitivity. Points corresponding to higher
thresholds appear closer to the lower left corner of the ROC
curve, while lower thresholds result in the opposite.

The area under the ROC curve (AUC) is often used to
summarize the curve and compare classifiers. Unlike accur-
acy or error rate, AUC is independent of the threshold value
(Hand and Till 2001). Let p = P(x; = 0|x; = 1) be the esti-
mated probability of incorrectly assigning a randomly
chosen member of one class to another class and g =
P(x; =0]x; = 0) be the estimated probability of correctly
assigning a randomly chosen member of the other class,
then the AUC can be defined as the probability that p is
smaller than g (Hand and Till 2001). Therefore, better per-
forming models are associated with larger AUC values, with
AUC values ranging between 0 and 1 (Ho Park et al. 2004).

We applied ROC curve analysis to our experiments.
Experiment 1’s ROC curves and associated AUC values are
shown in Figure 4. Appendix B contains the AUC values for
every source across each experiment. These ROC curves and
AUC values were calculated by treating the class of interest
as one class and grouping all other classes into a second
class, ensuring a binary classification scenario.

Since AUC is only applicable to situations where there
are only two classes, additional analysis was conducted using
the M measure presented in (Hand and Till 2001), which is
the average of all pairwise AUCs and can be calculated as
shown in Equation (34). In Equation (34), s represents the
number of classes and AUC;j represents the pairwise AUC
between the i and j* classes. It is important to note that
these pairwise AUCs are different from the AUCs shown in
Figure 4 and those found in Appendix B. The M measure is
also referred to as the “multi-class AUC” (Robin et al,
2011).

= 2 AYC (34)
s(s—1)

The results presented in Table 4 and the ROC curves and
AUC values found in Appendix B indicate that the energy
and time model outperforms the energy model in nearly
every experiment. The extended « model seemed to perform
reliably under all conditions. Our results highlight the flaw
in the original model that we used, which exploits the pro-
portion of background that is present in the signal for test-
ing. When the proportion of background present in the
signal increases from the training set to the test set, the
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Figure 4. (a-e) display the ROCs associated with the performance of the time, energy, and energy & time models on the different sources. The list-mode data asso-

ciated with these plots is from Dataset A.

Table 4. The multi-class AUC results computed for each experiment and
model type.

Multi-class AUC results

Experiment: Time model Energy model Energy and time model
1 0.9454 0.9501 0.9713
1-o 0.9081 0.9501 0.9616
2 0.9742 0.7902 0.9870
2-00 0.9099 0.7902 0.8527
3 0.7882 0.9832 0.9857
3-0 0.7830 0.9832 0.9858
4 0.7426 0.9516 0.9574
4-o 0.8275 0.9516 0.9706
5 0.7457 0.9836 0.9848
5-o0 0.7765 0.9836 0.9846
6 0.8281 0.9621 0.9718
6-00 0.8215 0.9621 0.9704
7 0.8049 0.9750 0.9801
7-0 0.7983 0.9750 0.9801

extended o model, which accounts for the SNR (different
distances), has seemed to overcome the flaws of the original
model and provides accurate classification.

To study the impact of distance on the AUC results, we
estimate a smooth performance surface by fitting Gaussian-
process (GP) regression to the logit of AUC as a function of
inverse-squared distances, shown in Figure 5. For each
experiment i, we set y; =logit(AUC;) and inputs x; =
(1/r2in.i» 1/1g. ), rescaled each coordinate to [0,1], and
used a squared-exponential kernel

k(x,xX) = o® exp {— > (- xJ)Z/HJ-}
J
with a homoscedastic nugget on the logit scale. Kernel

hyperparameters (01, 0,0% 07,40) are estimated by
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Figure 5. Gaussian-process smoothed AUC surfaces for the original classifier (left panel) and extended-u classifier (right panel) as functions of training and testing
distances for each isotope measured. We model logit(AUC) with a squared-exponential Gaussian process in the inverse-square features (1/r2,;.,1/ra,). Kernel
hyperparameters are estimated on the original data and held fixed for the extended-o panel. Heatmaps show Gaussian-process posterior means on the same color
scale (AUC 0.90-1.00). Black dots indicate the observed experiments, and the red dashed line marks equal training and testing distance.

maximum likelihood on the original model and then held
fixed when predicting the extended-o model (to facilitate
a shared-kernel comparison) so that any differences in the
maps reflect the data, not different smoothness assump-
tions. This formulation encodes the physical inverse-
square law, assumed to hold for signal strength in this
application. Consequently, the GP surface recovers the
expected monotone degradation with increasing distance
and allows us to assess robustness to train-test distance
mismatch.

