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ABSTRACT

Sierra/SD provides a massively parallel implementation of structural dynamics finite element
analysis, required for high-fidelity, validated models used in modal, vibration, static and shock
analysis of weapons systems. This document provides a user’s guide to the input for Sierra/SD.
Details of input specifications for the different solution types, output options, element types and
parameters are included. The appendices contain detailed examples, and instructions for running
the software on parallel platforms.



This page left blank



CONTENTS

1. Introduction

2. Release Notes

2.1. Feature deprecation proCedure . . .. ......utie e tn ettt ie e

2.2. Release 5.28.....
2.3. Release 5.26.....
2.4. Release 5.24.....

3. How to Run Sierra/SD

3.1. Accessing Sierra/SD . ... ...
3.2. Modules and Executables .. ....... ... i
3.3. The Sierra/SD salinas Executable .......... ... .. .. . i,
3.4. MPI Parallel EXeCUtiON . . ... ..ottt et e e et
3.4.1. Number of MPI Processes Needed ................ ... i,
3.4.2. Mesh Decomposition. .. ....uuuttt ettt
3.4.3. Running the Sierra/SD Executable in Parallel .........................
3.4.4. PostProcessinginParallel ........... .. ... .. .. . ...
3.5. File SYStemM CONCEINS . . .. vttt ettt et e et e e e e e e et e et e
3.6. Workflow Examples . ....... .. i

3.7. Thread Parallelism
3.8. Troubleshooting. .

3.8.1. Stand-Alone Tools ....... ... ... i
3.8.2. Using Sierra/SD To Troubleshoot............. ... .. ... .. ...
3.8.3. Modal Analysis . ........iiuiiii e

3.8.4. Evaluating

Memory Use and Fixing Issues.............. ... ... ... ....

3.8.5. Problematic Elements and Connectivity .................coovinven....
3.8.6. Over-determined Constraints and Loss of Rigid Body Modes ............
3.9. Input Deck Modification SCIIpts ... ... ..ottt
3.9.1. EXtracting SECHIONS . . ...\ttt
3.9.2. SOrting SECHOMNS . . . ot vttt ettt et e et e e e e e e e e
3.9.3. Removing Duplicate Sections. . ............uuiiiiiiieinninennen...
3.9.4. ConvertingIncludes. ............ i i
3.9.5. Converting Coordinate SysStems . . ..........ouuuiiniinineneennenn.n.
3.9.6. Converting Named Materials .......... ... ... ... ... . i,
3.9.7. Removing Syntax Conversion NOtes . ..........couieiriiinnennneen..

4. General Commands
4.1. Input deck format

23

25
25
27
28
30

33
33
33
34
35
35
36
37
37
37
38
39
40
40
41
41
42
42
44
44
44
45
46
46
47
48
49

51



4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.
4.10.

Input Mesh Geometry File . ... .. .. 54
4.2.1. Geometry_file ........ . i 54
4.2.2. Exodus Database Naming Conventions ..................ccoveuvenn... 56
4.2.3. ASSEMBLY SECtON . ...ttt 56
4.2.4. Exodus Naming Limitations . ...........ouuiiniennneinenennnn. 57
4.2.5. Additional Comments About Output............ ..., 58
Transferring Exodus data from other applications ............................ 58
4.3.1. Reading Exodus data from the input mesh file......................... 58
4.3.2. Transferring Exodus data from a non-matching mesh file ............... 60
Parameters . ... ... . 63
4.4.1. Suppression of Warnings . ...........c..ouiiuiiniininiiiiia.. 72
Loads ..o e 79
4.5.1. The Load and Loads Sections. . .......... ..ot 80
4.5.2. Scale Factors forthe Load ........... ... ... .. i, 81
SOIUtON OPLIONS . .\ v vttt ettt et e e e e e e e e e e 82
4.6.1. Flush ... o 82
4.6.2. ReStart. . ..ot e 82
4.6.3.  SOIVer .. 90
4.6.4. Lumped —Option ... ..ottt e 91
4.6.5. Constraintmethod —Option . ......... ..ottt 92
4.6.6. Scattering — OPLON. . . ...ttt ettt et e 92
G S W 92
AT 0. OPLONS .« vttt e et e e e e e e e e 99
472, DIa@NOSHCS .« v ottt et et e e e e e 100
4.7.3. Troubleshooting GDSW . ... ... ... . 102
4.7.4. Mathematical Conditioning Issues............ ... i, 105
4.7.5. Frequency Response Functions ............ ... ... ... oo, 106
4.77.6. Parameters .. ... ...t e 106
SENSILIVILY ottt et e e e e e e e 110
481, AMUNE . ..ottt 111
COoOTdINALES . . . oottt ettt e e e 115
Function . . ... e 123
4.10.1. Function Offset/Shifts . ....... ... i i 124
4.10.2. Linear Functions . ......... ... .ottt 125
4.10.3. Sierra SM Piecewise Linear Functions ............... ... ... ........ 126
4.10.4. Functions using Tables ..............iiuiininii i, 127
4.10.5. Polynomials .. ... ... e 128
4.10.6. LogLog Functions . ........ ...ttt 128
4.10.7. SamplingRandom ........... . . 128
4.10.8. RandomLib Functions . ......... ... .. i, 129
4.10.9. Analytic FUnctions. . .........oiiiin i e i 131
4.10.10.Plane Wave (Time Domain) . ............ ... 140
4.10.11.Plane Wave (Frequency Domain)............... ... ... oo, 141
4.10.12.Planar Step Wave . .. ..ot e 143
4.10.13.Spherically Spreading Wave . . ...t 143



4.10.14.Undex Structural Acoustic Loads. .. ... .. 145

4.10.15.Fluid Structure Interaction ................u i, 146
4.10.16.Blending . ... .ov ot e 147
4.10.17.Matrix-function . ... ......uuiunenn et ettt et 150
4.10.18.Alternate Table Interface. .. ....... ... ... . ... 151
4.10.10.Table . . oot 152

4.11. Multipoint CONSIAINtS . ... ...ttt ittt ettt et 154
. Solution Cases 157
5.1. Defining SOIution Cases . .. ...vutttn ettt e e e et 158
5.1.1. Multicase SOlutions . . . .....o.i it e 159
5.1.2. Multicase OPtionsS . .. .ovuutun ettt ettt et ettt 160
5.1.3. Multicase Example ....... ... e 160

5.2. CJdamp Solution Case ... ......oiuunitii e 161
5.3. Craig-Bampton reduction Solution Case ...............ccoiiiiiiiiinnnenn... 164
5.3.1. CBModel ... 168
5.3.2. Sensitivity ANalysis .. .ovutn e e 173

5.4. preddam Solution Case . ... ...ttt e e e 174
5.5. DDAM Solution Case . ... .vtit ettt ettt et et e 175
5.6. Direct Frf Solution Case . .. ...ttt e 177
5.6.1. Multiple Loads . ......oui e 178
5.6.2. Padé EXpansion . ............uiiiniitit e 179

5.7. Model _Check Solution Case ... ........ it 179
5.8, eigen Solution Case. . . ...ttt 182
S5.8. 1. Option NMOAES . . o .ottt ettt e 183
5.8.2.  Solving Singular Systems with Shifts .............. .. ... .. .. ..... 183
5.8.3. UntilFreq Option and Modal Restart . .............. ... ... ... ..., 185
5.8.4. ModalFilter Option . .. ..ottt e i 186
5.8.5. Fluidloading Option ....... ...ttt 186
5.8.6. Rigid Body or Zero Energy Modes ................coiiiiiiiiii.. 186
5.8.7. Residual Vectors ..........c.iiiniii i 186

5.9. aeigen SoIutioN Case . .. ... vt ittt e e e 188
5.10. Largest_Ev Solution Case . ..........c.iiiiiiiini it ieie e 190
S.11. Fatigue Solution Case . ... ...ttt 190
SALL USer OUPUL . o v vttt e ettt e e e e e e e 193

5.12. buckling SOIution Case . . . ... .vtt it e 194
5.13. ModalFilter Solution Case . . ...ttt i 195
5.14. Modal Participation Factor Solution Case ........... ... ... oo, 198
5.15. ModalFrf Solution Case .. ......vtitii e ettt 201
5.15.1. ModalFrf with Real-Valued Modes .................. ... ... oon... 202
5.15.2. ModalFrf with Complex Modes . . ......... ... i, 203

5.16. modalranvib Solution Case .......... ..ottt 205
5.16.1. Power spectral density . ... ......uuiinen i 208

5.17. modalshock Solution Case . ...t et e e 209
5.18. modaltransient SOIUtion Case. . .......vuit ittt it e e 210



5.19. QEVP Solution Case. . . ..ottt e e e e e 212
5.19.1. Quadratic Eigenvalue Methods Comparison........................... 212
50920 ANASAZI . ..o et 214
5.19.3. Damped Eigenvalue Problems .............. ... ... ... i, 215
594, SA _CIZEN ..ttt 216
5.19.5. Projection_€IZEN ... ...ttt e 219

5.20. NIStatics SOIUtion Case ... ...ttt et e 220

5.21. NlTransient Solution Case . . ........ouunittnitt e 222

5.22. Random Vibration Solution Case .......... ... .ot iiiiniiinennennn.. 223

5.23. receive_sierra_data SOIUtion Case . . . . ..o vttt e 224
5.23.1. Geometric stiffness .......... .. i 226
5.23.2. Receiving SM User Defined Data .............. ... ... ... ........ 226

5.24. statics SOIution Case . . . ..ottt 231

5.25. superposition Solution Case . .. ....vu ittt e 232

5.26. tangent SOIution Case . .. ...o vttt e e 233

5.27. transhock Solution Case . . .....vt ittt i e e e e 234

5.28. transient SOIUtION Case . . .. ..ottt e e e 236
5.28.1. nUpdateConStraints . ... ...o.utut ettt it i 237
5.28.2. FilterRbmLoad ........... ... . ... ... .. 238

5.29. TSR_preload Solution Case . . ... .ovurttnt ettt e it 240
5.29.1. Line Sample . . . ... 242

5.30. GeometricRigidBodyModes Solution Case ............ ... iiiiiiionn... 242

5.31. waterline Solution Case .. ...ttt 244
5311 LIMItations . . ..o ettt e e e 247

5.32. Gap Removal Solution Case. .. ......vutntnee it 248

. Materials 251

6.1. Elastic materials . ....... ... . e 251
6.1.1. ISOLrOPIC . ..ottt e e 252
6.1.2. OrthotropiC . . ..ottt e e e e 252
6.1.3.  ANISOLIOPIC .+ v v vttt ettt e e e e e e e e e e e 253
6.1.4. Lamé Material ....... ... oo 254

0.2, ACOUSHIC . vttt ettt ettt e e e e e 256

6.3. Linear VISCOCIASHCILY . . . ..ottt e e e 256

6.4. Complex VISCOCIASHIC . . ..ottt e e 260

6.5, PrOPeIties . . ..ottt e e e e e e 261
6.5. 1. DeNSItY ..ottt e 261
6.5.2. HighCycle Fatigue .......... ... ittt 261
6.5.3. S-Ncurve Definitions ............ciiuiiinin i, 262
6.54. S-NCurve UnitS. .. ..ovtii it e et et et e 263
6.5.5. Typical Material Data for Fatigue .............. ... .. ... .. .. ..... 264
6.5.6. Thermal and temperature-dependent properties . ...............cooou.... 266
6.5.7. Spatially Variant Material Properties............... ... ... i, 268
6.5.8. SpecificHeat ......... .. e 270
6.5.9. Frequency dependence ............. ...ttt 271



6.6. BloCK . ... 273
6.6.1. Block Parameters . ... ..... ...t 273

6.7, DamPINgG. . ..ottt ettt e 283
6.7.1. Nonlinear transient .. ..............ooouiiiuntinenineneenn. 285
6.7.2. Nonlinear Distributed Damping . ......... ... .. i, .. 285
6.7.3. Frequency Band Damping ........... . ... ... i 288

. Elements 291
T HeXE oo 291
T2, HeX20 .o 292
T3, Lot o o 292
T4 TetlO . 293
7.5, Wedgeh . ..o 293
7.6, Wedgel S . ..o 293
TT. PyramidS ... e 293
7.8, Pyramidl3 ... .. 294
7.9. Two-Dimensional Shell and Membrane Elements . ............................ 294
7.9.1. QuadT, Quad8T,and Triab ...............i i, 294
7.9.2. QuadM . ... 296
7.9.3. NQUad/NIIA . o oot e e e e 297
7.9.4. TriaShell . .. ... o 299
795, Triad .o 300
7.9.6. Stiffness Scaling. ... ... i 300
7.9.7.  Shell Coordinate Systems .. .........couiiiiiniineiiinneenn. 301
7.9.8. Layered Shells .. ... ... e e e 303
7.9.9. Spatially Dependent Properties via Exodus Attributes .................. 306

7.00. Hexshell . ..o 307
TA1. Beam2 ..o e 311
7.11.1. Beam Element Coordinate Frame ................... .. ... ... ...... 312

T2 NDEAM . oo e 315
TA3. TiBeam . ..o 318
AU TTIUSS « oo e e e 319
LS. BHIUSS ottt e e 319
16, CONMASS .ttt ettt e e e e 320
AT SPIING . o o 322
7.17.1. Spring Parameter Values .. ........... ... i 323

T8, RSOPIING .ot e 323
7.19. Spring3 - nonlinear CubiC SPring . . ... .ottt i 324
7.20. Dashpot .. ..o e 325
7.21. SpringDashpot . . .. ... 326
T2 HYS ot 327
T.23.J0INt2G . o ot 328
7.23.1. Specification . .. .. ...ttt 329
7.23.2. Constitutive Behavior .......... .. .. . i 330
7.23.3. Reduced Iwan Plus Pinning (RIwan) . ........ ... ... .. .. .. ... ... .. 335



T24.Line Weld . . ... 339
T.25. Gap CleMEeNt . . . . oottt e 343
726, Gap2D . .o e 346
T.27. GasDMP . oottt e 347
.28 NIMOUNL. . .ttt ettt e e e e et e et et e e 347
720, RIO ..o 350
7.30. Rbar ..o 350
T30 RBE 352
7.32. Superelement . . .. ..ot e 354
T.33.D6ad . .o 360
7.34. 0Omit BIoCK . . . .. o 361
7.35. Compatibility of SD/SM Elements . ........... ..o, 362
T.36. Rigid St . . oot 363
7.36.1. Voltage Rigid Sets . ....... .ot i 364
7.36.2. LIMItations . . .ottt et ettt it e e 364

.37 RIOASEL . oottt e e e e e e 365
7.38. Tied JOINE . . . oo e 365
7.38.1. Output Specifications ... ...........uuuiiiiiiei i, 372

. Boundary Conditions and Initial Conditions 373
8.1. Boundary conditions . . ...ttt e 376
8.1.1. Prescribed Displacements and Pressures. ............................. 377
8.1.2. Prescribed Displacement in Transient . .............. ... ... o oiien .. 378
8.1.3. Prescribed Voltage . . . ...... it 378
8.1.4. Prescribed Accelerations. .. ....... ..ottt 379
8.1.5. Prescribed Frequency-Varying Displacements ......................... 380
8.1.6. Nonreflecting Boundaries .. ........... ..., 380
8.1.7. Impedance Boundary Conditions. ..............cooiiiiiiiniinenen... 381

B 1.8, Slosh ... 382
8.1.9. Infinite Elements . ... ... ... . i 382
8.1.10. Perfectly Matched Layers ......... ..., 385
8.1.11. Periodic Boundary Conditions . .............ouiiiieiieiinnnennnn... 387

8.2. Exodus Mesh Boundary Condition Input ........ ... .. .. .. ... i, 389
8.2.1. SpatialBCFunctions ............ ...ttt 390
8.2.2. ExodusRead functions............ ... 391
8.2.3. Input an Acoustic Point Source fromaNode Set ....................... 393
8.2.4. In-Core Transfer Functions . ........... ... i, 394

8.3. Specific Load TYPes . .. ..ottt 395
8.3, L. PreSSUI. . ottt e 396
8.3.2. Follower Stiffness ........ ... i 397
8.3.3. Traction . ... .vo ittt e e e 397
8.3.4. Acoustic Velocity and Acceleration . ........... ..., 398
8.3.5. AcousticPoint Volume .......... .. ... .. i 399
8.3.6. Lighthill ... ... .. 400
8.3.7. Thermal . ....... ... e 401



8.3.8. Energy Deposition .. ........ ... iiniiiii i 405

8.3.9. FOICE . .ot 405
8.3.10. MOMENL ...ttt e 406
8.3.11. PreSSUIE 7o . .o vt e e 406
8.3.12. Random Pressure . .. ... .. o e 406
8.3.13. Surface Charge . . ... .ot 410

8. 3. 14, Gravity . ..ottt e e 410
8.3.15. Angular Velocity and Angular Acceleration........................... 410
8.3.16. Modal Force .. ... ... i 414
8.3.17. Applying Loads for Static Analysis ........... ..., 415
8.3.18. Time Varying Loads ......... ... i 415
8.3.19. Temporal Loads from Exodus .......... ... ... . ... .. 415
8.3.20. Frequency Dependent Loads .......... ... ... .. i ... 416
8.3.21. Rigid Body Filter for Input . ......... .. ... . i 416
8.3.22. RanLoads . . ... 418

8.4. Initial ConditionS. . ... ..ttt e 419
8.4.1. Reading Initial State from a Sierra/SM Analysis ...................... 420
8.4.2. Reading Initial Conditions from the Mesh File ........................ 420
8.4.3. Setting Initial Conditions in the Input Deck ........................... 421

8.5. Use cases for initial acceleration ............ ... . i, 422
8.5. 1. Summary .. ... e 423

. Output 425
0.1, EX0dus . . . ..o 425
0.1.1. Database Name ....... ...ttt 427
0.1.2. PrOPeIties . .ottt ettt et e e e e e e 427

0.2, HiSIOTY . ottt et e e e 429
9.2.1. History Output for Node Sets, Side Sets, and Element Blocks ............ 429
9.2.2. Global History Output Near a Location in the Model ................... 431
9.2.3. Output database OptionS ... ........oouriiintiin e, 433

0.3, FreqUeNCY . .. oottt ettt e e e e e 433
9.4. MATLAB output format. .. ....... ..ottt ittt ieneens 435
0.5, USEr OULPUL . .« .ottt e e e e e e e e e e e e 435
9.5.1. Element Variable Spatial Statistics ............. ... ... ... 435
9.5.2. Nodal Variable Spatial Statistics .............. oo, 436
9.5.3. The Closest Distance Output ..............oouuiiniiiiinieinneneennn. 438
9.5.4. Temporal Variable StatiStics .. .........ovuiiiiiii i, 441
9.5.5. Rotating Output Variables. ......... ..., 443
9.5.6. Analytic Function Output ......... ... ... it 444
0.5.7. SHAlISHICS . o . vttt ettt e et e e e e e 446

9.6. Output of Internal Variables. ......... ... i 446
9.7. Output of Simulation Results .. ........ .. i i 447
0.7.1. Displacement . ... .....uuiree et e 447
0.7.2. VelOCity . . ..o 448
0.7.3. ACCEleration . ... ......iuiu ettt e 448



9.8.

9.7.4. Rotational_displacement. . .......... ... 448
9.7.5. Rotational_acceleration. ................ ittt 448
0.7.6. Constraint forCe . .. ...ttt e 449
0.7.77. Reaction FOrce . ...... ... i e 449
0.7.8. EROICE. . ... e 449
0.7.9. Line_Weld . ... .o 452
0.7.10. Relative_DIsp .. ..ottt 452
0.7.11. Residuals . ... i e 453
0.7.12, TINACX . . oottt e e e e e e 454
0.7 13, PreSSUIE. . oottt e 454
0.7 14, NPIESSUIE . . ot i ittt e e e e e e e e e e 455
O0.7.15. APIESSUIE . . ot ot 455
0.7.16. acousticIncident . .. ... ... i e 455
9.7.17. acousticHydrostatic ... .........ouuiiiii ittt 455
0.7.18. APartVel . . ... . e 455
0.7.19. StralN . . .ottt 456
0.7.20. SIS . . v vttt e e 457
0.7.21. VIS .« ottt e e e 462
0.7.22. Stresses and Strails . . ... .oovtvt ittt e e 462
9.7.23. Stress/Strain Truth Table .. ........ ... i 463
0.7.24. Solid Elements . . . ... .. e 464
0.7.25. Shell EIements . . . ... i e e 464
0.7.26. Beam Elements ... ............ . e 465
9.7.27. Surface Projection of Element Variables.............................. 466
0.7.28. DAamouUt . . ... e 467
0.7.29. TeMPETAtUIE . . . .o\ttt ettt et e e e e e e e e e 469
0.7.30. ENergy . ..ottt 469
0.7.31. Globals . ..o e 471
0.7.32. BIoCK_ENErIgIes ... ...ttt e e 471
0.7.33. Mesh_Error . . ..o 471
0.7.34. MEIle. ..o e 472
0.7.35. Maa . ..ot 474
0.7.36. Kaa . ... o 474
0.7.37. Faa . ... e e 474
0.7.38. MPhi . ..o e 475
9.7.39. Rainflow Cycle Counting .. ..........c.iiunniineineineneenn. 475
0.7.40. Fatigue Damage . ...... ..ot 475
0.7.41. MLumped . . . .. ..o 476
Output of input for checks ...... ... . i 477
9.8.1. Constraint_Info ...... .. 477
9.8.2. ElemEigChecks ....... ..ot i e e 478
9.8.3. ElemQualchecks ......... ... e 478
0.8.4. EBOTIENt . ..ot 481
0.8.5. FOrCE .. oo e 483
90.8.6. Right-hand side .......... ... i i i 483



10.

11.

0.8.8.  ADIag ... 484
0.89. LineSample .. .......iiiii e 484
0.8.10. Material . ... ... ...t 485
0.8.11. Material DIirection . ........ ...ttt 486
0.9, BCho ..o 486
0.9.1. Used ..ot 488
0.9.2. Mass Properties . .. ...ttt e e 488
0.9.3. Multipoint CONSIIAINES . . .\ vttt ettt ettt et ettt iee e 489
0.9.4. ModalVars . ... e 489
0.9.5. Subdomains ............. . e 490
0.9.6. MEMUSAZE . .o\ttt ettt et e et e e e e e e e 490
0.9.7. EImat. ... ...coii i 491
Contact 493
10.1. Tied SUrfaces . . . ..ot e 493
10.1.1. Contact Normal VEctors . ........ ..ot 494
10.1.2. Mortar Methods . .. ... o 496
10.1.3. Nodeto Face. .. ...t e e 496
10.2. Contact Definition . . . ... ..o i 498
10.2.1. Defining Contact Surfaces .......... ..., 500
10.2.2. Setting up Contact Interactions .................iiiieiieineeneenn.n. 501
10.2.3. Gapremoval .. ... 504
10.2.4. Examples ... ..o 505
10.2.5. Notes and Usage Guidelines . ..............ooiiiiiiiiiininnnn... 506
10.2.6. Differences Between SM and SD Defaults ............... ... ... ... 507
10.3. Lofted Surfaces and GapRemoval ............ ... ... .. ... .. ... ... ... ... 507
10.3.1. Example . ..o e 507
10.3.2. Projection Approach ........ ... ... 508
104, Spot Welds . ..o oo e 510
TOA. L. SYNAX ..ottt ettt e e e e e e 510
TO4.2. OULPULS « ..ottt et e e e e e e e e e e 511
10.4.3. Specifying Spot Weld Stiffnesses. . ....... ... ..., 512
10.4.4. Usage at diSCIete POINLS . . . . e\ vttt ittt e et et ee e 513
10.4.5. Usage as an alternative to Tied Joint or Surface Contact................. 513
10.5. Moving MPCs . ..o e 514
Example Input Decks 517
11.1. Eigenvalue problem. .. ... ... i 517
11.2. Anisotropic Material . .. ...ttt e e 518
11.3. Multiple materials . . ... ... 519
11.4. ModaltranSIient . . . . . ...ttt et e e e e e 521
L11.5. ModalFrf . ..o 523
11.6. Direct FRF . . .. o 525
TL7. SEALICS « o vttt e e e 526



Bibliography

Index

Distribution

LIST OF FIGURES

Figure 3-1.
Figure 3-2.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.

Figure 6-1.

Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.

527

533

545
Single Spring element. . . ... ... ... e 43
Truss Decomposition ISSUes. ... ...t i 43
Mismatch mesh behavioroptions .. ......... .. ... .. i 63
Example MFile Format Results. ........... ... ... ... ... ... i ... 70
Semi-Analytic Methods for Sensitivity Analysis. .......................... 114
Coordinate system definition Vectors. . .. ........c..vvuiiinnnininenneo... 118
Coordinate System Examples ............oo i 119
Conical Coordinate System Definition at XZ plane ........................ 119
Ellipsoidal coordinate system using axis_stretching = (2.0,1.1.,1.0) ......... 120
Coordinate system behavior near the Z axis. . ............ooueiueenennon... 122
Full model with different coordinate systemuses . ......................... 123
Linear function "ignored_point". .......... ... . ... i 125
Linear function "extrapolation". .......... ... .. i e 126
Linear function #5. "multiple_fun". ........ ... ... ... ... .. . . . . 126
RandomLib Temporal Interpolation. ............. ... ... iiiiiiinaen... 131
Spherical Wave Geometry. . ...... ... 144
Fluid-Structure Interaction (FSI) Infrastructure. .. ......................... 147
lustration of first crossing blended function. . ............................ 148
Ilustration of Nth crossing blended functions. ............................ 149
Craig-Bampton Reduction. . ....... ... .. i 172
Superposition Data Flow Diagram. ............... ... ... ... ... ... ..., 233
Waterline Coordinate Definition . ......... ... ... ... .. 246
Net Force vs depth foraRigid Body .......... ... ... ... ... ... ... ... 248
S-N Curve for Steel Sheet . ...... ... o i 265
QuadT Element. . ... ... o i e e 295
Quad8T Element. . . ...ttt i e e e e e 295
Triab Element. . ... ... oo e 295
Function for Nquad_eps_maxX. ..........uiuiirnineniiin e 299
Projection of global coordinate systemtoshell. ........................... 302

Rotation of global coordinate system about axis prior to projection to shell. ... 302

14



Figure 7-7.

Figure 7-8.

Figure 7-9.

Figure 7-10.
Figure 7-11.
Figure 7-12.
Figure 7-13.
Figure 7-14.
Figure 7-15.
Figure 7-16.
Figure 7-17.
Figure 7-18.
Figure 7-19.
Figure 7-20.
Figure 7-21.
Figure 7-22.
Figure 7-23.
Figure 7-24.
Figure 7-25.
Figure 7-26.
Figure 7-27.
Figure 7-28.
Figure 7-29.
Figure 7-30.

Figure 8-1.
Figure 8-2.
Figure 8-3.

Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.

Rotation of local system about normal after to projection to shell. . ........... 303

Stacking arrangement for a multi layer shell element. ...................... 304
Offset examples for shell of thickness O.1............. ... .. .. ... ... .... 305
Beam Orientation and Local Coordinate System. . ......................... 312
Beam Offset and Local Coordinate System. ............. ... i ... 314
Nbeam Orientation, Offset and Local Coordinate System ................... 316
Hys element parameters. . ... ......uuuuteunne e, 329
Iwan Constitutive Model. ....... ... ... 332
Hysteresis Microslip Variationwith 8 ....... ... .. ... ... ... i, 334
Hysteresis Macroslip Variation with S....... ... ... i, 334
Reduced Iwan Load Displacement Curve. .............. ... .. ... .. ..... 336
Eplas Model. . . ... oo 338
Line weld definitions for attaching the purple and cyan shells. ............... 339
Line weld Joint2G CONNECHIONS. . ..ot vvttt ittt een 340
Gap element Force-Deflection Curve. ............ ... i, 344
Massbouncingoff aGap . ... 345
Gap2D force diagram. . ... 347
Rigid set or tied joint centernode connection ...................oviuain... 364
Rrodset Constraints .. ...........ieunniinen e, 365
Tied Joint GEOMELTY . ...ttt et ittt 366
Tied Joint Surface Normal Definition ............ ... ... ... ... ... ... .... 368
Construction of tied joint with side=average. ............................. 369
Construction of tied joint with side=rigid................ ... .. ... ... .... 370
Construction of tied joint with side=Rrod. .............. ... .. ... ... .... 370
Example of Interpolation of Exodus Data to Analysis Steps. ................ 390
Coordinate Frame Projection for Tractions .............. ... ... ... ....... 398
RandomPressure Loading Approximations. .................c.covviueen... 407
Tria3 Stress REeCOVErY . ...t e 465

Convergence of maximum stress at element centroids and surfaces. .......... 467

MFile Constraint MatriCes . . . ... ..vuuu ettt e 474
MFile Constraints And Info. . ........ .. . i 474
Diagram of Element Orientation for Several Common Element Types. ........ 482
Example KDiag output. .. ...ttt 484
Shell Normal in Contact or Tied Interactions. . ............................ 495
Search Tolerance definition . . ....... ... ... 497
Normal Definitions on Faceted Geometry ............ ... ... .. oo, 498
Smoothing Parameters for Surface Normal Vectors ........................ 498
Lofted Constraint Example. ........... ... ... .. ... 508

15



LIST OF TABLES

Table 2-1.

Table 3-1.
Table 3-2.
Table 3-3.

Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.

Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.

Table 4-14.
Table 4-15.
Table 4-16.
Table 4-17.
Table 4-18.
Table 4-19.
Table 4-20.
Table 4-21.
Table 4-22.
Table 4-23.
Table 4-24.
Table 4-25.
Table 4-26.
Table 4-27.
Table 4-28.
Table 4-29.
Table 4-30.
Table 4-31.

Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.

Description of full feature deprecation. ............. ... ... i, 26
Command Line Options Part One. . ........... ... ... 34
Command Line Options Part Two. . ........ .. .. i i, 35
Determining Number Of Processors Needed. . ............... ... ... ..... 36
Comment String OPHoONS. . . ... .ottt e e 52
Available keywords in the Parameters section. ............................. 64
Parameters section keywords for code coupling and hand-off. ................ 65
Developer keywords in the Parameters section. ............................ 65
Some useful combinations of units. ........ ... ... . .. i 65
Eigenvector Normalization Methods........... ... .. ... .. i, 70
Parameters for controlling error messages. ............oouiiiiiiinnnenn... 73
Sierra/SD Solution Options. . ...........uiitiininee e 82
Restart file format and contents for various solutions. ....................... 90
GDSW Section Options. (BasiC) ........ovuiiinini i 93
GDSW Section Options 1. (Advanced) . ..., 94
GDSW Section Options 2. (Advanced) ..., 95
GDSW Section Boolean Options may be set using integers 0 (no) or 1 (yes), or

NO ANA YOS, .« vttt ettt e e e e e e 102
GDSW Section Options (Advanced). .. ..., 107
GDSW Section Print Options. ..........ouiiiinenein i, 108
GDSW Section Options (Helmholtz). ......... ... .. .. . .. .. 109
GDSW Section Options (SOIVETs). . ... oot e 110
GDSW Section Options (tacho/gpu). .. ... i 110
Sensitivity Analysis Keywords. ......... .. ... . i i 111
Sensitivity Analysis Solution Type Availability. ............................ 115
Coordinate Names for history files. ........... ... .. .. ... 121
SamplingRandom function parameters............... ... ... i, 129
RandomLib function parameters. .. .......... ...t 130
Predefined Analytic Input Variables. .......... ... ... ... .. ... ... 137
Planar Step Wave Parameters. . . ... 143
Spherical Wave Parameters. . ..........ooiinn i 143
Undex Load Parameters. ....... ... i 145
Blended Function Parameters. ............ ... .. i, 148
Table Section OPtionS. . . ... vvt ittt e e e et 153
General MPC commands. . ........ ... i 155
MPC Equation lines. . ........ouuinninie ettt ettt ieeens 155
Eigenvalue SOIVers. .. ...... ..o e e 157
Modal SoIution TYPes. . . o oottt e e e e e 157
Direct Solution Types. . ..o vt e 158
Preprocessing and Postprocessing Solution Types. ............ ... ... ..... 158

16



Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 5-9.

Table 5-10.
Table 5-11.
Table 5-12.
Table 5-13.
Table 5-14.
Table 5-15.
Table 5-16.
Table 5-17.
Table 5-18.
Table 5-19.
Table 5-20.
Table 5-21.
Table 5-22.
Table 5-23.
Table 5-24.
Table 5-25.
Table 5-26.
Table 5-27.
Table 5-28.
Table 5-29.
Table 5-30.
Table 5-31.
Table 5-32.
Table 5-33.
Table 5-34.
Table 5-35.
Table 5-36.
Table 5-37.
Table 5-38.
Table 5-39.
Table 5-40.
Table 5-41.
Table 5-42.
Table 5-43.

Table 5-44.
Table 5-45.
Table 5-46.
Table 5-47.
Table 5-48.

Multicase OPLIONS. . . .. oottt ettt e e 160
CJdamp Solution Case Parameters. .............. ..., 161
Craig-Bampton reduction Solution Case Parameters. ....................... 164
CBModel Parameters. .. ........uiiniti e 168
Data output for Craig-Bampton Reduction............ ... .. ... .. ... .... 170
preddam Solution Case Parameters. .. ........... ... .. o i, 174
DDAM Solution Case Parameters. . .......... ..., 175
Direct Frf Solution Case Parameters. ... ....... ... ..., 177
Model_Check Solution Case Parameters. . ...ttt 179
eigen Solution Case Parameters.. ............ ... 182
aeigen Solution Case Parameters.............. ... .. ... 188
AEigen Verbosity Table. ........ ... 189
Largest_Ev Solution Case Parameters. ............. ... ... .. i, 190
Fatigue Solution Case Parameters. . ........... ... oo, 190
buckling Solution Case Parameters. ... ....... ... ... ... 194
ModalFilter Solution Case Parameters. ................coiviiiiinennn .. 195
Modal Filter Keywords. . . ... .o e 197
Modal Participation Factor Solution Case Parameters. ...................... 198
MPF Summary data. ... e 199
ModalFrf Solution Case Parameters. .. ............covuiiiiiininnnnnnn... 201
modalranvib Solution Case Parameters. .............. ... ... i, 205
ModalRanVib Output to Exodus File. . ....... ... ... ... . o it 208
modalshock Solution Case Parameters. . ............ ... ... ... 209
modaltransient Solution Case Parameters. .............. ... ... . ... ..... 210
QEVP Solution Case Parameters. . . . ...t it i 212
A 2005 comparison of quadratic eigenvalue problem methods. ............... 214
Options for QEVP Anasazi Solutions. ............. . ..., 214
ceigen Solution Case Parameters.............. ... i, 215
Ceigen TostS. . o oottt e 216
SA_Eigen Options. . ...ttt e e e e e 217
Verification Summary for SA_Eigen........... ... ... i 218
Projection_Eigen Options. . ..........c.iiuiiiiine i, 220
NiStatics Solution Case Parameters. ...............oiiiiiiiiinninnennen.. 220
NlTransient Solution Case Parameters. ............. ... ... .. i, 222
Random Vibration Solution Case Parameters. ............................. 223
receive_sierra_data Solution Case Parameters. . . ... ... 224
Nodal data used in receive_sierra_data..............c.coiienienaen.... 227
Element data used in receive_sierra_data. .............. ... ... ... 228
Data transferred in receive_sierra_data specific to orthotropic_layer mate-

TIAlS. o o e 229
statics Solution Case Parameters. .. ............oo it riininnnnnnn.n. 231
superposition Solution Case Parameters.............. ... ... ... ... ..., 232
tangent Solution Case Parameters. ............ ... ... i, 233
transhock Solution Case Parameters. .......... ... ... ... .. i, 234
transient Solution Case Parameters. ........... ... ... 236



Table 5-49.
Table 5-50.
Table 5-51.
Table 5-52.

Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 6-7.
Table 6-8.
Table 6-9.

Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 7-5.
Table 7-6.
Table 7-7.
Table 7-8.
Table 7-9.
Table 7-10.
Table 7-11.
Table 7-12.
Table 7-13.
Table 7-14.
Table 7-15.
Table 7-16.
Table 7-17.
Table 7-18.
Table 7-19.
Table 7-20.

Table 8-1.
Table 8-2.
Table 8-3.
Table 8-4.
Table 8-5.
Table 8-6.
Table 8-7.
Table 8-8.
Table 8-9.

TSR_preload Solution Case Parameters. .. ........... ... .. o, 240
GeometricRigidBodyModes Solution Case Parameters. ..................... 242
waterline Solution Case Parameters. .......... ... . ... ... ..., 244
Gap Removal Solution Case Parameters................oviiiinnnnen.... 248
Material Stiffness Parameters. ............ .. ... i 251
Material Section Parameters for Fatigue Parameters......................... 262
Common Unit Scalings using Fatigue_Stress_Scale ....................... 263
Element Parameters. . ............ i i e 275
Parameters for (almost) Any Block. ........ ... .. . 276
Non-Structural Mass Units. . . .....oouittnt i e e e 280
Unhandled Corner Cases. . ... .....oouiiuitinne i, 281
Combining NSM with Density_Scale_Factor. ............................. 281
DAMPING Section Options. .. .....intttn ittt et 283
QuadT, Quad8T, Triab Inputs. ..........iiiii it 296
QuadM INPULS. . .ot 296
NQuad/NIrT INPULS. .. ..ot e e 298
TriaShell iInput Options. . ... ..ottt 300
Shell parameters that can be set via attributes. .............. ... ... ... ...... 306
Hexshell Verification Summary. ........... ... ... 310
Element Attributes. ... .....ouin ittt e e e 314
Attributes for Beam?2. . ... ... 315
Attributes and Parameters for Nbeam. ............. ... ... ... ... ... ...... 318
Ftruss Attributes and Parameters............. ... ... i i i 320
SpringDashpot Parameters. . ............ . i 326
Older Iwan 4-parameter model. ........ ... .. .. . . i 333
Revised Iwan 4-parameter model. .......... ... .. .. .. . i, 333
Line weld output. ... ... oot e 342
Nmount Models and Attributes. . ........ ...ttt 349
Rbar Exodus Attributes. ....... ... ... i 351
Acceptable names of matrices within DMIG input files. .................... 360
Rigid set parameters. . ...ttt e 363
Tied Joint Parameters. .. ...ttt e e 367
Tied Joint, Normal and Side dependencies. . ................ccoviiiiieon... 371
Dirichlet Boundary Enforcement Keywords. ............ ... ... ... .. ... .. 375
Available parameters for the infinite element section. ....................... 383
PML Element Parameters. ......... ... ... .. 386
Parameters for Periodic Boundary Conditions. ............................. 389
ExodusRead function parameters. ...............uiiiniiiniiieineneenn.n. 393
Load Specification Keywords. ........ ... .. i, 396
Random Pressure Inputs. . . ... i 408
Rotating Frame Parameters. .......... ... .. i, 411
Notation for stiffness and damping matrices (left) and forces (right). .......... 412

18



Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.
Table 9-5.
Table 9-6.
Table 9-7.
Table 9-8.
Table 9-9.

Table 9-10.
Table 9-11.
Table 9-12.
Table 9-13.
Table 9-14.
Table 9-15.
Table 9-16.
Table 9-17.
Table 9-18.
Table 9-19.
Table 9-20.
Table 9-21.
Table 9-22.
Table 9-23.
Table 9-24.

Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.

Output SECTION OPLIONS .« . .« v o ettt e e et e e e e e e e e 425
Exodus Property Output Options. . ..........oouiiieinen i, 428
Frequency Value Specification Methods. ............... ... ... ... ... ..... 434
ModalRanVib frequency closest distance nodal output. ..................... 439
ModalRanVib Exodus closest distance nodal output. ....................... 440
Supported Statistical Data types . ... 446
Typical OutPUL. . . . .ot e 450
FRE OUtpUL. . ..ot e e e e e e e 451
ModalRanVib Exodus Output. . ........c.ccouiiiin it 451
ModalRanVib Frequency Output. ......... ..., 451
Typical OutPUL. . . . ..o e 452
ModalRanVib Frequency Output. ......... ...t 452
ModalRanVib Exodus Output. . ...... ... ittt 453
TIndex parameters. . ... .......uuuuune ettt 454
Hex20 Gauss Point Locations . .. ... .o i 461
Element Stress Truth Table. ........ .. .. .. 463
Variables that are output from DDAM analysis. .......... ... ... ... ..... 468
Data Files Written Using the MFile Option. ............. ... ... .. ... ..... 473
Elements using other elements condition number. .......................... 479
Element Orientation OULPULS. . . ..ottt ittt et it ie e ie e e e 481
Element Orientation Interpretation. . ............ ...t aen.... 481
Selected Dynamic Matrix Definitions. .. ......... ... ... . i, 484
Material_Direction OUtputs. . ... ..ottt e e 486
Echo Section Options. . .. ...ttt e e e et 487
Tied Surface Parameters . ......... ... i i 497
Coordinates of Face (red) and Nodes (blue)............... ... .. 508
Conventional Constraint Equations. . .......... ... ... .. o ... 508
Available spot_weld outputs. . ......coviin i e 512

19



This page intentionally left blank.

