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ABSTRACT
This paper documents the blind and post-blind analysis predictions for the 2023 Sandia Mechanics
Challenge (SMC), which involved predicting the behavior of a threaded fastener joint structure
subjected to shock loading. Utilizing repeat sets of fastener calibration data from various experi-
mental configurations including tension, double shear, and joint tension, we developed a library of
calibrated models which were propagated through the application model using the Discrete-Direct
(DD) uncertainty quantification (UQ) approach. Although the initial blind predictions did not
incorporate spare-sample processing to quantify fastener failure probabilities, the analyses yielded
reasonable conclusions aligned with experimental results.
In the post-blind analysis phase, we focused on enhancing the fidelity of the aluminum constitutive
model and innovating the DD approach to obtain probabilistic predictions for fastener failure,
particularly when quantities of interest (QoIs) approach their bounds. The improved aluminum
model captures the behavior of the cantilever under shock loading more accurately, predicting both
partial and complete cracks, although it tends to underpredict failure propagation. The enhanced
DD approach facilitates probabilistic predictions that reflect the interdependent failure mechanisms
of the fasteners and the cantilever, revealing that while certain fasteners are more likely to fail, the
failure does not necessarily follow a progressive pattern.
Overall, the post-blind analyses significantly improved the predictive capabilities of the model,
providing valuable insights into the SMC application and establishing a robust foundation for
informed engineering decisions. The methodology demonstrates a cost-effective and extensible
approach suitable for a wide range of applications, highlighting the importance of uncertainty
quantification to provide context for engineering decision making.
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1. INTRODUCTION

The Sandia Mechanics Challenge (SMC) was issued at the 17th U.S. National Congress on Com-
putational Mechanics in Albuquerque, NM in July 2023 [2]. The SMC offers participants an
opportunity to predict the behavior of a complex geometry subjected to diverse loading conditions,
testing the participants’ predictive capabilities and providing a forum for teams to socialize their
approaches within the larger engineering analysis community. For the 2023 challenge, the geom-
etry involved a threaded fastener joint structure subjected to a shock environment. The jointed
structure is attached to the carriage of a bungee-accelerated drop table, where the carriage impacts
a reaction mass and transmits a shock loading to the structure of interest. Participants were invited
to predict the behavior of the structure through blind predictions of various quantities of interest
(QoIs), including the failure of the fasteners, joints, and jointed structure.

The first author led a Sandia team that formulated a strategy to answer the challenge questions
while being mindful of time and budget constraints [4] [5]. The team focused primarily on
modeling fastener failure and utilized the “Discrete-Direct" (DD) uncertainty quantification (UQ)
approach [6], an approach developed at Sandia for UQ with large analysis models where model
calibration data and computer cycles are limited. The DD approach has been successfully applied to
similar fastener analysis problems [7], but one of the challenges for this type of fastener analysis is
that the tolerance interval equivalent normal (TIEN) sparse-sampling statistical processing method
[8] cannot be applied to bounded quantities of interest (QoIs) when a significant portion of the
QoI output realizations reach a bound. This limitation is sometimes encountered in abnormal
mechanical fastener analyses and complicates probabilistic predictions for quantities like fastener
failure. Although the team did not fully utilize the capabilities of the DD approach for the
initial SMC blind predictions, i.e., no sparse-sampling statistical processing was used to quantify
probabilities of fastener failure, the reduced application of the DD approach resulted in competitive
and insightful engineering predictions for the challenge [4] [5]. However, the team identified
two key areas for improvement in the analysis before the challenge results were released: first,
the aluminum model had not undergone rigorous calibration; second, the DD approach could be
enhanced to better quantify fastener failure probabilities, particularly when a significant portion of
the fastener QoIs reach their failure bound.

This paper documents the blind and post-blind SMC analysis. First, the blind-prediction process is
documented and the initial results are summarized. Then, the post-blind investigations are detailed
which target improving the fidelity of the aluminum constitutive model and innovating the DD
approach to obtain probabilistic predictions for fastener failure. The aluminum constitutive model
is improved by calibrating rate and temperature-dependent plasticity and failure models. Although
this new aluminum model is only calibrated for predicting the initiation of failure, it is extended in
this application to predict failure propagation in the absence of a better model. The DD approach is
enhanced to extend to the conservative prediction of failure probabilities when QoIs have significant
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CHAPTER 1. INTRODUCTION

samples at a bound, leveraging relevant binomial distributions. This enhancement is applied to the
primary QoI of fastener fractional nearness to failure ( 𝑓 𝑜 𝑓 ) where 0 ≤ 𝑓 𝑜 𝑓 ≤ 1.

The blind-prediction analyses provide adequate results that can be used to make sound engineering
judgements, and these predictions are improved in the post-blind analyses which reasonably capture
relevant QoIs in the SMC with probabilistic uncertainty information. Post-blind predictions of
fastener failure, which were not calibrated to the SMC results in any way, fall within similar
velocity-change regions as test data, and the fastener probabilities of failure obtained from the DD
approach reflect test occurrences, including some tests passing within velocity-change regions of
concern and subsets of fasteners failing (not “all or nothing"). The predictions relating to the failure
of the aluminum cantilever also correlate well with test data even though the constitutive model
utilized is not calibrated for failure propagation. Failure initiation of the aluminum in the analysis
closely resembles test data, and although failure propagation appears to occur more slowly in the
analysis, predictions are close enough to test data that credible engineering decisions could have
been made in the absence of any test information. Overall, these results showcase a strong approach
to fastener modeling that is conducive to component and system-level analysis.
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2. THE SANDIA MECHANICS CHALLENGE AND BLIND
PREDICTIONS

2.1. SMC Background

The Sandia Mechanics Challenge provides participants the opportunity to analyze the behavior
of a complex structure and submit blind predictions documenting the expected behavior. The
2023 SMC, documented thoroughly in [2], [1], and [5], focuses on a geometry comprised of a 6061
aluminum block and cantilever connected by six NAS1351-3-12P fasteners. Washers and Keenserts
are included with each joint. This geometry is shown in Figure 2-1, where the 6061 aluminum
cantilever is grey, the 6061 aluminum block is red, the fasteners are blue, and the cadmium-plated
stainless steel washers are orange. Not shown in the figure are the six stainless steel Keenserts
which sit in the aluminum block. The fastener numbering convention is also noted in the figure for
identification of individual fasteners in the configuration.

(a) Side
(b) Front with Fastener

Numbering

(c) Isometric

Figure 2-1. Analysis model of the SMC structure.
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CHAPTER 2. THE SANDIA MECHANICS CHALLENGE AND BLIND PREDICTIONS

The SMC structure is subjected to a shock environment via a bungee-accelerated drop table, and
challenge participants are invited to predict the behavior of the structure as the shock environment
increases in severity. Nineteen total shock tests were provided as part of the initial SMC data
packet [2], and the test specifications are detailed in Table 2-1. Shocks range in magnitude from
approximately 5150g to 11900g and changes in velocity range from 43.2 ft/s to 127.9 ft/s. A rich
set of characterization data is made available to the participants to calibrate constitutive models
for the fasteners and aluminum. The experimental configurations for the fasteners include fastener
tension, fastener double shear, single joint tension, and single joint shear. For the aluminum, there
are experimental data for tension, top hat shear-compression, and Kolsky bar tests. Some of the
tests listed above are performed at various rates to facilitate rate-dependent constitutive model
calibration. Additional documentation of the lead author’s blind-prediction models and approaches
are detailed in [4].

Table 2-1. Test data from SMC [2]

Test Velocity Change (ft/s) Peak Acceleration (g) Impact Duration (ms)
1 43.2 5151 0.46
2 50.0 5995 0.45
3 54.2 6312 0.46
4 60.0 7388 0.44
5 63.7 7449 0.44
6 66.4 9209 0.33
7 70.8 8634 0.43
8 77.9 8562 0.49
9 82.6 9567 0.46
10 85.2 10030 0.45
11 89.1 10858 0.43
12 95.9 10670 0.46
13 98.8 11924 0.43
14 103.9 11692 0.45
15 105.6 11860 0.45
16 109.1 11578 0.49
17 114.9 10080 0.64
18 119.7 11114 0.65
19 127.9 8774 0.88

SMC participants are invited to answer many different questions about the structure when subjected
to the shocks detailed in Table 2-1, including when the first fastener in the structure will fail, when
all fasteners will fail, will any failure occur in the cantilever, and will any failure occur in the
block and/or the Keenserts. For the blind predictions, the team primarily focused on the failure
predictions of the fasteners, but also made statements about the integrity of the cantilever, Keenserts,
and block.
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2.1. SMC BACKGROUND

2.1.1. Calibration

An anisotropic model is calibrated for the aluminum block. Material parameters for this aluminum
model are provided in Table 2-2, which is calibrated using MatCal [9], an automated Sandia tool
for calibration. Note that the density of the aluminum is varied in the SMC analyses for the block
and the cantilever to accurately capture the mass of the components after geometric simplications
are made for ease of meshing. Inserts and washers are modeled using elastic properties of 304
stainless steel [10] and those material parameters are provided in Table 2-3.

Table 2-2. Aluminum material parameters.
Property Value
Density (lb-s2/in4) 0.000254
Young’s Modulus (psi) 1.00E+07
Poisson’s Ratio 0.33
Yield Stress (psi) 50725.69031
Hardening Modulus (psi) 13050.35321
Exponential Coefficient 17.15961961
r11 0.90458
r22 0.90458
r33 1
r12 1
r23 1
r31 1
𝐸𝑄𝑃𝑆FAIL,33 0.675
𝐸𝑄𝑃𝑆FAIL,22 0.29

Table 2-3. Insert and washer density and elastic parameters.

Material Property Value
Density (lb-s2/in4) 0.000741
Young’s Modulus (psi) 28,500,000
Poisson’s Ratio 0.27

Three experimental configurations are used to calibrate constitutive model parameters for the
fasteners: fastener tension, fastener double shear, and joint tension. The analysis models for the
fastener tension and fastener double shear experiments are shown in Figure 2-2 and the analysis
model for the joint tension configuration is shown in Figure 2-3. Fasteners are modeled with a
"plug" approach, where cylinders represent the head and shank and there is no explicit modeling
of threads. The plug’s shank diameter is the nominal diameter of the fastener. Note that uniform-
gradient hexahedral elements are used for the fastener in the fastener tension and fastener double
shear calibrations, and selective deviatoric elements with deviatoric parameter = 0.5 are utilized
for the fastener in the joint tension calibrations. The reason selective deviatoric elements were used
for the joint tension calibrations is because that set of calibration data was released at a later date,
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and in between SMC data releases a peer reviewer suggested changing the element formulation in
the fasteners.