The GP fit uses only 16 points from 4 different experi-
ments, hence the heatmaps are trend visualizations rather
than precise estimates far from the sampled region. As
such, predictions near the boundaries of the transformed
space can revert toward the GP mean. Further, results
depend on the logit link and the inverse-square feature
choice, and alternative links or kernels are not explored
here. Uncertainty bands are additionally not shown but
are wider where sampling is sparse, emphasizing our focus

on qualitative comparisons between models under a
shared kernel.
Under a shared kernel and identical color scale

(AUCs between 0.90-1.00), the extended-o model maintains
near-unity AUC across a wider range of (Firain, Ttest) pAirs,
particularly off the fyan = reese diagonal, indicating greater
robustness to distance misspecification while better preserv-
ing the expected inverse-square pattern. On the other hand,
the original model struggles to maintain the same pattern as
a result of differing training and testing distances, with the
greater testing distance to training distance scenario causing
AUC jumps due to poor model calibration without account-
ing for SNR degradation. It is well established that source
intensity decreases proportionally to the inverse square of
the distance from the detector. Consequently, model per-
formance is expected to decline as the source distance from
the detector increases. Our sparse sampling results support
this expectation.

5.4. McNemar'’s Test

The classifier results seem to indicate that a model that uses
both interarrival time and energy channels in order to clas-
sify the sources outperforms a model that only uses energy
channels. In order to determine whether the two classifiers
are significantly different from each other, McNemar’s Test
is used. McNemar’s test has been used and is frequently rec-
ommended as a nonparametric test for comparing the
accuracy or error rate of two classifiers (Katarzyna Sta,por
2018; Dietterich 1998).

In order to stick to convention, we decided to set the
level of significance, o, to 0.05 (Tamhane and Dunlop 2000).
The P-values that were obtained for each of the respective
experiments that were conducted were nearly zero. In this
case, a P-value can be interpreted as the probability of
observing at least x samples that were incorrectly classified
by the energy model and correctly classified by the model
that includes energy and temporal information given that
p =3. Therefore, under the hypothesis test that we con-
ducted, the smaller the P-value the more significant the dif-
ference between the two classifiers. This difference would
indicate that the energy model performs significantly worse
than the model that includes temporal and energy data.

The results for this test indicate that under each experi-
ment the error rate for the energy model is significantly
larger than the error rate for the energy & time model.
These results seem to indicate that it is beneficial to include
temporal information for the classification of radioactive
material.

5.4.1. Power Analysis

In order to ensure that the McNemar’s tests were able to
properly discriminate between the null and alternative
hypotheses, we analyzed the power function for each test
(Tamhane and Dunlop 2000). The plots of the power func-
tion show how the probability of rejecting the null
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Figure 6. (a and b) display the power of the McNemar’s test as the value of the p parameter is increased. The colors in each figure are related to the experimental
number. (a) shows the results when the original model is used whereas, (b) shows the results when the extended « model is used.
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Figure 7. (a and b) display the impact that sequence length has on the AUC values for each class in Dataset A.
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Figure 8. (a and b) display the impact that sequence length has on the accuracy of each classifier. The data in these figures is from Dataset A.

hypothesis changes as the number of observations that were
incorrectly labeled by the energy model and correctly labeled
by the energy & time model increases. An increase in p rep-
resents an increase in the number of observations that were
incorrectly labeled by the energy model and correctly labeled
by the energy and time model. Figure 6 displays all plots of
power as a function of p. The power plots indicate that the
McNemar’s test is fairly sensitive to the change in p. These
results provide evidence to our claim that the tests were able

to effectively discriminate between the null and alternative
hypotheses.