20



ACKNOWLEDGMENTS

The Sierra/SD software package is the collective effort of many individuals and teams. A core
Sandia National Laboratories based Sierra/SD development team is responsible for maintenance
of documentation, testing, and support of code capabilities. This team includes Dagny Beale,
Gregory Bunting, David Day, Clark Dohrmann, Payton Lindsay, Justin Pepe, Julia Plews, Jesse
Thomas, and Ben Treweek.

The Sierra/SD team also works closely with the Sierra Inverse and Plato teams to jointly enhance
and maintain several capabilities. This includes contributions from Wilkins Aquino, Mark Chen,
Sean Hardesty, Elizabeth Livingston, Clay Sanders, Chandler Smith, Adam Sokolow, Timothy
Walsh, and Ray Wildman.

The Sierra/SD team works closely with other Sierra teams on core libraries and shared tools.
This includes the DevOps, Sierra Toolkit, Solid Mechanics, Fluid Thermal Teams. Additionally,
analysts regularly provide code capabilities as well as help review and verify code capabilities,
testing, and documentation. Other individuals not already mentioned directly contributing to the
Sierra/SD documentation, testing, and code base during the last year include Victor Brunini,
Jonathan Clausen, Nathan Crane, Jared Crean, David Glaze, Mark Hamilton, Jacob Healy,
Andrew Kimler, Dong Lee, Kevin Manktelow, Scott Miller, Matthew Mosby, Tony Nguyen, Tolu
Okusanya, Heather Pacella, Malachi Phillips, Kendall Pierson, Nick Reynolds, Philip Sakievich,
Timothy Shelton, John Shimanek, Greg Sjaardema, Clinton Stimpson, Tyler Voskuilen, Ellen
Wagman, Alan Williams, and Christopher Wilson.

Historically dozens of other Sandia staff, students, and external collaborators have also

contributed to the Sierra/SD product and its documentation.

Many other individuals groups have contributed either directly or indirectly to the success of the
Sierra/SD product. These include but are not limited to;

* Garth Reese implemented the original Sierra/SD code base. He served as principal
investigator and product owner for Sierra/SD for over twenty years. His efforts and
contributions led to much of the current success of Sierra/SD.

* The ASC program at the DOE which funded the initial Sierra/SD (Salinas) development as
well as the ASC program which still provides the bulk of ongoing development support.

* Line managers at Sandia Labs who supported this effort. Special recognition is extended to
David Martinez who helped establish the effort.

* Charbel Farhat and the University of Colorado at Boulder. They have provided incredible
support in the area of finite elements, and especially in development of linear solvers.

21



Carlos Felippa of U. Colorado at Boulder. His consultation has been invaluable, and
includes the summer of 2001 where he visited at Sandia and developed the Hexshell
element for us.

Danny Sorensen, Rich Lehoucq and other developers of ARPACK, which is used for
eigenvalue problems.

Esmond Ng who wrote sparspak for us. This sparse solver package is responsible for much
of the performance in Sierra/SD linear solvers.

The metis team at the University of Minnesota. Metis is an important part of the graph
partitioning schemes used by several of our linear solvers. These are copyright 1997 from
the University of Minnesota.

Padma Raghaven for development of a parallel direct solver that is a part of the linear
solvers.

The developers of the SuperLLU Dist parallel sparse direct linear solver. It is used through
GDSW for a variety of problems.

Leszek Demkowicz at the University of Texas at Austin who provided the HP3D?* library
and has worked with the Sierra/SD team on several initiatives. The HP3D library is used to
calculate shape functions for higher order elements.

This work was supported by the Laboratory Directed Research and Development (LDRD)
program.

22



1. INTRODUCTION

This document covers the use of Sierra/SD.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element
analysis. This capability is required for high fidelity, validated models used in modal, vibration,
static and shock analysis of weapons systems. General capabilities for modal, statics and transient
dynamics are provided.

Sierra/SD is similar to commercial codes like NASTRAN or Abaqus. It has some nonlinear
capability, but excels in linear computation. It is different than the above commercial codes in that
it is designed to operate efficiently in a massively parallel environment.
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2. RELEASE NOTES

The sections in this chapter mainly describe new features, bug fixes, performance improvements,
and features deprecated or removed in each new version of Sierra/SD. As a preface to this
information, an explanation of the feature deprecation schedule and process in Sierra/SD is
presented in the following section.

2.1, Feature deprecation procedure

From time to time, the Sierra/SD development team may determine that a feature should be
deprecated. This might happen if a certain newly developed capability, workflow, or input syntax
is preferred over an existing one. It may also occur when a capability is determined by the
development team to be unused by the analyst community, and thus it does not need to be
maintained any longer.

When a feature is selected for deprecation, Sierra/SD will issue a clear warning message in the
log file with planned date and code version for full deprecation. These release notes will also be
kept up-to-date with newly planned feature deprecations and their respective planned full
deprecation dates and Sierra/SD versions.

Full feature deprecation is based on the fiscal year schedule. Features marked for deprecation
between October and September of a given year will be fully deprecated in the first release of the
following fiscal year, i.e., the first release that falls on or after the first day in October. For
example,

* A feature marked deprecated in April 2023 is fully deprecated in the first release occurring
on or after October 1, 2024.

* Features marked deprecated in September 2023 are fully deprecated in the first release on or
after October 1, 2024.

* A feature marked deprecated in October 2023, is fully deprecated in the first release on or
after October 1, 2025.

Full deprecation of a given feature is subjective, but is described in detail in Table 2-1.
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The feature
will ...

Table 2-1. — Description of full feature deprecation.

Sierra/SD will
output. ..

Rationale

be disabled
completely

do nothing
remain
functional

fatal error, log file
message

log file warning
log file warning

if there is reasonable skepticism of the accuracy or
reliability of the feature or if there are hazardous

side effects from using the feature or if it is

unsafe to ignore input syntax, or if the code

team wishes to no longer maintain the feature.

if the input syntax can be safely ignored.

if no harmful side effects are identified in the code.

if little or no effort is required for the code team to
maintain the feature.
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2.2. Release 5.28

New or Improved Features

» Restart is now enabled for eigen solutions with residual vectors. See Section 5.8.7.1 for
details.

* Element centroid nearest location and at element HISTORY outputs now support
any element keyword. Previously, only stress, strain, and von Mises stress were supported.
See section 9.2.2 for more information.

» Users may now output the sum of nodal and element variables as a user-defined global field
using the following syntax: compute global <string>Name as sum of
element |[nodal <string>Variable. See sections 9.5.1 and 9.5.2 for more information.

* Closest distance calculations can now utilize block skinning to improve performance
relative to full block comparisons. See section 9.5.3.

* Linear frequency specification using freq_min/freq_step/NF is now enabled. See
section 9.3 for more information.

* User Outputs now have a "transform" capability that allows a user to rotate variables like
stress for output. See section 9.5.5

* Sierra/SD now supports SM-style input syntax for viscoelastic swanson material model.
See input 6.4 for an example.

* GDSW options to control the tacho solver settings have been updated. Tacho is the default
solver on gpu platforms. See table 4-18 for details.

* Tensor and vector expression variables may now be read in as expression variables for
analytic functions.

* The use of multiple loads in DirectFRF (section 5.6.1) no longer requires a direct solver
(e.g. useParallelDirectSolver = yes in the GDSW section). However, use of a direct
solver will still give the best performance when not memory constrained.

Behavior Changes

* The previously-supported (but undocumented) keyword eorientation has been
deprecated. Use the keyword eorient to request element orientation vectors
(section 9.8.4).

* The keyword to request user-defined the material direction has been consolidated to simply
material_direction. The old keywords (material_direction_1,
material_direction_2,material_direction_3) have been deprecated. See
section 9.8.11 for more details on this capability.

* Rigidset names (section 7.36) are no longer required.
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* Linear frequency specification using freq_min/freq_step/freq_max has changed
slightly. Previously, the final frequency was the nearest multiple of Fy ), to F,, (above or
below). Now, the nearest multiple greater than F,,,, is used. See section 9.3 for more
details.

Production-Ready Features

The following features have been moved from beta to production, and no longer require the
- -beta command-line flag in Sierra/SD.

* Rigidset block definitions (section 7.36).

Bug Fixes

* Linear frequency specification using freq_min/NF/freq_max was previously incorrect.
See section 9.3 for the new behavior.

* A bug in the superposition solution case (section 5.25) was fixed where
acceleration/velocity could be O if pre-requisite output requests were not present. Now,
displacement, velocity, and acceleration can be output independently, and displacement is
no longer output by default when no outputs are requested.

* An error in output of stress and strain at specific locations of Tet10 elements has been fixed.
This effected history output at location, line sample output, and some transfer operations.
Previous computed values were interpolated to an incorrect point well outside the bounds of
the element and could be in error by orders of magnitude.

2.3. Release 5.26

New or Improved Features

* Sierra/SD 5.26 officially supports ATS-4 platforms El Capitan and El Dorado.

* Elements with local coordinate frames can now use coordinate from_geometry in the
block section to infer the coordinate system from the geometric orientation. See Section
6.6.1.3 for additional details.

» Contact cutoff variables have been improved to support more versatile options for
Sierra/SD analyses.

— Cutoff variables may be specified for each contact surface interaction within a begin
contact definition section.

— Cutoff variables may also now be specified within the interaction defaults
section.
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— The cutoff_variable option has been removed from the begin contact
definition (Dash contact) options section.

Consult section 10.2.1 for more information.

* Craig—Bampton reduction (CBR) now supports the nmodes = all and untilfreq options
to solve for fixed interface modes. See section 5.3 for more information.

* MFile output of constraint matrices was added. See section 9.7.34 for details.

* When restarting, Sierra/SD now checks for consistency between the restart input file and
the input file used to generate the restart database. This behavior may be customized using
the new restart_input_checking parameter. See section 4.4.1 for more information.

* The transfer capability has been significantly refactored and improved for better-quality
results. A new option mismatch mesh behavior also now exists to help users identify
transfer errors due to non-matching or misaligned sending and receiving mesh domains.
See section 4.3.2 for more information.

* The mode option in the DAMPING section can now handle single integers, sequences, and
ranges of modes to apply the same damping parameters across multiple modes.

* Spring stiffness parameters may now be defined as the output of a function. See
section 7.17 for more details.

* Material direction output (section 9.8.11), previously only available for three-dimensional
element types, is now output for one- and two-dimensional elements as well.

Behavior Changes

* The behavior when specifying a contact normal tolerance (section 10.2) has changed.
Previously, the larger of the user-defined and default (15% of the characteristic element
length) tolerances would be used. This could result in unintended contact with a
user-defined tolerance smaller than the default 15%. Now, any user-specified tolerances will
always be respected, even if the default tolerance is larger. Note that the new behavior is no
longer consistent with Sierra/SM. For consistent/legacy behavior, use normal tolerance
behavior = auto.

* The residual_vectors solution has been removed and is now an option in eigen and
cbr solution cases. See section 5.8 and section 5.3 for details and syntax. For eigen, loads
can now be used to generate residual vectors in addition to a node list file.

* The Exodus output for the ddam solution case (section 5.5) now follows the ordering
convention of the eigen solution case (ascending eigenvalue). Text-file output
(PREDDAM_RESULTS. txt and DDAM_RESULTS. txt) also now follows the same convention.

* The Orientation option for one-dimensional elements now defaults to {0, 1,0} and
automatically corrects the axis to be orthogonal to the x-axis. When the orientation changes
from the input, warnings are output with relevant information about the coordinate frame.
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* To alleviate confusing behavior, NBeams can no longer take just three offset arguments in
the input deck. Instead, either zero or six offsets are required. To replicate legacy behavior
(offset x y z), auser may specify offset x y z x y z.

* Documentation has been clarified and code warning messages have been added when
specifying a contact definition (section 10.2) to reflect that the normal tolerance
(whether user-defined or automatically calculated) is always used to calculate a critical gap,
irrespective of the gap orientation. A user-provided tangential tolerance in the contact
definition is ignored.

Bug Fixes

* An implementation bug where e_dx, e_dy, and e_dz were output in global coordinates,
regardless of user-specified coordinate system, has been addressed. This bug did not affect
eforce, even though it is requested with the same output keyword.

* A sporadic performance bug in CBR generation has been fixed.

* A parallel bug in output transfer matrix (OTM) generation for CBRs when interface nodes
are included in the OTM (via history output) has been fixed.

* Code bugs in structural-acoustics eigen (sa_eigen solutions affecting mode shapes in
some simulations have been addressed.

* Support for viscofreq in sa_eigen has been added.
Deprecated Features
 Sensitivities are deprecated for CBR superelements.

* The Transhock solution case is deprecated.

2.4. Release 5.24

New or Improved Features
* Analytic functions may now read data from element fields. See section 4.10.9.2 for more
details.

* Stress transfer and geometric stiffness for beam and shell elements from SM has been
enabled.

* Sierra/SD now supports Exodus mesh files with 5 or 13-noded pyramid elements. See
sections 7.7 and 7.8 for more information.
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Behavior Changes

* The Gauss point locations of all element types have been standardized for maintainability
and consistency. This resulted in the use of different integration schemes in several
instances, which could lead to slight changes in the simulation results. The only differences
observed in the Sierra/SD test suite involved Wedge15 elements, and the changes were very
minor.

* Gauss point “1jk” labels section 9.7.20.6 have also been standardized. This will result in a
different naming convention for both Tet10 elements with 16 Gauss points (which
previously did not follow the convention) and Wedge15 elements with 9 Gauss points (the
locations of which were updated as outlined above). In both cases, reading in data
(section 5.29) with the old labels will continue to be supported with an informative warning.

* Block definitions in the input deck that do not appear in the mesh will now trigger a fatal
error. This behavior can be modified by the RequireMatchedBlocks parameter
(section 4.4.1).

* Block definitions for omitted blocks (section 7.34) are no longer required. However, we still
recommend keeping omitted block definitions in the Sierra/SD input for accurate syntax
checking.

* Omitted blocks (section 7.34) are now compatible with contact definitions. Contact with
omitted blocks will simply be skipped.

* Omitted blocks (section 7.34) will no longer be included in Exodus output.

Bug Fixes

* A bug in sa_eigen where some of the modal data was being excluded in calculations has
been corrected. Additional testing comparing modalfrf (using sa_eigen and projection
eigen) to directfrf has been added to catch errors.

* Exodus data transfer from a non-matching mesh file was found to be exhibit significant
slow-downs, especially for larger models. The issue was related to repeated unnecessary
reads of the Exodus database when trying to load the data from specific time steps. The
unnecessary reads have been removed and performance has been restored. Additional
testing has been added to catch future slow-downs.
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3. HOW TO RUN SIERRA/SD

Sierra/SD provides a massively parallel implementation of structural dynamics finite element
analysis. This capability is required for high fidelity, validated models used in modal, vibration,
static and shock analysis of weapons systems. General capabilities for modal, statics and transient
dynamics are provided. The Sierra/SD software evolved from the “Salinas” package.

Sierra/SD tutorials for new users are available at
https://snl-wiki.sandia.gov/display/CKB/How-to+articles.

This section describes the command line arguments and workflows typical of Sierra/SD analysis.
This section is primarily applicable to analysts at Sandia. Chapters 4 through 10 describe
Sierra/SD capabilities invoked via the input deck. Section 11 provides example problems.

Many conventions are used in this manual. Teletype indicates new terms. Blue boxes are used
for input deck listings. Pink and purple boxes or red fonts are used for warnings.

3.1. Accessing Sierra/SD

At Sandia Sierra is installed on many Unix-based High Performance Computing (HPC) systems.

This includes dedicated and shared blades, shared computational clusters (e.g. cee-compute) and
large queued clusters (Institutional Clusters such as Eclipse). To run Sierra applications you need
to have access to one of these machines. You also must request “SIERRA Analysts Code Access”
through WebCARS.

3.2. Modules and Executables

Configuration of Sierra applications is controlled via modules. The first step to running a Sierra
application is to load the appropriate module for the desired version. For example:

$ module load sierra

Several modules are commonly used.

* sierra: This is the latest released version of Sierra and is generally the recommended
version to be used.

* sierra/X.YY: This will load a specific Sierra version, for example “sierra/4.58”. Sierra
releases are done twice a year and generally the previous four releases are available.
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* sierra/sprint: This is the latest “sprint snapshot” version of Sierra. A new sprint snapshot
is installed every three weeks. Sprint snapshots contain the latest developed features but
have less quality assurance testing than the main releases. Sprint snapshots should primarily
be used to do beta evaluation of newly developed features.

* sierra/daily: This is the development version of Sierra built on the previous night. No
quality assurance is done on this version. This version should only be used when directly
working with the development team to help evaluate a bug fix.

3.3.

The Sierra/SD salinas Executable

The primary executable for running structural dynamics analysis is called “salinas”. It uses a text
format input deck to configure a simulation. This users manual primarily describes the input deck
options and format. An example invoking a basic serial Sierra/SD analysis is:

$ module load sierra
$ salinas -i deck.inp

The commonly used command line arguments to the salinas executable are given in Table 3-1.

Table 3-1. — Command Line Options Part One.

String Descriptor

-h Prints help message

-1 Path and name of the input deck. The input deck is traditionally given the
extension .inp. However, any name is allowed. If no ’-i’ is given the last
argument of the line is assumed to be the input deck name.

-lor-o Name for the output Ilog file. By default, output to
<input_deck_name>.rslt in serial or <input_deck_name>_0.rslt in
parallel.

-n Do not overwrite any existing output log and diagnostic .dat files. Do write
a new file appending a 1, 2, 3, etc. to the name.

-d Change working directory for the run. Equivalent to cd to that directory and
running salinas

-define Define variables for Aprepro [57] pre-processing of the input deck. See

Section 4.1 for details
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Table 3-2. — Command Line Options Part Two.

String Descriptor

--check-syntax | Do initial syntax checking of the input deck and then stop before reading
mesh or doing any large calculations. This option can be used to debug model
input in serial prior to submitting to a queued system. In contrast to a normal
simulation, Sierra/SD will not exit when fatal errors are encountered. This
enables the discovery of multiple errors at once, but has the potential to
result in cascading errors or even crash the code. Setting exit on fatal
= true in the parameters section (beta capability, see table 4-7) will
override this behavior and instead exit on the first fatal error.

-beta Enable use of ’beta’ capabilities. These are capabilities in active devel-
opment, are subject to change without notice, and may have less rigorous
testing.

-nt Number of threads to use per MPI rank. Using more threads than physical

cores (i.e., hyper-threading) may result in decreased performance. This
option is only supported on a few platforms. Ask the Sierra/SD team for
more information.

-ndevices Number of GPUs to use per hardware node. This option is in development
and not ready for general use.
-create-xml Create an xml format command specification. Primarily for interacting with

graphical input file creation utilities such as SAW. [55]

3.4. MPI Parallel Execution

Sierra/SD may be run either in serial or in parallel with MPI. In parallel Sierra/SD has
demonstrated efficiency to thousands of processor cores.'> Some basic work-flow examples for
parallel execution are provided below. Information on using on the current platforms is available
at High Performance Computing website https://computing.sandia.gov

Additional steps are necessary to execute in parallel instead of serial. The following examples use
the input deck deck.inp and the Exodus mesh file mesh. exo.

3.4.1. Number of MPI Processes Needed

MPI is an optimization that can decrease run time. The configuration of Sierra depends on the
architecture. A central processing unit (CPU) has multiple cores and possibly a graphical
processing unit (GPU) accelerator. These notes only discuss the CPU. A user must know one
thing about the CPU, the number of cores per node (or processor). One way to determine the
cores per node is to use the 1scpu command and look for Core(s) per socket. Another way is
cat /proc/cpuinfo. Look for cpu cores.

Running Sierra/SD in parallel requires the user to specify how many MPI ranks will be used.
Choosing the number of cores so that the number of elements per subdomain approximately 5000

35


https://computing.sandia.gov

typically works fine. Generally a computational “node” will run several MPI ranks and many
computational nodes may be used simultaneously. Selecting the number of ranks to use is based
on three concerns. First, each computational node has finite memory and enough nodes must be
used to fit the problem in memory. Second, use of more MPI ranks and more computational nodes
can reduce time to solution. Third, efficient use of machines should be considered as no analysis
will achieve perfect parallel efficiency and using many computational cores on a small problem
may provide sub optimal machine utilization. The appropriate number of MPI ranks to use is
primarily determined by how many degrees of freedom (DOF) are in the model. Though
machines are variable Table 3-3 can be used as a rough guide help guide selection of the number
of MPI ranks and thus computational cores to use.

memory per core | dofs per core | Num Cores Needed
1GB 15,000 dofs/15,000
2GB 30,000 do fs/30,000
4GB 50,000 do fs/50,000
8GB 70,000 dofs/70,000
16GB 90,000 do fs/90,000

Table 3-3. — Determining Number Of Processors Needed.

Memory use depends on a variety of factors including the element type used, the solution strategy
and the output processing. The numbers in the table are generally conservative. Fortunately, in
most cases it is not critical and compute node memory suffices.

For high memory use analyses it may be necessary to run Sierra/SD with half the maximum
number of cores available per computational node. The reason is that using half MPI ranks
doubles the memory assigned to each rank. As there is significant memory overhead for an MPI
rank, memory limited analyses will benefit more by adding more memory to each rank than
spreading the mesh to a larger number of ranks.

3.4.2. Mesh Decomposition

If running in parallel, prior to running the salinas executable first the Exodus mesh file must be
parallel partitioned. Mesh decomposition involves dividing the input mesh file into several pieces,
one of which will be read by each MPI rank. Several tools will decomposition the mesh into
subdomains. The recommended tool is stk_balanceparallel computing!stk_balance. It
is documented at the command line,

workstation_prompt> stk_balance --help

workstation_prompt> launch -n 16 stk_balance --sd mesh.exo -o split

The latter command will decompose the mesh file into 16 parts with names beginning with
mesh.exo.16.00, mesh.exo0.16.01, etc. and place those spread files into the directory ’split’.
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Storing the decomposed mesh files in a separate directory is optional. The location of the input
mesh file is specified via commands in the input deck as described in Section 4.2.

3.4.3. Running the Sierra/SD Executable in Parallel

Here is a way to run Sierra/SD on 16 MPI ranks.

$ launch -n 16 salinas -i deck.inp

The input file contains the location of a partition of the mesh file into 16 subdomains. For queued
systems, extra commands are needed to access the queue. See Section 3.6 for more examples on
different systems.

3.4.4. Post Processing in Parallel

In parallel Sierra/SD creates several output files as described in Section 9.

* log: In serial the default log file name is <input_deck_name>.rslt. In parallel the default
name is <input_deck_name>_0.rslt. This is a text output file giving vital information
about the run. The ’_0’ indicates the is file written by processor zero. Information relevant
to the global model behavior is accumulated to processor zero for output.

* Mesh based Exodus: The output name will depend on the structure of the input deck, but
usually follows a pattern like <mesh_name_base>-out.<mesh_name_extension>. This
includes mesh based information such as nodal displacement. Similar to the decomposed
input mesh this output Exodus file will be written as a decomposed file with one portion per
MPI rank. Some post-processing tools such as Ensight or Paraview can read the
decomposed Exodus file directly. For other tools the file must first be combined to a single
file with the SEACAS tool *epu’.?

* Diagnostics: This could include detailed information from the solver (dd_solver.dat) or
other text and MATLAB format output files.

3.5. File system concerns

Sierra/SD can output large files and works best when writing to fast output systems. Running
analyses on scratch or Lustre drives on HPC system or local ’/scratch’ on blades are ideal. Large
shared disks such as */gpfs1’ are viable though may incur some runtime overhead. Drives that are
not mounted by computational nodes of HPC systems such as /tmp should be avoided.
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3.6. Workflow Examples

There are many ways to run Sierra/SD depending on the analysis size and machine used. Several
common examples are presented.

The next commands run a serial job on a blade and examine the log file

$ module load sierra
$ salinas -i deck.inp
$ cat input.rslt

Run a parallel job using four processors of a blade. Look at exodus output results via the textual
output query tool explore.’®

module load sierra

launch -n 4 stk_balance mesh.g
launch -n 4 salinas -i deck.inp
module load seacas

epu --auto mesh-out.g.4.0
explore mesh-out.g

©H A A A A A

Run a parallel job on a queued system using 72 MPI ranks and 2 computational nodes manually
calling sbatch, then combine to a single file, all with a single queue submission. In this case
assuming a machine like Eclipse where each computational node can run up to 36 MPI ranks. The
SEACAS tool *epu’?® can run in parallel, but is usually run on only a few MPI ranks.

#!/bin/bash

launch -n 72 stk_balance -i mesh.g
launch -n 72 salinas -i deck.inp

launch -n 8 epu --auto mesh-out.g.72.00

Code 3.1. submit.sh

$ module load sierra

$ module load seacas

$ /usr/bin/sbatch --account=<acct_id> --nodes=2
— --time=4:00:00 ./submit.sh

Run a parallel job on a queued system using 8 MPI ranks spread to 4 computational nodes get
access to more memory per computational process. In this case assuming a machine like Eclipse
where each computational node defaults to 36 ranks.

#!/bin/bash
launch -n 8 stk_balance -i mesh.g
launch -n 8 salinas -i deck.inp
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launch -n 8 epu --auto mesh-out.g.8.0

Code 3.2. submit.sh

$ module load sierra

$ module load seacas

$ /usr/bin/sbatch --account=<acct_id> --nodes=4
— --time=4:00:00 ./submit.sh

Run a parallel job on a queued system using the “sierra” script. If the mesh file was not yet
decomposed for parallel execution the sierra script will automatically decompose it prior to
running the salinas executable. By default, the sierra script will use stk_balance for mesh
decomposition with the -sd option. Epu would run in serial on the HPC head node. Note the
sierra script can be used to submit Sierra/SD analyses. However, the sierra script ’—post’ option is
currently not functional with Sierra/SD (for other Sierra tools the post option automatically
combines output mesh files, similar to the below “epu” command.) The sierra script can
potentially be helpful to translate the number of MPI ranks to the correct number of nodes to use
on a given machine. Additionally, the same sierra script submission command can be used on
queued HPC systems and non queued blades and clusters.

$ module load sierra

$ sierra -j 72 -T 4:00:00 salinas -i deck.inp
$ module load seacas

$ epu --auto mesh-out.g.72.00

Run coupled Sierra/SD Fuego analysis on a non queued system for fluid structure coupling. In
this case salinas will use 8 MPI ranks and fuego will use 16 MPI ranks for a total use of 24 MPI
ranks. Note, this is an advanced use case.

$ module load sierra

$ launch -n 8 stk_balance salinas_mesh.g

$ launch -n 16 stk_balance fuego_mesh.g

$ launch -n 8 salinas -i salinas_deck.inp

< --fuego-coupling : -np 16 fuego -i fuego_deck.inp

3.7. Thread Parallelism

In addition to decomposition based MPI parallelism, Sierra/SD also supports thread parallelism
on some platforms (currently Trinity and GCC development platforms). Threads are activated by
the command line option “-nt <numThreads>". The ‘numThreads’ given will be the number of
OpenMP threads to use on each MPI rank. Threaded execution is most valuable on large models.
Using a mixture of thread parallelism and MPI parallelism can give optimal performance when
the number of MPI processes required would otherwise be very large. As a rule of thumb thread
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parallelism will provide benefit when exceeding about 200 MPI processes or when more cores are
required than MPI ranks to obtain more memory. When using thread parallelism, the number of
threads used times the number of MPI ranks used should be setup to be equal the total number of
processor cores available on compute nodes.

Note: while the number of threads used in Sierra/SD is controlled by the command line option
“-nt”, it is recommended that the user also set the environment variable
‘OMP_NUM_THREADS’ to be the same value. While Sierra/SD does not depend on
‘OMP_NUM_THREADS’, there might be other aspects of your workflow that would, and so we
recommend setting both to be consistent. In fact, Sierra/SD will output a warning if
‘OMP_NUM_THREADS’ does not match the value set by “-nt”.

3.8. Troubleshooting

A variety of issues can cause an analysis to fail. There are still bugs in the Sierra/SD software,
and these will continue to be found. However, most problems are identified with problems in the
model or other input to the software. This section may help to identify these issues with the goal
of completing the analysis properly. The best troubleshooting strategy is to try to eliminate the
modeling issues, and only then treat the problem as a potential bug.

Users can troubleshoot Sierra/SD issues through stand-alone tools or using Sierra/SD
capabilities. The following sections will describe some ways to do this. First stand-alone tools are
described. Second ways of using Sierra/SD capabilities to troubleshoot are described.

Queuing systems are inevitable in high performance computing. Any extra step lowering the risk
of there being a mistake in the input deck is worthwhile.

3.8.1. Stand-Alone Tools

Currently, two tools exist which can help the user debug their mesh file, i.e., Exodus file:
Explore and cubit.

3.8.1.1. Explore

Explore is an ACCESS/SEACAS utility that can be used to interrogate the Exodus file. One of
the commands in Explore that can be used is check. It is used as follows:

$ explore cube.exo

EXPLORE> check

Database check is completed
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EXPLORE>

If there are any warning or errors, they will appear before the Database check is completed
message.

3.8.1.2. Cubit

The Cubit team has developed a GUI-based tool named cubit. It can be used to visualize mesh
quality parameters of the Exodus file. For questions about Cubit, please contact the Cubit team
at cubit-dev@sandia.gov.

3.8.2. Using Sierra/SD To Troubleshoot

A ’model_check’ analysis 5.7 report diagnostic information about model setup. It is optimized to
avoid computationally expensive operations, and can be run in serial. For example, the
information can help pinpoint areas of the model causing linear solver issues. Users are advised to
do some sort of model checking before submitting jobs in long queues. Available model check
information includes kdiag, mlumped, constraint_info, and ElemEigChecks.

Syntax checking 4.4 is helpful.

The user has to take additional steps before executing the parallel version of Sierra/SD. One of
the steps is to run stk_balance to decompose the finite element model. Using the Exodus file
and the load balancing file, the next step is to run nem_spread to create the partitioned files on
the parallel platform where Sierra/SD will be executed. Finally, the commands needed to run
Sierra/SD on the parallel platform need to be learned so that execution of Sierra/SD can begin.
Many of these steps can cause frustration to the user, but problems with any of these steps are
often easily addressed.

These steps are due diligence before running a large model on a queued system. Running the large
model on a smaller computer (without a queue) to confirm that the simulation fails in the expected
way (by running out of virtual memory) is also worthwhile.

The output includes the Approximate Matrix infinity norm ratios table. This table shows
information about the stiffness, mass and dynamic matrices. The value shown is the ratio of the
largest diagonal entry to the smallest diagonal entry. If the matrix has a 0 on the diagonal, then 0
is shown.

3.8.3. Modal Analysis

It is possible for the eigen solution method (discussed in Section 5.8) to diverge.

Section 4.4 mentions the eig_tol parameter. The default value is about 10~'® (for the modal
solution case). Adequate modes can be determined with much larger values of eig_tol. Values
such as 1078 are reasonable.
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At times an analyst may choose to use the eigen method to diagnose a problem. This can be done
by using as large a value of eig_tol as is needed. The number of modes would also be as small
as needed. After the issue is resolved, if eigenvectors are still needed, don’t forget to reset
eig_tol to a small value.

The modal analysis algorithm depends on a linear solver, and assumes that the linear systems are
solved accurately. The shift is almost always negative. Increasing the magnitude of a negative
shift forms linear systems that are easier to solve, and makes the eigenvalue problem harder to
solve. The iterative linear solver (GDSW) parameters trade off between speed and accuracy. For
example, a small value of the solver_tol table 4-10 increases accuracy and computational
expense. Solving the linear system more accurately makes the eigenvalue problem easier to
solve.

3.8.4. Evaluating Memory Use and Fixing Issues

The Sierra/SD software tends to use a lot of memory. Matrices are generated and solved, and
while this is often the fastest method of solution, it results in large memory demands. Parallel
computing has its own issues for memory use.

Memory use diagnostics can be requested in the “ECHO” section of the input (see Section 9.9).

It is often helpful to identify problematic subdomains. The partition of a finite element mesh
into subdomains may be visualized by rejoining the partitioned files into a new file using epu with
the -add_processor_id option.

3.8.5. Problematic Elements and Connectivity

Many problems are caused by “bad” elements. Element quality is a function of both the element
geometry and the type of element. The Hex8, Wedge6, Tet4, Tria3, and QuadT elements
implement a condition number. Note that the QuadT consists of two triangular elements. See
section 9.8.3 for more details.

Overall second and higher order finite element methods are much less sensitive to element quality
than low order methods. However, there is a tipping point. A high order element will invert
before® the corresponding low order element. With that in mind, it is noteworthy that Sierra/SD
ignores this issue.

Following are a few issues that come up periodically.

Rotational Invariance can be lost for certain elements such as springs if they are not of zero
length. The spring shown in Figure 3-1 is invariant to rotation about the x-axis, but not
invariant to rotation about y or z. If we consider an undeformed rotation about the center of
the beam along the z axis we would find that u, (1) < 0 and u,(2) = —u,(1). If the spring
has KY # 0, then this undeformed rotation results in strain energy, E = 2 Ky ui Thus, the
rigid body rotation is no longer a zero energy mode.
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This is important for a variety of line type elements including spring, Joint2G and gap
elements.

Figure 3-1. — Single Spring element.

Bad element shape is a major source of problems. For example, we have examined models that
have “triangles” where one side is 1/200th the length of the other sides. This produces poor
element matrices. In some cases this can destroy the condition of the entire system. Such
elements can sometimes be found using the kdiag output option described in Section 9.8.7.

Decomposition weakness The broken figure is an issue for trusses (or rods) and some other
elements. The truss in the top part of Figure 3-2 is self-sustaining when made of truss
elements. However, because truss elements have no rotational stiffness, the decomposed
model in the lower part of the figure contains mechanisms. Note that there is no way to
decompose the model without introducing such mechanisms.

Figure 3-2. — Truss Decomposition Issues.

complete truss

decomposed model

Truss elements can be used in Sierra/SD. Simulation issues have been traced to poor

decompositions in the past. In practice these issues have not come up with stk_balance (see
3.1).

Poor Connectivity A structure that has poorly connected regions can be difficult to analyse. If
elements have not been properly equivalenced, there can be thousands of zero energy modes
in the model. Sierra/SD can identify up to a few dozen redundant modes in the best of cases.

Poor Units In models with shell elements, rotational degrees of freedom are active. The
rotations scale like the displacements divided by the length. An unfortunate choice of
length unit will cause ill conditioning. In theory a unit of length that is much too large could
lead to inaccurate rotations. And a unit of length that is much too small could lead to
inaccurate displacements. This issue has not been investigated. A smaller linear solver
tolerance table 4-10 would generally mitigate the issue.
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3.8.6. Over-determined Constraints and Loss of Rigid Body Modes

Building models with tied surfaces or other multi-point constraints (MPCs) may involve more
than one iteration. Computing eigenvalues is a common way to check a model. Gap Removal is a
light-weight solution method 5.32 enabling users to obtain information about their tied surfaces
earlier in the process, before having to do all the work necessary to successfully set up, submit,
and run the massively parallel simulation of the modes.

Solving eigenvalue problems has issues of its own. The eigenvalue decomposition of a model with
no prescribed boundary conditions would generally be expected to produce six rigid body modes.
A variety of internal constraint issues can cause loss of these rigid body modes. Such artificial
constraint of a model can substantially degrade the quality of the overall solution. Sierra/SD has
several internal correction algorithms and warnings to detect and repair issues, such as GDSW
con_tolerance, described in Section 4.7. However, care should be taken to minimize the
complexity of constraint equations. Generally, having different types of constraints using the same
nodes can cause problems. The following types of constraint combinations are known to be
particularly problematic:

¢ Intersection of tied data or contact constraints where one node is tied to two or more faces.

* Chains or cycles of tied/contact constraints. These could involve a node on side ‘A’ of an
interface being tied to faces on side ‘B, while, simultaneously, nodes on side ‘B’ are tied to
faces of side ‘A’. This case is especially common in “self contact” situations, for instance,
when a tied surface folds over onto itself.

* Intersection of tied/contact constraints and rigid set constraints where a tied node of the
node-face constraint is also part of the rigid set.

* Manually specified MPCs that form long chains, cycles, or extensive intersections.

* Intersection of complex manually specified MPCs with any other type of constraint such as
rigid set or tied data.

3.9. Input Deck Modification Scripts

Many scripts are available for manipulating the input deck.

3.9.1. Extracting Sections

extractSection is a command-line tool to extract sections of a given type from a list of
Sierra/SD input files.
* Access to the tool is obtained by loading the sierra module.

* All matching sections will be extracted from the files passed to the script.

» All extracted sections are printed to screen.
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* Comments are left in the input deck documenting each extraction. To remove them after
running the script and inspecting the results, another tool,
cleanupSyntaxConversionNotes is provided. It operates recursively from the current
directory.

* Prior to extraction, an unmodified copy of each input file will be saved with a ".bcp"
extension.

For example, to extract load sections from a single (or multiple) files, use

$ extractSection --section=load filel (file2 file3 ...)

To operate on all .inp files in the current directory, use

$ extractSection --section=... *.inp

(replace *.inp with **/*.inp to run recursively, i.e., in the current directory and all below).

To operate on list of files generated from a previous command such as find:

$ previous command | xargs extractSection ...

To write the extracted sections to a file, use shell redirection (>):

$ extractSection ... > all_materials.inp

To further modify the extracted sections (sortSections, unigSections, ...):

$ extractSection ... | subsequent command

3.9.2. Sorting Sections

sortSections is a command-line tool to sort sections of a Sierra/SD input deck.

* Access to the tool is obtained by loading the sierra module.

An input file may be specified as a command-line argument.

If no file is given, the command-line standard input will be used.
* Sorted sections are printed to screen.

For example, to operate a specified input file:

$ sortSections sd.inp

To operate on the output from a previous command such as extractSection:

$ previous command | sortSections
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To write the sorted sections to a file, use shell redirection (>):

$ sortSections ... > all_materials.inp

To further modify the sorted sections (e.g. with unigSections):

$ sortSections ... | subsequent command

3.9.3. Removing Duplicate Sections

unigSections is a command-line tool to remove duplicate sections of a Sierra/SD input deck.

* Access to the tool is obtained by loading the sierra module.

An input file may be specified as a command-line argument.

If no file is given, the command-line standard input will be used.
» Unique sections are printed to screen.

For example, to operate a specified input file:

$ unigSections sd.inp

To operate on the output from a previous command such as extractSection:

$ previous command | unigSections

To write the unique sections to a file, use shell redirection (>):

$ unigSections ... > all_materials.inp

To further modify the unique sections (e.g. with sortSections):

$ uniqSections ... | subsequent command

3.9.4. Converting Includes

convertIncludes is a command-line tool to convert legacy includes to APREPRO syntax.
* Access to the tool is obtained by loading the sierra module.
* Files are overwritten by this script.

 All other areas of the input other than include definitions will remain unchanged.
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* Comments are left in the input deck documenting each change. To remove them after
running the script and inspecting the results, another tool,
cleanupSyntaxConversionNotes is provided. It operates recursively from the current
directory.

* SD-style includes supported an implied “.inp” (e.g., include file would include the file
file.inp). This is not supported with Aprepro includes, and the missing “.inp” will need
to be manually added.

To convert a single (or multiple) files, use

$ convertIncludes filel (file2 file3 ...)

To convert all .inp files in the current directory, use

o

$ convertIncludes *.inp

(replace *.inp with **/*.inp to run recursively, i.e. in the current directory and all below).

To convert a list of files generated from a previous command (grep, find, etc.), use

$ previous command | xargs convertIncludes

3.9.5. Converting Coordinate Systems
convertCoordinateSystems is a command-line tool to convert legacy coordinate system
sections to the new syntax.

* Access to the tool is obtained by loading the sierra module.

* Files are overwritten by this script, and message is printed for each file touched.

* Any comments in the coordinate section will be removed.

* All other areas of the input other than coordinate definitions will remain unchanged.

To convert a single (or multiple) files, use

$ convertCoordinateSystems filel (file2 file3 ...)

Convert all .inp files in the current directory using

§ convertCoordinateSystems *.inp

(replace *.inp with **/*.inp to run recursively, i.e., in the current directory and all below).

And too convert a list of files generated from a previous command (grep, find, etc.), use

$ previous command | xargs convertCoordinateSystems
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3.9.6. Converting Named Materials
A command-line tool, commentDeprecatedMaterialNames is provided to comment out any
usage of the name keyword in material sections.