(a) Tension (b) Double Shear

Figure 2-2. Tension and shear analysis models for the fastener characterization tests.

The tension and shear experimental configurations utilize steel fixturing. The tension-dominated
joint test is intended to represent the application joint, and thus uses similar materials, inserts, and
washers. The top and bottom fixtures for the joint (grey and red in Figure 2-3) are Al6061-T6. The
stainless steel washer and stainless steel Keensert (not shown in Figure 2-3) are the same as those
present in the challenge geometry. Fasteners are preloaded to 60 in-lb within the structure prior to
testing. The bottom part of the fixture (red in Figure 2-3) is connected to a rod and clevis to allow
for slight rotations of the fixturing. This mechanism for rotation is captured with the pink rod and
cyan pin shown in Figure 2-3. The cyan pin is fixed on both ends, but the pink rod is free to rotate
around the pin. Displacement is applied vertically to the two flat, long rectangular surfaces of the
grey body near the top of the volume (see Figure 2-3) . The fasteners are modeled with the same
geometry and mesh discretization as what is used in the application model. All simulations are
performed in Sierra Solid Mechanics (SM) [11].

J2-plasticity models with Voce hardening and power-law breakdown rate dependence are calibrated
for the fasteners. Note that parameters for the strain-rate-dependent power law breakdown model are
not calibrated here, but are inherited from previous work for similar fasteners [3]. The calibration
process for the Voce hardening model is performed using Dakota [12] to drive an automated Next
Generation Workflow (NGW) analysis workflow [13]. The Voce hardening model and power law
breakdown model are given by equations 2.1 and 2.2, respectively:

𝜎̃ = 𝜎𝑦 + 𝐴
(
1 − 𝑒−𝑛𝜖 𝑝

)
(2.1)
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Figure 2-3. Joint tension analysis model.

𝜎̄ = 𝜎̃ (𝜖 𝑝)
[
1 + sinh−1

(( ¤̄𝜖 𝑝
𝑔

) 1
𝑚

)]
(2.2)

where in Equation (2.1), 𝜎̃ is the rate-independent flow stress, 𝜎𝑦 is the yield stress, 𝐴 is the
hardening modulus, 𝑛 is the exponential coefficient, and 𝜖 𝑝 is the effective plastic strain. In
Equation (2.2), 𝜎̄ is the flow stress, ¤̄𝜖 𝑝 is the effective plastic strain rate, 𝑔 model parameter related
to the activation energy required to transition from climb to glide-controlled deformation, and 𝑚
dictates the strength of the dependence [14].

There are 4-5 sets of test data from each of the experimental configurations used for calibration,
and calibrations are performed directly to each discrete set of test data. These sets of test data are
listed in Table 2-4 with their shorthand analysis names which include SDS (“slow double shear"),
ST (“slow tension"), FT (“fast tension"), SJ (“slow joint" tension) and FJ (“fast joint" tension).
Note that two types of the fastener tension tests (ST and FT) are used for calibration where the tests
are performed at different rates, although this difference in rate is not included in the calibration
process. Also, the team decided to combine the FJ and SJ datasets because there was no discernable
difference in the peak loads achieved in the tests. The raw test data are manipulated to account for
any compliance discrepancies between the test data and analysis response. To best calibrate the
plastic response of the fastener, we scale and shift the test data such that the elastic response of the
test data (after loss of preload) and analysis model are approximately equal. Preload is not included
in the calibration analysis model. Note that eight-noded, uniform gradient hexahedral elements are
used for all fastener models except for the joint tension calibrations, which use selective-deviatoric
hexehedral elements with deviatoric parameter = 0.5.
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Table 2-4. Test data and analysis naming convention.

Test Data Info Analysis Name
double shear, 0.05 in/sec, dataset 2 SDS02
double shear, 0.05 in/sec, dataset 3 SDS03
double shear, 0.05 in/sec, dataset 4 SDS04
double shear, 0.05 in/sec, dataset 5 SDS05
tension, 0.5 mil/sec, 30 in-lb preload, dataset 1 ST01
tension, 0.5 mil/sec, 30 in-lb preload, dataset 2 ST02
tension, 0.5 mil/sec, 30 in-lb preload, dataset 3 ST03
tension, 0.5 mil/sec, 30 in-lb preload, dataset 4 ST04
tension, 0.5 mil/sec, 30 in-lb preload, dataset 5 ST05
tension, 5.0 mil/sec, 30 in-lb preload, dataset 1 FT01
tension, 5.0 mil/sec, 30 in-lb preload, dataset 3 FT03
tension, 5.0 mil/sec, 30 in-lb preload, dataset 4 FT04
tension, 5.0 mil/sec, 30 in-lb preload, dataset 5 FT05
single joint tension, 0.01 in/sec, 60 in-lb preload, dataset 1 FJ01
single joint tension, 0.01 in/sec, 60 in-lb preload, dataset 3 FJ03
single joint tension, 0.001 in/sec, 60 in-lb preload, dataset 2 SJ02
single joint tension, 0.001 in/sec, 60 in-lb preload, dataset 3 SJ03
single joint tension, 0.001 in/sec, 60 in-lb preload, dataset 4 SJ04

Calibration results are plotted in Appendix A with the corresponding test data, where the end of
both the red test curve and dashed blue analysis curve indicate where failure occurs. Assumed
elastic properties are listed in Table 2-5 and the rate dependent properties inherited from previous
work [3] are given in Table 2-6. Note that since the nominal area of the bolt is modeled, the
elastic modulus of the fastener is reduced to account for the larger model area compared to the
tensile stress area of the bolt. Calibrated material parameters for the datasets listed in Table 2-4
are provided in Tables 2-7–2-10. An equivalent plastic strain (EQPS) death criterion is used to
reproduce fastener failure. The critical EQPS value is unique to each fastener calibration and is
obtained by inspecting the test and analysis load-displacement curves and choosing a value near
experimental failure displacements. Values are chosen slightly prior to experimental failure to
account for the analysis curves not falling as rapidly after ultimate stress (and thus absorbing more
energy).

Table 2-5. Fastener density and elastic parameters.

Material Property Value
Density (lb-s2/in4) 0.00074
Young’s Modulus (psi) 20,600,000
Poisson’s Ratio 0.3
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Table 2-6. Fastener rate-dependent parameters. [3]

Material Property Value
Rate Multiplier power_law_breakdown
Rate Coefficient (psi) 1.50E+08
Rate Exponent 5.5

Table 2-7. Fastener parameters for Voce model – slow double shear (SDS) fasteners.

Analysis Name SDS02 SDS03 SDS04 SDS05
Yield Stress (psi) 70182.09 67812.67 61765.4 74073.97
Hardening Modulus (psi) 49795.83 54249.93 58386.55 45511.61
Exponential Coefficient 53.594 47.837 66.82 40.47
EQPS Fail 0.235 0.258 0.295 0.26

Table 2-8. Fastener parameters for Voce model – slow tension (ST) fasteners.

Analysis Name ST01 ST02 ST03 ST04 ST05
Yield Stress (psi) 114505.4 115648.2 117260.9 111229.5 117260.9
Hardening Modulus (psi) 21505.6 21224.26 20915.8 25040.6 20915.8
Exponential Coefficient 89.52 98.23 77.36 97.98 73.87
EQPS Fail 0.33 0.279 0.359 0.345 0.344

Table 2-9. Fastener parameters for Voce model – fast tension (FT) fasteners.

Analysis Name FT01 FT03 FT04 FT05
Yield Stress (psi) 132444 130828.5 132444 130828.5
Hardening Modulus (psi) 2182.35 3724.4 2962.5 5911.39
Exponential Coefficient 143.13 137.78 121.47 141.93
EQPS Fail 0.237 0.217 0.238 0.227

Table 2-10. Fastener parameters for Voce model – fast/slow joint (FSJ) fasteners.

Analysis Name FJ01 FJ03 SJ02 SJ03 SJ04
Yield Stress (psi) 93870.17 89421.12 102686 101646.6 84005.4
Hardening Modulus (psi) 59974.15 66551.13 44097.05 43067.12 66338
Exponential Coefficient 22.61 19.91 31.37 24.09 26.343
EQPS Fail 0.327 0.206 0.255 0.204 0.193
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2.1.2. SMC Challenge Geometry Modeling

The analysis model for the SMC structure is shown in Figure 2-1. The shock loading is applied
using acceleration-time histories provided for the shock loadings in the SMC. Fasteners are modeled
with a plug approach derived from the calibration models. The fasteners are contiguously meshed
to stainless steel inserts, which are then connected to the aluminum block holes through tied
multi-point constraints (MPCs). A cadmium-plated stainless steel washer is present under each
fastener. Fastener element type is dependent on the element type used for calibration — eight-noded,
uniform-gradient hexahedral elements are used for the fastener tension and fastener double shear
calibrations and eight-noded, selective-deviatoric hexahedral elements with deviatoric parameter
= 0.5 [11] are used when leveraging the joint tension calibrations. The cantilever, washers, and
inserts are meshed with eight-noded, uniform-gradient hexahedral elements. The aluminum block is
meshed with 10-node composite tetrahedral elements. The analysis model contains approximately
1.88M elements.

Fastener failure is predicted by calculating the scalar QoI “fractional nearness to failure" ( 𝑓 𝑜 𝑓 ) of
the i-th fastener

𝑓 𝑜 𝑓 𝑖 =
max(EQPS𝑖)
EQPSFAIL,𝑖

(2.3)

where max(EQPS)𝑖 is the maximum value of the element variable EQPS in the entirety of the i-th
fastener, and EQPSFAIL,𝑖 is the calibrated failure criterion for the i-th fastener listed in Tables 2-7
– 2-10. Thus, 0 ≤ 𝑓 𝑜 𝑓 ≤ 1 and we deem a fastener “failed" once one element in the fastener
has reached its critical value. This value is calculated for each of the six fasteners in the SMC
structure, and using the DD sampling approach explained in Section 4, a probability of failure can
be calculated for each fastener at the specified test input. Note that the full methodology will be
utilized in the post-blind results detailed in Section 5, but for the blind predictions only the DD
sampling approach will be used to explore variability in the simulations and bound 𝑓 𝑜 𝑓 for each
test input.