5.5. Sequence Length

In the above experiments the test sequences that needed to
be classified all had a sequence length of 100. However, it is
important to investigate the impact that varying the
sequence length has on the performance of the different
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models because this relates to dwell time requirements. In
order to evaluate the impact that sequence length has on
model performance we looked at the effect that sequence
length had on the AUC values for each class under each
model and the effect that it had on the accuracy of each
classifier. Figures 7 and 8 are example plots that display the
change in AUC or classifier accuracy as the sequence length
is increased. As expected, model performance improves as
the sequence length increases. Additionally, the model that
relies on both energy and time always outperforms the
energy model. Similar results are observed across all of the
plots found in Appendix C. In each plot there is some vari-
ation due to the dataset and some variation due to whether
the extended o model is in use, but the general trend is that
the energy and time models outperform the energy models
when the sequence length is smaller.

6. Conclusion

In this work, we asked two simple questions, what is the
nature of the temporal domain information of list-mode
gamma-ray data and is that temporal domain information
beneficial to the application of radioisotope identification.
The nature of the time domain was first explored through the
evaluation of different correlation metrics. The different met-
rics indicated that there is no evidence of correlations
between the time and energy space of our radiation datasets.
Additionally, a distributional analysis of our data sets was
conducted by inspecting the box plots to identify characteris-
tics of the data sets that may lead to discernible discrimina-
tors between radioactive sources. This analysis indicated that
the distributions of interarrival times are relatively stable
across consistent collection windows and that these distribu-
tions show meaningful differences across radioactive sources.
Little variation in the distributions for the same source
occurred when collection windows increased or decreased.

To evaluate the usefulness of temporal information for
RIID, we developed a probabilistic classification method
capable of using temporal data, spectral data, or the fusion
of both. The classifier assumes independence between the
spectral and time models, enabling us to test whether incor-
porating temporal information improves RIID performance.
Using distributional estimates of temporal and spectral
domain data, we rigorously assessed the classifier’s perform-
ance with interarrival time data alone, spectral data alone,
and both combined. Performance was evaluated using accur-
acy, ROC curves, and McNemar tests. Results showed that,
in all cases, including temporal information improved classi-
fication performance.

A critical aspect of our framework is that the marked
point process model naturally highlights the interconnected-
ness of spectral and temporal components. For computa-
tional efficiency, however, we estimated their parameters
independently. Our results show that fuzing spectral and
temporal information far exceeds the performance of either
modality alone. Moreover, our choice of a kernel density
estimator for the spectral model is not essential; it can be
substituted with more sophisticated approaches such as full-

spectrum matching, non-negative matrix factorization, or
neural network classifiers. Regardless of the spectral estima-
tor chosen, this article has shown that temporal information
provides additional classification value beyond what is cur-
rently available in the field. This underscores the robustness
of our approach and its potential for integration with both
classical and modern RIID methodologies.

Several avenues for future research emerge from this
work. Extending the probabilistic classifier to address source
separation, applying these methods to non-stationary sour-
ces, determining efficacy of temporal information on sources
with spectrally similar peaks, and exploring alternative met-
rics beyond interarrival time to identify discriminative tem-
poral features for classification are promising directions.
Finally, extending the classifier framework to higher dimen-
sional representations of list-mode data—such as interarrival
time distributions within individual energy bins, between
pairs of bins, or across larger groupings—could further
enhance the discrimination of temporal information content
of the source.

The results of this study are promising and highlight the
potential for further exploration of temporal domain infor-
mation in RIID applications. GADRAS (Mitchell et al. 2014)
is the defacto standard for RIID algorithms, with nearly
40 years of continuous development and refinement, and we
do not claim any comparison or advancements over
GADRAS. Instead, we have provided evidence supporting
the potential benefits of incorporating temporal information
into RIID algorithms. Our findings warrant further investi-
gation and offer a foundation for developing new methods
or enhancing existing ones with temporal data to improve
RIID for the broader community.

Notes

1. The data that support the findings of this study are available
from the corresponding author, AJH, upon reasonable
request.

2. Classifying multiple isotopes within a single sample is a
promising extension of the probabilistic classifier but is
beyond the scope of this preliminary work.
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Appendix A. Dataset details

Table A1. Distances used for each source to achieve specific count rate targets.