* Access to the tool is obtained by loading the sierra module.

* The tool takes no arguments, and will operate on all files in or below the current directory.

If desired, another command-line tool, renameMaterials is provided to rename materials to the
name given in the name keyword (if applicable).

* Access to the tool is obtained by loading the sierra module.
* The tool takes no arguments, and will convert all files in or below the current directory.
* Files are overwritten by this script, and a message is printed for each change.

* It modifies both the name in the MATERTAL section, and material call in the calling (e.g.,
Block) section, even if they are not in the same file (it traverses included files).

* Only materials with a material number are replaced. Named materials (e.g., MATERIAL
foo) are unchanged.

* If the same name is given for multiple materials (or an identically-named material is already
defined), it will append the old material number to the name. For example, if material 11
and 12 both have name = one, material 11 will be renamed one, and 12 will be renamed
one_12)

* Comments are left in the input deck documenting each change. To remove them after
running the script and inspecting the results, another tool,
cleanupSyntaxConversionNotes is provided. It also operates recursively from the
current directory.

For example, after running renameMaterials + cleanupSyntaxConversionNotes, you would
see the following input deck transformation:

BLOCK 1 --> BLOCK 1
material 11 -—> material one
END --> END
-—>
MATERIAL 11 --> MATERIAL one
name one -—>
- -—> ...
END --> END
-—>
BLOCK 2 --> BLOCK 2
material 12 -—> material one_12
END --> END
-—>
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MATERIAL 12 --> MATERIAL one_12
name one -—>
e -—> ...
END --> END
-=>
BLOCK 3 --> BLOCK 3
material foo --> material foo
END --> END
-—>
MATERIAL foo --> MATERIAL foo
name bar -—>
e -—> ...
END --> END
3.9.7. Removing Syntax Conversion Notes

cleanupSyntaxConversionNotes cleans up comments added by other syntax conversion and
input deck modification tools. It should be called as a last step, after reviewing all changes.

It takes no arguments, and will modify all files in or below the current directory.
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4, GENERAL COMMANDS

4.1. Input deck format

The input is a finite element mesh (in Exodus format) paired with an input deck setting both the
materials used in the model and what to simulate. Once mesh and materials are set, any type of
analysis can be performed. An input deck (or text input deck) consists of sections. The order of
the sections does not matter, nor does the order of the directives within a section. Commands are
case-insensitive.

The Sierra tools related to Sierra/SD include the Cubit geometry and mesh generation toolkit, the
ACCESS/SEACAS tool suite for manipulating exodus files and the Nasgen program for convert
NASTRAN files to both the exodus file and the text input deck.

Traditionally the sections of an input deck are ordered so that directives that are most likely to
change are near the top. The solution section selects an analysis type. The file section sets the
Exodus file name. An Exodus file for a structural model typically contains many element blocks.
The input deck must have a block section for each element block. And a material section specifies
each of the materials used in one or more element blocks.

Typically, the input deck has an extension of .inp, although any extension is permitted. If the
. inp extension is used, Sierra/SD may be invoked on the input without specifying the
extension.

The input deck is logically separated into sections. Each section begins with a keyword
(solution, block, etc), and ends with the reserved word end Words within a section are
separated with “white space:” tabs, spaces, and line feeds.

Comments

Several options are available for a comment specifier. These are listed in Table 4-1. For any string
used to specify a comment, all characters following the comment string are skipped.

!"To be safe, define comments as one of the allowable comment characters (i.e. “//’) followed by a space.
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Table 4-1. — Comment String Options.
String | Descriptor

I C++ style line comments.
/*..% | C++ style block comments.
# Line comment. Used in scripts and Sierra input.

$ Line comment. Aprepro [57]/SEACAS default.

Meta-characters

Sierra/SD supports the use of several meta-characters in the input deck. They are listed below,
along with what they represent.

%P The number of processors for the run.

%B The base file name. For example, if the input deck is example.inp, %B will be replaced
with example.

%T The Sierra/SD start time. This is the same time that is echoed to the screen at the beginning
of the run, but in a shorter and more file-friendly format. For example, if the Sierra/SD start
time was Tue Sep 24, 2019, 16:05:41, %T will be replaced with 2019_09_24_16_05_41.

Skipping Sections

Occasionally an entire section may need to be commented out. This may be done using “//”” on
each line of the section, or surrounding the section with the block comment characters “/*” and
“*/”. A third way to comment out an entire section is to begin it with double “$$” characters. In
the following, block 19 is commented out, and block 43 is active.

$$ BLOCK 19 // this section skipped
material 1

END

BLOCK 43 // this section valid
material 1

END

Except for special cases such as file names, the input deck is case-insensitive. Either the single
quote ’ or the double quote " may be used throughout the input to keep multiple words together
(e.g. a name or title). Quotes may be nested by using both single and double quotes, as in either
’a string with “embedded” quotes’ or “a string with ’embedded’ quotes”.
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Preprocessing with Aprepro

The Algebraic PREPROcessor, aprepro, in the ACCESS/SEACAS tool suite can be run either
standalone, or as part of the analysis. The use of Aprepro is enabled by default, but can be disabled
with the -noaprepro command line flag. Aprepro can be used for a variety of purposes.

1. Define variables on the command line. This is especially useful for automated runs such as
optimization and uncertainty quantification.

2. Simplify input by allowing algebraic expressions, e.g. Y={ 4 * 3}.
3. Automatically include text of other files.
4. Manage various systems of units, e.g. Y={ 10 * psi }.

For details on Aprepro in general, and for standalone documentation, please refer to the SEACAS
documentation.”’ All the rules for command line substitution apply to the built-in capability.
Definition of command line variables during analysis requires specification of a command line
argument, -define, as used in the example.

sierra salinas --define "E_val=10E6 nu_val=0.30" -i example.inp

In this example, the text “E_val” in the input deck, example. inp will be replaced with “10E6”.
Likewise, “nu_val” will be replaced by 0.30.

Including Files

The input parser supports nested includes using Aprepro. Files may be included to any depth.

{include("english_materials")}

The include command may occur anywhere on the line (though for readability and consistency
we recommend that it be the start of the line). Case sensitivity will be preserved.

Input Summary

Summarizing, a minimum of two files are needed to run Sierra/SD, namely, a text input deck, e.g.
example.inp, and an Exodus input deck,*8 e. g. example. exo, which contains the finite element
model. The finite element model is specified in example.inp as the geometry file (see

section 4.2).

Each of the Sierra/SD input sections is described in the following section.

Integer List An integer list may be required as a parameter for some keywords. The list is of a
format similar to that of MATLAB. A simple list such as “1,2,3,4” is possible. One may also
provide a sequence such as “1:4” which is completely equivalent to the previous example. A step
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value may also be provided, as in “2:2:20”. The second term between the colons is the step. For
this example, we list all even values between (and including) 2 and 20. Such combinations can
also be combined, as in “1,2,3:2:7,11,13,17,19”.

It is recommended that if such lists have spaces they be placed in (single or double) quotes, i.e. ’1
2’ 1s preferred, but 1 2 without quotations is also acceptable.

Lists are also enabled in all areas of the code that support the input of multiple entities (blocks,
nodesets, or sidesets) on a single line. Integer ranges may also be used as shown above to select all
entities within in a range of ids. When using an integer range, there must be at least one valid
entity contained in the range. Suppose that a mesh contains element blocks 1, 5, and 15. The
range “1:10” selects blocks 1 and 5. The range “1:20” selects all blocks. However, the range
“20:30” would return an error.

The keyword all is a special keyword that will select all entities of a given type. Most contexts
that accept multiple entities will also recognize an optional “remove” keyword. Specifically, it is
not currently supported for block definitions (section 6.6), spot welds (section 10.4), and omitted
blocks (section 7.34). The effect of this keyword is that any further entities listed on the same line
will be removed instead of added to the overall list. For example, the following example selects all
nodesets on the mesh except nodesets in the range 100:200 for output on the history mesh.

HISTORY
nodeset all remove 100:200
END
4.2. Input Mesh Geometry File

Disk files names are specified in the file section. The parameters for the file section are,

Option Description

geometry_file Indicates which Exodus file to use
user subroutine file File containing user subroutines, currently relevant
only to user mount element

4.2.1. Geometry _file

The geometry file is used for input of the mesh geometry including the nodes, elements,
connectivity. Element specific data can be set in the geometry file by setting the element
attributes. Element parameters can also be used to configure the elements from the input deck, as
summarized in table 6-4
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4.2.11. Multiple processors

In a multiprocessor environment, the file name is determined by appending the “dot qualified”
processor number and processor id to the geometry file specification. 2 For example, if the user
specifies,

geometry_file=’templ/example.par’

There are 4 processors, then the following files will be opened.

templ/example.par.
templ/example.par.
templ/example.par.
templ/example.par.

B
w N =R

In this example the input file is not in the current working directory.

Specitying the Exodus mesh input file in a way that does not depend on the number of input files
(or MPI ranks) saves time in the long run. If the input file is example . exo and the partitioner is
configured to generate the files ’example.ex0.4.0’,. . . then the same Sierra/SD input deck works in
serial and in parallel.

4.2.1.2. Single processor

On a single processor, the file is not “spread”, and the full file path is provided. A representative
serial file section follows.

FILE
geometry_file example.exo
END

Note:

* A single processor run, even using MPI, will not append the number of processors and
processor ID to the file name.

* Section 3.1 shows the steps involved in the parallel execution of Sierra/SD.

’In other words, the user specifies the path name of the first parallel file, but omits the processor count information.
This method permits specification of the file name independent of the number of processors used.
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4.2.2. Exodus Database Naming Conventions

There are three basic conventions that apply to user input for various command lines. The
conventions concern side sets (surfaces), node sets and blocks.

First, the Exodus side set is referenced as a surface. In SiErrA, a surface consists of element faces
plus all the nodes and edges associated with these faces. A surface definition can be used not only
to select a group of faces but also to select a group of edges or a group of nodes that are associated
with those faces. For nodal boundary conditions that use the surface specification, all the nodes
associated with the faces on a specific surface will have this boundary condition applied to them.

A group of elements can also be used to select other mesh entities. In SIERRA, a block consists of
elements plus the associated faces, edges, and nodes. The block and surface concepts are similar
in that both have associated derived quantities.

Blocks, sidesets, or nodesets can be grouped together into assemblies.>® However, an assembly
must contain entities of the same "type", where "type" is either a block, sideset, nodeset, or
another assembly. An assembly cannot contain itself, either directly or indirectly. Currently, not
all tools support assemblies. One way to create them is with io_modify. In addition, assemblies
can be created directly in the Sierra/SD input deck using the ASSEMBLY section (section 4.2.3).

The specification for a surface identifier can have the form surface_id, where id is the integer
identifier for the surface. Surfaces can also be identified by the id alone. For example, if the side
set identifier is 125, the surface could be called surface_125 or simply 125. It is also possible to
name a surface in some mesh generation programs, and that name can be used in the input file.
The specification for element blocks and nodesets are defined similarly (“block”_id/id/name
and “nodelist”_id/id/name). Assemblies can also be specified similarly
(“assembly”_id/name), but specification of assemblies by id alone is not allowed. Assemblies
can be substituted anywhere in the input deck where a list of blocks, sidesets, or nodesets is
expected. If the assembly itself contains sub-assemblies, the set of unique leaf blocks, sidesets, or
nodesets will be used, depending on context.

4.2.3. ASSEMBLY section

Assemblies can be created using the ASSEMBLY section of the Sierra/SD input deck as shown
below (syntax 4.1). The assemblies created in this way can then be used elsewhere in the
Sierra/SD input deck. If an integer is given as the assembly name, then the integer will be used as
the assembly identifier and the assembly name will be assembly_id, where id is the assembly
identifier. Note that a ASSEMBLY section can only refer to assemblies that either already exist in
the input mesh or were defined in a prior ASSEMBLY section. If an assembly already exists on the
input mesh, defining it again using a new ASSEMBLY section will result in modifying the assembly
so that it contains the union of the entities in the original and the new instance. Additionally, a
warning will be printed in the Sierra/SD results file about modifying an existing assembly.
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BEGIN ASSEMBLY <string>
// exactly one of the following:
block = <list(block)>
block = all
sideset <list(sideset)>
sideset = all
nodeset <list(nodeset)>
nodeset = all

END

Syntax 4.1. ASSEMBLY example

4.2.4. Exodus Naming Limitations

Sierra/SD supports the use of mesh names in the input deck and lists of mesh objects. As a result,
it becomes ambiguous which keywords are mesh names and which are intended as input syntax.
For example, a nodeset named "fixed" creates ambiguity when the user specifies "nodeset 1
fixed". This could mean that nodeset 1 is fixed in space, or it could be a list of nodesets "1" and
"fixed".

To resolve this ambiguity, Sierra/SD maintains a list of reserved keywords which may not appear
in the mesh. This list has over 400 entries, and changes with each release. The rules of this list are
simple; any valid syntax which appears adjacent to a nodeset list may not appear in the mesh’s
nodesets. The same rule applies to sidesets and blocks. Since assemblies are valid in all three
contexts, they inherit the restrictions of all three.

There are no keywords in the Sierra/SD input deck which begin or end with an underscore.
Therefore, "_fixed_" is a valid name for any mesh object in any context. Similarly,
"assembly_5_front" is obscure enough to be safe from this restriction.

Pure integer values are not allowed as mesh names for the same reasons. This is not a restriction
on names like "Block_5", but blocks named "5" are not allowed.

A warning is issued if reserved characters are found in the mesh names. These warnings are not
fatal, but having reserved characters in the mesh names severely limits our ability to parse them in
the input deck. The reserved character list includes comment characters (//,/*,*/,#, and $), and

*rn

special-use characters (=,’,",and :), which have extra meaning in Sierra/SD input decks.

Since the list of reserved keywords is based on the allowable syntax in Sierra/SD, it will change
based on the current version of the code. The current list of reserved keywords for the version of
the code you’re using can be printed to screen at any time using the “~keywords” command-line
option. Additionally, the ambiguous naming checks can be changed to a warning or ignored
entirely using the reserved_keywords parameter (section 4.4.1).

57



4.2.5. Additional Comments About Output

A text log or results file can be written for the run. Details of the contents of the results file are
controlled in the echo section (see Section 9.9). The results file name is determined by the name
of the input file, and will be in the same directory as the input text file, regardless of whether
Sierra/SD is being executed in serial or parallel. However, if executing in parallel, using the
subdomains option in the echo section allows control of the number of results files. For example,
if running on 100 processors, up to 100 result files may be output. Using subdomains “0:2” will
only output three files, from subdomains O, 1, and 2. The default is to output a results file only for
processor zero. The results file name uses the base name of the input, with an extension of .rslt.
In a parallel computation, the results file names use the base name of the input file, followed by an
underscore and the processor number, then followed by the .rslt extension.

For calculations in which geometry based output requests are included (see Section 9), an output
Exodus file will be created. An Exodus file is a binary file (NetCDF). It contains the original
geometry and the requested output variables. The output Exodus file name is determined from the
geometry file name. The base name of the output is taken from the geometry file by inserting a
hyphen followed by the case name if defined, (or -out otherwise) before the file name extension.
The output Exodus file will be written to the same directory where the geometry file is stored.

4.3. Transferring Exodus data from other applications

Sometimes a user might wish to use quantities calculated from another simulation (in Exodus
format) to drive a subsequent Sierra/SD analysis. Sierra/SD currently supports

(i) reading data computed in other applications from the Sierra/SD input mesh file, and

(i1) reading data computed in other applications from an auxiliary mesh, or source mesh file,
using non-matching mesh transfers.

4.3.1. Reading Exodus data from the input mesh file

User-defined setup of some input variables using initialize variable name = <key> in the
FILE section, where <key> is a Sierra/SD keyword such as displacement(x). The step =
first|last|<int>or time = first|last|<real> options can be used to control the time
step on the mesh database from which field data are read. In accordance with Exodus format,
steps are one-based: step = 2 refers to the second step on the mesh. The time = <real>
option will select the nearest step with a time greater than or equal to the requested value.

An example which initializes displacements on the mesh is shown below, where nodal
displacements are stored as “dx”, “dy”, and “dz” on the input geometry file input_mesh.g.
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FILE
geometry_file = input_mesh.g

# nodal displacement components stored in input_mesh.g...
initialize variable name = displacement(x) # x-component

variable type = node # nodal displacement
read variable = dx # from input "dx"
time = 2.5 # at the nearest step
# with time >= 2.5
initialize variable name = displacement(y) # y-component
variable type = node # nodal displacement
read variable = dy # from input "dy"
step = FIRST # at the first step
initialize variable name = displacement(z) # z-component
variable type = node # nodal displacement
read variable = dz # from input "dz"
step = LAST # at the last step

END

Options function and variable type may also be used to initialize nodal variables with
user-defined functions as shown in input 4.1. The first component of displacement is calculated
using an analytic expression that scales dx from the mesh.

FILE
geometry_file = input_mesh.g

initialize variable name = displacement(x) # x-component of
variable type = node # displacement
function = my_disp_x
END

FUNCTION my_disp_x
type analytic
expression variable dx_Input = nodal dx
evaluate expression ="0.5 * dx_Input"
END

Input 4.1. Input displacement based on analytic function

Shorthand notation of the user-defined label mapping is also supported and demonstrated below
for the same displacement example as above. For vector fields, ‘x’, ‘y’ and ‘z’ are appended to the
base variable name, while for tensors, ‘xx’, ‘yy’, ‘zz’, ‘xy’, ‘yz’ and ‘zx’ are appended. For
symmetric tensor fields, the order of off-diagonal indices is irrelevant (‘xy’ is equivalent to

‘yX,),
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FILE
geometry_file = input_mesh.g

initialize variable name = displacement # displacement is stored

variable type = node # in nodal fields
read variable = d # named "dx", "dy" and "dz"
step = 23 # at the 23-rd step
END
4.3.2. Transferring Exodus data from a non-matching mesh file

When the geometry of the source mesh differs from the Sierra/SD input mesh, a limited
capability is provided to transfer some fields from the auxiliary mesh using a transfer section.
The syntax for the transfer section is shown below:

TRANSFER <exo_file> // source file
source blocks = <list(int)>
source sidesets = <list(int)>
destination blocks = <list(blocks)>
destination sidesets = <list(sidesets)>

mismatch mesh behavior = IGNORE |EXTRAPOLATE | TRUNCATE |PROJECT | ABORT

initialize variable name = <string> // SD internal naming convention
read variable = <string> // the name on the mesh
variable type = node|element|sideset
step = first|last|<int> (optional, option 1)
time = first|last|<real> (optional, option 2)

copy variable <string>
variable type = node|element|sideset
step = first|last|<int> (optional, option 1)
time = first|last|<real> (optional, option 2)
END

Syntax 4.2. TRANSFER section syntax

The initialize variable name option is intended to initialize a variable on the Sierra/SD
mesh once at the beginning of analysis, akin to the same option in the FILE section
(section 4.3.1).
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Currently, the only supported fields for the initialize variable option
are nodal displacements, which are transferred by default from the final
source file timestep and used to update the initial geometry of the desti-
nation mesh, and in the definition of element-local coordinate systems
(section 6.6.1.3).

N J

On the other hand, the copy variable option is used to transfer potentially time-varying fields
from the source mesh to the Sierra/SD mesh over the course of an analysis. Element or face
variables are copied, not interpolated from the source file to the corresponding nearest element or
face of the destination mesh. As with initialize variable name, the copy variable
command also supports an optional time or step specification to load data from a step other than
the default (final) step.

For example, to use displacements labeled as (dx, dy, dz) on “source.exo” to update the initial
geometry of “destination.exo” (Sierra/SD input mesh),

TRANSFER source.exo
initialize variable name displacement
read variable = d
variable type = node
END

FILE
geometry_file = destination.exo
END

Input 4.2. TRANSFER geometry update

To use the displacements from only blocks 1 and 2 on the source mesh to update only block 10 on
the destination,

TRANSFER source.exo
source blocks =1 2
destination blocks = 10

initialize variable name displacement
read variable = d
variable type = node
END

Input 4.3. TRANSFER subregion example

The following example demonstrates how to apply the source element field press (e.g., from a
surface mesh) as a pressure load on the destination sideset skin.
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FILE
geometry_file destination.exo
END

TRANSFER source.exo
copy variable = press # name of variable in source.exo
variable type = element
destination sidesets = skin
END

LOADS
sideset skin
pressure 1
function = from_transfer
END

FUNCTION from_transfer
type=ExodusRead
interp=linear
exo_var scalar press

END

Input 4.4. TRANSFER pressure from element surface to sideset

To enable pressure transfer from a sideset with id ‘1’ on the source mesh to a sideset “skin” on the
destination mesh, the TRANSFER section in the above example could be modified as follows:

TRANSFER source.exo
source sidesets =1
destination sidesets = skin
copy variable = press # name of variable in source.exo
variable type = sideset
END

Input 4.5. TRANSFER pressure from sideset to sideset

There are several other known current limitations and guidelines for use of non-matching mesh
transfers, as follows.

Unlike the destination blocks|sidesets, the source
©  blocks|sidesets list does not currently support specification
of blocks by name or by range.
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While multiple transfer blocks and, therefore, multiple transfer files may
be used, each transfer destination field must be unique. If a duplicate
destination field is found, a fatal error will occur.

By default, mismatched domains are not checked when transferring.
This behavior can be changed with the mismatch mesh behavior
option. See options in figure 4-1.

Figure 4-1. — Mismatch mesh behavior options

IGNORE The receiving mesh object can be ignored and will receive no value. This is almost never
a good idea as it can cause mesh objects just outside to have a default zero value when the
nodes just inside the mesh might have very large values. This can result in a discontinuous
receiving field.

EXTRAPOLATE This is the default behavior. The sending field is extrapolated beyond the bounds
of the sending mesh. This can lead to extrapolation error, such as when a large gradient at
the surface causes a negative values when only positive values are acceptable.

TRUNCATE The receiving coordinate is truncated back to the surface of the sending mesh to
determine a value. This ensures that the receiving value is not outside of the field values in
the sending mesh.

PROJECT This option is similar to TRUNCATE in which the receiving coordinate is projected
back to the surface of the sending mesh to determine a value. In this case more effort
is made to make sure that the projection is normal to the surface in the sending mesh.
Sometimes gives a better result than Truncate but is a little more expensive to compute. If the
PROJECT option is used in transferring of surface values, the sending mesh should envelope
the receiving mesh. Failure to satisfy this condition will generally result in failure of the
transfer.

ABORT If any receiving point is outside the sending mesh by more than the geometric tolerance,
abort the simulation. Do not attempt to project, extrapolate, or otherwise handle the point.

4.4, Parameters

In the input deck, an optional Parameters section configures features that apply to all solution
cases. A family of options have been added to allow advanced users to suppress specific warnings
and errors. In this section all of the optional Parameters are described. Section 4.4.1 discusses
suppressions. This section concludes with examples of warning suppression.
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Keyword Type Default Description

AllowExodusAttributes bool true Seek undefined attributes on the mesh
AllowExodusDistFacts bool true Apply distribution factors from the mesh
ComplexStress yes/no no output complex stress in FRF solutions
condition_limit Real le6 element quality output control
constraint_correction yes/no no orthogonalize constraints to RBMS
defaultSpecificHeat Real none material specific heat
DolnitialMassSolve bool true transients: perform initial mass solve
eig_tol Real auto Eigenvalue tolerance

eigen_norm string mass “visualization” or “unit”
energy_time_step int 1 input of energy data

energy_exo_var string TEMP Exodus energy variable name

Info int 1 screen output control

MatrixFloor Real 0 control of matrix fill

MaxmpcEntries int 10, 000 maximum # entries in any mpc
MaxResidual Real l.,e—6 maximum residual for eigen
MortarMethod string dual dual or standard mortar method
MFile_format string | sparse_function | control output format for MATLAB
NegEigen none negative eigenvalue flag
nonlinear_default yes/no yes nonlinear element blocks
num_rigid_mode int 0 number of system rigid body modes
output_sideset_data bool false Output element values on all sidesets
RandomNumberGenerator | string “rand” or “test”

RbmTolerance Real le-10 tolerance for rigid body zero
RemoveRedundancy yes/no yes filter constraints

reorder_Rbar none constraint reordering flag
SkipmpcTouch none control of MPCS

TangentMethod string element method of computing tangent
WtMass Real 1 Mass multiplier

Table 4-2. — Available keywords in the Parameters section.

Only one parameters section is recognized in each file. The parameters and their meanings are
listed below and in Tables 4-2 and 4-3. For reference, Table 4-4 are parameters occasionally used
by developers, but not recommended for common use.

wtMass For the convenience of users of the English system of units, natural units of mass are
units of force, Sierra/SD provides the wtmass parameter. It multiplies all input masses and
densities. Each input deck block section defines the density of the material in the
corresponding element block. If wtmass is specified, then the simulation proceeds exactly
as if each element block density had been scaled accordingly. For example, the density of
steel is 0.283 Ibs/ in3, but “Ibs” includes the units of

g = 386.4in/s%.

Using a value of WtMass of 0.00259 (1/386.4), density can be entered as 0.283, the outputs
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Keyword Type Default | Description
nodesets_with_disp list nodesets with prescribed displacements
thermal_time_step int 1 input of thermal data
thermal_exo_var string TEMP | Exodus temperature variable name
mpmd_transfer_type Fuego/copy Which code transfer is

SPARC/interpolation occurring from
mpmd_transfer_sidesets string_list Surfaces on which

string_list transfer is occurring

Table 4-3. — Parameters section keywords for code coupling and hand-off.

Keyword Arg Default | Description

Outputlnitial Time boolean | false | write output at t=0

Shared AcousticStiffness yes/no no share stiffness across processors
linear_solver_warn_factor Real 10 GDSW warnings
linear_solver_bailout_factor Real 100 GDSW fatal errors

Table 4-4. — Developer keywords in the Parameters section.
Developer keywords in the Parameters section. These keywords may be used, but their use is
discouraged, and they are not fully tested.

will be in pounds, but the calculations will be performed using the correct mass units .
Sierra/SD, like most finite element codes, does not manage the units of the analysis. The
selection of a consistent set of units is left to the analyst. For example, if the analyst uses the
SI system (Kg, m, s) the units of pressure must be Pascals. Frequencies are reported in Hz.
For micromachines these units are awkward. It may be better to use units of grams,
millimeters and microseconds. The analyst must ensure that all material properties and
loads are converted to these units.

Some examples of useful units are shown in Table 4-5.

Table 4-5. — Some useful combinations of units.

length | mass | time | WtMass | density | force modulus internal mass
m Kg | sec 1 Kg/m? N N/m? or Pa Kg
ft slug | sec 1 slug/f3 | Ibf b/ f1? slug
ft Ibm | sec | 1/322 | ibm/ft3 | Ibf Ib] ft? slug
in Ibm | sec | 1/386.4 | Ibm/in® | Ibf psi 1bm/386.4
mm ug s 1 Kg/m? N | MN/m? or MPa ug
mm g sec 1 g/mm> | uN N/m? or Pa gram
mm mg | sec | 1/1000 g/cm’ uN N/m? or Pa gram

NegEigen Unconstrained structures have zero energy modes which may evaluate to small
negative numbers due to machine round off. The eigenvalues and associated frequencies are
reported as negative numbers in the results files. However, many post-processing tools
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(such as Ensight) require non-negative frequencies. By default, Sierra/SD converts all
negative eigenvalues to near zero values in the output Exodus files !. To retain the negative
eigenvalues in the output file, select parameter NegEigen.

output_sideset_data This option turns on sideset output for any requested element output.
Currently, sideset output is only enabled for (centroid) volumetric stress and strain
(sections 9.7.19 and 9.7.20).

eig_tol This is the tolerance used in the eigen5.8 solution method for eigenvalues. The default is
machine precision. This parameter can sometimes be loosened to aid convergence. See
Section 3.8.3 for details.

nonlinear_default In nonlinear transient dynamics or nonlinear statics, computing the fully
nonlinear response of all the elements in the mesh can be computationally expensive. In
some cases it is unnecessary. For example, for a simulation that only involves Joint2G
elements and solid (3D) elements, the analyst may determine that the nonlinear effects of
the solid elements are negligible. In such cases, it is advantageous to be able to control the
nonlinear response of elements block-by-block. And there is a block-level parameter
described in Section 6.6.1 that selects the optional nonlinearities for specific blocks. Instead
of entering this parameter for each block, nonlinear_default sets the default for all
blocks. If no, then all blocks default to linear behavior, unless specified otherwise in the
Block section. If yes, then all elements default to nonlinear behavior. Note that the
block-level flags override the nonlinear_default keyword. There are two possible cases
for this keyword.

nonlinear_default=no All elements default to linear behavior.
nonlinear_default=yes All elements default to nonlinear behavior.

As noted in Section 6.6.1, there are limitations for using linear materials in nonlinear
analysis.

TangentMethod The tangent stiffness matrix may be used in a full Newton update in nonlinear
statics 5.20 or transient dynamics 5.21). There are cases when it is better to use a tangent
matrix computed from finite difference methods. There are 3 options for the
TangentMethod.

element exact (assuming linear materials)
difference finite difference

compare Use the standard method, but also compute the matrix by the difference method.
Output of the difference of every element matrix in the model will be sent to the
results file 2

'Because many post-processing tools are written for transient dynamics, they expect monotonically increasing,
positive values for the time. Since eigenvalues are written in the time columns of the output file, they are converted
to be monotonically increasing, positive values. Note that the numerically computed eigenvalues are also stored as
global variables in the file

’In parallel solutions the results file is written only for the first processor unless the “subdomains” option is specified
in the echo section (9.9).
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info Option info selects diagnostic information for standard out. There are four different levels.
Each level increasingly allows more output to standard out. The GDSW option “prt_debug”
overrides “info” for GDSW output. The four levels of control are:

0. Silent — output warnings and std error to the screen (untested)

1. Normal - output the data most analysts would use (untested)

2. Detailed — Convergence, solution addressing issues (unimplemented, tested).
3. Debug - Silent, normal, detailed and diagnostic information (tested).

Info generates diagnostic information for eigenvalue problems. Setting it to O suppresses
this output.

PARAMETERS
info=0
END

SkipmpcTouch Sierra/SD uses a unique method of determining an active degree of freedom set.
Unlike codes like NASTRAN which use an automatic single point constraint method,
Sierra/SD loops through all elements and activates only degrees of freedom that are
required for elements. Multipoint constraints pose a particular problem because some codes
(like NASTRAN) may include multipoint constraints to unused degrees of freedom. Since
these are eliminated with the auto-spc, this poses no problem to these codes, but may
confuse Sierra/SD significantly. On the other hand, usually degrees of freedom associated
with MPCs should be included in the active set, and leaving them out can produce errors.

As a stopgap measure, we provide the parameter SkipmpcTouch. If this parameter is set,
no degrees of freedom will be activated through multipoint constraints.

condition_limit Element quality checks are important for evaluating the effectiveness of the
mesh. By default, elements with moderately bad topology are reported. However,
sometimes there are so many of these warnings, that the bad elements may get missed. The
condition_limit parameter permits user control of the reporting. Setting this parameter
to a larger number will eliminate message from marginal elements. Element checking can
also be disabled (see the ElemQualChecks parameter in the outputs Section 9.8.3). The
default value is 1e6.

The condition_limit parameter is ignored if the ElemQualChecks
option has been disabled in the output section (9.8.3).

reorder_Rbar An Rbar is a type of rigid element. This option reorders all Rbar elements to
minimize the number of them connected to a single node. Having may Rbar elements
connected to the same node results in a problematic matrix sparsity pattern which can
lengthen run time.
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If redundant Rbars are present (i.e. connections forming a cycle), they are removed by
default. To not reorder the Rbar pseudo-elements, specify reorder_Rbar no.

thermal_time_step For thermal analysis solution procedures (i.e. statics or transient dynamics
with a thermal_load body load), or for any solution procedure that uses temperature
dependent material properties, the temperature distribution of the structure must be read in
from the Exodus file. Typically, the input Exodus files in this case would be the output files
from a thermal analysis, and thus would contain the necessary temperature data. Since such
an analysis could contain several time steps of temperature data, the parameter
thermal_time_step allows the analyst to select which set of temperature data is to be read
into Sierra/SD. The following gives an example.

PARAMETERS
thermal_time_step 10
END

In this case the user would be requesting that the temperature data corresponding to the 10"
time step be read into Sierra/SD.

energy_time_step This variable is identical to the “thermal_time_step” above, but applies to
cases where the energy density is input and must be converted to a temperature. Either
energy density or temperature can be input, but not both.

thermal_exo_var If a material specifies a coefficient of thermal expansion and a reference
temperature, then the corresponding thermal strain is computed, and the corresponding
thermal load 8.3.7 is applied. Otherwise, a material property may be an arbitrary function of
temperature. Temperature dependent materials 6.5.6 are supported. Temperature dependent
viscoelastic materials 6.3 are also supported, using the corresponding input syntax. In
either case to read the temperature from the input Exodus file, the name of the temperature
field has to be specified. And that is what thermal_exo_var is for. The default variable
name is 'TEMP’. In the following example the name is changed to temperature.

PARAMETERS
thermal_exo_var "temperature"
END

energy_exo_var This variable is identical to the “thermal_exo_var” above, but applies to cases
where the energy density is input and must be converted to a temperature. Either energy
density or temperature can be input, but not both. The only difference is that the energy
density will be divided by the specific heat to arrive at the temperature.

PARAMETERS
energy_exo_var "EDEP"
END

mpmd_transfer_type Defines which code Sierra/SD is coupling to during the run. To use
Fuego output, options copy and Fuego are equivalent and one of them must be used. And
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similarly to use output from SPARC, the options interpolation and SPARC are equivalent
and one of them must be used. See Section 8.2.4.

mpmd_transfer_sidesets Defines the sidesets on which coupling are occurring. When data is
mapped from one code to the other, the transfer will only occur on these sidesets. See
Section 8.2.4.

RbmTolerance Rigid body filters depend upon accurate rigid body modes. The application
checks the matrix product of the stiffness matrix to ensure that these vectors are in the null
space of the stiffness matrix. If any of the requested vectors are not in the null space, the
application terminates. The default is 1e — 10. RbmTolerance provides user control of the
threshold for that error. It depends on the stiffness matrix, K, and a rigid body vector, ¢,,

KD |2

tolerance = —/—————

1Kallool| D ll2

MatrixFloor Primarily a debugging option. The nearly zero terms in a matrix can be removed
using this parameter. Values below this floor are eliminated from the matrix. This can
reduce fill, but if used improperly too much of the matrix can be affected. It can be
important when running on different platforms, where round off can affect the matrix fill,
and make it difficult to compare solutions. This is a relative value, so 1.0E-6 would remove
terms in the matrix that are a million times less than the largest term. Default is zero.

defaultSpecificHeat The specific heat is used to convert energy to temperature with the
following equation, £ = C, AT, see Section 6.5.8 for details. The specific heat is set on a
material by material basis. A default value for the specific heat can be set using the keyword
defaultSpecificHeat which can then be overridden by defining the specific heat for a
material. A fatal error is given if the specific heat is not defined for a block of material
containing energy input and the defaultSpecificHeat keyword can be used to avoid this.

MaxmpcEntries Soft limit on the number of mpc entries in any single multipoint constraint.
Normally the default will be sufficient, but large RBE3 type entries may exceed this in rare
cases. The limit is there to avoid errors reading the input, and because such large constraints
can consume memory.

eigen_norm Eigenvectors may be arbitrarily normalized. Three common approaches are listed
in Table 4-6. All methods retain orthogonality of the eigenvectors, but the normalization
differs. The default, mass normalization, is most commonly used as it ensures that the inner
products of eigenvectors with the mass matrix is identity. However, this normalization is not
well suited to output visualization. The “visualization” normalization mimics what is
automatically done in MSC/Patran, and should provide a reasonable visualization without
rescaling each mode. In “visualization” normalization, the maximum translational
displacement is normalized to be less than 10 percent of the maximum model extent, while
also insuring that the model rotation remains below 1 radian. Unit normalization ensures

69



Method Algorithm Comment
Mass ¢I.TM o =1 Default. Simplifies numerics
Visualization | max(¢;)=(model size)/10 | Simplifies visualization
Unit max(¢;)=1

Table 4-6. — Eigenvector Normalization Methods.

that the largest value of the eigenvector is one. ! A global variable, EigenVectScale,
provides the scale factor by which the mode was scaled.

constraint_correction Ensure that each multipoint constraint generated is orthogonal to all
rigid body modes. This is useful for lofted surfaces. If the surfaces are tied as if they were
coincident, the constraints are incorrect, and eliminate some or all the rigid body modes as
worked out in section “Orthogonality of MPC to Rigid Body Vectors” in the chapter on
Linear Algebra Issues of the /sd Theory Manual.

PARAMETERS
Constraint_Correction=yes
END

MFile_Format Most of our matrix data can be written as MATLAB readable files. By default,
these are written as sparse matrices, as functions. Other formats are also available. The
“full” format does not use the sparse methods and is thus compatible with Octave or other
tools. Alternatively, the “3column” format can be used. In this format, the file is loaded
using the MATLAB “load” command. The data is then converted to a sparse matrix using
the MATLAB “sparse” command. The “3column” format may be significantly faster in
some cases, but it does require more user interaction. Figure 4-2 compares a simple
example for the three formats. In all cases, the matrix symmetry is the same. A fourth
format, “CSV”, is also available for compatibility with other external tools >

Sparse_Function Full 3column
function s=Kssr() function s=Kssr() L1011
s=[110.11 s=zeros(2,2); . '12
120.12 s(1,1)=0.11; 228-22
220.22]; s(1,2)=0.12; :

s=sparse(s(:,1),s(:,2),s(:,3)); 8(2,2)=0.22;

Figure 4-2. — Example MFile Format Results.

'The “unit” method of normalization computes max(¢), which is computed only on translational displacement
degrees of freedom. Note also that only displacements are renormalized. No effort is made to renormalize element
variables such as strains, stresses or energies. Thus, if these are requested in an eigendecomposition, they will not

be consistent with the renormalized eigenvectors, but will retain mass normalized values.
2Note that the CSV format should be readable by Microsoft Excel, but there are often limits on the number of columns
that can be read.
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RemoveRedundancy RemoveRedundancy affects node-face constraints created by *Tied Data’
or ’Contact Definition’. Redundant constraints cause most solvers to fail. Redundant
constraints are often introduced when two surface pairs are tied next to each other, but there
are a variety of sources for these redundancies. Exact redundancies are always automatically
eliminated, but that is often not sufficient. This parameter removes constraints when a node
is tied to more than one face or if the node shows up both as a node of a node-face constraint
and attached to a face of a different node-face constraint. By default, it is “true”.

RandomNumberGenerator The default random number generator, “rand”, is the standard
generator available from system libraries. It should be the best random number generator in
terms of the quality implementation. In a few cases the analyst may want a more repeatable
random number generator, that is independent of the platform. The “test” random number
generator can be used in this case. It is not recommended for general use, and the statistics
of the generator are not well-established.

MortarMethod Two mortar methods are available in Sierra/SD: standard and dual (see®). By
default, the dual method is selected as it is almost always more efficient in memory use.

ComplexStress Most often, analysts do not want output of stress variables in frequency
response function analysis. Such output is complex, and huge volumes can be generated.
Selecting “ComplexStress=yes”, along with “stress” in the echo section permits output of
this data. The default is “ComplexStress=no”.

num_rigid_mode Is used to signal to the linear solver that the system is singular and that the
singularity is associated with structural and/or acoustic rigid body modes. This is used, for
example, in the solution of statics problems without any essential boundary conditions or
frequency response analysis with the modal acceleration method. Where possible, other
methods should be used to eliminate the singularity. For example, in modal analysis a
negative shift is recommended. Currently, allowed values for this parameter are 1 (acoustic
mode only), 6 (structural modes only), or 7 (structural and acoustic modes). We also note
that when using the FilterRbmLoad parameter, it is necessary to specify num_rigid_mode
to correspond to the number of rigid body modes that will be filtered. For example, if
FilterRbmLoad was set to AllStructural, then num_rigid_mode should be set to 6.