The aluminum and fastener calibrations from section 3.1 and 3.2 are used for the aluminum
cantilever and fasteners, respectively. The aluminum anisotropic model calibrated in the original
work [4] [5] is used for the aluminum block. Material parameters for this aluminum model are
provided in Table 2-2. Inserts and washers are modeled using elastic properties of 304 stainless
steel [10] and provided in Table 2-3.

Various engineering simplifications are made to the challenge geometry, including the removal
of some holes to ease the meshing process. Densities of the cantilever and block are slightly
adjusted to maintain accurate masses within the model as features are removed. The experimental
acceleration-time history from an accelerometer attached to the drop-table carriage is applied to
the bottom of the fixture block in the model. Preload is applied to the fasteners through an initial
implicit simulation, and then an explicit dynamics simulation is conducted for the shock loading.
All simulations are performed in Sierra SM [11].
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2.1.3. Blind Predictions

Using the Discrete-Direct uncertainty quantification approach described in section 4, the sets of
constitutive model parameters outlined in Tables 2-7 – 2-10. are propagated through the application
model. This sampling process is repeated for each group of fastener calibrations, and sampling
only takes place within a family of calibrations, e.g., only sampling from the SDS calibrations for
the first study, only sampling from the ST fasteners for the second study, etc. The sampling studies
for each test input from the SMC include 20-25 simulations for each family of fasteners, depending
on the number of calibrations in the set (four or five). The results of 𝑓 𝑜 𝑓 are collected, and the
ranges of 𝑓 𝑜 𝑓 are plotted for each family of calibration data as a function of SMC test as shown
in Figure 2-4. Results are shown for bolts 1, 2, 3, and 4, noting that this model is geometrically
symmetric (not necessarily materially symmetric due to the DD sampling) — results for bolt 2 and
3 are representative of results for bolts 6 and 5, respectively.

Figure 2-4. Fraction of failure ranges in drop table analyses as a function of test number from data packet.

The 𝑓 𝑜 𝑓 ranges shown in Figure 2-4 can then be coupled with engineering judgement to draw
conclusions about what will happen to the fasteners for each test input. The plots suggest Bolt 1
will likely fail first, and the SDS sampling suggests this could be as early as Test 6 (all simulations
have 𝑓 𝑜 𝑓 near 1.0). However, the other sets of calibration data suggest that failure will take place at
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higher shock levels, maybe around Test 8 to Test 12, depending how much conservatism is desired
in the answer. Since Bolt 1 is above the bending axis and likely loaded more in bending and tension,
Our team chose to lean more on the tensile calibration results and conservatively predicted the first
fastener failure to occur around Test 8 or 9.

When determining which tests are likely to fail all fasteners, we must consider each plot in Figure
2-4. The loading applied to the fasteners changes as we move lower on the array (Bolt 1 at
the top, Bolt 4 on the bottom as illustrated in Figure 2-1), and thus we could choose to weigh
different calibrations results differently for each bolt. The Bolt 2 results in Figure 2-4 suggest
failure somewhere between Test 11 to Test 14. The plots for Bolt 3 and 4 suggest that failure could
occur around Test 12 to Test 16, but also that there is a reasonable probability that failure may not
occur. Our team chose to predict all fastener failure at Test 15, noting that some sets of calibrated
parameters suggest that all fasteners may not fail.

Simulation results focusing on the behavior of the cantilever and block are presented in Figure 2-5
for Test 15 shock input (105.6 ft/s velocity change) using the ST fastener calibrations. These results
indicate that significant plasticity will occur in the cantilever, with EQPS reaching as high as 0.24 at
the top of the cantilever fillet beneath bolt 1. Despite this substantial amount of plasticity, our model
does not predict failure based on the aluminum properties listed in Table 2-2. Furthermore, there
is no observed plasticity in the aluminum block surrounding the inserts, suggesting that pullout of
the insert is unlikely.

Figure 2-5. EQPS contours for aluminum cantilever and block.

2.1.4. SMC Experimental Results

The SMC experiments revealed that failures occurred in both the aluminum cantilever and the
fasteners. The failure mechanisms are summarized in Figure 2-6, where aluminum failure mech-
anisms are categorized as “small crack", “large crack", or “through crack", and fastener failures
are categorized as “partial fastener failure" (one or more fastener failures but fewer than six) and
“all fastener failure". Small cracks in the aluminum cantilever begin at very small velocity-change
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shocks, and through cracks begin at velocity changes of approximately 80 ft/s (around Test 9 in
Table 2-1). Once the velocity change of the shock reaches approximately 100-105 ft/s (Test 14),
complete failure occurs in either the fasteners or the aluminum, but not both simultaneously. In
the three tests where all six fasteners failed, no aluminum failure was observed. Conversely, in the
three tests with partial fastener failure, the aluminum cantilever experienced complete failure. Note
that there are also tests in this velocity-change regime where fastener failure does not occur and the
aluminum experiences a through crack. Thus, the results suggest that failure is stochastic in the
100-120 ft/s range and complete failure can occur in either the fasteners or the aluminum.

Figure 2-6. Summary of failure mechanisms in the SMC experiments.

2.1.5. Blind Prediction Comparison and Lessons Learned

Overall, the blind predictions provided acceptable results that would likely inform sound engineering
decision making, especially given the scope to which the analyses were designed. Primarily, the
blind-prediction team was looking to assess fastener failure, and the results suggested first fastener
failure may occur around tests 9-10 (∼80-85 ft/s) and all fastener failure may occur in the range of
tests 13-16 (∼100-110 ft/s). This is agreeable with the test data, as fastener failure occurred in the
approximately 110-115 ft/s range. The main inconsistency in the fastener failure predictions is that
the analyses suggest that fastener failure will occur progressively – bolt 1 should fail first at lower
velocity changes, and as the shock increases in magnitude, failure will progress downward with
bolts 2 and 6 failing next, and finally bolts 3, 4, and 5. However, the test series suggests that failure
of the fasteners is more "all or nothing", and that fastener failure will not occur until a threshold
velocity change of approximately 100 ft/s is achieved.

The other noticeable difference between the analysis and tests results is that not only does cracking
occur in the cantilever, but it occurs in virtually every test and is a major failure mechanism of the
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structure. While capturing this possible failure mechanism wasn’t a priority of the blind-prediction
team, this mechanism’s role in fastener failure may have been overlooked. It was postulated by
the blind-prediction team that capturing the aluminum behavior and failure better may improve the
fastener failure predictions and make fastener failure less progressive.

Another observation at the conclusion of this study was that enhancing our results to be more
probabilistic would enrich and contextualize the predictions. While the ranges of the 𝑓 𝑜 𝑓 provided
in Figure 2-4 are helpful, reporting a probability of failure would offer greater value. Although
the Discrete-Direct approach provides mechanisms for these calculations, challenges arise with
bounded QoIs when a significant portion of the QoI reaches a bound.

Therefore, the two goals of the post-blind predictions are:

1. Calibrate a more sophisticated constitutive model for aluminum that includes a damage
model.

2. Enhance the DD approach to accommodate probabilistic predictions when a significant
portion of the QoI is at a bound.

These improvements are summarized in Sections 3 and 4, where Section 3 details the new alu-
minum constitutive model and Section 4 explains the DD approach and improvements made for
quantitative uncertainty predictions when QoIs reach bounds. The post-blind results leveraging
these enhancements are summarized in Section 5.
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This section provides an overview of the models utilized in the post-blind study. The calibration
process for the new aluminum constitutive model is highlighted, which accounts for both hardening
and damage. The purpose of calibrating this model is to more accurately represent the behavior
of the aluminum cantilever component within the SMC challenge geometry. This section also
provides a summary of which fastener models will be utilized for the post-blind investigation.

3.1. Aluminum

The calibration of the elastic-plastic material and ductile failure models for the aluminum in
the cantilevered cylinder was conducted in a similar manner as outlined in [15] and [16]. The
calibration process used the specimen geometries and material test results presented in [2] and [1]
in a sequential approach.

The material was represented as an elastic-plastic solid with a Hill yield surface that hardens
isotropically. Given the dynamic nature of loading in the challenge problem that could lead to
high strain rates and self-heating of the material, the model included the effects of strain rate and
temperature. Thermally, an adiabatic condition is included in the model.

The form used in the Hill plasticity model for the hardening function is that of Johnson-Cook given
by

𝜎̄ =
[
𝜎𝑦 + 𝐴(𝜀𝑝)𝑛

] [
1 + 𝐶 ln

( ¤̄𝜀𝑝
¤𝜀𝑜

)]
[1 − 𝑇∗𝑚] , (3.1)

where 𝜎̄ is the equivalent stress and 𝜀𝑝 is the equivalent plastic strain.

The first term represents the hardening curve at a reference strain rate ¤𝜀𝑜 and reference temperature
𝑇ref. It has a power-law form with three parameters to be calibrated: 𝜎𝑦, 𝐴 and 𝑛. The second term
models the dependence on the equivalent plastic strain rate ¤̄𝜀𝑝, where 𝐶 is a calibrated parameter.
The third term represents the effect of the homologous temperature 𝑇∗ given by

𝑇∗ =
𝑇 − 𝑇ref

𝑇melt − 𝑇ref
, (3.2)

with 𝑚 being a parameter to be calibrated.

Figure 3-1 shows the engineering stress-strain curves from testing at the reference rate ( ¤𝜀𝑜 = 0.001
1/s) and temperature (𝑇ref = 25◦C) and at the reference rate but high temperature (100◦C) in black
lines. The predictions of the calibrated model are in red dashed line. Figure 3-2 similarly shows the
curve at the reference rate and temperature along with one obtained at a higher strain rate ( ¤𝜀 = 630
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1/s). The agreement is reasonable in all cases. The high rate simulation was conducted assuming
an adiabatic condition where the temperature rise is given by

Δ𝑇 = 𝛽𝑇𝑄
𝑊 𝑝

𝜌𝐶̂
, (3.3)

where 𝜌 is the initial density and 𝐶̂ is the specific heat of the material. The values of the parameters
are presented in Table 3-1.
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Figure 3-1. Measured and predicted uniaxial, quasi-static engineering stress-strain curves at 𝑇 = 25◦C
and at 100◦C.