Distance 1 Distance 2
Source Distance Gross count rate Distance Gross count rate
Cs-137 10ft 2in 1598 15ft 2.5in 1181
Y-88 7ft 1.5in 1738 11ft 4in 1230
Ba-133 21ft 6in 1827 29ft 1381
Cs-137 & Ba-133 22ft 9in 1849 31ft 1350
Background 751
Table A2. MCA settings for the August 2024 collection.
Amplifier Gain 0.4
Shaping Time 2 u sec
ADC Lower Level Disk 17
Upper Level Disk 1023
High voltage Target 666

Appendix B. AUC values

Table B1. The table displays the AUC results that were obtained for each experiment where the distribution of the training set and the distribution of the test
set were the same. The presence of o after the experimental number indicates that the extended « model was tested using the experimental setup associated

with that number.

AUC results
Experiment: Source Time model Energy model Energy and time model
1 Y88 0.8656 0.9079 0.9307
Cs137 0.9560 0.9703 0.9896
U232 0.9748 0.9571 0.9827
Ba133 0.9999 0.9995 1
U232+ Ba133 0.9748 0.9462 0.9827
1-a Y88 0.8601 0.9079 0.9274
Cs137 0.9375 0.9703 0.9877
U232 0.8252 0.9571 0.9593
Ba133 0.9495 0.9995 0.9999
U232+ Ba133 0.9748 0.9462 0.9541
2 U232 0.9390 0.8328 0.9628
Ba133 0.9619 0.8755 0.9934
U232+ Ba133 0.9958 0.5051 0.9918
2-0 U232 0.7168 0.8328 0.9182
Ba133 0.9268 0.8755 09117
U232+ Ba133 0.9958 0.5051 0.5811
3 Y88 0.6664 1 1
Cs137 0.8119 1 1
Ba133 0.7278 0.9644 0.9650
Cs137 +Bal33 0.7351 0.9525 0.9636
3-o Y88 0.6500 1 1
Cs137 0.8022 1 1
Ba133 0.7278 0.9643 0.9650
Cs137 +Bal33 0.7351 0.9524 0.9636
6 Y88 0.7418 0.9947 0.9993
Cs137 0.8276 0.9964 0.9990
Ba133 0.7879 0.9314 0.9364
Cs137 +Bal33 0.7834 0.9050 0.9245
6-o Y88 0.7296 0.9947 0.9990
Cs137 0.8071 0.9964 0.9987
Ba133 0.7879 0.9314 0.9359
Cs137 +Bal33 0.7829 0.9050 0.9183
7 Y88 0.6974 0.9990 1
Cs137 0.8207 0.9995 0.9999
Ba133 0.7620 0.9487 0.9529
Cs137 +Bal33 0.7444 0.9332 0.9477
7-o Y88 0.6811 0.9990 1
Cs137 0.8039 0.9995 0.9999
Ba133 0.7620 0.9487 0.9526
Cs137 +Bal33 0.7444 0.9332 0.9481
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Table B2. The AUC results that were obtained for each experiment where the distribution of the training set was different from that of the test set. The pres-
ence of o after the experimental number indicates that the extended o model was tested using the experimental setup associated with that number.

AUC results
Experiment: Source Time model Energy model Energy and time model
4 Y88 0.4871 0.9862 0.9760
Cs137 0.6268 0.9920 0.9713
Bai133 0.7896 0.9256 0.9322
Cs137 4 Ba133 0.7836 0.8810 0.9074
4-0, Y88 0.7349 0.9862 0.9977
Cs137 0.8295 0.9920 0.9972
Bai133 0.7896 0.9257 0.9352
Cs137 4 Ba133 0.7836 0.8811 0.9233
5 Y88 0.6480 1 1
Cs137 0.7897 1 1
Bai133 0.7313 0.9627 0.9622
Cs137 4 Ba133 0.5594 0.9560 0.9616
5-o Y88 0.6427 1 1
Cs137 0.7722 1 1
Bai133 0.7314 0.9627 0.9627
Cs137 4 Ba133 0.7361 0.9560 0.9601

Appendix C. Effects of sequence length
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Figure C1. (a-f) display the impact that sequence length has on the AUC values for each class in the respective datasets.
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Figure C2. (a-f) display the impact that sequence length has on the AUC values for each class in the respective datasets.
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