DolnitialMassSolve Determining a nonzero the initial acceleration, for example to preserve
quadratic convergence,”’ requires an initial mass solve section 5.28. If the linear system is
ill-posed, the option to skip it is,

DoInitialMassSolve=false

OutputinitialTime In transient simulations, the output can be written at time t=0, prior to the
first time step by using the command

OutputInitialTime=true

By default, it is false, and the initial time step is not output if reading from a restart file
because the time is not 0.
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linear_solver_warn_factor Although GDSW table 4-10 approximates the solution u of each
linear system, Au = f uy such that,

|| f — Aug|| < solver_tol || f — Au,||,

a predicted value of the residual is used. The true residual may be larger and a careful
analyst must check the true residuals. To automate this checking task, a warning message is
written if the true residual is more than linear_solver_warn_factor (default 10) times the
predicted residual.

linear_solver_warn_factor=10.0

linear_solver_bailout_factor Like the softer GDSW warning factor 4.4, the bailout factor
(default 100) is used to ensure that the true linear solver residuals are below the relative
residual norm threshold. Once a residual norm exceeds this larger bailout threshold, the
whole simulation ends with a fatal error. In an ill-conditioned problem as the solver_tol
is decreased to improve resolution, increasing the bailout factor to mitigate the risk of a fatal
error is recommended.

linear_solver_bailout_factor=100.

nodesets_with_disp This parameter, when used in conjunction with the nUpdateConstraints
transient option (see section 5.28), enables specifying prescribed displacements over a
subset of all nodes via nodeset output.

nodesets_with_disp is currently BETA release.
Enable with the “- -beta” command-line option.

4.4.1. Suppression of Warnings

There are several parameters that control the suppression or modification of errors and warnings.
They are summarized below.

ignore_gap_inversion Initial overlap removal is another name for gap removal. Gap removal
may change element quality. A fatal error occurs if element quality gets much worse. To
ignore this poor element quality set the ignore_gap_inversion parameter to true. The gap
removal solution case 5.32 making debugging easier.

syntax_checking Sierra/SD has the ability to check an input deck for syntax and spelling errors.
This option controls this behavior. By default, a violation is printed to the screen and
execution is terminated. If the user wishes, violations can be printed while execution
continue, or the checking for violations can be disabled completely.

The three levels of control are:
ignhore silently ignores those entries.

warn provides a warning for those entries.
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Keyword Type | Default | Description
AllowInvalidExodusParts bool false | Ignore error due to requesting an
invalid Exodus part (e.g. sideset/block)
ignore_gap_inversion bool false | Ignore element quality changes due to
gap and overlap removal
syntax_checking string | fatal | “ignore”, “warn”, or “fatal”
RequireMatchedBlocks string fatal “ignore”, “warn”, or “fatal”
reserved_keywords string fatal “ignore”, “warn”, or “fatal”
restart_consistency_checking string | fatal | “ignore”, “warn”, or “fatal”
restart_input_checking string fatal “ignore”, “warn”, or “fatal”
restart_file_checking string fatal “ignore”, “warn”, or “fatal”
WarningLevel (beta capability) string all “all” — show all errors
“warning” — warnings & above (fatal) only
“fatal” — fatal errors only
“none” — show none / disable all
exit on fatal (beta capability) bool true false — treat fatal errors like warnings
ignore error (beta capability) regex N/A regular expression or string
matching messages are ignored
error detail string | normal | “brief” — only include essential error information
“normal” — the default
“verbose” — include more detailed error information

Table 4-7. — Parameters for controlling error messages.

73




fatal stops the analysis. This is the default.

RequireMatchedBlocks Sierra/SD always requires that each Exodus block have a
corresponding entry in the . inp file. This parameter controls behavior if there are blocks
defined in the . inp file that do not appear in the mesh.

ignore silently ignores those entries.
warn provides a warning for those entries.
fatal stops the analysis. This is the default.

reserved_keywords Sierra/SD has the ability to check exodus entities for potentially ambiguous
or confusing names. This option controls this behavior. By default, a violation is printed to
the screen and execution is terminated. If the user wishes, violations can be printed while
execution continue, or the checking for violations can be disabled completely. Note that this
option will only control the behavior when checking ambiguous names: we will always
issue a warning if certain reserved characters are found within a name. For more
information, see section 4.2.4.

The three levels of control are:

ighore silently ignores those entries.
warn provides a warning for those entries.
fatal stops the analysis. This is the default.

restart_consistency_checking by default Sierra/SD will check that the restart data file is
consistent with the analysis mesh. These checks include confirming identical node ids,
element id, node coordinates, and element connectivity. By default, if the restart file is
inconsistent Sierra/SD will output a fatal error and terminate execution. Generally such
restart inconsistencies indicate a serious problem. For example trying to map the restart
data from the wrong analysis onto a new mesh will produce nonsensical behavior. Use
restart_consistency_checking to convert these checks to a warning or skip them.

The three levels of control are:

ignore silently ignores restart consistency issues.

warn provides a warning for restart consistency issues.
fatal(default) stops the analysis for restart consistency issues.

restart_input_checking when restarting, Sierra/SD will verify that the input deck is consistent
with the input deck that generated a restart data file (as recorded in the info records of the
restart Exodus file). If it is not, Sierra/SD will output a fatal error and terminate execution.
Whitespace and comment characters are not considered in this comparison.

The following sections are also ignored from this comparison:
* SOLUTION
* Solver options (GDSW, SOLVER_OPTIONS, CAMP, PARDISO)
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* Qutput options (ECHO, HISTORY, OUTPUTS, STATISTICS, USER OUTPUT)

New sections of the following type are also ignored. However, modification or deletion of
sections from the original restart input is not allowed.

* Coordinate systems
* DAMPING and FREQUENCY BAND DAMPING
e FUNCTION
* FREQUENCY
* LOAD/LOADS
¢ MATRIX-FUNCTION
e RANLOADS
e TABLE
For all other sections, no modification, addition, or deletion is allowed.

Use restart_input_checking = warn|ignore to convert this check to a warning or
skip it entirely. As with restart_consistency_checking, restart inconsistencies
generally indicate a serious problem, so great care should be taken if this error is ignored.

restart_file_checking When attempting to restart a solution with restart = read
(section 4.6.2), Sierra/SD will first verify that the restart data file exists. Use
restart_file_checking to control the behavior when the file is not found:

ignore silently restart from scratch.
warn warn and restart from scratch.

fatal (default) warn and stop the analysis.

44.11. Warning Suppression Examples

The below examples will go over examples of some common errors in the input deck, their typical
error messages, and the effect of various control parameters listed above.

In the following example, a force load was only partially defined.

LOADS
body
force 1e7 0 0
block 1
force 1e7 0 O
sideset sideset_1
traction le6 0 0
sideset 2
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force 1e5
END

This yields the following default error message, and the simulation is abandoned.

R R R R R R R R R R e e i e i i i o o R R R R R R R

FATAL ERROR:
LOADS... Invalid syntax:

#*% ==== Parsed input lines:
** LOADS
** body
force 1le7 0 0
** block 1
** force 1le7 0 0
** gsideset sideset_1
** traction 1le6 O 0
“* sideset 2
force 1le5 <-- FAILED HERE

#*% ==== Valid lines in this context are:
force = <real> <real> <real>
--- reached end of block, expecting to find a <real>

R R R R R R R o o e e e o e e e e e e e e e e e e e e kS S S S S S R Rk Sk A S e e R e e R R T

To avoid printing the parsed input lines, use error detail = brief.

R R R R R R R R o e R R

FATAL ERROR:
LOADS... Invalid syntax:
force 1le5 <-- FAILED HERE

#*% ==== Valid lines in this context are:
force = <real> <real> <real>
--- reached end of block, expecting to find a <real>

There are several ways to continue with the simulation after encountering fatal errors. However,
use extreme caution when using them, as fatal errors are typically fatal for a good reason! These
options are roughly ordered from least to most dangerous due to their potential to suppress other
unrelated errors and warnings.

* To ignore this specific error, use ignore error = "force 10", ignore error =
"force = <real> <real> <real>", or indeed any string or regular expression from the
message.

* To convert all syntax errors to warnings (continue simulation, but keep message), use
syntax_checking = warn.
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* To continue after all errors (keeping the message), use exit on fatal = false (thisis
the default in “—check-syntax” mode).

* To ignore all syntax errors and warnings, use syntax_checking = ignore.
* To ignore all errors and warnings, use WarningLevel = none.

In the next example, an incorrect sideset was used to define a loading region. As before, using
error detail = brief will suppress printing the parsed input lines. Additionally, in this case
it will also suppress printing of the valid sidesets on the mesh.

LOADS
body e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
force 1e7 0 0 *%* FATAL ERROR:
block 1 *% LOADS... Invalid syntax:
force 1e7 0 *%
sideset sideset_3 *%* ==== Parsed input lines:
traction le6 0O 0 ** LOADS
sideset 2 ** body
pressure le5 ** force le7 0 0
END ** plock 1
** force le7 0 O
** sideset sideset_3  <-- FAILED HERE
Input 4.6. Input with error o
*% ——== Valid lines in this context are: ============—===
sideset = <sideset>
Fedededededededede et de ettt de et Yol - EXPECTED "Sideset_3" to be a <sideset>
** FATAL ERROR:
LOADS... Invalid syntax: ** The following sidesets have been defined in the mesh:
sideset sideset_3  <-- FAILED HERE o sideset name sideset id
*E e
==== Valid lines in this context are: === || ** surface_1 1
** gideset = <sideset> i surface_2 2
*% _— EXPECTED "sideset_3" to be a <sideset>
Feddedededkkdedhd ek kd ek hdkhdhkhkhhkh kvt hkhkkkk

. . Output 4.2. error detail = normal (default)
Output 4.1. error detail = brief
All of the previously-outlined ways to continue with the simulation after encountering fatal errors
are valid in this context as well. However, you can also use AllowInvalidExodusParts =
true to specifically ignore errors related to invalid exodus parts while keeping others.

In the following example, the 1st keyword of a line is misspelled, so a fuzzy match is used to
determine the most likely intent. If the complete list of syntax is desired, use error detail =
verbose. Examples of the resulting error message with all 3 options of error detail are
shown below.
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LOADS

body
force
block 1
force
sideset

END

le7 0 0

1le7 0 O
sideset_1

traction 1le6 0 0
sdeset 2
pressure le5

Input 4.7. Input with error

** sdeset

¥

¥

** LOADS...

==== Closest matches are:
sideset = <sideset>

*% FATAL ERROR:

Invalid syntax:
<-- FAILED HERE

Fededededededehdede e dedehdede ek dedehdedefhddehddedhddn

Output 4.3. error detail

brief

** plock 1

** sdeset

¥

¥

==== Closest matches are:
sideset = <sideset>

Fededededededehdede e dedehdede e dede NS de N dedehdde N hddn

*% FATAL ERROR:

*% LOADS... Invalid syntax:

*%* ==== Parsed input lines: =======
** LOADS

** body

** force le7 0 O

** force le7 0 O
sideset sideset_1
** traction le6 0 O

<-- FATLED HERE

Fededededededehdede e dede S de ek dedehdede Nk dedehddefhddn

Output 4.4. error detail =

Finally, we consider an example where a boundary region is defined but no boundary condition is

(default)

normal

*% FATAL ERROR:
** LOADS... Invalid syntax:

==== Parsed input lines:

** LOADS

X body

** force le7 0 O
** Dblock 1

** force le7 0 O

** sideset sideset_1
traction le6 0O 0

** sdeset <-- FAILED HERE

==== All valid lines for this section are: =========
** loads

** plock = <block>

angular_velocity = <real> <real> <real>

5 angular_acceleration = <real> <real> <real>
S force = <real> <real> <real>

ok iforce = <real> <real> <real>

S moment = <real> <real> <real>

S imoment = <real> <real> <real>

traction = <real> <real> <real>
itraction = <real> <real> <real>
acoustic_accel = <real>

w% acoustic_vel = <real>
wE iacoustic_accel = <real>
wk iacoustic_vel = <real>

ipoint_volume_accel = <real>
ipoint_volume_vel = <real>
ipressure = <real>

wH lighthill = <real>

wx point_volume_accel = <real>
ww point_volume_vel = <real>
ok pressure = <real>

energy_load
iplane_wave

modalforce
plane_wave
randompressure
wx thermal
thermal_load

heat_flux = <real>

iheat_flux = <real>

heat_volumetric = <real>

iheat_volumetric = <real>

** +/- ...(<real>) (%|percent) <-- DEPRECATED (5.14)

Fedededdededehdede e dededehdede Rk dedehdede ek ddehddefhddehdedfhddehdddhddehdddhdd

Output 4.5. error detail = verbose

specified. In this and similar cases, the default behavior is to output all lines of syntax that are

valid in the current context, which in some cases can be quite long. In contrast, error detail =

brief will output a truncated list.
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BOUNDARY
sideset 1
fixed
sideset 2

# missing
END

Input 4.8. Input with error

e s o e 30 3o de sk ok o Fo 30 96 de Sk o e Fo 3 de e vk o e de A A o v e e de A e S v e RS A e e e R
** FATAL ERROR:

BOUNDARY. .. Invalid syntax:

= One of the following must be specified: =
** AccelX = <real>

** pml_element use block <block> (hex)

S ¥ e 3o 3o de s o o Fo 30 96 de 3k o o Fo 3 de o vk o Fe Fo S de S v e e de A e S e e RS e e R S
*% FATAL ERROR:

** BOUNDARY... Invalid syntax:

= One of the following must be specified: =

** AccelX = <real>
AccelY = <real>

slosh = <real>
#** jnfinite_element use block <block>

pml_element use block <block> (hex)

==== Parsed input lines:
*% BOUNDARY

** sideset 1

**  fixed

sideset 2

Fedededehdede ek dede S dedehdede e dde kS de Nk ddehded Rk de e dd e dhdh

Output 4.6. error detail = brief

4.5, Loads

Output 4.7. error detail = normal
(default)

This section introduces the input deck syntax for specifying one or more structural loads. More
detailed descriptions of specific kinds of loads is presented in the Boundary Conditions

section 8.3.

Loading conditions are specified within the load or loads section. The following example

illustrates several types of loading conditions.

LOADS
nodeset 3
force = 1.0 0. 0.
scale = 1000.
function = my_load_function
nodeset nose
coordinate 11
force = 0. -1 0
nodeset 7
point_volume_vel = 1
scale = 1.0
function = 1

body
gravity
0.0 1.0 0
scale -32.2

// time history of dV/dt, where
// V is the volume of the source
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block wing
thermal_load
function = 1
block 12
thermal_load
function = 3
sideset 7
pressure 15.0
sideset tail
traction = 100.0 20.0 0.0
coordinate my_coord
sideset 13
acoustic_vel 1.0
function = 1
sideset 14
pressure = 1
follower=yes
node_list_file=’force.nodes’
force=1.0 0 0.
scale = 100.
function=2
END

Loads are applied to sections of the mesh such as node sets, side sets, blocks, node lists (see
Section 8.1), or the entire body. Certain loads can only be applied on certain parts of the mesh, for
example pressure and traction loads can only be applied on sidesets. All loads applications are
additive.

The components of each load specification are listed in Table 8-6. The syntax followed is to first
define the region over which the load is to be applied (either nodeset, sideset, block,
node_list_file, or body ). Each such region defines a load set. For each such definition, one (and
only one) load type may be specified. However, any region definition (except node_list_file) may
be repeated so that forces and moments may be applied using the same region.

Following the definition of the load type, a vector (or scalar in the case of pressure loads) must be
specified, except in the case of a thermal load, where no vector or scalar multiplier is needed. The
vector is the load applied in the basic coordinate frame unless a coordinate frame is also specified
(see Section 4.9 ).

4.5.1. The Load and Loads Sections

There is a subtle distinction between a load input deck section and a loads section. A load section
must be given a name and that load section can then be applied in one or more solution cases. See
Section 5.1.1 for information on load specifications for multicase solutions. On the other hand a
loads section has no name and is automatically included in all the multicase solutions that don’t
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explicitly specify a load. If a load is used in a solution case and a loads section also exists the
loads will be ignored for the solution case. Note there are some solution cases where load can
only be applied via the global loads input. Additional some solution cases require a load case to
be set, even if that load case is empty.

The following example illustrates the input. Note, the load the identifier ("57’ in this case) is often
an integer but any unique string is allowed.

LOAD 57
nodeset 3
force = 1.0 0. 0.
scale = 1000.
function = 2
nodeset 5
force = 0. -1 0
END
LOADS
body
gravity 0 1 0
scale = -9.8
END

At most one loads section can be specified for and analysis but there may be multiple load
sections in the file.

4.5.2. Scale Factors for the Load

Several factors define the actual load value ultimately applied:
* load type magnitude, for example pressure = 5
* overall scale factor, for example scale = 10

* load function, for example function = myFunc note, there are a wide variety of function
types that can define values of load that are variant on time, space, frequency, or other
factors.

e ’distribution factor’ defined on the mesh. The distribution factor is an advanced feature used
to introduce the spatial variation of a quantity in the Exodus mesh file. Distribution factors
can be difficult to check, and in some cases if entered as zero in the input mesh would zero
out the load. Use the Boolean parameter AllowExodusDistFacts to ignore Exodus
distribution factors.

These factors are applied multiplicatively.
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4.6. Solution Options

Sierra/SD provides over 50 different analysis types, each described in the largest Chapter 5 of this
Manual. This section describes the corresponding options used to configure these analyses.

The options described in Table 4-8 and in the following paragraphs are part of the input deck
Solution section. None of the keywords are required. Note that in multicase solutions most of
these parameters may be applied separately within each case (see section 5.1.2).

Table 4-8. — Sierra/SD Solution Options.

Parameter Type Default Description
restart none|read|write none Controls restart input and output.
See section 4.6.2 for more info.
lumped off Lump the mass matrix
(as opposed to consistent)
lumped_consistent off Mix lumped and consistent matrix for
reducing dispersion error in some cases
solver <string> auto Select solver to use for case, default
depends on model size and structure
ConstraintMethod Lagrange Lagrange Method for applying MPCs
penalty
scattering false| false Treat acoustic loads as scattering
true loads rather than incident loads
symmetrize_struct_ off Force structural-acoustic system
_acous matrices to be symmetric
4.6.1. Flush

The parameter flush controls how often the Exodus output file buffers should be flushed.
Flushing the output ensures that all the data that has written to the file buffers is also written to the
disk. This parameter also controls the frequency of output of restart information if requested. Too
frequent buffer flushes can affect performance. However, in a transient run, data integrity on the
disk can only be assured if the buffers are flushed. A flush value of -1 will not flush the Exodus
output file buffer until the run completes. The default value is to flush the buffers every 50 time
steps.

flush=N flushes every N'" time steps.

4.6.2. Restart

The restart option controls both the creation and retrieval of restart files, which allow you to
save and resume a solution. There are two main types of analysis that can use restart: transient
and eigen. Transient restart saves the current state of a transient solution in a separate file,
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enabling you to save progress and continue solving for more time steps at a later time. Eigen
restart saves computed modes and enables the calculation of additional modes later on.

The restart command has four options:

none : Ignores and doesn’t read or write restart files. Existing files remain unchanged. This is
the default if no restart option is specified.

read : Reads existing restart files.
write : Writes restart files, overwriting any previous ones.

auto : Combines “read” and “write”, where previous restart files are optional. If restart files
exist, they are read. If no restart files exist, then the solution case will start from scratch.
Note: this option has been deprecated. Use a combination of restart = read, restart
= write, and the restart_file_checking parameter instead.

The default file names of restart files to read and write are generated based off of a combination of
mesh name and case name. The restart read option can take optional from and num_procs
clauses to define a non-default location for the file containing the restart data. Use the
restart_file_checking parameter (section 4.4.1) to control the behavior when the restart file is not
found.

This is illustrated by additional examples for both transient and Eigen restart below.
4.6.2.1. Restart In Transient Analysis
For transient restart only, restart = write can take optional to clause to define a non-default

write location. Note: restart = write to <file> is only valid for transient restart - any
write location will be ignored for eigen restart.

83



SOLUTION
case First399Steps
transient
restart=write A Transient analysis with option write,
time_step le-6 restarts extend the simulation time. The
nsteps 399 input deck at left is for a 399 time
END step simulation that writes a restart file.
mesh-a.rst_trans.
FILE
geometry_file="mesh.g
END
SOLUTION
case Steps400to510
transient
restart=read Input deck at left is used to read the
time_step le-6 defaultrestart filemesh-a.rst_trans,
nsteps 101 then simulate 100 more steps. Time
END steps 201 to 310 are appended to the
existing exodus output and history files.
FILE
geometry_file="mesh.g
END

The next example modified the previous example to use non-default restart file names. The initial
200 steps simulation writes the restart file first-a.rst_trans and the output file first-a.e.
The second input deck utilizes the from command to read first-a.rst_trans, simulate time

steps 400 to 500, and outputs to the new file second-b.e.

SOLUTION
case First200Steps
transient
restart=write
time_step le-6
nsteps 200
END

OUTPUTS
database name = ‘‘first.e’
END

SOLUTION
case Second100Stesps
transient
restart=read from ‘‘first-a.rst_trans’’
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time_step le-6
nsteps 100
END

OUTPUTS
database name = ‘‘second.e’’
END

Example 3: The first input deck, run in parallel on two processors, for 140 steps and writes restart
files named

first-a.rst_trans.2.0 and first-a.rst_trans.2.1, as well as output files
first-a.e.2.0 and first-a.e.2.1. The second input deck, run on a different number of
processors (three), reads first-a.rst_trans.2.0 and first-a.rst_trans.2.1, solves an
additional 160 steps, and outputs to new files second-b.e.3.0, second-b.e.3.1, and
second-b.e.3.2.

SOLUTION
case Restartable
transient
restart=write
time_step le-6
nsteps 140
END

OUTPUTS
database name = ‘‘first.e’’
END

//Input deck 2
SOLUTION
case b
transient
restart=read from ‘‘first-a.rst_trans’
time_step le-6
nsteps 300
END

num_procs 2

OUTPUTS
database name = ‘‘second.e’’
END

The frequency of writing transient output restart files is controlled by the flush command. The
transient restart file is typically saved with the last two steps as a backup in case one becomes
corrupted.
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Transient restart is expected to result in exact solutions. For example, if an intermediate restart
step is used in the example, it will generate the identical solution steps as if the total 300 steps
were run in a single analysis.

When restarting a multicase solution, the latest allowable restart time will be used. Consider the
following solution block:

SOLUTION
case one
transient
restart=read
restart=write
time_step le-6
nsteps 140
case two
transient
restart=read
restart=write
time_step le-5
nsteps 300
END

Sierra/SD will search for restart files that would be valid for case one and case two. The furthest
along available restart file will be used and the analysis will continue from that point. If a restart
file exists for case two, Sierra/SD will restart into case two. If no restart file exists for case two,
Sierra/SD will restart into case one if possible. If no restart file exists for either case, the analysis
will start from scratch (depending on the value of the restart_file_checking parameter).

4.6.2.2. Restart in Eigen

The Eigen restart function saves and reads the computed modes from an exodus database, which is
created by the OUTPUTS command block. If the restart command is set to write in the Eigen
solution, displacement output will be automatically activated in the OUTPUTS block to make it
possible to use the output file for restarting.

Example 1: the first input deck solves for 40 modes and writes the output to a file named
mesh-a.exo. The second input deck then reads this file and solves for an additional 10 modes,
resulting in 50 modes. The modal output of the second run will be added to the existing exodus
output and history files.

//Input deck 1
SOLUTION
case a
eigen
restart=write
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nmodes 40
END

FILE
geometry_file = 'mesh.exo
END

//Input deck 2
SOLUTION
case a
eigen
restart=read
nmodes 50
END

FILE
geometry_file = 'mesh.exo
END

Example 2: The first deck will solve for 20 modes and write an output file named first-a.e.
The second deck will read the previously computed 40 modes from first-a. e utilizing the from
option and solve an additional 20 modes. A new output file second-b. e will be created which
contains all 60 modes.

//Input deck 1
SOLUTION
case a
eigen
restart=write
nmodes 40
END

OUTPUTS
database name = ‘‘first.e’’
END

//Input deck 2
SOLUTION
case b
eigen
restart=read from ‘‘first.e’’
nmodes 60
END

OUTPUTS
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database name = ‘‘second.e’’
END

Example 3: Eigen restart also allows for N to M restart with the optional num_procs command.
This enables reading of an Eigen restart file that was decomposed for a different number of
processors. N to M restart is useful when the first Eigen solution was computed using many
processors but the subsequent solution case, such as modaltransient, can be computed using a
smaller number of processors. This can be beneficial because the Eigen solution is
computationally intensive and memory-intensive, while modal transient is relatively inexpensive.
An example of N to M restart is shown below where the first input deck is run using 100
processors, and the second input deck reads the previously computed Eigen solution and then
moves on to modal transient on 5 processors.

//Input deck 1
SOLUTION
case eig
eigen
restart=write
nmodes 75
END

OUTPUTS
database name = ‘ ‘beam.e’’
END

//Input deck 2
SOLUTION
case eig
eigen
restart=read from °‘‘beam-eig.e’
nmodes 75
case trans
modaltransient
nsteps 1000
time_step 1.0e-6

num_procs 100

END

OUTPUTS
database name = ‘ ‘beam.e’’
END

Eigen solution is a memory and computationally intensive process, and the output/restart files are
written only after the solution is completed. Simulations that exhaust their queue time do not
provide restart files.

While Eigen restart allows for computing additional modes, it may result in slight differences from

88



solving for all modes at once, as it follows a different algorithmic path. The known modes are first
read and compressed out of the system, and then additional modes are computed on this
compressed system.

Incrementally computing a few more modes with multiple Eigen restart is not recommended, as it
can result in lower numerical accuracy compared to solving for all modes at once.

4.6.2.3. Usage Tips and Guidelines

Setting the restart_file_checking parameter to WARN or IGNORE can be useful when running the
same input deck repeatedly in the same directory to generate additional modes or transient time
steps. However, care should be taken as certain typos, like renaming a case, may have unexpected
effects like a previous restart being unrecognized triggering an expensive solution computation.

It is not advisable to alter the model’s input deck, such as its material properties, element
formulations, boundary conditions, contacts, constraints, etc., during a restart as the outcomes can
be unpredictable. For instance, if the material properties are modified during an Eigen restart,
then the

* Eigen modes linked to the previous material properties will be loaded,
* Eigen modes are compressed from the matrices, and
* New modes will be calculated using the updated material properties.
The results of this process are likely to be both physically and mathematically incorrect.

Restart files are stored in the ExoduslI format, which enables easy access and manipulation of the
data using various standard tools. The naming conventions and formats used for restart files are
described in Table 4-9.

4.6.2.4. Restart Solution Case Support and Limitations

Only the following solution cases support restart.
* Eigen

e transient

NlTransient

modaltransient

QEVP (with Anasazi and sa_eigen methods)
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Modal simulations, such as Modalfrf, use a restarted Eigen solution.

Mixing case types in transient cases, such as using a restart file from a modaltransient analysis in a
transient or Nl Transient analysis, is possible but may result in information loss and mapping
ambiguities, and is not typically recommended.

The restart options for QEVP solution are limited, as it can only read already computed modes but
cannot calculate new modes incrementally.

Solution file name Details

eigen example-out.exo Use the standard Exodus output for
restart. Displacements must

be written or no restart is

possible. Other variables (such as
strain energy) may also be written.

qevp example-out.exo Uses standard Exodus output for restart.
No additional modes may be computed.

transient, example-out.rst_trans.exo | The two most recent time steps

NlTransient, are written. They are

modaltransient only written at the “flush” interval.

Table 4-9. — Restart file format and contents for various solutions.

4.6.3. Solver

As Sierra/SD evolves, various solvers are available for computation of the solution. Each solver
brings with it different capabilities and sometimes unwanted features. Currently, available solvers
are listed in the following.

auto Use the best known solver. Generally this is recommended, and is the default. The matrix of
solvers versus solution types is messy, and generally the best solution will be found by using
this option.

GDSW The Generalized Dryja, Smith, Widlund (GDSW) solver is based on a domain
decomposition preconditioner which combines overlapping Schwarz and iterative
substructuring concepts.!” The GDSW solver is well suited to solving problems with large
numbers of constraint equations. It has also been observed to be competitive with other
parallel solvers, even for problems with only a small number of constraints. The GDSW
solver is currently under development and supported by the Sierra-SD team.

Generally no user input is required for specification of a solver. Usually the specification can be
omitted or specified as auto. If a solver is requested and unavailable in a given version of the
code, a warning will be issued, and auto will be selected.

The solver may be specified as a default (above the case keywords as detailed in section 5.1.2), or
it may be individually specified within the case framework. The default value is auto. In the
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example shown below GDSW will be used for the modal analysis, and the auto selection for the
for transient dynamics and direct frequency response. If “input_summary” is specified in the
“ECHO” section (see section 9.9) then the solver information will be echoed to the results file.

SOLUTION

solver=auto

case eigenvalue
eigen
nmodes=50
solver=gdsw

case NlTransient

NlTransient
time_step le-6
nsteps 400

case frf
directFRF
END
4.6.4. Lumped — option

To use a lumped mass matrix for all solution cases add option lumped anywhere in the Solution
section. Most off diagonal terms are set to zero, and the corresponding the diagonal terms are
increased to conserve mass.

The drilling degrees of freedom associated with beams and shells can
generate spurious modes when they are lumped. As a consequence,
Sierra/SD does not fully lump these degrees of freedom. They are
lumped in the element coordinate frame, but transforming the mass
matrix to the physical coordinates results in a 3 X 3 matrix.

For acoustic simulations Hex8 elements are recommended due to the discovery of the mass matrix
minimizing dispersion error'> corresponding to the Hex8 stiffness matrix. It is selected by adding
lumped_consistent to the Solution.

This mass matrix is conjectured to also enhance structural simulations. The CFL number c dt/dx
depends on the sound speed, c, the element size, dx, and the time step size, dt. A study42 of the
lumped_consistent mass matrix reached the following conclusions.

* In the most accurate simulations, time step size is scaled with mesh size to maintain a
constant CFL number.

» Simulation accuracy depends on the temporal (e.g. Newmark) as well as the spatial (finite
element) discretization.

* A lumped_consistent mass matrix can enhance accuracy.
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» With Newmark Beta time integration, the most accurate simulations used a consistent mass
matrix and a CFL near 7/10.

4.6.5. Constraintmethod — option

The ConstraintMethod option is defined in the Solution section to indicate how multipoint
constraints (MPC) will be applied. MPCs applied using Lagrange multipliers. Inverse problems
sometimes use an experimental penalty method.

4.6.6. Scattering — option

For some acoustics and structural acoustics problems, it is advantageous to define the loads in
terms of an incident pressure instead of a total pressure. The solutions for the scattered pressures
follow the same differential equations as those of the total pressures. It may be necessary to
combine the incident and scattered terms to compute a total pressure. A review is presented in
subsubsection Acoustic Scattering subsection Acoustic and Structural Acoustic Boundary
Conditions section Acoustics and Structural Acoustics of the Theory Manual Note that the
scattering keyword applies to all loads in the solution case. It is nonsensical to mix scattering
pressure inputs with total pressure inputs.

Scattering solutions require this keyword in the solution block. In addition, loads should be
applied properly in the LOADS block. The user must apply a load to both the structural and the
acoustic side of a wet surface. A function tailored for this specific purpose may be used. !

4.6.6.1. symmetrize_struc_acous — option

By default, coupled structural acoustic discretizations are symmetric. This is accomplished® by
scaling the acoustic equation by a —1. In some cases 8.1.9 scaling is impossible, and cases the
code internally reverts to the nonsymmetric formulation. To use the nonsymmetric formulation,
set symmetrize_struc_acous to false. In a multicase solution symmetrize_struc_acous can vary
from case to case. The pros and cons of two approaches have never been studied.

4.7. GDSW

GDSW is the workhorse for parallel solutions. It is the default linear solver. Many Sierra/SD

features require that GDSW be the linear solver. In this manual, “the solver” is the linear solver.
This section describes the GDSW parameters. Table 4-10 describes the basic solver parameters.
Parameters for advanced usage are given in Tables 4-11 and Table 4-12. Report problems using

9

Ithe “plane_wave”, “planar_step_wave” and “shock_wave” functions compute both appropriate pressures on the
structure, and normal velocities on the acoustic medium. See sections 4.10.10, 4.10.12 and 4.10.14.
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the GDSW solver with the default solver parameters to the Sierra help system at
sierra-help@sandia.gov.

To use a non-default linear solver in the solution section set solver=GDSW. Non-default
parameters are set in an optional GDSW section. The GDSW section applied to each solution
case. The first subsection of this Section 4.7.1 presents a way to specify different GDSW
parameters for each solution case. Subsection 4.7.1 describes additional parameters.
Subsection 4.7.2 describes GDSW output. The corresponding parameters are summarized in
Table 4-13. Subsection 4.7.3 describes some techniques for improving performance and
reliability. Subsection 4.7.4 reviews theory related to solution accuracy. The GDSW Helmholtz
solver is a relatively new capability. Subsection 4.7.5 presented the parameters for the parallel
frequency response linear solver. The parameters are summarized in Table 4-16. Report any
problems using the new Helmholtz solver to sierra-help@sandia.gov.

Table 4-10. — GDSW Section Options. (Basic)

Variable Values Default Description
max_iter integer 1000 maximum number of iterations
solver_tol real le-6 relative residual convergence tolerance
overlap integer 2 number of layers of overlapping nodes

for preconditioner
orthog integer | 1000 (CPU execution) or | number of stored search directions used

5000 (GPU execution) or | to accelerate solver convergence
0 (serial execution) (see also num_vectors_keep)

prt_summary | integer 3 output flag:

0 - no summary

1 - summary

3 - detailed summary

useParallelCoarseSolver is currently BETA release.
Enable with the “- -beta” command-line option. The option of
using a parallel coarse solver is considered beta because of the complexity of the user interface.

solver_tol The iterative linear solvers, including GDSW, approximate the solution u of each
linear system, Au = f by the determining a sequence of approximate solutions, {uy }x>0,
and converging to u such that

Il f — Aug||2 < solveriol||f — Aug|>.

solver_tol (default 1079) is the requested accuracy of the computed solution as measured by
the relative this residual error. Also see the corresponding parameters 4.4, 4.4. If only one
MPI rank is used, then the linear solver is direct, and this relative residual norm is reduced
to the double precision € ~ 10716,

orthog Convergence may be accelerated by storing and recycling search directions from previous
solves. This feature requires additional memory, but may significantly reduce iterations and
speed up calculations considerably. It is possible for the application of these vectors to be
unstable, in which case the orthog parameter may be reset to zero. The default value of the
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Table 4-11. — GDSW Section Options 1. (Advanced)

Variable Values Default Description

krylov_method integer 1 0-pcg: preconditioned conjugate gradients
1-GMRES: right preconditioned GMRES
(generalized conjugate residual version)
2-lgmres: left preconditioned GMRES
3-flexgmres: flexible right precond GMRES
4-flexgmres2: variant of flexgmres
5-gmresClassic: right preconditioned
default_solver integer 1 1-direct: Esmond Ng’s sparse direct solver
3 - Pardiso for Pardiso sparse direct solver
(Intel MKL only), 6-NoPivot:

Clark’s sparse direct solver

num_rigid_mode note: see parameters, Section 4.4.
constrain_rbms Xy ZzZromx Enables solution of static
roty rotz p system with rigid body modes
max_numterm_Cl1 integer 250 max num terms for Type 1 constraints
coarse_option integer 1 0 - additive coarse correction,
1 - multiplicative coarse correction
SC_option integer 1 0-no/1-yes: eliminate subdomain interior
unknowns using static condensation
weight_option integer 2 1 - to not use weighted residuals for
overlapping subdomain problems
coarse_size string auto coarse space reduction options
auto, small, large
coarse_size integer 0 0 (auto), 1 (small), 2 (large)
reorder_method string metis_edge | metis, metis_edge, rcm,
minimum_degree, none
num_GS_steps integer 1 number of Gram-Schmidt orthogonalization
steps for stored search directions
con_tolerance real 2.5e-9 singularity tolerance for processing constraints
con_row_tolerance real 0.1 pivoting tolerance for processing constraints
scale_option 0 0 - no scaling in factorizations
1 - use scaling in factorizations
diag_scaling string none none - no scaling of operator matrix
diagonal - symmetric diagonal scaling
PTAP_solver integer 1 solver for conjugate gradient matrix

0-diag: diagonal (in exact arithmetic)
1-full: full ®7 A® matrix

bailout keyword If keyword is found, ignore errors
coarsening_ratio integer 1000 coarsening ratio for multilevel solver
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Table 4-12. — GDSW Section Options 2. (Advanced)

Variable Values Default Description

minCoarseLevels integer 1 min number of coarse levels (for testing only)

maxCoarseLevels integer 1 max number of coarse levels

maxCoarseSize integer 3000 max size for coarsest problem

enforceActualResidual integer 0 0-no/1-yes

graphPartitioner integer 0 graph partitioner for multilevel solver
0-Parmetis, 1 PHG in Zoltan

num_vectors_keep integer 900 related to orthog; see discussion below

stag_tol real 0.01 Used to detect stagnation

dd_solver_output_file string dd_solver.dat Output name for domain decomposition
solver diagnostic file

krylov_solver_output_file string | krylov_solver.dat | Output name for Krylov solver
diagnostic file

useParallelDirectSolver integer 0 0-no/1-yes

useParallelCoarseSolver integer 0 0-no/1-yes

coarseDirectSolverNumProcs integer all number processors for coarse problem

useSuperLUDist integer 0 0-no/1-yes: whether to use SuperLU-Dist

numProcRowSuperLUDist integer number of rows in SuperLU-Dist process grid

identify_low_quality_elements bool false identify poorly shaped elements for
special attention by solver

max_element_condition double Infinity condition above which to consider
element low quality

reportZeroDiagonals integer 0 0-no/1-yes

orthog parameter is 1,000 on CPU-only Sierra/SD analyses, 5,000 on GPU-accelerated
analyses, and 0 on single-processor CPU-only runs.

The num vectors keep option may be related. The dd solver file ends with a break-down of
the solve time into four distinct parts of the solution method. One of these is
orthogonalization. Orthogonalization time is proportional to the value of orthog. In cases
where more memory is available and orthogonalization time is insignificant, experiments
with orthog are worthwhile. For the Helmholtz linear solver the corresponding parameter is

orthogH.

krylov_method A variety of Krylov iterative methods are available as shown in Table 4-11. The

default should work fine in most instances. If convergence problems arise, switching to
classic right preconditioned GMRES is recommended. (krylov_method = gmresClassic)
without the use of any stored search directions (orthog = 0).

default_solver The subdomain sparse direct linear solver is specified either by name (Esmond,

Pardiso, NoPivot) or by the corresponding integer (1, 3, 6).

num_rigid_mode This keyword must not appear in the GDSW solver. See parameters.

constrain_rbms Tells GDSW to numerically constrain rigid body modes of a structure to do a

static solution of a free floating structure. Must be used in conjunction with the
FilterRbmLoad in the solution case to ensure no net rigid body load on the constrained
structure. The rigid body modes associated with x, y, z, rotx, roty, rotz can be
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selectively constrained, as can p the pressure degree of freedom in acoustic analysis. See
Section 8.3.21 for more details on this use case.

max_numterm_C1 Constraints for the GDSW solver are classified by two types:
Type 1: simple constraints like those applied by an Rbar, tied contact, or rigid surfaces.
Type 2: more complex, averaging constraints like those in an RBE3.

Type 1 constraints have few terms, and Type 2 constraints have many terms in each
constraint equation. Solution of problems with Type 2 constraints using Type 1 methods is
possible and desirable if they are small enough, but the memory requirements could be
prohibitive if the number of terms N in any constraint equation is too large. Specifically,
storage of a dense matrix with at least N terms would likely be required. The parameter
max_numterm_C1 specifies the maximum number of terms that can appear in a Type 1
constraint following a constraint pre-processing step. Constraints with more than
max_numterm_C1 terms are then considered to be Type 2. The algorithm used to enforce
Type 2 constraints in the preconditioner is generally not as efficient as the one for Type 1
constraints. If feasible, avoiding Type 2 constraints by increasing the max_numterm_C1 in
conjunction with a multiplicative coarse correction (coarse_option=1) will lead to a more
efficient solution.

Avoiding Type 2 constraints generally reduces run times. To eliminate Type 2 constraints
set the GDSW option max_numterm_C1 to a sufficiently large number. The value that
GDSW is using for max_numterm_C1 is in the dd_solverdat file. It is called
maxNumTermsForTypel Constraints. Also, in the dd_solver.dat file note the value of
maxNumNonZeros in Tran Matrix. To eliminate Type 2 constraints max_numterm_C1 must
be larger than the value of maxNumNonZeros in Tran Matrix.

coarse_size Is used to specify a reduction strategy for the coarse problem size. There is no need
to consider this parameter for problems run on fewer than a few hundred processors.
However, as the number of processors (subdomains) becomes large, solving the coarse
problem can become a bottleneck. Currently, the default (auto) automatically selects to use
the small coarse space only if the number of processors exceeds 1000. Specifying a small
rather than a large coarse space often reduces the amount of memory needed by the solver.

reorder_method Allows one to specify a reordering method for a sparse direct solver. Currently,
it is only available for default_solver = direct (see Table 4-11).

num_GS_steps is the number of orthogonalization steps of the stored search directions.
Sometimes increasing it from its default to 2 is helpful. I know of no case of a value larger
than 2 being necessary. It turns out that num_GS_steps does not apply to gmresClassic.

con_tolerance The GDSW solver uses a sparse LU decomposition algorithm to process the
constraint equations. This involves choosing pivot rows for numerical stability (much like
Gaussian elimination with partial pivoting). A constraint equation is deemed linearly
dependent if the magnitude of its pivot is less than con_tolerance. The con_tolerance is the
minimum acceptable ratio of the constraint pivot to the maximum matrix pivot. The
con_tolerance can viewed as a dimensionless parameter associated with numerical round
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off. The number of numerically redundant constraints in a model will typically be reduced
as the con_tolerance is increased. Excessively high con_tolerance values could start to
remove legitimate constraints.