The model for the initiation of ductile failure is that of Wilkins [17] augmented with Johnson-Cook
temperature and rate terms. It is given by

𝐷𝑎𝑚𝑎𝑔𝑒 =
1
𝐷𝑐𝑟

∫ 𝜀𝑝

0
𝑤1𝑤2𝑤3𝑤4 𝑑𝜀

𝑝, (3.4)

where 𝐷𝑐𝑟 is a scaling factor so failure initiates when 𝐷𝑎𝑚𝑎𝑔𝑒 = 1. Next, 𝑤1 is a function of the
mean hydrostatic stress 𝜎𝑚

𝑤1 =

(
1

1 − 𝜎𝑚
𝐵

)𝛼
, (3.5)

and has calibration parameters 𝐵 and 𝛼. Next, 𝑤2 is indirectly a function of the Lode angle given
by the ratios of the principal deviatoric stresses 𝑠1 ≥ 𝑠2 ≥ 𝑠3

𝑤2 = (2 − 𝐴)𝛽 where 𝐴 = max
(
𝑠2
𝑠3
,
𝑠2
𝑠1

)
, (3.6)

and the parameter 𝛽 needs to be calibrated.
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Figure 3-2. Measured and predicted uniaxial stress strain curves initially at 𝑇 = 25◦C and ¤𝜀 = 0.001
(isothermal) and 630 1/s (adiabatic).

One of the Johnson-Cook terms models the strain rate dependence

𝑤3 =
1

1 + 𝐷4 ln ¤̄𝜀𝑝
𝜀𝑜

, (3.7)

and the other models the temperature dependence

𝑤4 =
1

1 + 𝐷5
𝑇−𝑇ref

𝑇melt−𝑇ref

. (3.8)

The calibration parameters are 𝐷4 and 𝐷5, and 𝑇ref, 𝑇melt are the reference and melting temperature
of the material. The fitting method for the calibration of the Wilkins parameters is outlined in [18].
It attempts to best match the displacements at failure of the the notch and hat tests in a least-squares
sense. The predictions of the notch tension tests are shown in Figure 3-3 where the displacements
were measured with an extensometer of initial gage length 𝐿𝑔 = 1 in. Failure in the tests occurred
at the end of the black lines and failure in the models is shown by the red circles. Failure initiation
in the hat compression tests was determined from micrographs of the corners of the specimen at the
center section, included in Fig. 3-4, in interrupted tests. The fracture propagation was stable with
respect to the prescribed displacement as can be seen in the figure. Although the load-deflection
prediction is not as good as those in the notched tension tests, the circle denoting failure agrees fairly
well with test data, displacement-wise. Cracks in the specimen’s center section become visible in
the range of 0.03 to 0.04 in. of displacement. See [15] and [16] for more detailed examples of the
failure model calibration.

The parameters 𝐷4 and 𝐷5 were calibrated from the uniaxial tension tests at temperature and rate
shown in Figures 3-1 and 3-2. The circles in the plots identify the predicted failure points, which
are in general a little below the displacements at failure in the tests. The values of all the parameters
of the failure model are listed in Table 3-1.
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Figure 3-3. Notched tension test load-deflection and failure calibration results.
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Figure 3-4. Hat specimen compression load-deflection and failure calibration results including
micrographs (from [1]) the four corners of the test sections through the center of the specimen.
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Table 3-1. Material parameters for Al6061 with Hill plasticity model.

Property Value
Density (𝜌, lb-s2/in4) 1.015 × 2.5 × 10−4

Young’s Modulus (𝐸 , psi) 10.4 × 106

Poisson’s Ratio (𝜈) 0.33
Yield Stress (𝜎𝑦, psi) 32.5 × 103

𝑟11 0.90
𝑟22 0.90
𝑟33 1.0
𝑟12 0.90
𝑟23 0.80
𝑟31 0.80
Hardening Model flow_stress
Isotropic Hardening Model power_law
Hardening Constant (𝐴, psi) 40.0 × 103

Hardening Exponent (𝑛) 0.14
Rate Multiplier johnson_cook
Rate Constant (𝐶) 0.00100
Reference Rate (𝜀𝑜, 1/s) 0.001
Temperature Multiplier johnson_cook
Melting Temperature (𝑇melt, K) 855
Reference Temperature (𝑇ref, K) 298
Temperature Exponent (𝑚) 1.2
Thermal Softening Model adiabatic
Specific Heat (𝐶̂, lb-in/(lb-s2/in K) (1.39 × 106)
𝛽𝑇𝑄 0.9
Failure Model modular_failure
Critical Failure Parameter 0.55
Pressure Multiplier wilkins
Wilkins Alpha (𝛼) 4.5
Wilkins Pressure (𝐵, psi) 300.0 × 103

Lode Angle Multiplier wilkins
Wilkins Beta (𝛽) 0.6
Rate Fail Multiplier johnson_cook
Johnson Cook 𝐷4 0.024
Temperature Fail Multiplier johnson_cook
Johnson Cook 𝐷5 0.59
Element Death Criterion Damage = 0.6
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Ductile failure calculations are usually element-size dependent. Therefore, calibrations conducted
with relatively fine models, as done here, must be adjusted if larger element sizes are used in
applications. How to make adjustments without experimental validation exercises on the actual
geometry of interest, however, has not been established systematically. The evidence that can be
used is based on element size sensitivity studies on the specimen geometries used in the calibration.
Figure 3-5 shows results on specimens that bracket the fillet radius of 0.05 in. at the cylinder/flange
junction in the challenge geometry. These geometries include the tensile-dominated notch tension
specimens with notch radii of 0.032 and 0.064 in. and the shear dominated hat specimen with fillet
radius of 0.05 in. Results are presented for the element formulation used in the calibration, selective
deviatoric (green lines), and also for mean quadrature elements (red lines). For element sizes in the
range of 0.015 to 0.020 in., a gap can be seen between the notch and hat test results. Without a firm
method to estimate the dependence of failure in the challenge geometry on element size from the
results of the calibration geometries, we can only provide a loose estimate. The suggested range
for the value of damage at which failure should be declared is indicated by the green rectangle,
covering a range of critical damage between 0.5 and 0.8 for both element formulations. In the SMC
application model, element edge lengths in the cantilever radius are approximately 0.020 in., and a
death criterion of 𝐷𝑎𝑚𝑎𝑔𝑒 = 0.6 is used to model failure.

Finally, it must be stated that the calibration of the failure model is applicable only to failure
initiation. Further investigation is required to assess the failure propagation. In problems that are
sufficiently over-driven, using the initiation criterion may be sufficient to establish complete failure,
but in other problems accounting for failure propagation will be necessary if such phenomena are
important.
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Figure 3-5. Effect of element size and type.
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3.2. Fastener Modeling

Although analysis models were created for three of the calibration configurations for initial blind
predictions, which included the tension, double shear, and tension-dominated single joint tests,
only the tension-dominated single joint test calibrations are utilized for the post-blind analysis.
These calibrated parameters led to the best predictions in the blind analysis, and the lead author
believes joint-like test configurations tend to lead to the most predictive calibrated parameters.
Note that the fastener material parameters derived from the tension-dominated single joint tests
utilized the original aluminum material constitutive model from Table 2-2 even though we will be
leveraging a new aluminum model for the post-blind analysis. The most rigorous approach would
be to re-calibrate the fastener models and include the latest aluminum model and properties, but
the changes are likely small, and thus we leave this for future work.
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4. DISCRETE DIRECT AND SIMULTANEOUS DISCRETE DIRECT
APPROACHES FOR MODEL CALIBRATION, UNCERTAINTY
PROPAGATION, AND UQ

This section provides an overview of the DD and Simultaneous DD (SDD) approaches that are
used to quantify uncertainty of our analysis predictions for the SMC drop table tests. The use of
conservative, binomial-based failure probability estimations are demonstrated here with a more
thorough explanation of the procedure provided in Appendix A.1.

4.1. Overview

The DD model calibration, uncertainty propagation, and uncertainty quantification approach was
developed to calibrate otherwise deterministic models to reflect unit-to-unit variability of systems
being modeled that have underlying random/stochastic/aleatory variability in material properties,
geometries, etc. The underlying variability causes nominally identical units to have varying
behaviors and response outputs in replicate tests that provide the calibration data (after normalizing
for any variations of input boundary and initial conditions from test to test). A model calibration
process is used to map the experimental variability in important measured output responses into
variability of one or more parameters of the model. It is common that time and resource limitations
allow only a few units from a large population to be experimentally tested to supply calibration data.
With only a few replicate tests to sample the stochastic variability of behaviors in the population, it is
often desired to appropriately calibrate and use a model to predict response variability for the whole
population of units (under various use conditions). Under these conditions, the DD calibration-
propagation-UQ approach is arguably [6] the most efficient and effective of any calibration-UQ
approach the authors are aware of—as summarized in the rest of this section.

Figure 4-1 presents a simplified representation of the DD calibration-UQ paradigm applied to an
illustrative 1-D (one calibration variable) problem. The four deterministic experimental results in
the figure come from different but nominally identical test units in four replicate tests. For now,
let each test be performed at exactly the same input boundary conditions. A separate calibration is
performed for each test/data set. This yields the four calibration parameter values indicated in the
figure. These four values are then propagated to predictions in other modeling applications. For
instance, the parameter values could be for a material model to be used under different geometry
and/or initial and/or boundary conditions. The four prediction results in the figure are processed
with specialized sparse-sample 1D UQ techniques (discussed later in this section) to obtain reliably
conservative and efficient estimates of response variability and related statistical quantities.
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• For each replicate experiment, optimize/calibrate model parameter values for best prediction match
to experimental results; 𝑁 experiments ⇒ 𝑁 calibration parameter sets (here 𝑁 = 4)

• Proceed to prediction with the 𝑁 calibration parameter sets.

• Economical: 𝑁 runs of prediction model to propagate 𝑁 parameter sets.

• Preserves direct correspondence to the experimental data underlying the calibrations.

• Use appropriate sparse-sample 1-D UQ techniques to process 𝑁 prediction results into reliably
conservative distributions, or bounds on useful statistics of response variability.

• Simple to update with new experiments/data and calibrations if/when more data becomes available
(without Bayes’ rule & machinery).

Figure 4-1. Simplified representation of the Discrete-Direct model calibration-propagation-UQ paradigm.