Messages of the form,

min/max pivot for constraint factorization = some number
You may want to consider increasing the con_tolerance
parameter in the GDSW solver block.

are issued if the ratio of magnitudes of the smallest to largest pivots is less than 0.01. This
provides a recommendation to carefully examine the constraints in the model for any
potential problems. Additionally, a message will be written if there exists constraints on the
cusp of being removed as redundant. Again presence of such nearly redundant constraints
should be investigated closely for correctness.

Redundant or nearly redundant constraints can be generated in a variety of circumstances.
For example a closed loop of Rbars, Rbars between nodes of a rigid set, or overlapping rigid
sets. Although the SD constraint filtering algorithm is designed to detect and handle such
redundancies it is strongly recommended that redundant constraint be avoided in model
definition as much as possible. See Section 3.8.6 for more details.

scale_option There are presently two options for matrix scaling in the GDSW solver. Including
scale_option yes or, equivalently, scale_option 1 in the GDSW solver block will
apply symmetric diagonal scaling to all matrices prior to them being passed to Esmond
Ng’s sparse direct solver. Notice for parallel runs that both the subdomain matrices and the
coarse problem matrix will be scaled. In exact arithmetic, this option should have no effect
on the number of iterations for each solve of a parallel run.

diag_scaling Including diag_scaling diagonal in the solver block will apply symmetric
diagonal scaling to the original operator matrix and is not tied to a specific sparse direct
solver. In contrast to the scale_option parameter, this parameter changes the number of
iterations for each solve of a parallel run since GDSW is solving the scaled problem
DADy = Db to a specified relative residual tolerance rather than the original problem
Ax = b (note substitution of x = Dy, where D is a diagonal scaling matrix) for that same
tolerance.

coarsening_ratio Is a target ratio between the number of subdomains prior to and after
coarsening by the multilevel solver. For example, if there are originally 8000 subdomains
(processors) and coarsening_ratio is chosen as 100, then the number of subdomains
after coarsening will be 80.

maxCoarselevels Is the maximum number of coarse levels allowed by the multilevel solver.
For a standard 2-level method this parameter has a value of 1.

maxCoarseSize Is the largest size for the coarsest problem allowed before another level of
coarsening is made. The solver parameter maxCoarseLevels takes precedence over
maxCoarseSize.

97



enforceActualResidual This option is used to enable strict enforcement of the solver tolerance.
If needed, iterative refinement steps are taken within the solver in an attempt to satisfy the
convergence criterion. Decreasing the relative residual to values no greater than the solver
tolerance may be impossible. This can happen when the problem is poorly conditioned
and/or the requested solver tolerance is too small. An error message is issued and the
analysis stops if the specified solver tolerance cannot be achieved.

graphPartitioner Specifies which graph partitioning software to use when coarsening the
subdomains.

num_vectors_keep applies to krylov_method gmresClassic. The parameter orthog (default
1000) controls the number of stored search directions. We store search directions to make
the linear solver faster. More is not always better. The point to understand is which search
directions are stored. The first 1000 search directions are stored. On later solves, the first
900 are saved and recycled. 100 search directions from the current solve are used. The
number 900 is the default value of num_vectors_keep. Sometimes the solution has changed
significantly and none of the old search help the solver. num_vectors_keep= 0 tells
GDSW to never recycle any of the stored search directions between solves.

num_GS_step_gmres is the parameter for the Krylov method gmresClassic corresponding to
the num_GS_steps for other Krylov methods.

useParallelDirectSolver Whether to use parallel sparse direct solver for the whole problem.
Best suited to Direct FRF solution case.

useParallelCoarseSolver Whether to use a parallel sparse direct solver for the coarse problem.
This is the best choice if the number of MPI ranks is in the range 512 to 2048.

coarseDirectSolverNumProcs Number of processors to use if useParallelCoarseSolver
= yes. The default is all.

reportZeroDiags This can be an integer, or it can be set to yes or no. The default is no (or 0). If
reportZeroDiags is set to yes, then the global node numbers corresponding to degrees of
freedom in the coefficient matrix with zero diagonals (and typically zero rows and columns)
are output in the file node_zero.dat. Preconditioning matrices with zero diagonals is more
difficult. Also, a zero diagonal might indicate a modeling error. In either case, it can be
useful to have more information about these nodes.

useSuperLUDist Whether to use SuperLLU-Dist parallel sparse direct solver even if Cluster
Pardiso is available. Applies to both the full problem (useParallelDirectSolver and
coarse problem (useParallelCoarseSolver) cases.

numProcRowSuperLUDist SuperLU-Dist uses a rectangular grid of processes. This option
allows the user to override the default choice, which is to make the number of rows about
equal to the number of columns. The parameter is ignored unless it divides the total number
of processors. It has been suggested that for large problems, the number of columns should
be larger than the number of rows, but we have not yet tested cases where this choice proved
to be beneficial.
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useSuperLUDist is currently BETA release.
Enable with the “- -beta” command-line option. Like
useParallelCoarseSolver, this capability is beta due to the complexity of user interface.

The generalized conjugate residual (GCR) version of right preconditioned GMRES is the default
Krylov method. GCR has the limitation that orthog must be at least as large as max_iter. On
the other hand with gmresClassic max_iter and orthog may be specified independently.

4.7.1. Options

The GDSW section specifies GDSW linear solver parameters for all the solution cases. Different
solution cases may call for different parameters. For example, an eigenvalue problem may use a
shift parameter to eliminate rigid body modes, but a statics analysis cannot shift. Linear solver
parameters for an individual solution case are set using the solver_options keyword in the
solution case, and adding the corresponding solver_options section.

The solver_options sections allow multiple definitions of the parameter. Each “solver_options”
section may be called out from a separate case in a multicase solution block as illustrated in Input
input 4.9. A “solver_options” section applies only to the GDSW solver.

Note that cases using a solver_options section will ignore any “global” options defined in the
GDSW section, and will instead use the internal GDSW defaults for any options that are not
explicitly defined.

SOLUTION
case preload
statics
solver_options for_preload
load=10
case eig
eigen
nmodes=100
solver_options for_eig
END

SOLVER_OPTIONS for_preload
solver_tol = le-4
constrain_RBMs="x y z"

END

SOLVER_OPTIONS for_eig
solver_tol = 1le-8
END

Input 4.9. Multiple Solver Options Example
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4.7.2. Diagnostics

There is a variety of solver diagnostic information output to the files dd_solver.dat and
krylov_solver.dat. Here we describe six different measurements of solution accuracy.

The dd_solver.dat file is used primarily to set up a simulation: adjusting the number of GPUs
and configuring the preconditioner for later simulations with similar models. It is also an ad hoc
Heartbeat file.

To override the default names, “dd_solver.dat” and “krylov_solver.dat”, use the options
dd_solver_output_file and krylov_solver_output_file in either the GDSW or solver_options
input deck sections.

actual final residual Let’s say we want to solve the linear system Ax = b for the vector of
unknowns x given the right-hand side vector b. If x, is the approximate solution from the
solver, then the actual final residual is || — Ax,||, where ||b|| denotes the 2-norm of b. The
actual final residual is reported in krylov_solver.dat after each solve.

actual relative residual This is ||b — Ax,||/||/|| and shows up in column 6 of dd_solver.dat. In
other words, this is the actual final residual divided by the norm of right-hand side vector b.

recursive final residual During GMRES or CG iterations, we can recursively calculate b — Ax,
without having to directly calculate Ax, (for efficiency reasons). In exact arithmetic the
actual and recursive finals residuals are identical, but in practice they can be different
because of round off errors. If the effects of round off are not too big, then the actual and
recursive final residuals should be close. The recursive final residual is reported after each
solve in krylov_solver.dat.

recursive relative residual This is the recursive final residual divided by ||»|| and shows up in
column 5 of dd_solver.dat.

constraint error residual The constraint equations for a problem can be expressed as Cx = 0,
where C is the constraint matrix. The constraint error residual is a normalized measure of
Cx, and should be small relative to 1 if the approximate solution x, satisfies the constraints
well. This residual is reported after each solve in krylov_solver.dat.

equilibrium error For problems with constraint equations, we solve the linear system
é COT ] {ﬁ } = { 8 }, where x is the vector of unknowns, A is the vector of Lagrange
multipliers, and CT denotes the transpose of the constraint matrix C. For the approximate
solution vector x,, the equilibrium error is ||b — Ax, — CT A|| and is reported after each solve
in krylov_solver.dat. In the absence of round off errors, the equilibrium error and the actual
final residual should be identical.

All these residual measures may be more than is usually of interest, but they can provide valuable
information for cases when solver convergence is an issue.

Picking a suitable solver tolerance for GDSW or any other iterative solvers requires close
attention. If the solver tolerance is too high, then simulation results may not have sufficient
accuracy. Likewise, if the solver tolerance is too low, then more analysis time may be spent
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obtaining a needlessly over-accurate solution. Solving a problem with two or more values for the
solver tolerance can be useful to help avoid unnecessarily accurate solves and to also ensure that
the solves are accurate enough. For example, let’s say you do a modal analysis with a solver
tolerance of 1e-4 and le-5. If you don’t see a concerning change in the modal frequencies, then
either choice for the solver tolerance is probably fine for the modal frequencies themselves. If,
however, the modal solution is used as the basis for a subsequent analysis such as modal transient,
then it is recommended that the effects of solver tolerance on the final results also be considered.
Similar comments regarding the choice of a solver tolerance also hold for other solution cases
such as direct transient analysis.

Transient simulations typically uses multiple time step sizes , with one preconditioner per time
step size. A dd_solver.dat file is generated for the initial time step size. At ensuing times, the
corresponding data is appended to the existing dd_solver.dat file.

We could provide users with estimates for how small a solver tolerance is needed to guarantee a
certain measure of accuracy, but these estimates would usually be way too pessimistic to be of any
practical value.

Additional details and troubleshooting strategies for the GDSW solver can be found in § 4.7.3 and
documentation available on the compsim. sandia.gov website. Relevant documentation
includes GDSW 101 and the GDSW Solver Tutorial. Solver strategies for dealing with poor mesh
decompositions caused by the presence of constraints equations or multiple physics (i.e.
structural-acoustics problems) are described in the GDSW Solver Tutorial. These include
rebalancing algorithms internal to the solver that can be accessed using GDSW solver parameters.
We hope this will provide a useful interim solution for challenging problems prior to the
deployment of alternative decomposition tools that effectively address these issues prior to the
solution phase. Input 4.10 provides recommended options for minimum memory use.

GDSW
overlap=0
max_iter=50 // set to minimum required for a solution
krylov_method = gmresClassic
orthog=0
precision_option_O=single
precision_option_coarse=single
END

Input 4.10. Minimum Memory Recommended Options. These options, while not usually
optimal for speed, may use the lowest memory.
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Table 4-13. — GDSW Section Boolean Options may be set using integers 0 (no) or 1 (yes), or no and

yes.
Variable Values | Default | Description
prt_coarse 0/1 0 print coarse matrix
prt_constraint 0/1 0 print constraint matrix
prt_memory 0/1 0 print memory information
prt_timing 0/1 0 print timing information
prt_interior 0/1 0 print interior matrices
prt_overlap 0/1 0 print overlap matrices
write_orthog_data 0/1 0 write orthogonalization data to file

4.7.3. Troubleshooting GDSW

Ideally, the linear solver should always return a solution that satisfies the requested accuracy in
terms of the relative residual tolerance (1076 by default). This subsection provides some
troubleshooting guidelines for situations when this is not the case. Additional information is
available at compsim.sandia.gov in the Sierra/SD online documentation GDSW Solver Tutorial
and GDSW 101. If problems persist, please submit a Sierra help ticket or reach out to a member of
the Sierra/SD development team for assistance.

* Default Solver Parameters: In case of solver convergence problems, it is recommended
that one first verify that the default solver parameters do not work. A notable exception is
for problem types like acoustics or structural acoustics. In parallel, decreasing solver_tol
table 4-10, say to around 107!°, may enhance simulation fidelity, including structural and
acoustic responses.

* Negative Shift for Modal Analyses: A common mistake is to not specify a negative shift
for modal analyses of structures with no essential boundary conditions. If one or more rigid
body modes are present, then the stiffness matrix will be singular and the solver will likely
have problems converging except in special cases (see Singular Solves bullet below). The
recommended shift is —(27 f)?, where f is an estimate of the natural frequency (in Hz) of
the first flexible mode. Of course the modes are not known in advance. The point is that the
shift does not need to be an accurate estimate. For modeling an ordinary (larger than a
paper clip, smaller than a house) steel component in Imperial units —10° almost always
works. Caution: specifying a negative shift that is too large in magnitude may help the
linear solver, but it can cause the algorithm that solves the eigenvalue problem to either
require too many linear solves or not converge at all.

* Memory Considerations: The linear solver requires that enough memory be available to
store the factorizations of subdomain and coarse space matrices. If the subdomain or coarse
matrices are too large, then the memory capacity of the computing resource will be
exceeded and a run will fail. There are some different ways to address such problems. First,
one may request a smaller number of processors per compute node. For example, the CTS-1
machine eclipse has 36 cores per compute node, but one may request that only half or even a
smaller number of cores be used per node. This has the effect of providing more memory
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for each subdomain (MPI rank). In the same spirit, another option is to run the problem on a
larger number of processors. This will result in smaller subdomain matrices, but the size of
the coarse matrix will increase. For large problems, it may be necessary to use a second
coarse level to limit the coarse matrix size. Memory resources might also be exceeded by
the storage of search directions used by the Krylov method (e.g. GMRES). The default
maximum number of iterations is 1000, and reducing this number will result in memory
savings. Additional information on memory usage is available in the online documentation
GDSW Memory Use Tutorial.

Convergence Issues: Due to the limitations of finite precision arithmetic, it may not always
be possible to provide a solution which satisfies the specified relative residual tolerance.
This is especially the case for poorly conditioned linear systems or unrealistically small
solver tolerances. Discussion of this topic continues in the online document Solver
Accuracy Notes

Increasing the maximum number of iterations is one simple option that can result in
successful solves. Other options for improving convergence are described below in separate
bullets. If convergence to the specified tolerance still cannot be achieved, then one option is
to increase the relative residual tolerance until the solves are successful. To confirm that the
quantities of interest have converged, one or more additional runs with even smaller
tolerance are recommended.

Subdomain Overlap: The default value of the overlap solver parameter is two. This
means that the original subdomains are extended by two layers of elements when
determining their overlap. Increasing the overlap often reduces the number of iterations
needed for convergence, but the memory requirements increase and each iteration will
require more time. Try a value for overlap of 3, 4, or more and see what effects it has. Even
larger values of overlap can be used for models with only shell elements due to the reduced
demands on the subdomain solver.

Static Condensation: For non direct frequency response problems, the linear solver
eliminates subdomain interior residuals at each iteration by default and solves the resulting
Schur complement system of equations. For models with higher-order elements (i.e.
polynomial degree greater than 2), it is recommended that the SC_option parameter be set
to none since elimination of residuals interior to the subdomain can be problematic (i.e.
effects of round off errors can be more pronounced). Similar concerns are present for direct
frequency response problems, but the default option for such problems is none.

Frequency Response Analysis: The iterative solution of direct frequency response
problems can be challenging. The coefficient matrix K + iwC — w?M can be both indefinite
and complex depending on the input circular frequency w and the damping matrix C. A
more thorough discussion of trouble shooting the Helmholtz linear solver** is in the
Sierra/SD How To manual in section Frequency response linear solver.

A distributed memory sparse direct solver is recommended if the problem is not too large
(to fit in memory). A direct solver works well for structures that are not blocky and shell
element models. In the GDSW solver block set useParallelDirectSolver = yes. If
available, this uses the Intel code Cluster Pardiso. Otherwise, SuperLU-Dist is used. If it is
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desired to use SuperLU-Dist on a platform where Cluster Pardiso is available, the option
useSuperLUDist = yes must be specified.

If the distributed memory sparse direct solver option is not viable, then convergence may be
improved as the number of processors increases. This leads to smaller subdomains and
better performance of the coarse part of the GDSW preconditioner. Some users have also
seen improved convergence by using the non-default solver parameter settings orthogH =
0 and precondUpdateFreq = 1. If the problem already has a fair amount of damping, it
may also help to set structural_damping = 0. This manual documents the interface
4.7.5.

Constraint Equations: Certain types of constraint equations like those introduced by
RBE3 elements can cause challenges for the linear solver (see earlier discussion of the
max_numterm_C1 solver parameter, Type 1 constraints, and Type 2 constraints). Models
with Type 2 constraints are generally harder to solve than those without them. Two lines in
the solver output file dd_solver.dat relevant to avoiding Type 2 constraints are
maxNumNonZeros in Tran Matrix and maxNumTermsForTypelConstraints. The
current value of the max_numterm_C1 solver parameter is reported by
maxNumTermsForTypelConstraints. Type 2 constraints can be avoided by setting
max_numterm_C1 to be no less than maxNumNonZeros in Tran Matrix, butin some
cases this can lead to excessive memory requirements for the solver. This topic is described
further elsewhere [45].

Another source of potential difficulty is the presence of dependent or nearly dependent
constraints. This means that the coefficient matrix € in the constraint equations Cx = 0 has
either an infinite or large condition number. There are filters inside of Sierra/SD to
eliminate linearly dependent constraints, but some may still be passed to the solver. The
solver also identifies and eliminates dependent or nearly dependent constraints, but this is
not always foolproof. It is advised that an analyst carefully check their model’s contact
definitions to avoid potential problems in terms of model correctness or for the linear solver.
Additional information on constraint equations and their interactions with the linear solver
is available in the online documentation Constraints.

Singular Solves: The stiffness matrix for a structure with no essential boundary conditions
is singular. Thus, static analyses or modal analyses with a zero shift require special
considerations. First, any rigid body mode component of the applied loads must be removed
(see FilterRbmLoad 5.28.2 and num_rigid_mode). The GDSW solver is able to solve
singular systems, but it is important that the rigid body modes actually exist. For example,
consider a model with curved surfaces that are connected using node-face tied surfaces. If a
dependent node is not located on the independent surface, then one or more of the rotational
rigid body modes will be lost. If the solver expects there to be six rigid body modes but
there are say only three, then solver convergence problems are likely to occur. To avoid this
problem, ensure that your model does indeed have the specified rigid body modes.

Very Small Solver Tolerances: As noted earlier, it may not be possible for the solver to
provide a solution which satisfies the requested relative residual tolerance. Nevertheless,
there are some situations where it may be possible to reduce the actual relative residual
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below what is possible using default solver parameters. Sierra/SD has a guardrail to error
out if the actual relative residual is more than 100 times of that requested (see
linear_solver_bailout_factor in the Parameters section) By increasing this
parameter while reducing the solver tolerance table 4-10, it may be possible to reduce the
actual relative residuals for challenging problems like structural acoustics.

Scalability: If you add prt_debug=1 or prt_debug=yes in the GDSW section, then the
information needed to measure the load balance is written to a file. The file name is
subdomainData.dat. A row of data in the subdomainData file has 8 columns of integers.
There is one row per subdomain (or MPI rank or core). Typically, the integers in each
column are defined as follows.

1. Interior unknowns (i.e. number of unknowns for static condensation).
2. Non-zeros in the factors of the interior matrix.

3. Unknowns on subdomain boundary.

4. Owned unknowns on subdomain boundary.

5. Unknowns in subdomain.

6. Owned unknowns in subdomain.

7. Unknowns in overlapping subdomain.

8. Non-zeros in the factors of the overlap matrix.

In the special case of a diagonal preconditioner (preconditioner_type=DIAG), only 2
integers are printed.

1. Unknowns in subdomain.
2. Owned unknowns in subdomain.

Each iteration sometimes accesses each matrix a constant number of times. Often times the
non-zeros in the factors of the overlap matrix predict the load balance. Larger numbers are
generally more important. If the interior unknowns are eliminated, then non-zeros in the
factors of the interior matrix will sometimes predict the load balance. The unknowns in a
subdomain is governs the load balance of matters related to orthog. As orthog or
orthogH increases, the influence of the unknowns per subdomain increases.

Mathematical Conditioning Issues

The performance of the solver is closely tied to the mathematical conditioning of the equation
system it is solving. Conditioning can be thought of as the ratio of the largest eigenvalue of the
system to the smallest eigenvalue. The larger this ratio becomes the more difficult it will be to
solve the system and the larger potential error there will be in the solution.

Many model features can increase (or worsen) model conditioning.
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* Rigid body modes (which have zero eigenvalues) are a special case which is handled as
carefully as is theoretically possible, but which nonetheless have robustness problems.

* Mesh refinement increases gradients.
* Poorly shaped elements can lead to ill conditioned linear systems

* Understanding Type 1 versus Type 2 constraints as discussed in the definition of the GDSW
option max_numterm_C]1 can lead to substantial performance improvements.

* Models in which a stiff material abuts a soft material are poorly conditioned.
* Mixtures of high density and low density components.
* Meshes with mixtures of solid and structural elements.

A poorly conditioned system can cause difficulties for the solver, both from an accuracy and
robustness standpoint.

* Long solve times or many iterations required for convergence
* Difficulty obtaining a low target residual during the solve

* Large difference between the 'recursive’ and ’actual’ residuals reported by the solver. This
can also indicate the solver result has lower accuracy than intended.

* Significant localized errors in the result obtained at some nodes

4.7.5. Frequency Response Functions

Several additional SD training documents [44, Frequency response linear solver] and
presentations describe the solver behavior, debugging, and usage guidelines in more detail. See
the Sierra/SD training documents on ’GDSW Solver Accuracy Notes’, ’GDSW 101°, ’"GDSW

Memory Use Tutorial.

4.7.6. Parameters

SubdomainData is described in Section 4.7.3.

In Table 4-16 Hprecond’s option custom preconditions by

—w?(ay + iBu)M +iwC + (ak +iBx)K,

As usual i = V-1 , w 1s the circular frequency of excitation, and M, C and K are the mass,
damping, and stiffness matrices, respectively. Here 5 and y are the viscous damping and
structural damping coefficients. Experience with the custom preconditioner is documented
elsewhere.** The custom preconditioner can reproduce the other preconditioners. The non-zero
parameters for the other preconditioning options are ax = 1 for stiffness, ax = 1, ay; = —1 for
Laird-Giles, ag = 1, ayy = 1, By = —y for shifted Laplacian, and ag = 1, Bx =y + fw, ay =1
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Table 4-14. — GDSW Section Options (Advanced).

Variable Values | Default | Description
version integer 2 GDSW version
num_sub_per_proc integer 1 number of subdomains per processor
num_iter_improve_I integer 0 number of iterative improvement steps for

I_solver = LDM and precision_option_I = single
num_iter_improve_O integer 0 number of iterative improvement steps for

O_solver = LDM and precision_option_I = single
num_iter_improve_coarse integer 0 number of iterative improvement steps for

coarse_solver = LDM and

and precision_option_coarse = single
cull_method integer 1 0 - none: reach maximum and then stop

1 - simple: reach maximum and then remove

most recent ones

2 - eigen: cull search directions

based on solution to eigenvalue problem
preconditioner_type integer 2 1 (BDDC), 2 (GDSW)

3 (DIAG), 4 (NODAL)
interface_precond integer 0 0 - do not require interface preconditioner

1 - require interface preconditioner
coarse_connectivity_option | integer 1 algorithm number for coarse elem connect
viscous_damping real 0 viscous damping coeflicient for preconditioner operator
structural_damping real 0.12 | structural damping coefficient for preconditioner operator
rbm_tolerance real le-12 | threshold for the rigid body

mode residual norms reported in

dd_solver.dat. Recommend usage of

the RbmTolerance in the parameters

section.
con_tolerance real 2.5e-9 | singularity tolerance for processing constraints
con_row_tolerance real le-1 pivoting tolerance for processing constrains
ML_max_level integer 7 maximum number of levels for multilevel local solver
ML_max_coarse integer 1000 maximum number of unknowns for coarsest level
use_epetra_coarse integer 0 0 - do not use Epetra matrices for coarse correction

1 - use Epetra matrices for coarse correction
parmetis_option integer 0 Parmetis option for coarse problem partitioning:

0 (PartKway), 1 (PartGeomKway)
diag_scaling string none | none - no scaling of operator matrix

diagonal - symmetric diagonal scaling (diagonal-based)

column - symmetric diagonal scaling (column-based)
correction_option integer 0 0 (standard), 1 (MINRES)
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Table 4-15. — GDSW Section Print Options.

Variable Values | Default | Description
ML_print_coarse integer 0 0 - no output

1 - print coarse stiffness matrix
ML_print_Phi integer 0 0 - no output

1 - print interpolation matrix
pardiso_message_level | integer 0 0 - no messages

1 - print messages
prt_matrix integer 0 0 - no output

1 - print out matrix in 3-column format

2 - print out matrix in CSR format
prt_subdomain_coarse | integer 0 0 - do not print subdomain coarse matrix

1 - print subdomain coarse matrix
prt_subdomain_PU integer 0 0 - do not print sub partition of unity

1 - print sub partition of unity
prt_stabilization integer 0 0 - do not print coarse stabilization matrices

1 - print coarse stabilization matrices
prt_interior integer 0 0 - do not print interior matrices

1 - print interior matrices
prt_memory integer 0 0 - do not print gdsw memory diagnostics

1 - print gdsw memory diagnostics
prt_debug integer 0 0 - do not print subdomainData.dat

1 - print subdomainData.dat
write_orthog_data integer 0 0 - do not write orthogonalization data to file

1 - write orthogonalization data to file

1 - ignore memory reporting
ML_print_coarse integer 0 0 - do not print coarse stiffness matrix

1 - print coarse stiffness matrix
ML_print_Phi integer 0 0 - do not print interpolation matrix

1 - print interpolation matrix
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Table 4-16. — GDSW Section Options (Helmholtz).

Variable Values | Default | Description
Hprecond integer 5 Helmholtz preconditioner:

O-stiffness: Stiffness based

1-LG: Laird-Giles

2-custom: Custom

3-SL: shifted Laplacian

S-operator: Operator with damping
orthogH integer 20 maximum number of stored search directions

for Helmholtz problems
max_previous_sols | integer 0 maximum number of previous solutions

used to accelerate convergence
precondUpdateFreq | integer 10 frequency to update preconditioner as

as operator changes
viscous_damping real 0 viscous damping coeflicient (see text)
structural_damping | real 0.12 | structural damping coefficient (see text)
alphaK real 0 custom precond stiffness coeflicient (see text)
betaK real 0 custom precond stiffness coefficient (see text)
alphaM real 0 custom precond mass coeflicient (see text)
betaM real 0 custom precond mass coefficient (see text)
krylov_methodH integer 5 same as krylov_method but

for Helmholtz problems
SC_optionH integer 0 same as SC_option but for Helmholtz problems
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for operator. Using the stiffness preconditioning option for w near zero and for structures with
rigid body modes is discouraged due to the near singularity of K.

Table 4-17. — GDSW Section Options (Solvers).

Variable Values | Default | Description

default_solver | integer 1 I-direct: Esmond Ng’s sparse direct solver
2-LDM: Clark’s LDM’ sparse direct solver
6-NoPivot: Clark’s sparse direct solver
PTAP_solver | integer 1 solver for conjugate gradient matrix

0-diag: diagonal (holds in exact arithmetic)
1-full: full ®” A® matrix

Table 4-18. — GDSW Section Options (tacho/gpu).

Variable Values Default | Description

tacho_alg_variant enum OR int | default(2) | default(2)new(3)

tacho_force_solution_method enum symlu | symlu|ldljno_pivot_ldl
4.8. Sensitivity

Sensitivity to parameters is available for modal analysis,*> Craig-Bampton reduction (CBR), static
solutions and some transient solutions. An example input deck for modal analysis is given in the
Section 11. In the case of CBR analysis, we refer to sections 5.3 and 5.3.1 for a detailed
discussion of how to perform sensitivity analysis. The sensitivity section controls global
parameters related to sensitivity analysis. Sensitivity analysis is not performed in Sierra/SD
unless this section is present in the input deck. The following example illustrates the legal
keywords. Valid keywords are identified in Table 4-19. Lists of numbers should follow the rules
for integer lists detailed in Section 4.1.

SENSITIVITY

values all

vectors 1,3,5,7:9

iterations 8

tolerance le-7

Attune

AttuneNodeset sensitivity_nodeset
END

The keywords values and vectors are used to control what types of sensitivities are computed
for which cases in the analysis. In modal analysis, these refer to the eigenvalues and eigenvectors,
respectively, and the case numbers represent the mode numbers. In static analysis, vectors refers
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Keyword argument Description
values “all”/“none” or list | eigenvalue selection
vectors “all”’/“none” or list | eigenvector selection
iterations integer number of eigenvector iterations
tolerance float convergence tolerance for eigenvectors
attune n/a enable attune output
AttuneNodeset string nodeset for reduced model

Table 4-19. — Sensitivity Analysis Keywords.

to the displacement vector results, and values has no meaning. Also, in modal analysis,
eigenvalue sensitivities are always computed when eigenvector sensitivities are requested for a
mode. Allowable values are:

vectors all // compute for all cases/modes
vectors none // compute for no cases/modes
vectors 1:3,5 // range of cases/modes

Omitting the keyword vectors (or values) is equivalent to not requesting those sensitivities; in
other words, it is equivalent to vectors none. The keywords iterations and tolerance are
used in computing eigenvector derivatives. The default values are 10 and 1.0e-06, respectively.
If the eigenvector sensitivity approximation fails to converge to the desired tolerance in the
specified number of iterations, a fatal error occurs.

4.8.1. Attune

An interface is provided to the Attune test/analysis correlation code supplied by ATA
engineering. The data is written to an external text file named after the input deck. A surrogate of
the finite element model is determined using eigenvectors. Attune applies only to eigen sensitivity
analysis, and the eigenvalues must be selected using values. For output through this interface,
the following two parameters must be defined.

attune: request interface output.

AttuneNodeset: identification of a nodeset to be associated with the test degrees of freedom.
Note that even if test mode shapes are not available, Attune requires the definition of a
reduced space model (using this nodeset). It is required for mode tracking.

To use Attune , please refer to the ATA website and on line documentation.’

Output. Sensitivity results are output to the same file as the nominal results. The arrangement of
the output depends on the analysis. The statics nominal result is output, followed by the sensitivity
result for each parameter. In eigenvalue problems, the nominal frequencies and eigenvectors are
output, followed by the eigenvalue and eigenvector sensitivities with respect to the first parameter,
the second parameter, etc. The eigenvalue sensitivities are placed in the time field of each output
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record, like the frequencies are for the nominal modal parameters. For transient analysis, the
nominal response for each time step is output, followed by the sensitivities for that time step. Then
the nominal results for the next time step are output.

Here is an example of how to request both eigenvalue and eigenvector sensitivities. The
sensitivities are extracted using the Global variables, including sensitivities to area in Block 1000
and thickness in Block 101. The order of parameters can be determined in several ways. This
examples uses the Global variables checked using the command line explore application in the
Sierra SEACAS suite. The order of parameters can also be determined from information in the
results file.

workstation_prompt> explore my_output.exo
EXPLORE select step 4
EXPLORE gvar

In the input deck, the parameter nmodes sets the number of requested mode shapes. In this case,
nmodes has been set to 6. The next nmodes values are the d1/dP; values associated with the first
parameter, P;. The corresponding vectors are d¢;/dP;.

Global Time Step Variables

ModeNumber 4.0000E+00
EigenFrequency 3.5042E+03
EigenVectScale 1.0000E+00
deriv_Block_1000_area 3.9362E+03

deriv_Block_101_thickness 1.4426E+07

EXPLORE times
EXPLORE exit

Number of time steps = 18
Step 1) 725.3E+0
Step 2) 725.3E+0
Step 3) 3.005E+3
Step 4) 3.504E+3
Step 5) 3.504E+3
Step 6) 4.929E+3
Step 7) 602.1E+0
Step 8) 602.1E+0
Step 9) 6.512E+0
Step 10) 3.936E+3

The change of parameter (or tolerance) may be specified in any of three ways.

1. Specify an absolute tolerance by entering “+/-” followed by the number, e.g. “+/- 1.05e-4".
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2. Specity a relative tolerance by entering “+/-” followed by a number and the keyword
“percent”’. Each field should be separated by a space. For example,

56 +/- 2.0 percent

3. Use the default tolerance by entering only the “+/-” by itself. The default tolerance is 2
percent.

The selection of parameters is controlled by the inclusion of a +/- symbol following a parameter
in the input deck. Examples of valid sensitivity parameter definitions are:

MATERIAL 1
E 10e6 +/- leb // absolute tolerance specified
density 2.59e-4 +/- // no tolerance, use default
END

BLOCK 26
area 0.10 +/- 5 percent // relative tolerance specified
END

BLOCK 28
thickness +/- 1 percent // relative to Exodus attribute
END

Note that the tolerances are specified on the parameters where they normally appear in the input
deck. That is, these definitions do not appear in the sensitivity section.

The sensitivity quantities output to the exodus file are derivatives, and can be used to compute a
first-order approximation to the change in an output quantity with respect to a parameter. For
example, the change in an eigenvalue A that depends on a parameter p can be approximated

da
A(p +Ap) = A(p) + %Ap +o(Ap).

The quantity written to the exodus output is dd/dp. The tables printed in the results and standard
output also include the linear approximation to the change in A,

da

—Ap.
dpp

This approximation may be inaccurate if Ap is too large. The size of Ap is specified by the user in
the input deck for each parameter included in the sensitivity study.

4.8.1.1. Derived Output Quantities

The sensitivity analysis methods use a semi-analytic method. Primary variables (usually
displacement) are computed in terms of changes in stiffness and mass matrices, and resultant
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displacements are then computed analytically. See Figure 4-3. Many other output quantities are
computed in terms of these primary variables using the standard output routines. Most of these
output quantities depend linearly on the primary variables. For example, computation of the
derivatives of strain can be readily computed using the chain rule, and may also employ the same
procedures for strain computation. Let € = xu define the strain/displacement relationship at a
given point in the model. Here « is a constant.

de de du
dp  dudp
_du
=K
Code that computes € from u may be used to compute d—; from Z—Z.

Other variables are not linear with respect to the primary variables. For example, the strain energy
or the von Mises stress include quadratic terms in displacement.

E = u'Ku
dEs;  dE; du
dp  du dp

= uTK@
dp

These variables may not use the same code paths. Data is written, but is not correct for these
variables.

Statics
Ku = f
Au = K Y(Af - AKu)
Eigen
(K-=AM)p = 0
Ay = ¢TAKp — AT AM¢

Figure 4-3. — Semi-Analytic Methods for Sensitivity Analysis.

Solution Types Sensitivity analysis is available only for the solution types shown in Table 4-20.
The primary application is in eigenvalue problems where the semi-analytic solutions can provide
significant computation and accuracy benefit over a finite difference approach.*

Sensitivity Limitations

1. Subsection Eigen Sensitivity Analysis section Solution Procedures of the Theory Manual
explains how sensitivity analysis may be performed using most solvers.

2. Outputs are limited to variables linear in displacement (4.8.1.1). In particular, output of von
Mises stress is output for these solutions, but is not correct. That is the derivative of the von
Mises stress is not the von Mises stress of the derivative of the stress.
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Table 4-20. — Sensitivity Analysis Solution Type Availability.
Name | Section | Description
eigen 5.8 | Normal Modes

statics 5.24 Linear Statics

4.9. Coordinates

Local coordinate systems may be defined to orient directional materials (section 6.6.1.3), define
constraints section 4.11, boundary conditions section 8.1, or loads section 4.5 in local orientations
or transform outputs to a local coordinate system (sections 9.2 and 9.3). The basic/default
coordinate frame can also be explicitly referenced as coordinate “0”, if desired.

The ability to visualize and verify correctness of coordinate system definitions is a key element of
the overall workflow.

At present, visualization support is limited to the material direction
output used to orient directional materials (sections 6.6.1.3 and 9.8.11).

BEGIN RECTANGULAR COORDINATE SYSTEM <string>name
ORIGIN = <real> <real> <real>
Z POINT = <real> <real> <real> # Point on Z axis
XZ POINT = <real> <real> <real> # Point on XZ plane
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians
END

BEGIN RECTANGULAR COORDINATE SYSTEM <string>name
ORIGIN NODESET = <nodelist> # Single-node nodesets
Z POINT NODESET <nodelist> # Node on Z axis
XZ POINT NODESET = <nodelist> # Node on XZ plane
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians

END

Syntax 4.3. Rectangular Coordinate System Syntax
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BEGIN CYLINDRICAL COORDINATE SYSTEM <string>name

ORIGIN = <real> <real> <real>
Z POINT = <real> <real> <real>
XZ POINT = <real> <real> <real>

ROTATE <real> ABOUT AXIS X|Y|Z
END

# Point on Z axis

# Optional: point on XZ plane; sets
# location of azimuthal angle theta=0
# angle in radians

BEGIN CYLINDRICAL COORDINATE SYSTEM <string>name

ORIGIN NODESET = <nodelist>
Z POINT NODESET <nodelist>
XZ POINT NODESET <nodelist>

ROTATE <real> ABOUT AXIS X|Y|Z
END

# Single-node nodesets

# Node on Z axis

# Optional: node on XZ plane; sets

# location of azimuthal angle theta=0
# angle in radians

Syntax 4.4. Cylindrical Coordinate System Syntax

BEGIN SPHERICAL COORDINATE SYSTEM
ORIGIN = <real> <real> <real>
Z POINT = <real> <real> <real>
XZ POINT = <real> <real> <real>

ROTATE <real> ABOUT AXIS X|Y|Z
END

BEGIN SPHERICAL COORDINATE SYSTEM
ORIGIN NODESET = <nodelist>
Z POINT NODESET = <nodelist>
XZ POINT NODESET = <nodelist>

ROTATE <real> ABOUT AXIS X|Y|Z
END

<string>name

# Point on Z axis

# Optional: point on XZ plane; sets
# location of azimuthal angle theta=0
# angle in radians

<string>name

# Single-node nodesets

# Node on Z axis

# Optional: node on XZ plane; sets

# location of azimuthal angle theta=0
# angle in radians

Syntax 4.5. Spherical Coordinate System Syntax

BEGIN CONICAL COORDINATE SYSTEM <string>name

ORIGIN = <real> <real> <real>
Z POINT = <real> <real> <real>
XZ POINT = <real> <real> <real>
ROTATE <real> ABOUT AXIS X|Y|Z
ANGLE = <real>

END

# Point on Z axis
# Optional: point on XZ plane
# angle in radians
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BEGIN CONICAL COORDINATE SYSTEM <string>name
ORIGIN NODESET = <nodelist> # Single-node nodesets
Z POINT NODESET = <nodelist> # Node on Z axis
XZ POINT NODESET = <nodelist> # Optional: Node on XZ plane
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians
ANGLE = <real>
END

Syntax 4.6. Conical Coordinate System Syntax

BEGIN ELLIPSOIDAL COORDINATE SYSTEM <string>name
ORIGIN = <real> <real> <real>
Z POINT = <real> <real> <real> # Point on Z axis
XZ POINT = <real> <real> <real> # Point on XZ plane
ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians
AXIS STRETCHING = <real> <real> <real> #angle in radians
END

BEGIN ELLIPSOIDAL COORDINATE SYSTEM <string>name

ORIGIN NODESET = <nodelist> # Single node nodeset

Z POINT NODESET = <nodelist>

XZ POINT NODESET = <nodelist>

ROTATE <real> ABOUT AXIS X|Y|Z # angle in radians

AXIS STRETCHING = <real> <real> <real> #angle in radians
END

Syntax 4.7. Ellipsoidal Coordinate System Syntax

The prefix to COORDINATE SYSTEMN specifies the type of local coordinate system. Supported types
are: RECTANGULAR (Cartesian), CYLINDRICAL (Polar), SPHERICAL, CONICAL (a cylindrical
system with an aperture angle), and ELLIPSOIDAL (a spherical system stretched by AXIS
STRETCHING).