DD calibration straightforwardly accommodates multiple realizations of scalar experimental data
(as indicated on the ordinate at left in Figure 4-1) or functional experimental data such as load-
deflection or stress-strain curves. Problems with multiple calibration parameters are also straight-
forwardly accommodated. For example, Figure 4-2 illustrates a propagation circumstance with
𝑁 = 3 calibration parameter sets, each of calibration parameter dimension 𝐷 = 2 that would
arise from three calibrations where each calibration involves optimizing 𝐷 = 2 model parameters
(P1, P2). The 𝑁 calibrations ostensibly1 embody the aleatory stochastic variability in the 𝑁 test
specimens. Propagation of the 𝑁 parameter sets yields 𝑁 predictions of related response variability

1This assumes stable behavior in the calibrations, where sufficient identifiability exists to arrive at effectively unique
values of the calibration parameters, in addition to other necessary properties of the calibration problem and
procedure as discussed in [19]. We find no evidence of instability in the material model calibrations performed
in the present work. Other conditions are that any experiment-to-experiment differences in boundary and initial
conditions, measurement errors, etc. are appropriately accounted for in the 𝑁 calibrations. In the present work, each
experiment’s actual measured conditions were used in the related calibrations—as they should be, and measurement
errors are considered negligible relative to measured response magnitudes.
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of the system as reflected in any output response QoIs. The 𝑁 samples of a given QoI’s response
variability are processed into reliably conservative distributions, or bounds on useful statistics of
response variability, using appropriate sparse-sample 1-D UQ techniques discussed later in this
section.

Figure 4-2. Propagation of 𝑁 = 3 calibration parameter sets of 𝐷 = 2 parameters each.

In contrast, consider alternative calibration-propagation-UQ approaches that would attempt to
infer a joint probability density (JPD) of the calibration parameter values. Substantial difficulty,
error, and complexity would accompany an attempt to infer the various hyperparameters for posed
aleatory distribution forms and correlations of the 𝐷 = 2 calibration parameters from just three
tests that sample the aleatory variability of the tested units. Further complexity and expense would
accompany propagation of the JPD to predictions that utilize the calibrated model. The difficulty,
complexity, and expense would increase substantially as the number 𝐷 of calibration parameters
increases — while for DD the number 𝑁 of tests, calibrations, and propagations remains three
or some other affordably low number. Thus, the DD approach effectively reduces complexity
and expense of nonlinear multi-dimensional uncertainty inference and propagation problems to
a relatively simple and economical discrete propagation problem with 1-D sparse-sample UQ
post-processing for each output quantity and statistic of interest.

Sparse-sample 1-D UQ approaches and methods to couple with DD calibration and propagation
have been extensively studied and characterized for performance in conservative and efficient (not
overly conservative) estimation of bounds on various statistics like distribution percentiles and
tail probabilities (see [20] [21] [8] [22] [23] [24] ). The estimates are intended to bound the true
statistical quantities that would result from DD propagation of an asymptotically large population of
calibration parameter sets from a corresponding large number of tests of the stochastically varying
phenomena. The estimated bounds are obtained with well-established statistical methods based on
sparse sampling of Normal populations. The extensive numerical studies just cited have established
the sparse-sample UQ methods to be robust and efficient bounds estimators for the mentioned
statistical quantities and diverse varieties of highly non-Normal distributions. Conversely, consider
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an output response QoI probability density (PD) obtained from a propagated JPD comprising the
calibration parameter marginal PDs and their correlations. The calibration parameter JPDs would
have substantial error as already explained. The multiple uncharacterized errors would make it
very difficult to judge whether an estimated statistic from a QoI response PD is appropriately
conservative, overly conservative, or unconservative.

Another source of uncharacterized error often comes from the propagation procedure itself. A
Monte Carlo (MC) sampling procedure would require orders of magnitude more runs of the
analysis model than the 𝑁 = 3 runs needed for DD propagation in the above example. A more
computationally efficient alternative to pure MC propagation is to build a response-surface surrogate
model and sample it in the MC propagation procedure. Depending on the nonlinearity of QoI
response over the variability ranges of the calibration parameter PDs, it would require more than
DD’s 𝑁 = 3 simulations with the analysis model to obtain suitably accurate response-surface MC
for even just the 𝐷 = 2 calibration parameters in our example.

Another significant advantage of a DD approach exists. Concerning the calibration parameter space,
it is sometimes questionable whether it is legitimate to predict with other than actually determined
parameter sets from calibration. Sometimes, analysts do not trust model prediction results obtained
with synthetic calibration parameter sets. The DD approach avoids these issues and questions
by propagating actual calibration parameter solution sets. On the other hand, calibration-UQ
approaches built on a paradigm of propagating an inferred JPD of calibration parameter variability
must interpolate and extrapolate about the actual calibration parameter solution sets that inform the
inference process.

Thus, when sparse replicate tests and calibration data are involved, the DD approach is substantially
simpler, typically less costly, and generally more accurate in terms of reasonably controllable and
knowable statistical confidence of conservativism of calculated statistics of response quantities. DD
calibration-UQ methodology has been applied at Sandia to problems involving sparse realizations of
functional experimental data and 1 to 11 calibration parameters in applications in solid mechanics
( [25], [26], [27], [28]); structural dynamics ( [29], [19]); and radiation-damaged electronics.
References [26], [27], [28], [19], [30] have been used as test problems with synthetically generated
data for known truth statistics to confirm the sparse-data DD calibration-UQ methodology over
thousands of random trials.

Beyond the deterministic model function and experimental data points indicated on the ordinate
at left in Figure 4-1, many potential sources of error and uncertainty in the calibration model and
experimental data can arise. These are itemized below. They result in uncertainty in the calibration
parameter set determinable from a given experiment.

• Random and/or systematic uncertainties on measured experimental inputs and outputs

• Model discretization and solver related numerical solution uncertainties

• Uncertainties associated with approximation errors in any statistical and probability models
used in the processing of the experimental data

All these uncertainties can be straightforwardly accommodated in the DD methodology as explained
in [6] and demonstrated in [30]. The DD calibration and uncertainty propagation methodology
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also straightforwardly reduces to handle the case of one test with no replicates but experimental
uncertainties present [19].

4.2. Simultaneous Discrete-Direct Method

Next we explain the Simultaneous Discrete-Direct (SDD) method for efficient propagation and
UQ when multiple material, phenomena, and/or component models of a system model are each
calibrated to sparse replicate test data. Figure 4-3 shows an SDD example where two calibration
tests and DD calibrations are conducted for each of three submodels to be used in a system model.

Figure 4-3. Simultaneous DD example with 𝑁 = 2 calibration tests and DD calibrations for each of 𝑀 = 3
submodels to be used in a system model.

Figure 4-4 shows two possible combinations of DD calibrations of submodels used in system-level
predictions where each of the tests and calibration results are used once and only once. (As
explained in [26], the once-and-only-once usage has an analogue to Monte Carlo propagation of
probabilistic uncertainty. An advantage is empirically established vs. non-once-and-only-once
usage schemes also tested and characterized in [26].) Each combination produces a number 𝑁 of
system-level simulations and predictions (realizations) of QoI response variability corresponding to
the 𝑁 tests and calibrations per submodel. Each set of 𝑁 realizations of a system QoI is processed
into decision-relevant statistical measures of response with 1-D sparse-sample UQ techniques
discussed previously. The estimated statistic(s) from the shown combinations 1 and 2 would be
different but equally legitimate; there is no reason to favor results from either combination over
the other. Recent research in [26] has found that an average of such equally legitimate results is
typically more accurate than individual results

For the 𝑁 = 2 𝑀 = 3 SDD example, four equally legitimate combinations exist where each of 𝑁
submodel tests and calibrations is used once and only once in the system-level simulations. Figure
4-5 shows the four combinations. It would take eight system model runs if one wanted to average
results of all four combinations. However, it is reasonable to propagate as little as 𝐾 = 2 or 3 such
point set combinations, for a total cost of 𝐾x𝑁 = 4 or 6 model runs in the present case. Appropriate
1-D UQ processing of each corresponding set of 𝑁 = 2 QoI results yields a probabilistically reliably
conservative bound on desired QoI statistics. The 𝐾 estimated bounds are averaged to yield an
estimate with significantly higher reliability of being conservative but not overly conservative for
an economical number of additional system model runs. The goal here is to manage the risk of
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Figure 4-4. Two possible combinations where 𝑁 = 2 experiments and DD calibrations for each submodel
are used once and only once in 𝑁 = 2 system-level simulations to get 𝑁 = 2 predictions (realizations) of
response variability. Calibration parameter sets are designated as vectors in this figure to signify that

each calibration problem may have multiple calibration parameters.

non-representative extreme outcomes by chance. This can be suitably accomplished with 𝐾 as little
as 2. Larger 𝐾 is not needed because we do not need a converged mean. Thus, the number of
system model runs with SDD scales as 𝐾x𝑁 where 𝑁 is the number of experiments and calibrations
per each submodel of the system model. The number of calibration experiments per submodel
is often just a few, as is 𝐾 , so the number of system model runs is typically < 10 to 20, so a
system-level surrogate model is usually not necessary. The SDD approach is currently configured
for experimental designs where the same number 𝑁 of replicate experiments and DD calibrations
are performed for each submodel. Relaxation of this constraint is currently being worked out.
See [28] for an explanation of one approach.

An alternative to the SDD paradigm would be to separately calibrate the 𝑀 submodels to arrive
at 𝑀 PDs or JPDs of calibration parameter values. These would be propagated in system-level
simulations to estimate variability in response QoIs. This would be more complicated and typically
more computationally expensive than the SDD approach, both in the calibrations and in system-
level UQ propagation. Another disadvantage is that any over-conservatism or under-conservatism
of stochastic variability approximated in the 𝑀 PDs or joint PDs of calibration parameter values
is unlikely to offset completely when all the PDs are propagated to system level. Compounding of
over-conservatism or under-conservatism can yield highly over-conservative or under-conservative
stochastic variability in response QoIs (see studies in [21], [31]).