A local element coordinate system is defined by a set of three control points. These points may be
defined using absolute locations (ORIGIN, Z POINT, XZ POINT) or using nodelists in the mesh
file (ORIGIN NODESET, Z POINT NODESET, XZ POINT NODESET) that contain exactly one node
each. The control points define a local X ¥ Z Cartesian coordinate system centered at the
coordinate system origin. For cylindrical, spherical, conical, and ellipsoidal systems the
orientation of the basis vectors at individual nodes and elements is spatially dependent. In this
documentation, the local basis vectors at each node or element will be denoted as 7, §, and 7.

Note: coordinate systems defined by nodesets use only the initial location of the nodes and do not
update with model displacement.
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* ORIGIN: Required. Specifies the origin location for the new coordinate system.

s Z POINT: Required. Specifies a point on the Z axis for the new coordinate system. For
SPHERICAL, this defines where the zenith (polar) angle ¢ is O.

* XZ POINT: Required only for RECTANGULAR and ELLIPSOIDAL. Third point to specify the
X Z-plane of the new system. Must not lie on the Z axis. If not specified, an arbitrary axis
will be chosen based on the global coordinate system. For CYLINDRICAL and SPHERICAL,
this defines where the azimuthal angle 6 is 0. XZ POINT also affects behavior at ill-defined
points such as the origin of SPHERICAL systems, or along the Z axis of CYLINDRICAL
systems (see figure 4-8).

* ANGLE (CONICAL COORDINATE SYSTEM only): Required. Defines the angle in radians to
rotate the axial direction away from the Z axis (see figure 4-6).

* AXIS STRETCHING (ELLIPSOIDAL COORDINATE SYSTEM only): Required. Defines the
aspect ratio to stretch a spherical system (see figure 4-7).

» ROTATE: Processed last. Specifies a rotation (in radians) of the coordinate system about one
of its own axes. The conical system is effectively a cylindrical system with a local rotation
about the ¥ axis. Only one rotation may be specified.

The three coordinate control points are illustrated in figure 4-4. The coordinate system types are
depicted in figures 4-5 to 4-7.

ORIGIN

Figure 4-4. — Coordinate system definition vectors: note that XZ POINT determines the X axis, but
need not lie along it, which is the case depicted in this figure.
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Figure 4-5. — Three examples (rectangular, spherical, and cylindrical) of transformed coordinate
systems are given. The center of the rectangular block (6 X 2 x 3) is located at (3, -1, 5), and rotated 30
degrees about the X axis. The center of the sphere (radius of 2) is located at (5,4, —2). The center of the
cylinder (radius of 1, height of 2, and rotated 90 degrees about the X axis) is located at (-5,2,0). The
new coordinate systems are defined respectively of each of the geometries, and are indicated by X ¥ Z
and the subscripts (r, s, and ¢).

Point on the Z axis

o
VRN
/0N
’ | \
A, oA
A t/ ! \t A
r ’ | N r
'\./ ¢
|
|
’ L N
’ t N
/ oy \
’ r \

Figure 4-6. — Conical Coordinate System Definition at XZ plane
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Figure 4-7. — Ellipsoidal Coordinate System Using axis_stretching = (2.0, 1.1, 1.0). 7 isred, § is green,
and 7 is blue.

Examples of rectangular, spherical, and cylindrical coordinate systems are given in figure 4-5. In
those examples, we wish to define coordinate systems for three geometries: a brick, a sphere, and
cylinder. The corresponding input deck is shown below.

begin rectangular coordinate system rectangular_system
origin 3 -1 5
z point 5 -1 5
xz point 3 0.7321 6
end
coordinate spherical coordinate system ball_like
origin 5 4 -2
z point 5 2 -2
Xz point 3 4 -2
end
begin cylindrical coordinate pin_system
origin -5 2 0
z point -5 4 0
Xz point -5 2 2
end

Input 4.11. Example coordinate system input

For cylindrical, conical, spherical, and ellipsoidal systems, the local basis vectors 7, §, and 7 are
not all well-defined when sampled along the Z axis. At the origin, all coordinate systems fall back
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Coordinate | History | Corresponding
System Variable Coordinate

Cylindrical X r
Y 0
Z z
Spherical X r
Y 0
4 ¢

Table 4-21. — Coordinate Names for history files.

to a local Cartesian system with 7 along the X axis, § along the ¥ axis, and 7 along the Z axis. This
is also true for the cylindrical and conical systems on the Z axis. Spherical and ellipsoidal systems
on the Z axis will instead maintain the first vector (#) pointing radially outward, the third vector ()
pointing along the X axis, and the second vector (§) as either the positive or negative Y axis
(generating a right handed system). This maintains the normal and tangential properties of the
three vectors for spherical coordinates. See figure 4-8 for a visual representation of this

behavior.

The Exodus mesh input file also has the ability to define local coordinate frames. These frames
will be read and available during an analysis. In the case of a coordinate frame being defined in
both the Exodus file and the input file, the input file definition will be used, and a warning will be
logged.

In spherical coordinates, it may help to consider the Cartesian frame ()? Y, Z) with the same
orientation as (r, 6, ¢):

X = rsin(¢) cos(6)
Y = rsin(¢) sin(6) (4.9.1)
7 = rcos(¢),

0<¢p<m, 0<6<L2nm.

If the user specifies a coordinate system in the History section, notice that its applicability may
be somewhat limited, though convenient. In particular, only a single history file is written in each
analysis, and only one coordinate frame may be outputted per node (see section 9.2). The history
file will display variables as Cartesian regardless of coordinate choice. Table 4-21 shows the
corresponding values for cylindrical and spherical coordinates. Finally, we provide a full example
of how we can use the coordinate definitions. We use the same coordinate definitions from

figure 4-5 and input 4.11, and we define the brick as block 1, the sphere as block 2, and the
cylinder as block 3, respectively. We also specify a sideset 100 on the brick, a nodeset 200 on the
sphere, and a nodeset 300 on the cylinder as shown in figure 4-9. We wish to apply a radial force
emanating from the middle of the cylinder, and we want to record the output accelerations on the
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Figure 4-9. — An example of how coordinate systems are used. Accelerations are measured on the
sphere (nodeset 200) due to a radial force applied on the cylinder (nodeset 300).

sphere. The corresponding input deck is attached, with associated coordinate systems defined in
input4.11.

LOADS
nodeset 300
coordinate ball_like
force =100

END

HISTORY
nodeset 200
coordinate pin_system
accel

END

Tractions can also be specified on a particular coordinate frame, but special care is required. We
refer the reader to section 8.3.3 for using arbitrary coordinates with tractions.

4.10. Function

Time, frequency and/or spatially dependent functions for transient and frequency response
analyses are defined using the function section. The following are simple examples of the use of
a time dependent function.
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FUNCTION test_funcl
type LINEAR
data 0.0 0.0
data 0.0150 0.0
data 0.0152 1.0
data 0.030 0.0
END

FUNCTION poly_fun

// a pulse of duration .05

// peak value 6/7 at 1/49 sec

// pulse(t)=8*sqrt(t)-686*tA2
name "Smooth Pulse with Duration 0.05"
type POLYNOMIAL

data 0. 0.

data .5 8.

data 2. -686.
END

The function name follows the function keyword. This identifier is used to reference the function
in other parts of the input deck. It can be any string. In early versions of Sierra/SD only integer
function names were supported. Function definitions have the keywords TYPE, NAME and
DATA.

1. TYPE to define the functional form,

2. NAME Additional reference information for the function. This may be printed to error
messages or other informational output regarding the function, however it is the identifier
that is always used to call the function from other parts of the input deck.

3. DATA for the functional parameters.

Other function definitions may require more parameters.

4.10.1. Function Offset/Shifts

Function input/output values can be offset and scaled. The syntax for defining these
transformations is below.

X|abscissa offset
Y|ordinate offset
X|abscissa scale
Y|ordinate scale

<real, default=0>
<real, default=0>
<real, default=1>
<real, default=1>
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Given a function y = f(x), the transformed output would be:
Y = Yscale * [f(xscale fx+ xoffset]) + yoffset]-

Note that function offsets/shifts are currently only enabled for single-input, single-output
functions. Otherwise, a warning will be issued and the offsets/shifts will be ignored.

4.10.2. Linear Functions

For linear functions, the data elements are pairs specifying the independent variable (e.g., time)
and the corresponding function value. Evaluation of the function at unspecified points is
performed via linear interpolation. In order to enforce uniqueness of the interpolant, Sierra/SD
ignores points with an independent variable value less than that of the previous point. For
example, the last point in the ignored_point function is ignored.

FUNCTION ignored_point

type linear

data 0.00 0.

data 0.01 1.

data 0.05 1.

data 0.04 0. // ignored: column 1 may not decrease
END

1.04% » - --

\ i
0.01 0.02 0.03 0.04 0.05

Figure 4-10. — Linear function "ignored_point".
Figure 4-10 shows the graph of function ignored point.
Extrapolation refers to evaluating the function before the first given time or after the last given

time. Linear functions use the value of the nearest data point to extrapolate. For example, the
value of the following function at 0.03 is 0.5.

FUNCTION extrapolation
type linear
data 0.00 0.
data 0.01 1.
data 0.02 0.5
END
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Figure 4-11 shows the graph of the extrapolation function.

1.0

Figure 4-11. — Linear function "extrapolation".

If an independent variable value is listed multiple times, then the function value at that point is the
average of the specified function values. Function 5 is pictured in Figure 4-12.

FUNCTION 5
name "value3hundrethslistedtwice"
type linear
data 0.00 0.
data 0.01 1.
data 0.03 1.
data 0.03 0. // £(3/100)=3/4
END
1.0 + » *
L +
| | | | |
0.01 0.02 0.03 0.04 0.05
Figure 4-12. — Linear function #5. "multiple_fun".
4.10.3. Sierra SM Piecewise Linear Functions

Some limited Sierra Sierra/SM syntax is supported for specifying a piecewise linear function in
Sierra/SD. The data entered through this syntax is interpreted as a linear function, and follows all
the rules specified above. This comes with limitations. Only the piecewise linear function
type is supported, and some features are missing. Most importantly, ending the function with
"END FUNCTION <string>" is not supported. This comes from an incompatibility with existing
Sierra/SD syntax; "FUNCTION <string>" happens to be valid Sierra/SD syntax in this scope
and context.
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BEGIN FUNCTION step
Type is Piecewise Linear
BEGIN VALUES

0.00, 0.
0.01, 1.
0.05, 1.
END VALUES
END

4.10.4. Functions using Tables

Functions may be specified by reference to a linearly interpolated table (as discussed in

section 4.10.19). The table must be of dimension=1. One-dimensional tables behave identically to
the linear functions described above. However, they will typically be much faster and more
memory efficient than linear functions, especially as the data size grows.

The function in the following example is a tabular representation of the data of Figure 4-11 and
Function “extrapolation” above.

FUNCTION 7
type table
tablename=example?7
END

TABLE example?7
dimension=1
size=5
datafile="example7.txt’
origin 0.0
delta .01

END

Within the datafile, “example7.txt”, the following data would be represented.

DD S
(O, N, BV, B~ R~

The linear function can be evaluated for any time, and the table is limited to the range 0-0.04.
Table type functions require the tablename keyword.
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4.10.5. Polynomials

The data pairs for polynomials are exponent and coefficient pairs. The independent variable taken
to any real power will always be evaluated as positive. Duplicate exponents are handled by
summing their coefficients.

FUNCTION 6
name "quadratic_polynomial"
type polynomial
data 0.0 0.
data 1.0 1.
data 2.0 0.
data 1.0 0.
END

1
5 // f() = 3t/2 + (t*2)/10

4.10.6. LogLog Functions

Loads may be applied with log log functions in frequency domain analyses. For example log log
tables are used for random vibration inputs. Option LogLog applies linear interpolation on an
log log tables plot so that only the corner frequencies need be specified. An example follows.

FUNCTION 168
name "LogLog"
type LogLog
data 1.0 le-8
data 299 le-8
data 300 0.01
data 2000 0.03
data 8000 0.03
data 10000 0.01
data 10001 le-8

END

4.10.7. SamplingRandom

A Random Pressure load has user specified spatial and temporal correlations. Random Pressure
loads are described in the Theory Manual in section Loads and Materials, subsection Random
Pressure Loading. If the desired random function is a function of time only, then the
SamplingRandom function described here provides a simpler mechanism for applying the load.

Note that
we = 21 X cutoff_freq,
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Keyword Values | Default Description

type string | required must be “SamplingRandom”
cutoft_freq Real | required’ cutoff frequency (in Hz)
omega_c (w¢) Real | required’ cutoff frequency (in rad/s)
deltaT Real | n/w, coarse time step

ntimes integer | 5 # of terms in time interpolation
correlation_function | string | defaults to sin(x)/x | function for time interpolation
scale_function string | defaultsto o(z) = 1

TSpecify either cutoff_freq or omega_c, but not both.

Table 4-22. — SamplingRandom function parameters.

and that only one of the two parameters omega_c and cutoff_freq can be specified. More detailed
descriptions of these parameters are given in Section 8.3.12. Random time functions can be used
to specify any type of random load, including pressure loads, force loads, acoustic loads, etc.
Below we give an example for the case of an acoustic load.

LOAD
sideset 1
function = 1
acoustic_vel = 1.0
END

FUNCTION 1
type SamplingRandom
cutoff_freq 1000
deltaT 8.0e-4
ntimes 5

END

The SamplingRandom function is a special case of a zero mean, unit variance Gaussian function.
Sampling methods allow a reduced memory method of computing the time realization. In a
transient analysis, the time integration step should be less than the coarse time step, “deltaT”.
Statistics for the functions may be output by specifying “input_summary” in the “ECHO” section
of the input file (see Section 9.9).

4.10.8. RandomLib Functions

There are two tests of the RandomLib function. One is a verification test.

In many cases, a random load on a structure may need a spatial correlation with other loads on the
structure. The RandomLib function was created to address this need.

>The RandomLib function is an external library interface to Sierra/SD. Additional functionality and the interface to
other applications are described in separate documentation.
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Run time parameters for “RandomLib” functions are listed in Table 4-23, and an example is
provided in input 4.12. Each parameter is described in more detail below.

The RandomLib function operates only by reading data from an external Exodus data file. The
data file is an Exodus file that contains nodal scalar boundary conditions on a nodeset that covers
the same nodes as the sideset. This nodeset is assumed to have the name “surface_1_nodes”
where the “1” in this case corresponds to sideset 1. These nodal loads are typically generated
within MATLAB code and merged with the Exodus file definition.

Currently, this function has been applied only to apply a scalar function on the nodal locations of a
single sideset in the model. Such functions can be used to apply pressures (which are applied as
piecewise linear functions within the elements). It can also be used to apply prescribed
accelerations at the nodal locations.

Keyword | Values | Description

type randomlib | required to specify function

interp temporal interpolation scheme
none=nearest

linear=linear interpolation

sideset int/string | sideset id/name where pressures are applied

Table 4-23. — RandomLib function parameters.

FUNCTION 55
type=randomlib
interp=none
sideset=1
exo_var scalar pressure

END

Input 4.12. Example RandomLib Function Specification

type The specification “type=randomlib” is required to reference the randomlib function and
its capabilities.

interp A restart file contains time samples of a random function. Sierra/SD references these
values at each time step to properly load the function. Figure 4-13 shows how interpolation
influences the actual value returned.

sideset Pressure is applied over a single sideset of the model. This sideset must match the
definition in the load section. !

IData for the Exodus file is usually provided using specialized tools such as mkrandloadrst. A sideset provides
information about the extent of the load, and for pressure loads, it is required to identify the faces upon which the
load is applied. Actual time history data is associated with a nodeset which includes the same nodes as the sideset.
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exo_var Specification of the name of the nodeset variable that represents the nodal loading
keyword exo_var is required. The format should be “exo_var scalar pressure,’
where "pressure’ is the name of the variable used in the Exodus file.

RandomLib Sample D t/
anaomli.i amp c ata

I I I
Time
Figure 4-13. — RandomLib Temporal Interpolation. Because of different time steps in the RandomLib
data library and the Sierra/SD time step algorithm, the function value returned depends on the time
interpolation algorithm. With interp=none, the first value returned to Sierra/SD is about -1.0, as
that is the nearest time sample in the data. With interp=linear, the value returned is about -0.6.

Note that round off can cause odd behavior with interp=none, even if the two data sets have the same
fundamental time step.

4.10.9. Analytic Functions

Analytic functions can be used define complex mathematical functions directly in the input deck.
An example of the input for this type of function is:

FUNCTION sine

type analytic

evaluate expression = "sin(2 * pi * t)"
END

Sierra/SD uses the STK>® expression parser.
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Analytic functions can be used in a variety of contexts such as boundary conditions, material
properties, or user output.

4.10.9.1. Analytic Expression Parser Syntax

Rules and options for composing algebraic expressions. If you choose to use the
EVALUATE EXPRESSION command line, you will need to write the algebraic expressions. The
algebraic expressions are written using a C-like format. Each algebraic expression is terminated
by a semicolon(;). The entire set of algebraic expressions, whether a single expression or several,
is enclosed in a single set of double quotes(" ").

Note: analytic function variables are case insensitive, including any local variable definitions, and
there is currently no warning for multiply-defined variables (the last variable name “wins”), so
caution should be taken to ensure that duplicate variable names are not used.

Expressions compute an output value as a function of input values. The input value of an
expression is called an independent variable of the expression. An expression can use any name
for the expression independent variable. The examples shown here use x for the independent
variable.

Example: Return sin(x) as the value of the function.

function sinx

type is analytic

evaluate expression is "sin(x)"
end

Example: Return a piecewise linear interpolated ramp function. For x values less than 0.0 the
function will return 0.0. For x values between 0.0 and 0.5 the function will return y values linearly
interpolated between 0 and 100. For x values greater than 0.5 the function will return 100:

function pressure
type is analytic
evaluate expression is " \#
(x <=0.0) ? ( \#
0.0 \#
) ( \#
(x <0.5 7 ( \#
x*200.0 \#
)+ ( \#
100.0 \#
) \#
) \#
end
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Operators and Functions Available within Expressions The following functionality is
currently implemented for the expressions:

Operators Valid arithmetic and Boolean operations are as follows:

Symbol ‘ Operation

+, - plus, minus

*/ times, divide

A power

==, |= | equivalent, not equivalent
>, < greater/less than

>=, <= | greater/less than or equal to
! not

&&, | | and, or

?,: ternary if, then, else

Parentheses (), represents standard mathematical meaning of operation ordering.

Component indexing value[i], accesses the ith component of a multi-component variable
such as a vector, tensor, etc. This index is one-based. For a vector vec,

vec_X = vec][1]
vec_y = vec|[2]
vec_z = vec[3]

for a symmetric tensor sym,

sym_xx = sym/[1]
sym_yy = sym[2]
sym_zz = sym|[3]

sym_xy = sym|[4]
sym_yz = sym|[5]
sym_zx = sym/[6]

and for a full tensor full,

full_xx = full [1]
full_yy = full[2]
full_zz = full [3]
full_xy = full [4]
full _yz = full [5]
full_zx = full [6]
full_yx = full [7]
full_zy = full [8]
full_xz = full[9]

Math functions Valid mathematical operations are as follows:
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Function ‘ Operation

abs(x)
mod(x,y)
min(x,y)
max(x,y)
sign(x)
ipart(x)
fpart (x)

absolute value of x
modulus of x|y
minimum value of x, y
maximum value of x, y
sign operator: —1 if x is negative, 1 if positive
integer part of x
fractional part of x

Power functions Valid functions for expressions containing exponents are as follows:

Function \ Operation

pow(x,y) | x¥
powl®(x) | 10°
sqrt(x) | vx

Trigonometric functions Valid trigonometric operations are as follows:

Function

Operation

acos(x)
asin(x)
asinh(x)
atan(x)

atan2(y,x)

cos(x)
cosh(x)
sin(x)
sinh(x)
tan(x)
tanh(x)

arccosine of x

arcsine of x

inverse hyperbolic sin of x
arctangent of x

arctangent of y/x, signs of x and y
cosine of x

hyperbolic cosine of x
sine of x

hyperbolic sine of x
tangent of x

hyperbolic tangent of x

Logarithm functions Valid logarithmic operations are as follows:

Function

| Operation

log(x) or In(x)

log10(x)

exp(x)

natural logarithm of x
base-10 logarithm of x
ex

Rounding functions Valid mathematical rounding operations are as follows:

Function ‘ Operation

ceil(x)
floor(x)

smallest integer value not less than x
largest integer value not greater than x

Random functions Valid functions for generating random data are as follows:
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Function ‘ Operation

random() random real number 0.0 < x < 1.0
random(x) | seeds the random number generator
time () elapsed time in seconds since January 1, 1970

Coordinate conversion functions Valid functions for converting to and from polar and
Cartesian coordinate systems are as follows:

Function ‘ Operation
deg(x) converts x from radians to degrees
rad(x) converts x from degrees to radians

recttopolr(x,y) magnitude of vector (x, y)
recttopola(x,y) | angle of vector (%, y)
poltorectx(r,th) | x-coordinate of angle th at distance r
poltorecty(r,th) | y-coordinate of angle th at distance r

If, then, else ternary syntax A ? B : C, where A is a Boolean statement such as (x < 2.0),
B is a statement (or set of statements) to be evaluated if A is true, and C is a statement (or
set of statements) to be evaluated if A is false. Note: these statements can only be used for

return values, i.e. you cannot define local variables inside a ternary statement.

Other utilities Miscellaneous other utility functions are as follows:

e cos_ramp(x, xstart, xend) defines a cosine ramp loading function. For x <
xstart, it returns 0.0. For x > xend, it returns 1.0. If xstart <= x <= xend, the
function has the value (1.0-cos(Pi*(x-xstart)/(xend-xstart)))/2.0. The
primary purpose for the cosine ramp is to provide smooth loading. If attempting to run

a nearly quasistatic problem with the dynamic solver, a displacement boundary

condition applied via the cos_ramp will generally give a smooth response for a given

loading time.

* cycloidal_ramp(x, xstart, xend) defines a cycloidal ramp function. For x <
xstart it returns 0.0. For x > xend, it returns 1.0. If xstart <= X <= xend, the

function has the value

(x-xstart)/(xend-xstart)-1/(2*pi)*sin(2*pi/(xend-xstart) *(x-xstart)).
The primary purpose for the cycloidal front ramp is to provide smooth loading for
prescribed displacements and velocities. This function has continuous acceleration
derivatives at xstart and xend, providing a smoother response than the cos_ramp

for prescribed displacement boundary conditions.

* haversine_pulse(x, xstart, xend) defines a haversine pulse function. For x <
xstart, it returns 0.0. For x > xend, it returns 0.0. If xstart <= x <= xend, the
function has the value pow(sin(Pi* (x-xstart)/(xend-xstart)),2). Design
shock loads for components are often specified as haversine acceleration pulses; this

function is included to make it easier to apply this loading.
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Constants. There are three predefined constants that may be used in an expression. These three
constants are e, pi, and two_pi. Note that these constants are reserved variable names and thus
cannot be redefined in an expression.

Math symbol Expression Value

e e 2.7182818284...
pi 3.1415926535...
2r two_pi 2 %3.1415926535 . ..

Also, there are two predefined constant functions that can be used,
SIERRA_CONSTANT_FUNCTION_ZERO and STERRA_CONSTANT_FUNCTION_ONE. These two
functions are equivalent to defining functions with constant expressions “0.0” or “1.0”.

4.10.9.2. Input Variables for Analytic Functions

In their simplest form analytic functions have a single implicit independent input variable.

For example,

FUNCTION myFunc

type analytic

evaluate expression = ‘‘1 + y + yA2’’
END

FUNCTION left
type analytic
name "other_left"
evaluate expression
END

"1500*pow(sin(1l.0e5*t*pi/9),2)"

For these expressions, what y or t is will depend on context. For example, when defining material
properties (section 6.5.6), it is the element centroid temperature. Typically, it would be time, such
as if the function is used within a boundary condition or as part of a user output 9.5.6.

Alternatively, one or more input independent variables can be set for the function. Many advanced
usages of analytic functions require this, for example a load that is a function of both time and
spatial position. Independent variables to the analytic function are specified via expression
variable commands.

Note that an "expression variable" line is required for each independent variable, even if the name
and meaning happen to be the same (e.g. expression variable time = time). Also, note
that analytic functions may be evaluated at each application node on the structure (i.e. each node
in a nodeset).
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Some quantities are predefined by Sierra/SD as global or nodal fields for the analysis. The list of
supported input variables is given in table 4-24 and syntax 4.8.

explicit time input is currently BETA release.
Enable with the “- -beta” command-line option.

expression variable <string> = input|time]|coord|disp]|
< velocity|acceleration|nodeId

Syntax 4.8. Expression Variable Syntax

Variable Description
input Function input value.
Could represent time, temperature, etc.
time Current simulation time (transient only).
(beta capability)
coord Undeformed coordinates at each node.
disp Deformation vector at each node.
velocity Velocity vector at each node.
acceleration Acceleration vector at each node.
nodeid The global node ID at each node.
Note: unmapped Exodus node id (1:N)

Table 4-24. — Predefined Analytic Input Variables.

The following is a spatial boundary condition example using multiple input variables:

FUNCTION spatialFunc
type analytic
expression variable c
expression variable t
evaluate expression =

coord
input

cx = c[1];
cy = c[2];
cz = c[3];

t * sqrt(cxA2 + cyr2 + czr2)’’

END

This function has two independent variables: the function input (typically analysis time) and
nodal coordinates. The nodal coordinates then have three components X, Y, and Z. The return
value of this function depends on the coordinate of each node and the input time.

Additionally, nodal, element, or global fields may be used in the "expression variable" line to
define independent analytic function variables. Typically, this includes variables read from the
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input mesh or variables computed via a ’user output’ command, or variables that are output to
exodus output or history files.

Global expression variables is currently BETA release.
Enable with the “- -beta” command-line option.

expression variable <string> = nodal <string>
< (from OUTPUTS |HISTORY | FREQUENCY)
— (at time <real>)|(at step <int>)
expression variable <string> = element <string>
< (from OUTPUTS |HISTORY | FREQUENCY)
— (at time <real>)|(at step <int>)
expression variable <string> = global <string>
< (from OUTPUTS |HISTORY | FREQUENCY)
— (at time <real>)|(at step <int>)

Nodal variables may be used for functions that evaluated at nodes (e.g. boundary conditions or
user-defined nodal fields), or element centroids (e.g. material properties or user-defined element
fields). In contrast, element variables may only be used for functions evaluated at element
centroids.

By default, functions used in user-defined variables (section 9.5.6) will look for the expression
variable fields in the same region where the user-defined field is declared. In all other cases,
Sierra/SD will look for the fields in the OUTPUTS region (which also includes any fields read
from the input mesh). A from clause may be appended to the expression variable line to
override this behavior and always read fields from a particular output region.

Fields that exist on the input mesh (or copied from a transfer mesh) will typically use data from
the last step. To use values from a different step, an at clause may be may be appended to the
expression variable line.

Caution: switching steps is expensive, so this option should be avoided
for functions that will be called frequently (every element, every node,
etc). In some cases, alternative commands may be used for the same
effect, e.g. the time and step options to the TRANSFER copy
variable command (section 4.3.2).

For example, the following function would apply a load based on a function of input (representing
time) and an input mesh nodal variable (adagio_force_x).

TRANSFER mesh_with_data.exo
copy variable adagio_force_x
variable type = node
END
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FUNCTION rx
type analytic
expression variable t = input
expression variable v = nodal adagio_force_x at
evaluate expression "v*sin(2*pi*t)"
END

LOADS
nodeset 1 force 1 0 0 function rx
END

Finally, references to other functions may also be used in the "expression variable" line to define
independent variables. There are some limitations on the types of functions that are valid when
used as an expression variable. For example, any analytic functions must not directly use disp,
velocity, or acceleration as their own expression variables (although the same effect can still
be achieved via the general nodal expression variable interface, e.g. expression variable
dispX = nodal dispX).

function expression variables is currently BETA release.
Enable with the “- -beta” command-line option.

expression variable <string> = function <string>

For example the following that uses one function to convert a displacement from meters to
millimeters and uses that result in another function to apply a displacement dependent force.

FUNCTION dispX_in_mm
type analytic
expression variable d = disp
evaluate expression ‘‘1000*d[0]’’
END
FUNCTION f£fx
type analytic
expression variable t = input
expression variable dx_mm = function dispX_in_mm
evaluate expression ‘‘t22 * disp_in_mm’’
END
LOADS
nodeset 1 force 1 0 0 function £fx
END

4.10.9.3. Limitations of Analytic Functions

Analytic functions cannot be used for acceleration boundary conditions in transient analysis as
time-integration of analytic functions is not implemented.
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Analytic functions are case-insensitive. PI, Pi, pI and pi are equivalent. If it is not, then that is a
bug. Note however that if a user defines pi and Pi differently, the expression variable parser treats
them as the same, using the last definition.

This shared Sierra/SD and Sierra/SM documentation explains two capabilities that differ in one
subtle way. Sierra/SM “is” and “are” translates to Sierra/SD =. Although Sierra/SM syntax

Cer 9

treats ’=/is/are’ equivalently, Sierra/SD syntax does not recognize “is” or “are.”

In Sierra/SD, vectors are expected to be the base name with X/Y/X appended and tensors are
expected to be the base name with either 6 symmetric, or 9 full field components appended.

Use of variables in analytic expressions that match function names, such as ’sin’, ’cos’, or ’time’
are not recommended as this can cause parsing ambiguity.

4.10.10. Plane Wave (Time Domain)

Plane wave functions are tested in acoustic scattering problems. A load on a surface is analytically
described as an incident plane wave in terms of the following parameters.

Keyword Values Description

type plane_wave | identifier keyword
Direction 3 reals wave direction e; = ko/|ko|
material string acoustic material

KO real wavenumber, ko = |ko|
origin 3 reals wave origin, x¢

An acoustic material specifies the wave speed c( and fluid density pg, and the load specifies the
pressure amplitude po. The angular frequency w = 27 f determines the wave number ko = w/cy.
The corresponding time-harmonic plane wave and velocity are

p = pocos [kocot —ko - (x —x9)] v = ekL.
POCo

LOADS

sideset 1 // acoustic
acoustic_vel = 1.0
function = 65

sideset 2 // structure
pressure = 1.0
function = 65

END

Input 4.13. Example Planewave Function Specification
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FUNCTION 65
type = plane_wave
Direction =1 0 ®
origin = 0 0 0

KO = 1000
material = air
END

MATERIAL air
acoustic
c0=332.0
density=1.29

END

TIED DATA
surface 1,2
END

Input 4.14. Planewave Continued

Without the tied data block, there would be no interaction between the acoustic domain and the
structure. Instead, the boundary of the acoustic domain is rigid, and the scattered pressure field is
from a rigid boundary instead of from a structure with the specified material properties.

4.10.11.  Plane Wave (Frequency Domain)

Similarly, in the frequency domain, an applied plane wave is defined in terms of the following
parameters.

Keyword | Values Description

type plane_wave_freq, identifier keyword
iplane_wave_freq

Direction | 3 reals wave direction e, = ko/|ko|

material | string acoustic material

origin 3 reals wave origin, X

[h] The wave speed c( and the density pg are specified by the choice of material, the frequency f
is specified in the frequency block, and the particle velocity amplitude ug = po/poco is specified
in the loads block. See Example input 4.16. A time-harmonic plane wave (with the
time-dependence dropped) can then be written as

p(x) = poe~kotx=x0) (4.10.1)
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LOADS
sideset 1 // acoustic
acoustic_vel = 1.0
function = 66
sideset 1
iacoustic_vel = 1.0
function = 67
sideset 2 // structure
pressure = 1.0
function = 66
sideset 2
ipressure = 1.0
function = 67
END

Input 4.15. Example PlanewaveFreq Loads

FUNCTION 66
type = plane_wave_freq
Direction =1 0 0
origin = 0 0 0
material = air

END

FUNCTION 67
type = iplane_wave_freq
Direction =1 0 0
origin = 0 0 O
material = air

END

Input 4.16. Example PlanewaveFreq Specification

The syntax for the plane wave frequency function does not require a wavenumber, KO , but is
otherwise the same as plane_wave function from the previous section. Note that both a real and
an imaginary plane wave frequency function are applied to their corresponding real and imaginary
loads—which is currently necessary to apply the correct phase shift between real and imaginary
parts of propagating waves—and that real and imaginary loads should be given identical
amplitude, direction, and origin.
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4.10.12.  Planar Step Wave

The planar step wave, keyword="planar_step_wave” provides a means of applying a traveling
exponential step wave to an acoustic scattering problem. The function provides both a pressure on
a structure and a velocity load on an acoustic model. Parameters are listed in Table 4-25. The
exponential step wave is useful for verification problems in scattering, but is not realizable
physically. The pressure definition is similar to the plane wave, but employs a Heaviside step
function, H(t — t’), where t’ = @

o

P=P, e P G -1 (4.10.2)

A standard planar step wave function can be defined by using g = 0. This is the default behavior if
no beta parameter is specified.

Keyword Values Description

type planar_step_wave | identifier keyword
Direction 3 reals wave direction d

material string acoustic material

origin 3 reals wave origin, X,

beta real exponential decay factor, 8

Table 4-25. — Planar Step Wave Parameters.

4.10.13.  Spherically Spreading Wave

A spherically spreading wave, keyword=spherical_wave, computes the response of a point source
excitation in an acoustic medium. The function applies both a pressure on the structure and a
velocity load on an acoustic model. Parameters are listed in Table 4-26. Figure 4-14 illustrates the
geometry.

Keyword Values Description

Type spherical_wave | identifier keyword

origin 3 reals wave origin, X,

reference_location 3 reals reference location R

material string acoustic material (alternate to CO)
pressure_function string new function for user supplied pressures

Table 4-26. — Spherical Wave Parameters.

A spherical wave is used only in transient dynamics analyses. An example input is described in
input 4.17. Function 1 in the example defines the spherical wave function, which describes the
geometry of the loading. The time history of the loading is referenced in the function, function 11
in the example, must be a simple function of time. It could be a linear function, a runtime
compiled function or a table. It cannot be a function of space and time.
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Structure

Spherical Wave

Figure 4-14. — Spherical Wave Geometry.

LOAD 10
sideset 1001
acoustic_vel 1.0
function =1
sideset 50000000
pressure 1.0
function = 1
END

FUNCTION 1

type = spherical_wave

origin = 0 1000 0

pressure function = 11

material = 1000 //material for acoustic medium
END

FUNCTION 11
Data 0.0 0.00000
Data le-6 0.00001
Data 2e-6 0.00002
END
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Input 4.17. Spherical Wave Example

4.10.14. Undex Structural Acoustic Loads

For Navy scattering applications, the “multicycle_bubble” and " “Undex_shock_wave” functions
provide a numerical function for analysis of exterior shock loading. The parameters of the loading
are listed in Table 4-27. Details of the theory and implementation are available from the Navy
Surface Warfare Center, Carderock Division (NSWC/CD). An example input is shown in

input 4.18.

Keyword Values Default | Description
single_decay
double_decay
hicks_bubble

type Undex_shockwave | required | identifier keyword
charge_weight real required | in pounds of TNT
charge_location 3 reals required | explosive location
waterline_depth real 0

free_surface_flag integer 1

material string required | acoustic material

Table 4-27. — Undex Load Parameters. input coordinates are in inches.

FUNCTION 67
type = hicks_bubble
charge_weight = 10
charge_location = 100.0 0. 50
waterline_depth 10
free_surface_flag = 1
material = water

END

MATERIAL water
acoustic
c0=4872
density=62.4

END

Input 4.18. Example Hicks Bubble Function Specification

A “free_surface_flag” of one indicates generation of an applicable image source above the surface
of the water, where a “free_surface_flag” of O indicates a load without a free surface. In this
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routine, “z” is upwards and normal to the water surface. The depth is the distance below the water
surface, 1.e.
Wateﬂine_depth = Zwaterline — Zcharge

where zcparge 1 the z component of the charge location. If the free surface flag is not specified, no
effects of the surface are included.

One special type of shock wave (contained within the general “Undex” shock wave function
definition), is that of a single decay shock wave. The single decay function has the following
simple analytical solution:

P(w,r,1) {0.0 t < toa(r)
w,r, = Poa(w.)
axpla—toa(n)/oewy L7 toa(r)
Where:
w = charge weight (Ib. TNT)

r = standoff distance (ft)
t = time (seconds)

¢ = sound speed in water (ft/s)
S ai
Pmax(W,r) = ki (\/I‘__)

k1, a; = similitude constants
3 az
(YW
O(w,r) = kovw | —
-
k>, a> = similitude constants

toa(r) = r/c = time of arrival

4.10.15. Fluid Structure Interaction

For fluid-structure interaction (FSI) applications, the FST keyword provides a means of applying a
prescribed nodal pressure load along the wetted surface. The FSI function is referenced in the
Sierra/SD input as follows,

LOADS
sideset 1
pressure 1
scale 1
function 1
END

FUNCTION 1
type = FSI
END
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The above input file assumes sideset 1 is the wetted surface. Sierra/SD will communicate nodal
locations of the sideset to the fluid. These are the locations at which pressures are sent to
Sierra/SD. Then, Sierra/SD calculates a consistent load based on the values at the nodes. Finally,
if restarts are needed, use restart = read and/or restart = write in the solution section.

Sierra/SD also supports two-way coupling for Fluid-Structure interaction. Interpolation from
structural nodes to fluid nodes and from fluid nodes to structural nodes is implemented and unit
tested. Figure 4-15 shows the infrastructure for FSI. There are many details to use of this
coupling, such coupling is turned with the “acoustic_coupling” transient solution option.

Coupling to the Sierra code Fuego through Sierra Toolkit Transfers is currently being
implemented. Users of current sprint releases must be careful to not use the “Fuego_coupling”
transient solution option, as this is only partially implemented.

Structure Y N\ 15 Fluid
df dJ =N L (JCJ )dL
Sierra-SD Coupler Sigma-CFD
s e ¥
Fi=F/N_(x)) T e I[prf]dA
Transformation .
S
N;(x;)

J=1,...#fluid nodes
L =1,...#structure nodes

Figure 4-15. — Fluid-Structure Interaction (FSI) Infrastructure.

4.10.16. Blending

In some applications, a combination of functions is necessary to accurately describe the loading.
For example, a blended shock/bubble function is applied to a ship surface. The shock wave
reaches the surface first, and is the effective loading until the bubble function arrives. Once the
bubble arrives, the shock may be ignored, as it may not propagate through the cavitated region.
This is illustrated for the first crossing case in Figure 4-16, and a typical input for this is shown in
input 4.19. Parameters of the blended function are shown in Table 4-28. Several examples for the
more general Nth crossing case are shown in Figure 4-17, with a typical input shown in input 4.20.

LOADS
sideset 55
pressure 1
function 55
END
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Keyword Parameter | Description
Method string “first_crossing”, “second_crossing”
or “Nth_crossing”
N int (for “Nth_crossing”) number of crossings
Primary Function string shock function
Secondary Function string bubble function

Table 4-28. — Blended Function Parameters.

Pressure
N
N (6]
T T

-
o
T

0.2

T T

—— Shock
Bubble | 7
X Blended

0.4 0.6 0.8 1

Time

Figure 4-16. — [llustration of first crossing blended function.
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FUNCTION 55 // blended shock/bubble
type = blended
method = first_crossing
primary function 551
secondary function 552
END

FUNCTION 551
END
FUNCTION 552

END

Input 4.19. Blended First Crossing Function Example

Applied pressure - first crossing Applied pressure - second crossing

o2 o2
&OE EOE
06 06
o2 02
Time Time
Applied pressure - third crossing i Applied pressure - fourth crossing

012 012
g g 1
EGB EDS
0s 0s
04 04
02 02
0 L L L . L L L + L o 0 L L L . L L L L L o
0 0001 000z 0008 0004 0005 0006 0007 0008 0003 001 0 0001 000z 008 0004 0005 0005 0007 0008 0009 00t
Time Time

Figure 4-17. — Illustration of Nth crossing blended functions.

LOADS
sideset 55
pressure 1
function 55
END

FUNCTION 55 // blended shock/bubble

type = blended
method = Nth_crossing
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N =2
primary function 551
secondary function 552
END
FUNCTION 551
end

FUNCTION 552

end

Input 4.20. Blended Nth Crossing Function Example

4.10.17. Matrix-function

This section provides for input of a matrix function as is used in a cross correlation matrix for input
to a random vibration analysis. In the limit of a single input these reduce to a single function. Note
that a matrix-function can have arbitrary symmetry and can be complex. An important feature of
the matrix-function is that each entry of the matrix is a function of frequency (or time).

The Matrix-Function is illustrated in the following example.