4.3. Application of SDD Methodology to the Fasteners Calibration-UQ Problem

SDD is applied to the fasteners calibration-UQ problem per an analogue of a special case of Figures
4-3-4-5. We start by considering a special case of Figure 4-3. Consider 𝑀 = 3 nominally identical
bolts and associated behavioral submodels in a structural system model—akin to the 𝑀 = 6 bolts
in our Fasteners calibration-UQ problem. Under circumstances of 𝑀 = 3 similar submodels, the
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Figure 4-5. All four possible combinations for the 𝑁 = 2 𝑀 = 3 SDD calibration and uncertainty
propagation problem where each submodel test and calibration is used once and only once in

system-level simulations to obtain 𝑁 predictions (realizations) of response variability.

calibration parameter sets ®𝛽1, ®𝛽2 and ®𝛾1, ®𝛾2 in the figures have the same values as ®𝛼1, ®𝛼2. Then we
can label parameter sets ®𝛽1, ®𝛽2 and ®𝛾1, ®𝛾2 in the figures as ®𝛼1, ®𝛼2. Table 4-1 presents an example.

Table 4-1. SDD parameter set groupings for 𝑁 = 2 runs of system model under special case of 𝑀 = 3
nominally identical components and associated submodels in the system, with example parameter

grouping corresponding to Combination 2 in Figures 4-4 and 4-5.

Run Component 1 Component 2 Component 3
Run 1 Parameter Set ®𝛼1 ®𝛼2 ®𝛼1
Run 2 Parameter Set ®𝛼2 ®𝛼1 ®𝛼2

In analogy, our fasteners calibration-UQ problem has 𝑀 = 6 bolts in the system structural model. If
we use the FSJ fastener calibrations from Table 2-10 as an example, each bolt in the analysis will use
the same behavioral model calibrated to the 𝑁 = 5 single-bolt fastener tests. The resulting 𝑁 = 5
calibration parameter sets labeled FJ01,. . . ,SJ04 in Table 2-10 can be alternatively designated
®𝛼1, . . . , ®𝛼5 to connect with our analogy. Table 4-2 presents an example of parameter set groupings
for 𝑁 = 5 runs of the system model where each bolt’s response is informed by all 𝑁 = 5 calibration
parameter sets; each individual bolt is assigned each parameter set once and only once per DD
calibration-propagation principles. The parameter sets are assigned in randomized order within
each bolt column, with uncorrelated orderings between the columns.
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Table 4-2. SDD example combination of calibration parameter sets for 𝑁 = 5 simulations of Cantilever
Beam Drop-Table test.

Parameter Set Bolt 1 Bolt 2 Bolt 3 Bolt 4 Bolt 5 Bolt 6
Run 1 FJ03, ®𝛼2 SJ03, ®𝛼4 SJ02, ®𝛼3 SJ03, ®𝛼4 SJ03, ®𝛼4 SJ02, ®𝛼3
Run 2 FJ01, ®𝛼1 FJ03, ®𝛼2 SJ03, ®𝛼4 FJ03, ®𝛼2 FJ01, ®𝛼1 SJ03, ®𝛼4
Run 3 SJ02, ®𝛼3 SJ04, ®𝛼5 FJ01, ®𝛼1 SJ02, ®𝛼3 FJ03, ®𝛼2 FJ01, ®𝛼1
Run 4 SJ03, ®𝛼4 FJ01, ®𝛼1 SJ04, ®𝛼5 SJ04, ®𝛼5 SJ04, ®𝛼5 FJ03, ®𝛼2
Run 5 SJ04, ®𝛼5 SJ02, ®𝛼3 FJ03, ®𝛼2 FJ01, ®𝛼1 SJ02, ®𝛼3 SJ04, ®𝛼5

Each row in the table initiates a run of the structural model using Drop-Table Test 17 shock
conditions from [2]. Each simulation yields a 𝑓 𝑜 𝑓 for each bolt in the model. Each bolt has
𝑁 = 5 𝑓 𝑜 𝑓 realizations shown in Table 4-3. Each bolt’s 𝑓 𝑜 𝑓 realization depends not only on the
bolt’s assigned calibration parameter set (including critical EQPS value) in a given model run, but
also on the global structural behavior arising from the assigned parameter sets to the other bolts
per a given row of the table. The variability of 𝑓 𝑜 𝑓 values in Table 4-3 reflects a diversity of
potential outcomes from the said random assignments of the calibration parameter sets to the bolts,
in turn reflecting the test-to-test variability of the material specimens and any replicate test setup
and measurement variabilities.

Table 4-3. Row fractions of failure for each bolt in the structural model for Drop-Table Test 17 shock
conditions from [2] and Table 4-2’s row calibration parameter sets assigned to the bolts.

Bolt 1 Bolt 2 Bolt 3 Bolt 4 Bolt 5 Bolt 6
Run 1 Results 0.904527 0.846053 0.468061 0.707635 0.607242 0.657992
Run 2 Results 0.602032 0.775559 0.663111 0.701667 0.381975 0.879886
Run 3 Results 0.830664 0.817732 0.378650 0.564916 0.596368 0.486266
Run 4 Results 1.004880 0.515186 0.672737 0.780674 0.684075 0.821295
Run 5 Results 1.000320 0.684202 0.606004 0.438659 0.504063 0.822230

We see in Table 4-3 that Bolt 1 has two 𝑓 𝑜 𝑓 realizations of 1.0, indicating failure in 40% of the
simulated cases. We also note that the 𝑓 𝑜 𝑓 response quantity has an upper limit of 1. Bounded
response quantities with substantial saturation at a bound (such as 40% of occurrences here) are not
optimally addressable by the sparse-sample 1-D UQ methods studied in [20] [21] [8] [22] [23] [24].
Instead, we use a binomial-based conservative failure probability estimation approach explained in
Appendix A.1 where the sparse 𝑓 𝑜 𝑓 realizations are separated into binary categories of ‘failure’
and ‘no failure’.

For Bolts 2–6, the 𝑓 𝑜 𝑓 realizations in Table 4-3 do not approach the limit of 1. Representative
analysis in Appendix A.1 discounts the possibility of any meaningful failure saturation at the
𝑓 𝑜 𝑓 = 1 bound (in an asymptotically large population of response predictions for these bolts). In
these cases, TIEN90 distributions (see Appendix A.1) based on the 𝑁 = 5 𝑓 𝑜 𝑓 realizations for
each bolt (2 to 6) are preferred for reliably conservative estimates of the probabilities of reaching

44



4.3. APPLICATION OF SDD METHODOLOGY TO THE FASTENERS CALIBRATION-UQ
PROBLEM

the failure condition 𝑓 𝑜 𝑓 = 1. Table 4-4 presents conservatively estimated failure probabilities for
Bolts 1–6 using the sparse-sample UQ methods summarized in Appendix A.1.

Table 4-4. Reliably conservative estimates of the probabilities of reaching the failure condition 𝑓 𝑜 𝑓 = 1
for each bolt in the structural model using samples from Test 17 analysis.

Bolt Failure Probability
Bolt 1 Binomial reasonable min and max estimates = (0.12, 0.74)
Bolt 2 TIEN90 estimate = 0.170
Bolt 3 TIEN90 estimate = 0.055
Bolt 4 TIEN90 estimate = 0.108
Bolt 5 TIEN90 estimate = 0.036
Bolt 6 TIEN90 estimate = 0.220

Materially similar results and conclusions apply for a 𝐾 = 2nd set of equally legitimate parameter
set groupings tried for model propagations and evaluation of the bolt failure probabilities, see Tables
4-5, 4-6, 4-7.

Table 4-5. A second set of SDD parameter sets groupings for 𝑁 = 5 simulations of cantilever beam
drop-table test.

Example Combination 4 Bolt 1 Bolt 2 Bolt 3 Bolt 4 Bolt 5 Bolt 6
Sample Set 1 SJ02, ®𝛼3 FJ03, ®𝛼2 SJ03, ®𝛼4 FJ01, ®𝛼1 SJ04, ®𝛼5 SJ02, ®𝛼3
Sample Set 2 SJ04, ®𝛼5 SJ04, ®𝛼5 FJ03, ®𝛼2 SJ04, ®𝛼5 FJ01, ®𝛼1 SJ04, ®𝛼5
Sample Set 3 SJ03, ®𝛼4 FJ01, ®𝛼1 FJ01, ®𝛼1 FJ03, ®𝛼2 SJ03, ®𝛼4 SJ03, ®𝛼4
Sample Set 4 FJ01, ®𝛼1 SJ02, ®𝛼3 SJ04, ®𝛼5 SJ02, ®𝛼3 SJ02, ®𝛼3 FJ03, ®𝛼2
Sample Set 5 FJ03, ®𝛼2 SJ03, ®𝛼4 SJ02, ®𝛼3 SJ03, ®𝛼4 FJ03, ®𝛼2 FJ01, ®𝛼1

Table 4-6. Row fractions of failure for each bolt in the structural model for drop-table test 17 shock
conditions and Table 4-5 row calibration parameter sets assigned to the bolts.

Example 2 Results Bolt 1 Bolt 2 Bolt 3 Bolt 4 Bolt 5 Bolt 6
Sample Set 1 0.824765 0.758246 0.635725 0.426170 0.614001 0.669619
Sample Set 2 1.006920 0.888296 0.668552 0.794718 0.414651 0.879282
Sample Set 3 1.004440 0.493881 0.380880 0.688890 0.633988 0.847984
Sample Set 4 0.582199 0.668031 0.613456 0.552396 0.477898 0.746562
Sample Set 5 0.929188 0.860471 0.480030 0.739929 0.616997 0.495119
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Table 4-7. Reliably conservative estimates of the probabilities of reaching the failure condition 𝑓 𝑜 𝑓 = 1
for each bolt in the structural model.

Bolt Failure Probability
Bolt 1 Binomial reasonable min and max estims. = (0.12, 0.74)
Bolt 2 TIEN90 estim. = 0.218
Bolt 3 TIEN90 estim. = 0.043
Bolt 4 TIEN90 estim. = 0.131
Bolt 5 TIEN90 estim. = 0.017
Bolt 6 TIEN90 estim. = 0.205
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Analysis predictions of the probability of failure for each individual bolt are plotted as a function
of velocity change in Figure 5-1, where we perform a DD propagation for each of the shock
environments from tests 7-19 in the SMC (Table 2-1) using the methodology described in Section
4. The lines on the plot represent the probability of failure of a bolt in the challenge geometry
calculated at the SMC-specific velocity changes, creating piecewise-linear curves. The circles
represent test results from the SMC, where green circles indicate tests where no fasteners failed,
and red circles indicate tests where some number of fasteners failed. The number of fasteners failed
in the tests are recorded on the y axis on the right of the plot. Note that both the pulse duration and
pulse magnitude change for the pulses prescribed in the SMC, so the severity of the pulses can be
hard to determine and do not necessarily increase with an increase in the velocity change.