MATRIX-FUNCTION 1
name ’cross-spectral density’
symmetry=Hermitian
dimension=2x2
nominalt=20.1
data 1,1
real function funcll scale 1.0
data 1,2
real function funcl?2
imag function funcl21l scale -3.0
data 2,2
real function func22 scale 0.5
END

Matrix functions have the following parameters.

NAME allows you to optionally enter a string by which the matrix-function will be identified in
subsequent messages.
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SYMMETRY identifies the matrix symmetry. Options are “none”, “full”/*symmetric”,
“asymmetric” and “Hermitian”. If the matrix is not square, only “none” can apply. The
default for this optional parameter is “‘symmetry=none”.

DIMENSION specifies the dimension of the matrix. If not specified, it defaults to 1 x 1. The
dimension is specified as the number of rows, an “x” and the number of columns. No space
should be entered between the terms.

DATA A data entry specifies one matrix-function entry. It must be immediately followed by the
matrix location row and column pair. Again, no spaces may be inserted in the location
entry. The keywords are real and imag.

* Real identifies entry real component. It must be followed by a function reference (see
Section 4.10), and an optional scale factor.

* “Imag” identifies the entry imaginary component. It must be followed by a function
definition, and an optional scale factor.

nominalt nominalt Used only for echoing the matrix values. If input_summary is specified as
an “ECHO” option (see Section 9.9) general information from the matrix function are
written to the log file (the .rslt file). If, a nominalt entry also exists, then the matrix entries
are written for that nominal time (or frequency). Only one such output can be specified. It
provides a means of checking the input to assure the matrix values are correct at a single
time (or frequency) value.

4.10.18. Alternate Table Interface

An alternate Table input is provided. See Section 4.10.19 for details about tables. However, for
many inputs, the individual specification of each function on each matrix element is both tedious
and inefficient. Table input is provided primarily for efficiency reasons. It cannot be mixed with
the individual methods, i.e. if the table keywords are used, the “data” keyword must not be used.

Application of table input to matrix-functions requires three tables: Real valued data, Imaginary
valued data, and A table which associates each nonzero row and column of the matrix-function
with appropriate rows of the real valued and imaginary valued data. Each has a keyword.

Real Table which is a two-dimensional table containing all the real valued entries for each entry
in the matrix. Each column contains the frequency data for that entry.

imag Table which is a two-dimensional table containing all the imaginary (complex valued)
entries for each entry in the matrix. Each column contains the frequency data for that entry.

Table Index which is a two-dimensional table providing a map from the matrix elements to the
data columns in the real and imag tables. This index is a 4 column table. Columns 1 and 2
are the row, column index of the matrix-function. Column 3 is the row index of the real
data, while column 4 is the row index of the imaginary data. If the value in column 3 or 4 is
zero then the corresponding data is zero See the example in input 4.22.
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The table entry has a fixed step. Each column must have the same number of values.

MATRIX-FUNCTION 1
name ’spectral density’
dimension=2x2
symmetry=Hermitian
real Table real_data
imag Table imag_data
Table INDEX index_data

END

Input 4.21. Example Matrix-Function

TABLE real_data
size=3 550 // 550 freq samples, 3 matrix locations

delta=1 0.5
datafile="real_data.txt’
END

TABLE imag_data
size=1 550 // 550 freq samples, 1 matrix location
delta=1 0.5
datafile="imag_data.txt’
END
TABLE index_data
size=3 4
rowfirst // transpose matrix for simpler input
dataline // row col real imag
1 1 1 0 // 1lst real data, no imag
1 2 2 1 // 2nd real data, 1st imag
2 2 3 ® // 3rd real data row, no imag
END

Input 4.22. Example Matrix-Function Tables
Each matrix entry in the matrix-function must reference a row of a two-dimensional table. In the

table columns contain the frequency response for that entry. The number of rows required for each
table depends on the matrix symmetry and on the index in the “Table Index”.

4.10.19. Table

A (1 dimensional) table is implemented by including a file with one value per line. 1-dimensional
tables have identical behavior to linear functions (section 4.10.2) while typically being much
faster and more memory efficient, especially for many data points.
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A small section in the main input deck specifies the initial time and time increment. The data must
be sampled at a uniform interval.

Tables are used by being referenced in other sections of the input deck. Tables offer support for
multi-dimensional data (up to dimension 4). Note that tables of dimension greater than 1 are
complicated.

Each Table includes some required and optional parameters, as shown below.

Table 4-29. — Table Section Options.

Parameter | Default | Description

dimension | optional | number of dimensions in the table

size required | table size in each direction

datafile required | ASCII file containing the values at each point
dataline required | flag indicating that all data values will follow.
origin Zero origin of the table (for scaling)

delta 1 interval between points in each direction
rowfirst transpose data on input

The dimension identifies the table shape. For example, dimension=2 indicates a table of XY
values. If this parameter is not defined, the dimension will be automatically inferred from the
number of entries in size. If it is defined, it must match the inferred value, and thus only serves
as a check on the table size.

The size parameters indicate the individual table hyper-cube dimensions. For example, in a table
of dimension=2, the size parameter indicates the number of rows and columns in the table. The
total number of entries is the product of all the terms in the size.

The text file containing the table data values is specified using the datafile parameter. Data
values are separated by white space. The layout of the file is not important, but the order is
important. The first dimension cycles the fastest. For a dimension=2 table, the file list begins
with the entries for column 1. The number of entries in the file must match the table size.
Comments are not permitted in the datafile, but white space is permitted.

The dataline parameter indicates that the tabular data is included in this file following the
parameter. If dataline is specified, then datafile must not be specified. The format is identical
to the datafile. It is efficient to use dataline for smaller data sets, and datafile for larger.

The rowfirst is provided to transpose the data on input. It applies only to 2D tables. If this
keyword is present, then the table values will be interpreted as if the table had been transposed.

Both the origin and the delta parameters are optional values provided for interpolation. The
implicit integer entries of the table are converted to real values for function evaluation by use of
these parameters.
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Function evaluations within the range of the table can be linearly interpolated. The range in each
direction is determined by the following.

origin; < range; < origin; + (delta; - size;) (4.10.3)

Evaluations of the table for regions outside the valid range will use of the value of the nearest data
point, just as with linear functions.

In contrast to a function (see Section 4.10), tables require memory only as needed. All processors
store the full input deck in memory. However, tables can store a large amount of data in the
datafile. This file is opened and data is read from it only as needed. For this reason, tables are
preferred over functions when only a few processors may need access to a large amount of data.
Tables are the only option when a function of more than one variable is required.

An example of a two-dimensional table definition is shown below.

TABLE example-2D-table
dimension=2
size = 200 300 // note: don’t put in an x
origin 1.0 0.0 // optional. defaults to O ©
delta 1.0 0.9 // optional. defaults to 1 1
datafile 'multi_dimensional_table.txt’

END

4.11. Multipoint Constraints

Multipoint constraints (MPC) are constraint equation applied directly to the stiffness matrix.
Some analysis codes treat them as pseudo elements. An MPC is not an element, and is
inaccessible through Exodus. It is a displacement constraint,

n

ZC,’M,‘ZV.

i

The (nonzero) coefficients c; are real. The number of (nonzero) coefficients is assumed to be
approximately 1. The u; are displacement of degrees of freedom. By default, r vanishes.

Unlike many Finite Element programs, Sierra/SD does not support user specification of
constraint and residual degrees of freedom (DOF). In serial solvers the partition of constrained
and retained degrees of freedom is performed simultaneously by Gauss elimination with full
pivoting so the constrained degrees of freedom are guaranteed to be independent. For GDSW the
constraints are specified as Lagrange multipliers which involves no such partitioning. Redundant
specification of constraint equations is handled by elimination of the redundant equations and
issue of a warning. User selection of constrained DOF in NASTRAN has inconvenienced analysts
who must ensure that the constrained DOF are independent and never specified more than once.
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Each MPC is specified in the input deck with a section descriptor. Note that a separate section is
required for each equation (or degree of freedom eliminated). An optional coordinate system may
be specified on the input 2; see section 4.9. The MPC will be stored internally in the basic
coordinate system (coordinate frame 0). The input consists of a triplet listing the node or nodeset,
a degree of freedom string, and the coeflicient of that degree of freedom. The degree of freedom
strings are x, y, z, Rx, Ry, Rz. They are case-insensitive. If the global ID of the node in the MPC
does not exist in the model, the code will exit with a fatal error.

GDSW is required for inhomogeneous MPCs. The solution method must not be QEVP.
Sierra/SD will exit with a fatal error if a model including non-homogeneous MPCs violates either
of these requirements.

The MPC can apply some general commands that apply to the whole MPC as shown in
Table 4-30. Additionally, the MPC can include multiple lines that define the MPC equation entries
as shown in Table 4-31.

Table 4-30. — General MPC commands.

Keyword Type Description
coordinate string Optional coordinate frame for MPC
rhs real  Optional right-hand side constant

Table 4-31. — MPC Equation lines.

Command Line Description
integer x|y|z|rx|ry|rz real Equation entry using single global node id
nodeset nodeset_id x|y|z|rx|ry|rz real Equation entry using nodeset

with EXACTLY one node

In this first example the MPC is defined with respect to a coordinate system dirl. The
displacement at the x degree of freedom of node 4 is constrained to be equal to the average x
degree of freedom of nodes 2 and 3 plus 5, i.e. u4x) — 0.5 * u ) — 0.5 u;3,) =5.0.

MPC
coordinate dirl
4 x 1.0
2 x -0.5
3 x -0.5
rhs 5.0
END

2 At this time, all the nodes in an MPC must be associated with the same coordinate system.
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In this next example, the x degree of freedom of the node in the nodeset 101 is constrained to be
equal to the y degree of freedom of the node in the nodeset with name aft_plate. Note that both
nodesets must contain exactly one node.

MPC
nodeset 101 x 1.0
nodeset aft_plate y -1.0
END

Different algorithms are used to eliminate constraints in serial and in
parallel. In some problematic cases, this leads to differences in simu-
lation results. The only way to change constraint elimination algorithm
is to switch between using one MPI rank or using more than one MPI
rank.

Note also that there are practical differences between rigid elements
(described in the following sections) and constraint equations that are
nominally identical. For parallel solutions, we are currently using an
augmented Lagrange type solution method with the rigid links. This
means that terms are added to the stiffness matrix in parallel with the
constraints. In most cases, this renders the matrices positive definite,
and increases robustness and solution performance with no penalty for
accuracy. Thus, rigid links are recommended whenever possible in
parallel solutions.

Replacing rigid links with stiff beams may cause ill conditioning and
simulation inaccuracies.
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5. SOLUTION CASES

Sierra/SD supports a wide variety of different analyses or solution methods. Input consists of an
Exodus mesh file and a text input deck. Solution methods are specified in the text input deck in

the solution section.

The Solution section defines the type of physics to simulate. Analysis types are shown in
Tables 5-1, 5-2, 5-3, 5-4. Relevant options are given in the detailed description of each solution
case. Also, general options are shown in Table 4-8 and are described in Section 4.6.

Table 5-1. — Eigenvalue Solvers.

Solution Type Description
eigen Modal solution to extract natural vibration modes of K.M
aeigen Modal solution with Anasazi
buckling Modal solution solving for buckling modes
CBR Craig-Bampton reduction for creation of superelements
geometric_rigid_body_modes Exact analytic definition of the rigid body modes
blk_eigen Modal solution on a block by block basis
largest_ev Largest eigenvalue of K,M
QEVP Solution to quadratic eigenvalue problem
Table 5-2. — Modal Solution Types.
Solution Type Description
ModalFrf Frequency response using modal displacement or modal
acceleration
modalranvib Random vibration using modal superposition
modalshock Shock response spectra using
modaltransient Transient analysis using modal superposition
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Table 5-3. — Direct Solution Types.

Solution Type Description
Directfrf Direct computation of frequency response functions
NiStatics Nonlinear static solution
NlTransient Nonlinear transient solution
statics Static solution
transhock Shock response spectra via direct implicit transient
transient Linear transient solution
Table 5-4. — Preprocessing and Postprocessing Solution Types.
Solution Type Description

receive_sierra_data
model_check

Cldamp
DDAM
preddam
gap_removal

Input stress, displacement, and material state from a
preload Sierra/SM analysis

Check input for errors, generate and output diagnostics,
no solve

Approximate modal damping contributions

Dynamic design analysis method (U.S. Navy)

Gather data for use by DDAM solution case

Do contact search and apply the contact gap removal
algorithm

superposition Expand superelement results to physical degrees of free-
dom

tangent Compute tangent stiffness after a nonlinear load step

tsr_preload Input data for thermal structural response

fatigue Postprocess modal random vibration results to predict
high cycle fatigue life

MPF Compute and output modal participation factors

waterline Determine waterline of a floating structure

5.1. Defining Solution Cases

It is important to distinguish the two different kinds of Solution section. A Solution section may
do one analysis. In this case a loads section is used. Or a Solution section may do multiple
analyses. Here each case may specify a 1oad section. Here’s an example of a Solution section that
does one analysis. The eight lowest eigenvalues of a structure are requested.
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SOLUTION
eigen
nmodes 8

END

A more complex analysis could perform a static preload, followed by computation of updated
tangent stiffness, and then a (linearized) eigendecomposition with this input:

SOLUTION

case ’'NonlinearStatics’
nlstatics
load=10

case ’'tangent’
tangent

case ’eig
eigen
nmodes 8

END

5.1.1. Multicase Solutions

The solution methods of Tables 5-1, 5-2, 5-3, and 5-4 may be a part of a multicase solution. Using
one input deck, it is possible to run any valid sequence of simulations. For example, a static
preload, followed by computation of updated tangent stiffness, and then a (linearized)
eigendecomposition.

In a multicase analysis, each analysis subsection begins with the word case followed by a unique
label. Cases are run sequentially from top to bottom. Optional indentation to emphasize this
hierarchical relationship is recommended. The label is used to set the output file name and is used
in a variety of informational, warning, and error messages. Note: the label name for each case
must be unique.

The results and outputs from one case will be used to drive subsequent cases. For example the
modes computed by an eigen solution case will be used in a subsequent modaltransient solution
case. As another example the stresses and displacements read in from receive_sierra_data
solution case will be used to define the initial geometry and geometric stiffness for computing
eigenvalues.

In a multicase solution, the system matrices (mass, stiffness and damping) will typically be
computed once. Matrix updates between solutions may be specified by selecting the tangent
keyword (see Section 5.26).

159



5.1.2. Multicase Options

A solution type has specific options. Only transient solution cases have time steps for example.
On the other hand, Table 5-5 shows options that may apply to each solution case. They may be
specified either above the case control sections, or within the section. The specification above the
case control section is the default value. Specifications within the case sub-blocks apply to that
sub-block. In the example given in 5.1.3, the restart options are thus none for most sub cases,
buread for the eigen analysis and read/write for the linear transient.

Table 5-5. — Multicase Options.
These parameters may be specified as defaults above the case specifications, or they may be specified
for each case to which they apply.
Option | Description Options
restart | Restart options see Section 4.6.2
solver | selection of solver | see Section 4.6.3

The default load applied to each solution case in a multicase solution is controlled by the input
deck Loads section 4.5. An input deck may specify a sequence of solution cases. In order to
specify a load for a specific solution case only, in addition an input deck may solve contain one or
more labeled Load sections. A load specified in a 1oad section overrides the load in the loads
section. A particular solution case simply specifies the load by name. In the example given

in 5.1.3, load ‘10 will be applied during the nonlinear statics solution case (case
’Nonlinear_Statics’). Generic syntax for the Load and Loads input deck sections is presented in
the General Commands section 4.5.

5.1.3. Multicase Example

In the example which follows, a nonlinear statics computation is followed by a tangent stiffness
matrix update. An eigendecomposition of the updated matrix is computed. Two sets of Exodus
output files will be written. Output from the statics calculation will be in files of the form
‘example-nlistatics.exo’. Eigenvalue results will be in the form ‘example-eig.exo’. The tangent
solution normally produces no output in the Exodus format.

Transient and modaltransient solution cases are run sequentially in time. For the example
below “Trans1’ will start at time 0.0 and step through 100 steps of at a step size of 1e-8 and then
through 4000 steps at a step size of le-6. The final time value of case “Trans1’ will be

107810% + 107° x 4 10° = 0.004001. Case ‘Trans2’ will start at 0.004001 and run an additional
107* x 210?. This will end at time 0.024001.
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SOLUTION
restart=none

case ’'nlstatics’
nlstatics
load=10

case ’'tangent’
tangent

case ’eig’
eigen
restart=read

case ’Transl’
transient
restart=read
restart=write
time_step le-8
nsteps 100
flush 50
rho=0.9
load=20

case ’'Trans2’
transient
restart=read
restart=write
time_step le-4
nsteps 200

title="example multicase’

le-6
4000

flush 10
load=20
END
Input 5.1. Multicase Example with Trans1 and Trans2
5.2 CJdamp Solution Case
Parameter Type Default | Description

Table 5-6. — CJdamp Solution Case Parameters.

The CJdamp solution provides a method to compute the equivalent modal damping terms
introduced from material damping in lightly damped viscoelastic materials.>! CJdamp is an




approximate method which assumes that the mode shapes and frequencies are not modified by the
damping. The modal damping is related to the fraction of energy in block.

The CJdamp method is effectively a post-processing step following an eigendecomposition and
must be run in a multicase solution. For each of the modes in the eigen analysis, a strain energy is
computed on an element basis. These are summed at the block level.

in block j
SE} = Z o7 Kelem g, (5.2.1)

elem

The total strain energy TSE' is the sum of the strain energy contributions in mode i from all
blocks. We define the block strain energy ratio for mode i as,

R = SE'/TSE' (5.2.2)

The CJdamp contribution for the modal damping of mode i, is given by,
1 i
&= 5 ) Riny () (5.2.3)
J

n;(fi) is the CJetaFunction contribution from block j evaluated at the natural frequency of
mode i. More information is available in Section 6.5.9.

Note that cases following the CJdamp solution will include the computed
damping as part of their damping calculation.

An example follows:

SOLUTION
case eig
eigen
nmodes=30
case Johnson
CJdamp
case frf
ModalFrf
END
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5.3.

Craig-Bampton reduction Solution Case

Parameter

Type

Default

Description

nmodes

Integer

10

Number of modes to extract.
See section 5.8.1

shift

Real

-1.0e6

Shift to apply to matrix
system to allow solving
singular systems. See
section 5.8.2

untilfreq

Real

Inf

Target frequency to reach.
See section 5.8.3

correction

nodel|values)|
vectors

values

Correction method for rigid
body modes

RbmDof

string

123456

Defines which rigid body
modes to which
correction=vectors applies

use_residual_vectors

File

false

Activates residual vector
calculations.

resid-
ual_vectors_node_list_file

File

N/A, no
file read

Only valid when
use_residual_vectors is true.
Designates the nodelist file to
be read from to calculate
residual vectors.

resid-
ual_vectors_solver_options

String

N/A, uses
default
solver
options

Only valid when
use_residual_vectors is true.
This allows a user to
designate a SOLVER_OPTIONS
section specific to the residual
vector calculation. If a
solver_options parameter
is used for the eigen solution,
it will not be applied to the
residual vectors calculation
unless it is also specified with
the resid-
ual_vectors_solver_options
parameter.

ModalFilter

string

none

Modal filter to define modes
to retain. See section 5.8.4

Table 5-7. — Craig-Bampton reduction Solution Case Parameters.
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It can be advantageous to reduce a model to its interface degrees of freedom. Reducing a
subsystem model to a linearized, Craig-Bampton model can greatly improve computation time of
subsequent analysis and potentially make it possible to share dynamic properties of the model
without requiring details of the interior.

There are many types of component mode synthesis techniques (or CMS), of which the
Craig-Bampton approach is one of the more popular. In this approach the model is reduced to a
combination of fixed interface and constraint modes. These terms are defined as:

Fixed interface modes. These are eigen modes of the structure if we fix the interface, by setting
interface degrees of freedom to zero. These modes are represented by ®@. The analyst
decides how many of these modes to retain.

Constraint Modes These are the response of the structure if all interface degrees of freedom are
clamped except one. That degree of freedom has an imposed displacement of 1.0. These are
not modes in the usual sense, but they provide a spatial basis. Represented by W, there are
as many of these constraint modes as there are interface degrees of freedom.

The Craig-Bampton reduction solution reduces an entire structural model to its reduced system
and transfer matrices. Solution Parameters are listed in the table above, and correspond to the
parameters required for an eigendecomposition (Section 5.8). In addition, a CBModel section
must be defined elsewhere (see Section 5.3.1). Any boundary conditions specified are applied
before reducing the model.

We note that sensitivity analysis can be performed in Craig-Bampton reduction, though the
process is somewhat different from other types of sensitivity analysis. Section 5.3.1 contains more
information about sensitivity analysis in Craig-Bampton models.

The method will write system matrices and general information. Each parameter is described
below.

nmodes: The CB model is composed of fixed interface modes and constraint modes. The
number of constraint modes is determined by the interface. nmodes selects the number of
fixed interface modes. The fixed interface modes are eigenvectors of the interior of the
structure, and provide a basis for internal deformation. Any number of these modes may be
specified. Typically, frequencies up to about twice the system frequency are required for
accuracy. See section 5.8.1 for more information.

untilfreq: Alternative to nmodes for specifying fixed interface modes. See section 5.8.3 for more
information.

shift: Used in conjunction with nmodes or untilfreq for the solution of singular eigen systems.
See section 5.8.2 for more information.

correction: As shown in the Theory Manual, the null space of the stiffness matrix is determined
by the sum of two large terms: «.. = K. + K.,¢. With parallel iterative solvers, it may be
difficult to determine this quantity as accurately as desired. In particular, it is possible for
errors in the solver to render the reduced matrices negative definite, which can cause
instability in subsequent transient analysis. It is strongly recommended that low solution
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tolerances be used in developing CB models. In addition, the matrix may be post-processed
to correct these errors. The post-processing options are as follows:

none no correction will be applied.

values (default) no corrections will be made to the eigenvector space, but the negative

eigenvalues will be adjusted to zero.

vectors This option is available in models that have no boundary conditions besides those

associated with the constraint modes, so that the CBR model is floating and has six
rigid body modes. If boundary conditions are present, there is a fatal error.
Additionally, if the model does not have six rigid body modes for another reason (for
example a gap contact constraint that impedes rotation) then the correction=vectors
option is not well posed, should not be used, and could cause a serious degradation of
model behavior. The correction=vectors will compute zero-energy eigenvectors
geometrically (exactly), and these are used to correct both the eigenvalues and the
eigenvectors. This is more involved than correcting the eigenvalues alone, but it is not a
significant computational cost, and can improve the usefulness of the resulting model.

If correction=vectors is selected, one may also optionally determine which of the
6 zero-energy modes are used. RbmDof is the parameter to use to select those modes.
It is followed by a string indicating which dofs are active on the interface. The string
contains the numbers 1 through 6, where 1 represents translation in the x coordinate
direction. These specifications apply in the basic coordinate frame.

As an example,

SOLUTION
CBR
nmodes=20
shift=-4e6
correction=vectors
RbmDof="123"
END

MPCs may not share nodes with interface nodes in CBR.

The entire reduced order model and associated transfer matrix must fit
into memory. On a parallel machine, this memory is required on every
processor. The dimension of the model is the sum of the numbers of
constraint and fixed interface modes.
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Static solutions with all interface degrees of freedom clamped are part
of the reduction process. If the interface dofs do not fully constrain the
system, then the linear system may be singular. In such cases the solution
is not reliable. Due diligence includes verifying the reduced order
eigendecomposition against the full system. One may also compare the
retained mass.

The CBR solution is not tested with preload or any other multicase
solutions besides a preceding eigen solution.

Inertia Tensor for Craig-Bampton Reduction

A reduced inertia matrix, I,, may be output from a CBR (Craig-Bampton Reduction) analysis.
The Inertia Tensor may be used to apply initial conditions to the superelement in some
applications. The input deck syntax is described in the CBModel section, 5.3.1. @ is the matrix
of mode shapes used for the CBR analysis. It consists of both fixed-interface modes and constraint
modes. 1, is defined by

I,, = ®'R,

The number of rows in I, is the number of CBR modes, and the number of columns is the
number of rigid body vectors. For example, for the three translational rigid-body modes and
assuming three degrees-of-freedom per finite element node,

(1 0 0]
010
001
R=|1100
010
001

Mass Inertia Matrix for Craig-Bampton Reduction

The Mass Inertia Matrix is used in some applications to apply a load to the interior degrees of
freedom of a model. ! The mass inertia matrix is defined as,

I, = ® MR.

where M is the mass matrix of the unreduced model.

"Neither the inertia tensor, nor the mass inertia matrix may be applied in Sierra/SD. They are output quantities.
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5.3.1. CBModel

The CBModel section provides a method of specifying information related to a Craig-Bampton
model reduction of the entire structure. It is required by the CBR method described in Section
5.3.

The “interface” is that portion of the model which will interface to the external structure. The
interface is defined by collections of nodes specified as nodesets or sidesets. After eliminating
boundary conditions, the active degrees of freedom on the nodes become the interface.

Table 5-8. — CBModel Parameters.

Keyword type Description
nodeset int/string/list | Exodus nodeset name(s) and/or id(s).
sideset int/string/list | Exodus sideset name(s) and/or id(s).
format string specifies the output format.

MATLAB - MATLAB.m format

DMIG - NASTRAN DMIG format
DMIG* - NASTRAN long DMIG format
netcdf - netcdf format'

file string specifies the file name for output.
GlobalSolution bool ‘yes’ to compute the eigenvalues of the
reduced system.
inertia_matrix bool ‘yes’ to compute the inertia tensor
sensitivity_method string specifies the method to

compute CBR sensitivities.

constant_vector - constant vector method

finite_difference - finite difference method
spoint_offset integer offset for spoints in DMIG format

"The netcdf format is the database upon which exoduslI is built. SEACAS tools, MATLAB and Python can

all read netcdf files.

The input deck keywords shown in Table 5-8 are described below.

nodeset: The nodeset keyword specifies the nodes to be placed in the interface. Nodesets are
defined in the Exodus file. A nodeset ID or name must follow the nodeset keyword.
Alternatively, a list of nodesets (in MATLAB type format) can be specified. This is
identical to the history file definition of Section 9.2, and follows the rules for integer lists
detailed in Section 4.1.

sideset: A sideset may also be used to specify the interface nodes. Any number of nodeset and
sideset combinations are allowed. The interface is the union of all such entries.

format: The preferred format is the netcdf , format. This is a superset of the Exodus format. It
is the format that must be used if the reduced model is to be inserted into another Sierra/SD
model as a superelement. The DMIG format is for use with NASTRAN. It contains only
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the reduced system matrices (no maps, coordinates, etc). The MATLAB format is a
convenience.

file: The file keyword is required to specify the output file name.

GlobalSolution: As a convenience, we will optionally compute the eigenvalues of the reduced
system. It is strongly recommended that these values be compared with the eigenvalues of
the full system to ensure that the model has converged over the frequency of interest.
Moreover, users are strongly advised to review section Craig-Bampton Model Reduction of
Sierra/SD How To** before computing superelements.

inertia_matrix: The inertia matrix defined in Section 5.3 is optionally computed and written to
the super-element files with i the reduced mass and stiffness matrices.

sensitivity_method Currently, the constant vector and finite difference methods are available for
computing sensitivities for Craig-Bampton reduction. The default is the constant vector
method.

spoint_offset NASTRAN DMIG output defines “spoint” variables that store generalized
degrees of freedom. The identifiers the generalized output variables must be unique. The
range of identifier output may be specified with this option. By default, “spoint_offset” is
10000 which means spoints are numbered as 10001, 10002, 10003, etc.

Specify “displacement” in the outputs section (9) to output the constraint modes and fixed
interface modes that were used as a basis to generate the reduced order system to the Exodus file.
First the fixed interface modes are output, followed by the constraint modes. The eigenvalues of
the fixed interface modes correspond to the mode shapes. For the constraint modes an integer
index replaces the eigenvalues. These modes may be visualized and evaluated using any of the
standard tools.

Data in Table 5-9 can be written to a file. NumC, NumkFEig, Kr, Mr, Cr, and cbmap are written by
default, but may contain zeros if applicable.

OTM Output is currently BETA release.
Enable with the “- -beta” command-line option.

The Output Transfer Matrix (or OTM) depends on data in the history section (see Section 9.2).
Specifically, the output nodes and elements, and the output variables need to be specified in the
history section in order to activate OTM output. Without all of those data points, the OTM will
not be written. OTM output is also only available with the "-beta" flag. For simplicity, and
because the OTM describes a linear transfer matrix, only a limited subset of results are provided.
In particular, displacements and the natural strains and stresses may be written. Other arguments
in the history section will be ignored. We think of the OTM as having 6 parts.

o, VY, u
T=|®, |, |e :qu]. (5.3.1)
o, Y, o “r
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Table 5-9. — Data output for Craig-Bampton Reduction.

Variable

Description

NumC
NumEig
Kr
Mr

Cr

cbmap

OutMap

O™

OutElemMap

OTME

number of constraint modes

number of fixed interface modes

Reduced stiffness matrix.

Reduced mass matrix with wtmass applied.

Reduced damping matrix. Only available for dashpots and
block proportional damping.

A two column list providing a map from each interface de-
grees of freedom to the node and coordinate direction of the
global model.

The first column of this list is the node number (1:N) in
the structure. The second column indicates the coordinate
direction as follows.

Number Description
1 X
y
//
Rotation x
Rotation y
Rotation z
acoustic pressure

NNk W

The “cbmap” has the same number of rows as Kr or Mr.

A map of the nodes in the output transfer matrix. OutMap(i)
is the global node number for each node in the output. There
are always 6 rows of output for each node. Thus, OutMap(1)
corresponds to rows 1 through 6 in the OTM. This is only
output with a properly populated history section and the "—
beta" flag.

Output Transfer Matrix to provide a transfer function from
the interface dofs to internal degrees of freedom or other
results. This is only output with a properly populated history
section and the "-beta" flag.

A map of the elements in the output transfer matrix, OTME.
OutElemMap(i) is the global element number for each ele-
ment in the output. There are always 6 rows of output for
each element.This is only output with a properly populated
history section and the "—beta" flag.

Output Transfer Matrix to provide a transfer function from
the interface dofs to internal elements. This is only output
with a properly populated history section and the "—beta" flag.
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The amplitude g of the internal constraint modes is typically computed in the next level analysis.
Also, ur is the vector of interface displacements. The fixed interface modes (eigenvalues of a
clamped boundary) are represented by @, and the constraint modes by W.

The left-hand side vectors represents internal results (displacement, strain and stress) which are
computed from the interface results. Any of the output results may be omitted, and the OTM will
retain only nonzero components. For example, if only displacements are required, the matrix
reduces to [®, ¥, ]. The OTM matrix is a rectangular matrix, and it is typically full. An example
CBModel section follows.

CBMODEL
nodeset=1:2 // nodes from nodeset 1 and 2
format=netcdf // use a netcdf format file
file="junk.ncf’

END

The reduced inertia matrix I for Craig-Bampton Reduction defined in Section 5.3 may be
computed and written to the super-element files with the reduced mass and stiffness matrices. I
can be written to the results file in either netcdf, MATLAB or DMIG format. In the CBModel
section

CBMODEL
nodeset 1
format = netcdf
file = model.ncf
GlobalSolution = yes
inertia_matrix = yes
END

The inertia_matrix = yes line requests the output of the inertia tensor. The default value of
inertia_matrix is no.

NOTE:

The OTM output capability permits an analyst to output the reduced order model
of the entire structure for use in another code that supports superelements (such
as MSC/NASTRAN). The standard CBR output matrices can be used to build a
superelement in Sierra/SD, so a user can perform a Craig-Bampton reduction to
generate a reduced order model of a portion of the structure. A follow-up analysis
could use this as a superelement. See details in Figure 5-1.
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Figure 5-1. — An initial analysis using CBR can be applied to reduce a complex component to much
smaller matrices. In subsequent analyses the superelement replaces the complex component in the
system analysis. There is little loss of accuracy, but significant computational benefit.
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5.3.2. Sensitivity Analysis

Sensitivity output for Craig-Bampton reduction requires both the sensitivity block of Section 4.8,
and the sensitivity_method keyword in the CBModel block. The default
sensitivity_method is constant vector.

The output differs from that typically seen in eigenvalue or transient solutions. In the case of a
Craig-Bampton reduction, the sensitivities that are output consist of partial derivatives of the
reduced mass and stiffness matrices with respect to the parameters. We give a brief description
here, and refer to the CBR Sensitivity Analysis discussion in the section Solution Procedures of
the Theory Manual for further details.

The reduced stiffness matrix « = 77 KT is computed from the Craig-Bampton transformation
matrix, 7" and the stiffness matrix, K. The similar expression determines the reduced mass
matrix.

Sensitivities of k with respect to a parameter p can be computed with the constant vector and
finite difference approaches.

The sensitivity_method approach to the sensitivity of x with respect to a parameter p ignores
the dependence of the transformation matrix T = 7, on p.

dx T (K(p+Ap) —K(p) T,
dp ~ Ap

The finite_difference method uses forward differences. Given updated system stiffness
K| = K(p + Ap) and transformation matrix 77 = T'(p + Ap), direct forward differences are used
to evaluate the sensitivity
dx T/ K(p+Ap)Ty =T K(p)T,
dp ~ Ap
As long as the system has no repeated modes, this approximation converges to the sensitivity as
Ap goes to zero. If there are repeated modes in the transformation matrix 7', then the perturbed
transformation matrix 77 will re-order the repeated modes contributing to 7,,. This corrupt the
difference operation in equation 5.3.2.

(5.3.2)

As the constant vector method uses 7, only, for systems with repeated modes the constant vector
method is recommended.

Sensitivity analysis of a Craig-Bampton model has different output from other types of sensitivity
analysis. Depending on the format parameter (see Table 5-8), it is written in either MATLAB or
netcdf format. The default is netcdf.

The outputted quantities are the derivatives of the stiffness and mass matrices with respect to the
various parameters. Thus, if there were two sensitivity parameters p; and p,, the output quantities

would be
ok Ok

—_— 5.3.3
dp1 0pa ( )
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where k would be the reduced mass and/or stiffness matrix. The dimensions of these sensitivity
matrices would be the same as the dimensions of the corresponding reduced mass and stiffness
matrices.

The output matrix derivatives given in equation 5.3.3 are useful for studying how the reduced
matrices change with the parameters. These matrix derivatives can also be used in subsequent
analysis with the corresponding superelements. For more details, we refer to Section 7.32.

5.4. preddam Solution Case
Parameter Type Default Description
ModalFilter string none Modal‘ filter to deﬁne modes
to retain. See section 5.8.4
: Load section for gravitational
load string none )
loading

Table 5-10. — preddam Solution Case Parameters.

The Preddam solution case is intended to be run as part of a multicase solution, as a preparatory
step for a subsequent DDAM analysis (section 5.5). It should be preceded by an eigen solution case
(section 5.8), but does not necessarily have to be followed by a DDAM solution case.

Preddam utilizes the eigenvectors and system mass matrix produced in the preceding eigen
solution to calculate and filter the modal participation factors, modal weights, individual modal
weight percentage, cumulative modal weight, and cumulative modal weight percentage. See
table 5-10 for a list of valid Preddam section parameters.

ModalFilter is implemented as a part of Sierra/SD and may be used as a part of other solution
methods. It provides a means of filtering data taken from the modal analysis and the participation
factors. More information may be found in sections 5.8.4 and 5.13.

A load block is required. It applies to the value of gravitational loading (—386.4). The direction
must match DDAM analysis direction defined in the ModalFilter block and in the subsequent
DDAMN solution case.
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5.5. DDAM Solution Case

Parameter Type Default Description

vertical — Z-direction

vertical| ) ..
. . . . athwartship — Y-direction
analysis_direction athwartship|
fore_and_aft —
fore_aft

X-direction

surface_ship|

ship_type ; See NAVSEA documentation
submarine

mount_type hull|deck] See NAVSEA d i

_typ shell_plating ee ocumentation

response_type elastz‘cp lastic| See NAVSEA documentation
elastic

velocity_coeffs <real>(4) See NAVSEA documentation

acceleration_coeffs <real>(4/5) See NAVSEA documentation

Table 5-11. — DDAM Solution Case Parameters.

The U.S. Navy Dynamic Design Analysis Method (DDAM) is an established procedure employed
in the design of ship equipment and foundations for shock loading requirements. The details of
the formulation, specific procedures for application, acceptance criteria, etc., are documented in
NAVSEA Report 250-423-30 and NAVSEA 0908-LP-000-3010. Support for performing DDAM
calculations, as implemented in the Sierra/SD Finite Element Code, is documented both in the
Sierra/SD User’s manual and in the DDAM Primer. The user is expected to be fully familiar with
both NAVSEA publications.

DDAM is focused on five main phases: problem formulation, mathematical modeling, coefficient
computation, dynamic computation, and evaluation. DDAM as implemented in Sierra/SD
focuses on the evaluation phase.

A DDAM analysis in Sierra/SD is divided into three solution cases: case 1 (eigen), case 2
(Preddam), and case 3 (DDAM). Case DDAM may only be run following Preddam and eigen.

DDAMN uses filtered eigenvalues and mode shapes from case 1 eigen and filtered modal
participation factors and modal weights from case 2 Preddam to calculate shock design
coeflicients and values, filtered modal outputs (force, displacement, stress, etc.), and the NRL
sums of those outputs.

Nodal displacements, velocities, accelerations, and forces; element-wise stresses and derived
quantities; and NRL sums of the above are all written to the output Exodus file using the ddamout
output keyword. See section 9.7.28 and in particular section 9.7.28.
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Some commonly used post-processing tools for Exodus outputs are Paraview for graphical
visualization and explore, blot, and exo2mat for data extraction.

An example input follows.

SOLUTION
case modal
eigen
nmodes = 4
case filter
preddam
ModalFilter VERTICAL
load 1
case
DDAM
analysis_direction VERTICAL
ship_type SURFACE_SHIP
mount_type HULL
response_type
velocity_coeffs 1.4 5.2 220.1 12.2
acceleration_coeffs 1.0 2.0 3.0 4.0 5.0
END

MODALFILTER vertical

remove 1:500 // x y z Rx Ry Rz

cumulative mef 0.0 0.0 1.0 0.0 0.0 0.0 //VERTICAL
END

LOAD 1
body
gravity
0.0 0.0 1.0
scale -386.4
END

OUTPUTS
ddamout
END

Note: Ship directions (analysis_direction) must match coordinate directions. See table 5-11 for
the meaning of each value. The direction must also match the ModalFilter and load sections
used in the Preddam solution case.

DDAM has 6 main capabilities in Sierra/SD.

1. Include modal masses that include at least 1% individually of the total modal mass. To add
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extra modes, in the ModalFilter block use add.
2. Incorporate a 6¢g minimum load requirement. This is not a user option.
3. Complex models and multiple element types.
4. Superelement integration.
5. Symmetric boundary conditions.
6. Parallel computation.

The user may verify Preddam (section 5.4) and DDAM by examining filtered modes, participation
factors, modal weights, shock design coefficients, and values found in the following text files:

1. Preddam — PREDDAM_RESULTS. txt
2. DDAM — DDAM_RESULTS. txt

There are several limitations to the DDAM approach. The equipment to
be analysed must be represented as a linear elastic system with discrete
modes. Also, damping is neglected. For very low frequency (VLF)
systems, DDAM may not be appropriate, and, where closely-spaced
modes exist, DDAM may produce excessive responses.

5.6. Direct Frf Solution Case
Parameter Type Default | Description
Number of additional points
. . . to interpolate for Padé
interpolate points integer 0 ;
expansion. If zero, no
interpolation is performed.
. . Order of the rational function
interpolate order integer 20 . )
for Padé expansion.
load LOAD ID N/A Load(s) to apply
Defines how often results are
flush integer 50 written to the exodus results
file. See Section 4.6.1

Table 5-12. — Direct Frf Solution Case Parameters.
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Option directFRF is used to perform a direct frequency response analysis. In other words, we
compute a solution to the Fourier transform of the equations of motion, i.e.,

K +iwC - w*M | = f(w)

=A(w)

where 7 is the Fourier transform of the response u, and f is the Fourier transform of the applied
force. The matrix equation is then solved for each frequency. When a direct solver is used, this
means that a complex factorization must be performed once per output. This is time-consuming,
and the ModalFrf may be a better option for many situations (see Section 5.15).

The force function must be explicitly specified in the load section, and must have a function
definition. Note that the force input provides the real part of the force at a given frequency, i.e., it
is a function of frequency, not of time.

The frequency response function is evaluated at the frequencies specified as described in Section
9.3. In a frequency section set freq_step, freq_min, and freq_max. Also, set an application
region. Examples are presented in inputs 5.8, 5.9 and 5.13.