Figure 5-1. Bolt probability of failure as a function of velocity change

The probabilities of failure obtained from the analyses align reasonably well with the test data.
Probabilities of failure for four of the bolts (1,2,4, and 6) eclipse 50% failure probability at a
velocity change of 98.8 ft/s, and the first experimental failure occurs at 103.9 ft/s. Probabilities of
failure never reach 100%, and some bolts are more likely to fail than others, which is consistent with
the test data — there are tests conducted with very similar test specifications, and sometimes no
fasteners fail and other times one or more fasteners fail. Notably, the dip in the analysis predictions
around 115 ft/s corresponds to the red circle where all six fasteners failed. However, there is clear
variability in the test results that is accurately captured in the entirety of the analysis predictions.
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While the probabilities of failure may not be rigorously consistent with the test data, qualitative
trends are reasonably consistent with the testing series. The analysis predictions would likely lead
to decision making that is consistent with what occurred in the testing. Using Figure 5-1 as a guide,
an analyst could reasonably predict 95-120 ft/s as the velocity-change region in which failure of a
subset of fasteners might likely occur, and the experimental data failure range is 104-115 ft/s.

Another question posed in the SMC is to detail the behavior of the aluminum cantilever, and
whether or not failure occurs. While this was not originally prioritized during the initial blind
investigation due to time and funding constraints, the post-blind investigation team utilized an
improved aluminum model (detailed in Section 3) to more accurately capture behavior of the
cantilever, which experimentally begins to crack at low velocity changes near the top of the fillet
between the cylinder and flange. This crack eventually propagates to the back side of the flange.
However, this failure initiation and propagation was not predicted in the initial blind investigation.

Using the new aluminum model, the predicted damage evolution in the cantilever as the shock
load increases can be observed in Figure 5-2, which depicts images of the cantilever for SMC tests
4, 8, 12, and 16. Cracking is initially predicted in test 4 (60.0 ft/s), and grows circumferentially
around the cantilever as the shock magnitude increases. By Test 12, cracking goes approximately
180° around the cantilever, but the crack has not yet propagated through to the back side of the
aluminum. By Test 16, some analysis results have a crack propagating all the way through, and the
cracking on the back side goes approximately from bolt 2 to bolt 6 circumferentially as shown in
Figure 5-3.
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(a) Front

(b) Half Model - Side View

Figure 5-2. Progressive failure of aluminum cantilever for increasing shock pulse, with figures colored by
𝐷𝑎𝑚𝑎𝑔𝑒.

Failures in the SMC (cantilever cracking and fastener failure) are illustrated for the experimental
and analysis results in Figures 2-6 and 5-4, respectively, where the failure mechanisms are plotted as
a function of velocity change. Note that the y-axes in the two plots have slightly different categories
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Figure 5-3. Back of cantilever for Test 16 analysis result, with figure colored by 𝐷𝑎𝑚𝑎𝑔𝑒.

for the failure mechanisms. Finding a complementary definition of "no crack" between the test and
analysis is challenging, as the analysis element size limits how small of cracks can be detected in
the analysis. Also note that in the analysis results, multiple samples were simulated for each test
input, and thus data can exist in multiple categories (e.g. partial crack, through crack, and fastener
failure for the test conducted at 105.6 ft/s).

Although the aluminum damage model is not calibrated for failure propagation, the model still
provides informative predictions that are similar to test data. The analysis predictions for failure
initiation seem consistent with test results. Although it is challenging to compare the "no crack"
analysis category to the "small crack" experimental category, the data suggests that crack initia-
tion might occur slightly later in the analysis (cracking begins at 60 ft/s in the analysis). This
observation aligns with the overall results, as most simulation results predict that the cantilever
will be significantly cracked as velocity change increases, but ultimately remain intact, while the
test data has a much larger range for the "through crack" category. However, there are occasional
analysis samples that predict a through crack in the cantilever in the 105-120 ft/s range. While
these results under predict the damage observed in testing (the cantilever consistently experienced
through cracks beyond 85 ft/s), the results are similar and would likely lead to sound engineering
decisions. If failure propagation were an important quantity of interest, this region should be more
thoroughly explored to capture the range of reasonable possibilities.

Partial fastener failure occurs in the analysis beginning at 98.8 ft/s, but note that this does not imply
that the probability of failure of fasteners is zero below this threshold (see results in Figure 5-1).
This agrees well with test data, as the range where fastener failure occurred is 105-120 ft/s. While
no simulation result has all fasteners failing, this does not imply the probability of this occurrence
is zero.
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Figure 5-4. Failure mechanisms in the SMC analyses
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6. DISCUSSION AND CONCLUSIONS

The enhancements made to the initial SMC analysis have significantly improved the predictive
capabilities of the model, demonstrating the viability and value of this approach. The new aluminum
constitutive model more accurately captures the behavior of the cantilever in the drop-table tests,
predicting partial and complete cracks for similar shock intensities observed during testing, although
the model ultimately tends to under predict the cantilever cracking. Understanding this aluminum
behavior is crucial for accurately predicting fastener failure, as these failure mechanisms appear to
be interdependent.

Initial blind analysis predictions suggested a progressive failure of the fasteners that would move
from the top to the bottom of the fastener array as the shock loading intensified. However, the
post-blind analyses, which more accurately capture aluminum behavior, suggest that while certain
fasteners (typically those at the top of the array) are still more likely to fail, the failure will not
necessarily follow a progressive pattern as indicated by probabilities of failure of similar magnitudes.
Although it is challenging to pinpoint the root causes of discrepancies between test and analysis
due to the coupled failure mechanisms of the fasteners and cantilever, the delayed propagation
of aluminum failure when all fasteners remain intact indicates potential areas for improvement
in modeling failure propagation. The increased resilience of the aluminum in the analysis likely
allows the fasteners to sustain more damage, resulting in slightly higher predictions for fastener
probabilities of failure than what the test data suggests. However, this may not tell the whole story,
as no analyses resulted in all six fasteners failing (although the results of the DD approach yields
non-minuscule probability of this happening).

While the new aluminum model enhances the predictive accuracy of the simulations, capturing a
comprehensive understanding of the problem would be difficult without the DD approach. Utilizing
this UQ procedure, along with enhancements for bounded QoIs, enables probabilistic predictions
that illustrate the deeper insights achievable through this robust and cost-effective methodology.
The probabilities of failure derived from the analysis align fairly well with the test data, providing a
reasonable range of velocity changes where failure is anticipated (highly probable). Furthermore,
the analysis indicates that some fasteners are more prone to failure than others, and that no test
within this range guarantees failure—both hypotheses are corroborated by the test data.

A significant challenge of the SMC lies in the closely linked failure mechanisms that seem to
compete under more severe shock conditions. Experimental results suggest that either complete
aluminum or complete fastener failure will occur, but not both simultaneously. This necessitates
accurate modeling of both components to effectively capture the overall structural behavior to
the degree allowed — given the significant stochastic variability in the materials and phenomena
and the sparse experimental sampling of this. For the current analysis, improving the aluminum
failure model could involve a more focused effort on capturing failure propagation or exploring
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the uncertainties associated with the acceptable range of values for the failure criterion (see Figure
3-5).

In summary, this approach, which did not involve any calibration to the specific application prob-
lem, has demonstrated reasonable predictive capabilities that support sound engineering decision-
making. The aluminum model, which more accurately captures failure and propagation, has
enhanced the overall analysis predictions. Additionally, the DD approach provides a layer of knowl-
edge and understanding that bolsters applicability of the results. The methodology is cost-effective,
easy to understand, robust, and extensible, making it suitable for a wide range of applications.
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APPENDIX A. Blind Prediction Calibration Results

Calibrations performed for the blind predictions are documented in Figures A-1 to A-4. Note that
the end of both the red test curve and dashed blue analysis curve indicate where complete failure
occurs.

Figure A-1. Calibration results for slow double shear test data.

Figure A-3. Calibration results for fast tension test data

59



APPENDIX A. BLIND PREDICTION CALIBRATION RESULTS

Figure A-2. Calibration results for slow tension test data.

Figure A-4. Calibration results for fast/slow joint tension test data

A.1. Reasonable Bounds on Bolt Failure Probabilities from Sparse Realizations of
Failures and/or Non-Failures within the Variability of Predicted Responses

Here we summarize the 1-D sparse-sample UQ methods used to obtain reasonable bounds on bolt
failure probabilities from sparse realizations of failures and/or non-failures within the variability of
predicted responses.
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A.1. REASONABLE BOUNDS ON BOLT FAILURE PROBABILITIES FROM SPARSE
REALIZATIONS OF FAILURES AND/OR NON-FAILURES WITHIN THE VARIABILITY OF

PREDICTED RESPONSES

Consider the 𝑁 = 5 𝑓 𝑜 𝑓 values for each bolt in Tables 4-3 and 4-6 in Section 4.3. From a given
bolt’s 𝑁 𝑓 𝑜 𝑓 samples, we seek to conservatively estimate the proportion of 𝑓 𝑜 𝑓 samples that
would meet the failure criterion 𝑓 𝑜 𝑓 = 1 in an asymptotically large number of material samples,
tests, calibrations, and parameter set propagations in drop test simulations. In both Tables 4-3 and
4-6, Bolt 1 has two 𝑓 𝑜 𝑓 realizations that are 1, reaching the 𝑓 𝑜 𝑓 upper-bound limit in 40% of
the 5 simulations in each table. To estimate the asymptotic proportion of 𝑓 𝑜 𝑓 ≈ 1 failure cases
in an asymptotically large number of cases, the usual 1-D sparse-sample UQ approaches studied
in [20] [21] [8] [22] [23] [24] are not well suited because the distribution of Bolt 1 𝑓 𝑜 𝑓 values is
expected to have a substantial spike or bump at its upper end 𝑓 𝑜 𝑓 ≈ 1.

For such cases, a different approach to failure probability estimation is needed. First, the 𝑓 𝑜 𝑓

realizations are separated into binary categories of ‘failure’ and ‘no failure’. Even if the binomial
population has a known proportion of, say, 𝑃 = 40% of elements in a selected category (say failure),
a relatively small number 𝑁 of elements drawn from the population can have anywhere from 0 to
𝑁 elements in the category.

Figure A-5 shows the analytical probability mass function (PMF) governing the various outcomes
when an asymptotically large number of random trials are performed, where each trial involves
𝑁 = 5 random draws from a binomial population containing 𝑃 = 40% of instances in the failure
category and the rest (60%) in the non-failure category. The PMF plot and the numbers in the
caption indicate the proportion of trials that will have outcomes of 0, 1, etc., failures (listed on the
plot abscissa) given 𝑁 = 5 draws per trial.

Figure A-5. Binomial distribution for 𝑁 = 5 draws from a binomial population with 𝑃 = 0.4. Outcome
probabilities (histogram bar heights) are [0.07776, 0.2592 , 0.3456 , 0.2304 , 0.0768 , 0.01024].

The PMF in Figure A-5 shows that if the true proportion of failures in the population is 𝑃 = 0.4,
then the nominal expected outcome of 2 failures in 5 draws (0.4 proportion of failures) will occur
most often, in 34.6% of the random trials. However, the probabilities of most of the other possible
outcomes are also substantial.

We can iterate the parameter 𝑃 governing binomial populations in order to investigate the lowest
and highest reasonable values of 𝑃 that would be consistent with the empirical outcome of obtaining
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2 failures in 5 simulation realizations for Bolt 1. On the high end, 𝑃high = 0.74 yields a binomial
distribution/histogram with a 0.1 probability of obtaining 2 failures in 5 draws and a very high 0.98
probability of obtaining 2, 3, 4, or 5 failures. Thus, 𝑃high = 0.74 is highly consistent with obtaining
as few as 2 failures, very inconsistent (0.02 probability) with obtaining fewer than 2 failures, and
non-negligibly consistent (0.1 probability) with the empirical realization of exactly 2 failures. So, it
is considered a reasonable possibility that the true value of 𝑃 for an asymptotically large number of
material samples and tension tests, calibrations, and parameter set propagations to the drop-shock
structural model could be as high as 𝑃 = 0.74. On the other hand, 𝑃 > 0.74 would yield less than
a 1 in 10 chance of realizing the outcomes for Bolt 1 in Tables 4-3 and 4-6 in Section 5, so it is
deemed outside of a range of reasonable plausibility for the true value of 𝑃.

Thus, 𝑃high = 0.74 is deemed a conservatively high reasonable bound for a binomial large-
population proportion of Bolt 1 failures in the current context. 𝑃high = 0.74 is significantly higher
than the empirical nominal failure proportion of 0.4 (2 failures in 5 realizations). For comparison,
𝑃high = 0.74 is also vastly higher than 𝑃 = 0.353 yielded by a 90% confidence “Tolerance
Interval Equivalent Normal” (TIEN90, see below)—which would typically be a conservatively
wide response-variability distribution to use unless the actual distribution has a finite bound with
significant saturation of empirical samples as in the present case.

On the low end of a reasonable range for 𝑃, 𝑃low = 0.12 yields a binomial distribution with a
10% probability of obtaining 2 failures in 5 draws and a very high 99% probability of obtaining
2 or fewer failures. 𝑃low = 0.12 is highly consistent with obtaining as many as 2 failures, very
inconsistent with obtaining more than 2 failures (0.01 probability), and non-negligibly consistent
(0.1 probability) with the empirical realization of 2 failures for Bolt 1 in Tables 4-3 and 4-6. On
the other hand, 𝑃 < 0.12 would yield less than a 1 in 10 chance of realizing the said outcomes,
so it is deemed outside of reasonable plausibility for the true value of 𝑃. Hence, 𝑃low = 0.12 is
deemed a conservatively low reasonable bound for a binomial large-population proportion of Bolt
1 failures.

Figure A-6 presents 𝑃low and 𝑃high values for this case and similarly derived values for other
potential empirical outcomes of the possible numbers of failures in 4 or 5 simulation realizations.
The table is relevant for the 𝑁 = 4 or 5 calibration parameter sets from the 4 or 5 replicate tests and
load-deflection data curves for each of the material-specimen geometry and loading configurations
documented in [2].

The zero-failure edge cases in Figure A-6 appear to be overly conservative at the upper end 𝑃high.
For example, consider the 𝑓 𝑜 𝑓 outcomes (zero failures) for Bolt 2 in Table 4-3 in Section 4.3.
The average 𝑓 𝑜 𝑓 is 0.728 with a standard deviation of 0.134. Using these nominal statistics from
𝑁 = 5 samples as a rough gauge, it takes about two standard deviations from the mean to effectively
reach the 𝑓 𝑜 𝑓 = 1 failure limit. As a rough estimate, if an asymptotically large distribution of 𝑓 𝑜 𝑓
values has the same mean and standard deviation as the 𝑁 = 5 values in Table 4-3 and otherwise
approximately normally distributed, then about 5% of the fof results would lie at the 𝑓 𝑜 𝑓 = 1 limit.
This is far smaller than the 37% from Figure 20 for the highest reasonable conservative estimate
of failure probability for 𝑁 = 5 using the binomial estimation approach. Therefore, we turn to
the TIEN90 approach explained next. The approach is expected to yield a conservatively wide
distribution compared to an actual distribution of numerous 𝑓 𝑜 𝑓 realizations such that the TIEN90
would yield, to a high level of reliability or confidence as established in [20] [21] [8] [22] [23] [24],
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Figure A-6. Low and high reasonable values for the proportion of failures in an asymptotically large
binomial population that yields the indicated numbers of failure realizations in the indicated number 𝑁 of

random draws from the population.

conservative but not overly conservative estimates of the actual proportion of 𝑓 𝑜 𝑓 = 1 bolt failures
in an asymptotically large population. A TIEN90 distribution is formed as follows.

We first discuss statistical Tolerance Intervals (TIs). TIs attempt to compensate for sparse sample
data by appropriately biasing toward conservative estimation of applicable width measures of the
population distribution from which the samples are drawn. For instance, a useful measure is the
central 95% of response between the 2.5 and 97.5 percentiles of the distribution. 95/90 TIs bound
the central 95% of response with the advertised 90% confidence when based on sparse samples
drawn from a Normal distribution. Lesser but still reasonable and useful success rates occur
with sparse samples from a diverse variety of other distributions, including highly skewed and/or
multi-modal distributions as established in [20] [21] [8] [22] [23] [24].

A 𝑋% coverage/𝑌% confidence TI is constructed by multiplying the calculated standard deviation
𝜎̃ of the data samples by an appropriate factor 𝑓 to create a TI of total length 2 𝑓 𝜎̃. The interval
is centered about the calculated mean 𝜇̃ of the samples. Figure A-7 summarizes the construction
of TIs and their “Equivalent Normal” distributions discussed in the next paragraph. The TI length
scaling factor 𝑓 depends on the parameters 𝑋 ,𝑌 , and the number 𝑁 of samples, and can be obtained
from look-up tables (e.g., [35], [36]) or can be calculated from formulas (e.g., [37]) or software that
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encodes the formulas, e.g., [38]. The factor 𝑓90/90 = 3.52 is used here (from [38] with Guenther
sparse-sample correction).

Figure A-7. Scalar data samples, tolerance interval, and equivalent normal distribution

Tail probability estimates can be based on TI methodology by forming a Tolerance Interval
Equivalent-Normal distribution as illustrated in Figure A-7. For 90/90 TIs, the TI range 𝜇̃± 𝑓90/90𝜎̃
corresponds to an estimate of central 90% coverage of the sampled population. We form a Normal
distribution 𝑁 ( 𝜇̃, 𝜎TIEN) whose central 0.90 integrated probability is defined by the endpoints of
the 90/90 TI. The TIEN has the same mean 𝜇̃ as the TI. By definition of a Normal distribution, the
central 0.90 integrated probability of the TIEN occurs over the range 𝜇̃ ± 1.645𝜎TIEN. This is set
equal to the TI range to solve for the TIEN’s standard deviation:

𝜇̃ ± 1.645𝜎TIEN = 𝜇̃ ± 𝑓90/90𝜎̃ ⇒ 𝜎TIEN =
𝑓90/90𝜎̃

1.645
(A-1)

where 𝑓90/90 = 3.52 as stated earlier.

Effectively the same 𝜎TIEN and thus TIEN would result from a similar procedure using, say, a
95/90 TI with the same confidence specification 𝑌% = 90% but a different coverage specification
𝑋% = 95% and corresponding factor 𝑓95/90 and TIEN whose central 0.95 integrated probability lies
between limits 𝜇̃ ± 1.96𝜎TIEN by definition of a Normal distribution. Thus, only the TI confidence
parameter 𝑌% = 90% is necessary to adequately label the method. So, we use the nomenclature
‘TIEN90’. Integration of a Normal distribution (such as a TIEN90) is available as a function call in
most software with statistics processing capabilities such as Excel, MATLAB, and Python. We use
Excel for the integration results in this document. Right-tail probability estimates are calculated as
1 minus the result of an integration of the TIEN90 distribution from −∞ to the bolt failure limit
𝑓 𝑜 𝑓 = 1.

A TIEN90 based on the 5 𝑓 𝑜 𝑓 values for Bolt 2 in Table 4-3 integrates to 0.170 probability of
reaching/exceeding the failure threshold 𝑓 𝑜 𝑓 = 1. Analogous numbers for Bolt 3 in Table 4-3 (zero
failures) are: average 𝑓 𝑜 𝑓 = 0.558, standard deviation = 0.129, and integrated TIEN90 failure
probability = 0.055. The TIEN90 failure probability estimates are considerably smaller than the
binomial estimate 𝑃high = 0.37 for 𝑁 = 5 in Figure A-6. Based on the analysis and results here,
TIEN90 methodology is used for bolt failure probability estimates for Bolts 2 – 6 in Tables 4-4 and
4-7 in Section 4.3.
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Sharlotte Kramer 1528 slkrame@sandia.gov

Kevin Dowding 1556 kjdowdi@sandia.gov

John Emery 1556 jmemery@sandia.gov

Robert Kuether 1556 rjkueth@sandia.gov

Paul Miles 1556 pmiles@sandia.gov

David Najera-Flores 1556 danajer@sandia.gov

Kumar Vemaganti 1556 kmvemag@sandia.gov

Kyle Karlson 8752 knkarls@sandia.gov

Jeff Crowell 8755 jacrowe@sandia.gov

Technical Library 1911 sanddocs@sandia.gov
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