In addition to the output that is sent to the frq file, output may also be written to the Exodus file,
provided that the keywords (such as acceleration) are specified in the outputs section. If nothing
is specified in the outputs section, then nothing is written to the Exodus output files.

The expression “frf” is often interpreted as the ratio of output/input.
There are reasons for using that ratio, including the confusion that can
come from scaling the Fourier transform. The Sierra/SD code computes
the output and does not compute a ratio. If the ratio is required, use a
function with unit load as the input.

5.6.1. Multiple Loads

Multiple Loads is currently BETA release.
Enable with the “- -beta” command-line option.

If the response to multiple loads is desired, Sierra/SD provides a beta capability to evaluate
multiple loads at each frequency. This provides a cost-effective alternative to using multiple
solution cases. Its use is demonstrated in the following example,

SOLUTION
DirectFrf
load foo bar baz

END

178



Input 5.2. Multiple Direct FRF Loads

where each of foo, bar, and baz are valid LOAD sections (section 4.5.1). By default, each load
will generate a separate output file, with names such as mesh-case-1load.exo
mesh-case-load. frq and mesh-case-1load.h, where mesh is the root of the input mesh name
(or database name — section 9.1.1), case is the case name (or “out” for unnamed single-case
solutions), and load is the load name (“foo”, “bar”, or “baz”).

Setting concat_multi_rhs=true in the PARAMETERS section (section 4.4) will force results
from multiple loads to be output to the same result file. Note that in that case, the resulting output
will include duplicate time-stamps (frequencies), one for each load.

5.6.2. Padé Expansion

Computation of each frequency response is expensive because the system matrices must be
computed, factored and solved once at each frequency. A cost-effective approach is to use a much
coarser computational grid for full computation, and use a rational function (or Padé) expansion
for intermediate points. > The two additional parameters required for the expansion are listed in
table 5-12. They are described below, and an example is shown in input 5.3. The theory is
described in reference.®

SOLUTION
case out
DirectFrf
Interpolate Points = 50
Interpolate Order = 18
END

Input 5.3. Padé Expansion Input Example. In this example, each exactly computed direct
frequency response point will be separated by 50 interpolated values. These values will be
determined using a Padé expansion of order 18.

5.7. Model_Check Solution Case

Parameter Type Default | Description

Table 5-13. — Model_Check Solution Case Parameters.

2A rational function expansion is similar to a Taylor series expansion, but is capable of approximating resonant
behavior.
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The keyword model_check will cause Sierra/SD to form matrices. No solve will be done. The
main reason to use this solution case is to output diagnostics to help debug model setup. Outputs
available include mass properties, matrix diagonals, metrics around element shape, constraint
diagnostics, etc. Additionally, this case can be used to write out MATLAB format matrices with
the *mfile’ option for custom debugging or post processing.
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5.8. eigen Solution Case

Parameter

Type

Default

Description

nmodes

Integer

10

Number of modes to extract.
See section 5.8.1

shift

Real

-1.0e6

Shift to apply to matrix
system to allow solving
singular systems. See
section 5.8.2

untilfreq

Real

Inf

Target frequency to reach.
See section 5.8.3

fluidloading

yes/no

no

Turns on added mass for
approximate Wet Modes
calculation.

use_residual_vectors

File

false

Activates residual vector
calculations.

load

LOAD ID

N/A, no
load used

Only valid when
use_residual_vectors is true.
Designates the load(s) to be
used to calculate residual
vectors.

resid-
ual_vectors_node_list_file

File

N/A, no
file read

Only valid when
use_residual_vectors is true.
Designates the nodelist file to
be read from to calculate
residual vectors.

resid-
ual_vectors_solver_options

String

N/A, uses
default
solver
options

Only valid when
use_residual_vectors is true.
This allows a user to
designate a SOLVER_OPTIONS
section specific to the residual
vector calculation. If a
solver_options parameter
is used for the eigen solution,
it will not be applied to the
residual vectors calculation
unless it is also specified with
the resid-
ual_vectors_solver_options
parameter.

Table 5-14. — eigen Solution Case Parameters.
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The eigen solution case computes eigenvalues and mode shapes of a system representing the
natural vibration modes. The parameters NegEigen, eig_tol, and eigen_norm are described in
sections 4.4 and 4.4

Eigenvectors, @, are stored in Exodus files as time dependent displacements. The time of an
eigenvector is the frequency. SEACAS library tools expect times to be unique, occasionally causing
benign warning messages when there are multiple modes at the same frequency. The mode shapes
multiplied by the consistent mass matrix 9.7.38 are also available.

5.8.1. Option nmodes

Nmodes is the number of modes to compute. The eigenvalues are computed beginning with the
lowest frequency mode and working up. The calculation continues until nmodes have converged.
Modal analysis uses iterative Lanczos procedures. These methods build a Krylov subspace from
which the solution is determined. The Krylov subspace method is designed to find the lowest
frequencies, which is typically what is needed for structural analysis. More linear solves and
longer run times are required to compute more modes and reach higher frequencies.

If nmodes=all, then all the finite modes of the structure are computed using dense linear algebra.
No shift is required. The mass matrix may be either full rank or singular. Constraints may be
present. This option is only available in serial. The number of dofs must be < 1000.

5.8.2. Solving Singular Systems with Shifts

There is a trade off between reducing the number of linear solves required to solve an eigenvalue
problem or reducing the cost per linear solve. This trade off is controlled using the shift. The
number of solves per eigenvalue decreases as the shift decreases in magnitude, and at the same
time the cost per linear solve increases. Direct linear solvers require a shift for singular (floating)
systems. Iterative methods are more reliable when applied to positive definite linear systems than
they are when applied to positive semi-definite linear systems, The eigenvalue problem is defined
as,

(K —w*M)¢ = 0. (5.8.1)

K and M are positive semi-definite matrices. If the shift o < 0, then K — oM is positive definite.
Solution cases generally involve positive definite matrices except direct frequency response.

Here K and M are the stiffness and mass matrices respectively, and w and ¢ are the eigenvalues
and vectors to be determined. The problem may be solved using a variety of methods — the
Lanczos algorithm is used in Sierra/SD. In this method, a Krylov subspace is built by repeated
solving equations of the form Ku = b. For floating structures, or structures with zero-energy
mechanisms, K is singular and special approaches are required to solve the system. The two
approaches used in Sierra/SD are described below.
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Deflation. If it is possible to identify the singularity in K, then the null vectors of K are
eigenvectors (with w = 0), and the system can be solved by ensuring that no component of
the null vectors ever occurs in b. This approach is equivalent to computing the pseudo
inverse of K.

The geometric rigid body mode capability 5.30 can be used to analytically compute the
standard rigid body modes and deflate them from a singular system. This is recommended
for all floating structures.

Shifting. The second method involves solution of the shifted problem,

(K = M) — uM) ¢ = 0. (5.8.2)

This system has the same eigenvectors, ¢, as the original equation, and its eigenvalues, u,
2

are related to the originals by u = w” - 0.
On serial platforms, a small negative shift is normally sufficient to solve the problem due to the
high accuracy of serial direct solvers. For parallel solution, a reasonable shift value is usually
given by

_ .2
0 = ~W,pas5

where w, 45 1S the expected first nonzero (or elastic) eigenvalue. Because Sierra/SD cannot
compute an optimal shift value a priori, a default of —1 is used and a warning is written if the shift
used is well outside of the expected range. In practice, a shift of —1e6 is often used in Sierra/SD
input, as this gives reasonable results for extracting frequencies anywhere near 150Hz, assuming
the time unit is seconds. This is often the general frequency range of engineering interest.
However, an adequate shift may vary some depending on the units and the properties of an
analysis.

The shifted problem benefits from the fact that K — oM can be made non-singular (except in rare
situations). This is done by choosing o to be a large negative value. Unfortunately, the Lanczos
routine convergence is affected if o is chosen to be too far from the recommended value of

g = —6()2 .
elas

If o is too large, many solves will be required to determine the eigenvalues, which consequently
slows convergence. If o is too small each linear solve may be near singular, requiring many solver
iterations or being unable to reach the target residual at all resulting in a’'SOLVER OUT OF
BOUNDS?’ error.

Another consequence of an excessively large or small negative shift is that potentially not all
redundant zero eigenvalues may be found. These modes may be found by correcting the shift,
tightening tolerances, or by restarting.

The shifted eigenvalue problem is more reliable. Set the grbm_tol to a small value (e.g.
le-20)(or use the default), and manually enter a negative shift. The output should still be
examined to ensure that no global rigid body modes are detected.

If the model is not floating and has no mechanisms and no zero energy modes, the system is not
singular and a shift is unnecessary.
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Example

A representative Solution section for an eigendecomposition with a shift of —10° following. A
dozen modes are requested. This shift would be appropriate for a system where the first elastic
mode is approximately 150Hz.

SOLUTION
eigen
nmodes 12
shift -1.0e6
END

5.8.3. UntilFreq Option and Modal Restart

The untilfreq keyword provides an additional method of controlling the eigenvalues to be
computed. If this value is provided, then the analysis will be automatically (and internally)
restarted until the frequency of the highest mode is at least the value of the untilfreq. This
restart capability is somewhat crude. There are always nmodes new modes computed on each
calculation. Also, because there can be inaccuracies associated with restarting the
eigendecomposition. Sierra/SD restarts a maximum of 5 times.

Sierra/SD uses the ARPACK Lanczos solver for the eigen problem. This solver maintains the
orthogonality of the eigenvectors for a single batch of modes. However, when restarted, the solver
must deflate out the previously computed modes. There can thus be a slight loss of orthogonality
due to round off. With repeated restarts, the effect can significantly reduce accuracy.

Additionally, modal restart can be manually controlled via the multicase solution. In the example
below, the first 1000 modes are computed in eigl’. Next, eig2 restarts and reads and deflates
those 1000 modes from the system. In this solution case, an additional 500 modes are computed,
for 1500 modes. Restarting a modal analysis in this way can compute modes with less memory
than computing all modes at once. An excessive number restarts of this nature (more than about
five) will lead to accuracy loss from round off errors during deflation.

SOLUTION
case ’eigl’
eigen
nmodes 1000
case ’eig2’
eigen
restart = read
nmodes 1500
END
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5.8.4. ModalFilter Option

The optional ModalFilter keyword provides a means of reducing the modes retained for output
and for subsequent analysis. For more details, see Section 5.13.

Use of this parameter within the eigen solution case is deprecated in favor of the new
modalfiltercase solution case (Section 5.13).

You can also put the modal filter into a separate case, called preddam 5.5 .

5.8.5. Fluid loading Option

Although a coupled structural/acoustic eigenvalue problem is quadratic, under certain
approximations, the fluid may be represented as an added mass on the structure, and a real
eigenvalue problem results as described in subsection Wet Modes or Added Mass section Solution
Procedures of the Theory Manual. The fluidloading enables that added mass calculation. For
wet modes all material blocks that use an acoustic material are treated alike as a fluid domain for
mass loading.

In an early implementation the lowest modes of the acoustic stiffness matrix were used to
approximate the added mass. As a sanity check, one mode of the acoustic stiffness matrix is
approximated.

A fatal error is returned if infinite elements are detected. Fluid loading is not applicable to models
that use infinite elements for two reasons. Infinite elements lead to a nonsymmetric eigenvalue
problem that is less well-supported than other modal analyses. Second, the fluid region stiffness
matrix is singular, implying an infinite added mass.

5.8.6. Rigid Body or Zero Energy Modes

Rigid body modes represent rigid body translation or rotation of a structure. A normal free-free
structure would be expected to have 6 rigid body modes. A structure with constraints may have
fewer than 6 rigid body modes. On the other hand a structure with multiple disconnected pieces
may have more than 6 rigid body modes. To compute any rigid body modes, one must request all
of them. For structures with 6 rigid body modes, nmodes > 6. Otherwise, the solution case is
likely to fail. Prior to computing the wet modes, a Geometric Rigid Body Modes solution case
5.30 is added and the parameter num_rigid_mode is set to 6.

5.8.7. Residual Vectors

residual vectors is currently BETA release.
Enable with the “- -beta” command-line option.
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The residual vectors capability utilizes modal truncation augmentation (MTA)'® and provides a
method to represent the modes not retained in the eigendecomposition. It is particularly useful to

accurately capture the static response of a structure without many modes.

The residual vectors capability is activated by the use_residual_vectors option. An example
solution block is given here for a case with six rigid body modes.

SOLUTION
title ’Sample MTA solution procedure’
case ’eigen’
eigen

nmodes=30
shift=-1000. // needed for floating
solver=gdsw
use_residual_vectors = true
residual_vectors_node_list_file forcingNodes.txt

END

This would output a file with 30 modes plus a residual vector for each DOF of each node in
forcingNodes. txt. This is likely more than is needed to get an accurate static response, but
there is not currently a capability to create a residual vector using a more specific loading
designation.

Alternatively, a user can use a set of static loads to create residual vectors resulting in far fewer
residual vectors being formed while providing a similar accuracy in subsequent analyses for a
known load environment. This can be done by replacing the
residual_vectors_node_list_file with load = LOADID. Other load conditions can be
added if requested.

5.8.7.1. Restart with Residual Vectors

Restart is enabled for eigen solutions that used residual vectors, however, extra caution should be
exercised when using this capability to avoid bad behavior. The restart capability here is best used
to add residual vectors to an Exodus file containing base modes from a previous run. The restart
capability should not be used for:

* calculating additional base modes off of a file containing residual vectors
* adding additional residual vectors on top of previously generated residual vectors

For example, If a user wanted to add 2 residual vectors to a file with 10 base modes, they read a
restart file and set nmodes to 10. Then, they will have a resulting file with 12 "modes" where the
last 2 "modes" are residual vectors. If a user wanted to compute more residual vectors, they can
add more loads, but still must keep nmodes set to 10. This will recompute the residual vectors and
add new ones. Changing nmodes and restarting with the residual vector "modes" embedded in the
restart file can result in bad behavior and should never be done. If more base modes are desirable,
the residual vector "modes" must 1st be removed using a SEACAS tool like ejoin.
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When using restart to feed into a subsequent analysis, there are two options. The 1st option uses
the same format as the previous example where nmodes is set to 10, use_residual_vectors is
enabled, and the loads are all fed in. This will recompute the residual vectors on each subsequent
run, but will have the most robust error checking. Residual vector calculations are relatively
inexpensive, so this is the recommended method. Alternatively, a user can select restart =
read on eigen, set nmodes = 12, and turn residual vectors off. The code will not know that the last
2 modes are residual vectors, and will warn about bad relative residuals on the residual vector
"modes". This is expected. In this case, take extra care to damp the residual vector "modes" to get
best results. This is the only way to avoid recalculating residual vectors when using restart.

5.9. aeigen Solution Case

Parameter Type Default | Description

Number of modes to extract.

Int,
nmodes nieger 10 See section 5.8.1

Shift to apply to matrix
system to allow solving
singular systems. See
section 5.8.2

shift Real -1.0e6

Target frequency to reach.

tilf’
untilireq Real Inf See section 5.8.3

Number of allowed restart

implicit_restarts integer .
prat_ & > steps, default same as eigen

Number of subspace vectors
anblocksize integer 1 added each step, default same
as eigen

Shift of infinite eigenvalues of

anrho_shift Real 0.0 constrained problem

Level of verbosity of log files,

anverbosit integer
y & 17 see below for details

Maximum number of
subspace block Krylov-Schur
subspace_size integer basis vectors. By default,
picks based on number of
requested eigenvalues.

Table 5-15. — aeigen Solution Case Parameters.
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The AEigen modal solution uses the more recent Krylov-Schur method in the Anasazi’ package.
Note that the eigenvalue methods of Section 5.8 use the closely related ARPACK>? package. Modal
solution methods all control accuracy using the parameter eig_tol. Shifts are used as discussed
in Section 5.8.2.

Anasazi has support for GPU architectures. It also supports block linear solvers, although no true
block linear solvers are available.

The amount of diagnostic information or level of verbosity is changed used anverbosity . The
default value is 17, implying that the Anasazi solvers will output errors, warnings, and timing
details. Each verbosity type is controlled by a single bit in the integer anverbosity. These types
are listed in Table 5-16. Each combination is valid, the combinations being formed by adding
different verbosity values. For example, setting anverbosity to 25 = 0+ 1 + 8 4+ 16 requests
output for Errors, Warnings, Final Summary and Timing Details.

Verbosity type Value
Errors 0
Warnings 1
Iteration Details 2
Orthogonalization Details 4
Final Summary 8
Timing Details 16
Status Test Details 32
Debug 64

Table 5-16. — AEigen Verbosity Table.

Example Input 5.4 shows how to select the Krylov-Schur method. A dozen of the lowest
frequency modes are requested. The shift is —10°. The shift is appropriate for a floating system
where the first elastic mode is approximately 150 Hz. This produces eigenvalues equivalent to the
example given in 5.8 for eigen. The verbosity level specifies that after computing the eigenvalues,
the solver will print status information (number of iterations, current eigenvalues) and timing
statistics.

SOLUTION
aeigen
nmodes 12
shift -1.0e6

anblocksize 1
anverbosity 25
END

Input 5.4. Aeigen example
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5.10. Largest_Ev Solution Case

Parameter Type Default Description

residual norm relative
threshold, between 0 and 1,
try 0.01

if positive (say 3), then write
ARPACK debugging
information to the standard
output stream

info Integer 0

Table 5-17. — Largest_Ev Solution Case Parameters.

The Largest_Ev analysis determines the largest eigenvalue of the system
(K—-AM)¢ = 0.

The largest eigenvalue is typically mesh dependent. Users may need to increase the threshold
from its default value to get a solution. The description of diagnostic information and the
threshold [33] are part of the original ARPACK documentation.

5.11. Fatigue Solution Case
Parameter Type Default | Description
narrow- i i i
method " Fatigue calculation algorithm
band to use.

. Time duration, T over which

duration <real> 1 . .
to integrate fatigue damage.

Table 5-18. — Fatigue Solution Case Parameters.

T The available fatigue algorithms are narrowband and Wirsching.

High Cycle Fatigue occurs after long periods of alternating stresses in the elastic range. The input
parameters for fatigue-failure are shown in Tables 5-18 and 6-2. An example is shown in
input 5.5. Fatigue analysis requires inputs in several sections.
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1. The fatigue section in the Solution block must be immediately preceded by a modalranvib
solution, with noSVD option (5.16). This defines the random stress moments needed for
computation of the stress crossing rates.

2. The Fatigue section in the Solution block defines general fatigue parameters. Relevant
parameters are outlined in Table 5-18.

3. The material section must include parameters necessary for computation of fatigue and
damage. Sections without this input will not have a fatigue parameter output. Typical
materials parameters required for fatigue analysis are found in Table 6-2, found in the
materials section, 6.5.2.
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SOLUTION
title ‘High cycle fatigue example
case modes
eigen
nmodes 10
case vrms
modalranvib
noSVD
lfcutoff 10
case failure
fatigue
duration = 1.0
method = Wirsching
END

BLOCK 100
material aisi4140
END

BLOCK 200
material steel
END

MATERIAL aisi4140

E = 10e6

density = 0.00075

Fatigue_Al = 31.5805

Fatigue_A2 = -14.0845

Fatigue_Stress_Scale = 0.001 // Psi to Ksi

MaterialType = PeakStress // or StressRange
END

MATERIAL steel

E = 30E6

nu = 0.28

density = 0.007
END

Input 5.5. High Cycle Fatigue Input Example. Fatigue is specified by block. In this example,
there are two blocks. The material properties for block aisi4140 include fatigue
parameters, but the material properties for block steel do not include fatigue parameters.
The fatigue calculation is performed for block 100.
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5.11.1. User Output

If the Fatigue method is specified in the Solution section then output for fatigue will be provided.
There is no need for a specification in the outputs section. The following fields will be output.

NarrowBandDamageRate: There are two possible equations for D yp depending on if the
material parameters specified for the S-N curve are based on a stress range or peak stress
The Narrow Band damage per unit time, defined as:

Dyp = %(Vﬁasts)mr (% + 1) (5.11.1)
for materials defined based on Peak Stress, and

Dip = %(2‘/50}]755)”11—‘ (% + 1) (5.11.2)
for materials defined base on the Stress Range. Equation (5.11.1) is used by default. A

stress range type material can be specified in the input (MaterialType = StressRange). See
the Theory Manual for details of the parameters.

WirschingDamageRate: The Wirsching damage per unit time. This may be thought of as a
scaled value of the NB damage intensity.

DW = /ID.NB.

ZeroCrossingRate: the expected positive zero-crossings intensity.

Damage: The selected damage rate multiplied by time.
D=1D (5.11.3)

Here D can be either the Narrow Band or Wirsching Damage Rate.

PeakFrequency: the expected peak occurrence frequency.

The even moments, M, (with x=0,2,4), are output as part of the random vibration computation,
see (5.16). For example, M2 = (VRMS2/2x)?.
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5.12. buckling Solution Case

Parameter Type Default Description

nmodes Integer 10 Number.of modes to extract.
See section 5.8.1
Shift to apply to matrix

shift Real 1.0¢6 system to allow solving
singular systems. See
section 5.8.2

untilfreq Real Inf Target fr‘equency to reach.
See section 5.8.3

. Eigenvalue computation
T
bucklingSolver ARPACK algorithm method to use.

Table 5-19. — buckling Solution Case Parameters.

T The available algorithms are ARPACK, Anasazi and ARPACK_Regular_Inverse.

The buckling keyword is used to obtain the buckling modes and eigenvalues of a system. The
parameters which can be specified for a buckling solution are tabulated below. Users are
encouraged to review the discussion of buckling analyses in.**

The shift parameter indicates the shift desired in a buckling analysis. The shift value represents
a shift in the eigenvalue space (i.e. w? space). Determining an effective shift is problem
dependent, but no shift is needed when using the ARPACK_Regular_Inverse buckling solver
option, and any provided shift value will be ignored in that case.

Although the ARPACK_Regular_Inverse buckling solver is not the default, it is much easier to
use, and its results are more trustworthy than the default ARPACK option. Currently, all buckling
tests in our test suite pass with either ARPACK or ARPACK_Regular_Inverse, with comparable
run times and solution accuracy.

The nmodes parameter specifies the number of requested buckling modes. Its default value is
10.

Unlike ordinary modal analysis, buckling solution cases require a loads block. This is because
buckling is always specified with respect to a particular loading configuration. For example, for a
pressure load applied on a sideset, the buckling analysis would indicate the critical amplitude of
the applied pressure needed to cause buckling. The critical buckling load is computed as the
product of the first (lowest) eigenvalue times the amplitude of the applied load. Thus, for the case
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LOADS
sideset 1
pressure = 10.0
END

The lowest obtained eigenvalue is 100.0. The critical buckling pressure would be
P = 100.0 X 10.0 = 1000.0. This would indicate that buckling would occur if the loading were
applied as,

LOADS
sideset 1
pressure = 1000.0
END

Similar conclusions can be drawn about force loads on nodesets.

Buckling of floating structures is not supported at this time. If global rigid body modes are
present, the solution may not be correct.

Example A Solution section for buckling analysis with a shift of —10° looks like the following,
if 1 mode is needed (i.e. if the use is confident that the modes are well separated).

SOLUTION
buckling
nmodes 1
shift -1.0e6
END
5.13. ModalFilter Solution Case
Parameter Type Default | Description
ModalFilter string none Modal' filter to deﬁne modes
to retain. See section 5.8.4
. all| none| Controls which result files are
write_files exodus| all . ) ) )
. written during this solution.
history

Table 5-20. — ModalFilter Solution Case Parameters.

A ModalFilter filters modes computed by an eigen solution case (Section 5.8). The filtered modes
are then used by subsequent solution cases.
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By default, the filtered modes are not output since the preceding eigen case outputs the all the
mode shapes. To also output the filtered modes, add write_files to the solution case. Write files is
also used in the section 5.18 solution case. You also need to specify one more thing about which
files to output. Write files can be set to either all, exodus, frequency, history or none.

Controlling the modes retained for subsequent analyses can significantly reduce run time with
little effect on the desired response. For example, a shell structure may have many hundreds of
modes contributing to the normal mode response, and only a few that interact with the loads. !

If computing eigenvalues, e.g., for CBR, the usual number of modes (nmodes) are computed.
These modes are filtered, and only a subset are written to the Exodus file or used in subsequent
analysis. An example input is shown in input 5.6.

SOLUTION
case eig
eigen
nmodes=500
case filter
modalfiltercase
ModalFilter=MPF1
END

MODALFILTER MPF1
remove 1:999
cumulative mef 0.8 0.8 0.8 0.2 0.2 0
add 99:101,103

END

Input 5.6. Example ModalFilter Input

For this example, the following actions are performed in the filter.

1. The first 999 modes are removed. In this case 500 modes are computed, and all modes are
removed.

2. The modes contributing the most to a cumulative modal effective mass are added. Modes
sufficient for 80% contributions to the x, y, and z directions are added. Modes needed to
achieve 20% of the rotational terms for x and y are added. Since the contribution for
rotation about z is zero, no modes are added there.

3. Modes 99, 100, 101 and 103 are added if they are not already included.

'The modes of large ship are an example. Only a few of the modes contribute to global bending or torsional modes.
The remaining modes are local, and may not be of interest to the analysis.
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Each entry in the modal filter section consists of two parts: an action (like remove or add) and an
application space. The application space for the “add” and “remove” space is an integer list with a
format much like MATLAB. See section 4.1 for more details. Valid action keywords are listed in
Table 5-21.

Keyword Application Space

remove integer list or “all”

add integer list or “all”
cumulative mef 6 fractions
cumulative nmef 6 fractions

Table 5-21. — Modal Filter Keywords.

remove Removes modes in the application space from output.
add Adds modes in the action space.

cumulative mef Adds modes which contribute to the modal effective mass. Following this
keyword sequence, 6 fractions are entered, one for each of the 6 rigid body mode
contributions. The modes are sorted and modes are kept that contribute most to the modal
effective mass. When the fractional contribution exceeds the threshold, no more modes are
added for that direction. Contributions from each direction are combined (union) and added
to the list of modes kept.

The 6 fractions following the keyword indicate the threshold for each coordinate direction.
Each fraction must be between 0 and 1, inclusive. A value of zero means no modes are
retained. A value of unity retains all modes.

cumulative nmef Adds modes which contribute to the normalized modal effective mass. This
option is identical to the “cumulative mef” option except that the terms are normalized such
that the total contribution from all computed modes sums to one.

The Modal Effective Mass equals the Modal Participation Factor. Although the Modal
Participation Factor is defined in the next section, the Normalized Modal Effective Mass is
undefined.
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5.14. Modal Participation Factor Solution Case

Parameter Type Default | Description
It ite I table, if
write_table Yes|No Yes }.Ies write I table, if no
write summary table
If yes write blockwise
blockwise Yes|No Yes yes W v
summary to result table
A string representing rigid
body modes to include in the
. calculation. 123 resents the
RCID string 123

translational degrees of
freedom. 123456 includes all
six degrees of freedom.

Table 5-22. — Modal Participation Factor Solution Case Parameters.

A Modal Participation Factor (MPF) is a quality of a mode shape. Another name for the Modal
Farticipation Factor is the Modal Effective Mass. A MPF is a direction cosine of an eigenvector
along one of the 6 rigid body modes. It measures the interaction of the modes with a gravity load
or a base excitation.

The rigid body modes {Ri}?zl ignore any boundary conditions.

The modal participation factor of an eigenvector v of the constrained system is determined from
the representation of v in the unconstrained space, using a lumped mass matrix 4.6.4,

o RI'Mv;,
;= .
\/(Rl.TMR,-) (VI Mv))

T, (5.14.1)

I';; is a mass normalized measure of the contribution of a given rigid body term, 7;, to the vector,
v;. A summary term which represents the total fraction of a vector that is spanned by all rigid
body modes is also useful.

6
MPF; = »' T (5.14.2)

The MPF method computes these participation factors for the eigenvectors of a system. This
method must be used as part of a multicase solution, and the previous case must be an eigenvalue
problem (see Section 5.8). Further, this method (by default) computes the modal participation
factor on a block by block basis. Thus, those portions of the model that most contribute to the
rigid body motion may be determined. > Then,

2The overall modal contribution is not the sum of the block wise contributions, and contributions from individual
blocks may cancel other blocks. See Table 5-23.

198



Data Value Description
MPF >:(Ii/)* | Overall mode; MPF
MPF-B z,.(rfj)Z MPF for block k, mode j

MPF by RBM; | ¥ ;(I';)* | MPF for direction i

Table 5-23. — MPF Summary data. Each mode, v, has contributions from each summary value.

T agk
o RTM¥y;
i T T
\/(Rl. MR;) (vI Mv,)

(5.14.3)

Options for the MPF method are listed in Table 5-22.

Summary data from the calculation is written to the results file as described in Table 5-23. In
addition, unless write_table=no, data will be written to an external text file. The format for the file
is specified in the results file. It contains the block wise modal participation factors, Fl.kj of
equation 5.14.3. An example is provided in input 5.7.

The external text file is intended to be easily read by external programs such as the MATLAB
“load” command. It therefore has no header information. The data ordering is exactly the same as
the table written to the echo file (which contains that header information). Each column is grouped
first by block (in the order of the blocks in the Genesis file), and then by degree of freedom.
Usually there are either 3 or 6 dofs per block entry. Each row corresponds to a single mode.

The optional external text file with file name extension mpf contains block-wise modal
participation factors. The data is presented in tabular format, separated by white space. Data
analysis software tools support this type of data for analysis and plotting (e.g., Microsoft Excel,
OpenOffice Calc, Python, MATLAB, Octave, etc.). The MPF file contains no header information,
so it is important to understand what each column and row represents. Each row of data
corresponds to a mode. Columns represent modal participation factors calculated for each block
and requested coordinate (controlled with “rcid”). The columns are grouped first by block, and
then by degree of freedom. Blocks are written out in the order they are found in the Genesis file
(note: they are not sorted by Block ID or by the order they appear in the input deck). Hence, if the
exodus file contains two blocks and rcid=123 (default), the *.mpf file will contain six columns in
the following order: Blockl_x, Blockl_y, Blockl_z, Block2_x, Block2_y, Block2_z. If
rcid=123456, then six columns per block (X, y, z, Rx, Ry, Rz) will be written out and there will be
12 columns.

SOLUTION
case eig
eigen
nmodes=10
shift=-1e5
case out
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mpf

blockwise=yes

RCID=123

write_table=yes
END

Input 5.7. Modal Participation Factor (MPF) Example

Modal Effective Mass

There are several definitions of the modal participation factor. The value from equation 5.14.1 is
unit normalized such that the sum of the squares of I';; over all modes equals unity. A related term
is the modal effective mass.

MEFF;; = \VM,; - T';; (5.14.4)

Here M, is total mass associated with each rigid body mode. The sum of the squares of MEFF;;
over all modes, j, for a given rigid body mode, i is the total mass associated with that RBM.
Modal truncation decreases the sum. The modal effective mass table is output to the result
file immediately after the modal participation factors. At the bottom of the table, the sum of the
squares of the modal effective mass is given for each rigid body mode. The total mass and
moments of inertia of the system are also given.

Lumped or Consistent Mass

We always use the lumped mass for computation of the geometric rigid body vectors used in the
modal participation factor calculation. These vectors are mass orthogonalized, and use of the
consistent mass matrices for these efforts, especially when there are MPCs can be complicated in
parallel. There is a small error introduced when the modes are computed using a consistent mass,
and the rigid body vectors use a lumped mass. Refining the mesh reduces the problem, but most
accurate results are obtained when the lumped mass is used (see Section 4.6.4).
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5.15. ModalFrf Solution Case

Parameter Type Default Description

If true require use of a
complex eigen solution. If
false require use of a real
valued eigen solution. If
unset use the existing eigen
solution.

complex True|False

Exclude any modes below
this frequency from the modal
computation. Often used to
exclude rigid body modes.

Ifcutoff Real -Inf

If set, use modal acceleration

usemodalaccel method

Number of rigid body modes,

Int
nrbms nieger 0 needed for usemodalaccel

all| none|
write_files exodus| all
frequency

Controls which result files are
written during this solution.

Table 5-24. — ModalFrf Solution Case Parameters.

Option ModalFrf is used to perform a modal superposition-based frequency response analysis. In
other words, ModalFrf provides an approximate solution to the Fourier transform of the
equations of motion. If % is the Fourier transform of the displacement, u, and f is the Fourier
transform of the applied force, then

(K +iwC — sz)ﬁ = f(w).

If the damping matrix is zero, or if it can be diagonalized by the undamped modes, then
ModalFrf uses the undamped modes for the superposition. Otherwise, for general damping
matrices C, complex modes are used for the superposition. In either case, ModalFrf is performed
in a multicase approach, where the modes (real or complex) are computed in a first case, and then
ModalFrf is computed in a subsequent case.

Modal damping can be applied with either real eigenvalues computed by eigen or complex
eigenvalues shapes computed by QEVP. However, proportional damping is currently available
only with real modes. For more details on damping, see Section 6.7.
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5.15.1. ModalFrf with Real-Valued Modes

In the case where the undamped real modes are used for the superposition, two options are
available for the ModalFrf solution: the modal displacement method, and the modal acceleration
method. In the case when complex modes are used, the modal displacement method is available.
In both the modal displacement and modal acceleration methods, the approximate solution is
found by linear modal superposition. Once the modes have been computed, there is little cost in
computation of the frequency response. The solution does suffer from modal truncation, but in the
case of the modal acceleration method, a static correction term partially accounts for the truncated
high frequency terms. Thus, that method is generally more accurate than the modal displacement
method. The most accurate method, though also the most computationally expensive, is
DirectFrf 5.6.

For real modes using the modal displacement method, the relation used for modal frequency
response is given below.

— _ ¢/k¢jm7m(w)
w(w) = Z/: w% - W+ 2yjwiw

Here uy is the Fourier component of displacement at degree of freedom k, ¢ is the eigenvector
of mode i at dof k, and w; and y; represent the mode frequency and associated fractional modal
damping respectively. In the case of complex modes, the equations need to be linearized as
described in subsection Quadratic Modal Superposition section Solution Procedures of the
Theory Manual.

For the modal acceleration method, the procedure for computing the modal frequency response is
more complicated. The response is split into the rigid body contributions, and the flexible
contributions. The number of global rigid body modes must be specified in the input deck. Also,
see subsection Modal Frequency Response Methods section Solution Procedures of the Theory
Manual.

The modal acceleration method more accurately computes the poles
(or peaks) of the response and compares zeros of a function. The
cost is an additional factor and solve. The method can be used on
floating structures, but the presence of rigid body modes makes the
solution much more difficult than eigen analysis. While a negative shift
is recommended when computing eigenvalues of a floating structure to
remove the singularity due to RBMs, no such approach is possible when
using the modal acceleration method. Thus, accurately determining the
global RBMs may require significant solver adjustments when using
this method.

The force function must be explicitly specified in the load section, and MUST have a “function”
definition. Note that the force input provides the real part of the force at a given frequency, i.e. it is
a function of frequency, not of time.
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The optional keyword, usemodalaccel , is used to determine whether to use the modal
displacement or the modal acceleration method. If this keyword is specified, modal acceleration is
used, otherwise the modal displacement method is invoked. If usemodalaccel is used, then the
number of global rigid body modes must be specified using nrbms .

The parameters freq_step, freq_min, and freq_max are used to define the frequencies for
computing the shock response spectra. They are identified in the frequency section with the
application region (see Section 9.3). The range of the computed frequency spectra is controlled by
freq_min and freq_max, while freq_step controls the resolution. The accuracy of the
computed spectra does not depend on the magnitude of freq_step. This parameter controls the
quantity of output. Examples are shown in inputs 5.8, 5.9 and 5.13.

We note that, in addition to the output that is sent to the frq file, output is also written to the
Exodus file during a ModalFrf, provided that the keywords are specified in the outputs section. If
nothing is specified in the outputs section, then nothing is written to the Exodus output files.

In the case of undamped modes, the following is a multicase example of how the ModalFrf could
be specified.

SOLUTION
case eig
eigen
nmodes=7
shift=-1e5
case out
ModalFrf
END

FREQUENCY
freq_step=300
freq_min=100
freq_max=2500
nodeset=12
acceleration

END

Input 5.8. ModalFrf Example Input

5.15.2. ModalFrf with Complex Modes

In the case when complex modes are used, the modal displacement method is available. In this
case the QEVP solution case is used to compute the modes. There are currently three methods that
can be used with the QEVP solution case, and they are the sa_eigen method, the Anasazi method,
and the ceigen method. For more details, we refer to Section 5.19.1. We note that in the case of
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complex modes, modal superposition is currently implemented for the sa_eigen method and the
Anasazi method. The ceigen method does not support a subsequent modal superposition.

Also, when computing the complex modes in preparation for a modal superposition, we
recommend using the reorthogonalization flag. When turned on, this flag searches for repeated
modes and reorthogonalizes the eigenvectors of those modes. Eigenvectors of repeated modes are
not orthogonal. For more details, we refer to Section 5.19.1.

In the case of complex modes, the following is an example.

SOLUTION
case eigenvalue
QEVP
method = sa_eigen
reorthogonalize = Y
nmodes=20

nmodes_acoustic = 5
nmodes_structural = 5
case out
ModalFrf
complex =y
END
FREQUENCY

freq_step=300

freq_min=100

freq_max=2500

nodeset=12

acceleration
END

Input 5.9. Complex ModalFrf Example Input
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5.16. modalranvib Solution Case

Parameter Type Default Description

von Mises stress computation
method, noSVD is less
expensive, and provides
additional stress moments.

noSVD

Exclude any modes below
this frequency from the modal
computation. Often used to
exclude rigid body modes.

Ifcutoff Real 0.1

none|
truncationMethod displacement| none
acceleration

Truncates modes with low
activity

Keep the specified number of
modes, kept modes are
selected based on the highest
modal activity.

keepModes integer Inf

checkSMatrix truelfalse true T

Table 5-25. — modalranvib Solution Case Parameters.

T If checkSMatrix is true, then at each frequency, the symmetric positive semi-definite correlation matrix S
is computed, and tested for positiveness. An indefinite correlation matrix indicates that fundamental error
has occurred. If PSD output is requested, then matrix evaluations are enabled.

Option modalranvib is used to perform a modal-superposition-based random vibration analysis
in the frequency domain. Root-mean-square (RMS) outputs, including von Mises stress, are
computed for a given input random force function. The resulting power spectral density functions
may also be output at locations specified in the frequency section. The forcing functions (one for
each input) must be explicitly specified in the ranloads section (8.3.22). It must reference a
matrix-function definition (see Section 4.10.17).

modalranvib should be used in a multicase solution after an eigen solution.

The optional keyword noSVD determines the method used to compute the RMS von Mises stress
output. If noSVD is specified, then the simpler method which does not use a singular value
decomposition is used. Additionally, that simpler method causes the second and fourth moments
associated with von Mises stress to be computed and to be written to Exodus output. (The RMS
von Mises stress and these two moments, along with the appropriate material properties, can be
used in a manner suggested in [08] and discussed in [®] to estimate fatigue life in broad-band
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random excitation. Also, see the Fatigue section (5.11). However, this method provides no
information about the statistics of the stress. Only the RMS value and moments are reported.

The optional keyword Ifcutoff provides a low frequency cutoff for random vibration processing.
Usually, rigid body modes are not included in this type of calculation if RMS stress is computed.
The Ifcutoff provides a frequency below which the modes are ignored. The default for this value
1s 0.1 Hz. Thus, by default rigid body modes are not included in random vibration analysis. A
large negative value will include all the modes.

The optional keyword TruncationMethod provides control over selection of the retained modes.
By default, modes are retained if they have any contribution to the stress. As stresses are
proportional to displacement, the default method is displacement. It is possible to not truncate
at all (none), or to truncate based on accelerations (acceleration). Acceleration contributions
are weighted to higher frequencies. Often zero energy modes contribute to a bad truncation, and a
preferred means of controlling the truncation is to use the lfcutoff parameter and to ensure the
integration does not go to zero frequency.

The optional keyword keepmodes is a method of truncating modes. By default, its value is
nmodes. If a value is provided, the modes with the lowest modal activity will be truncated until
keepmodes remain. Note that this procedure is much different from truncating the
higher-frequency modes. Modal truncation is important because all the operations compute
responses that require O (N?) operations. Even if keepmodes is not entered, modes with modal
activity less than 1 millionth of the highest active mode will be truncated.

The parameters freq_step, freq_min, and freq_max are used to define the frequencies for
computing the random vibration spectra. They are identified in the frequency section along with
an optional application region (see Section 9.3). The range of the computed frequency spectra is
controlled by freq_min and freq_max, while freq_step controls the resolution. The accuracy
of the computed spectra does depend on the magnitude of freq_step since it is used in the
frequency domain integration. Examples are presented in inputs 5.8, 5.9 and 5.13.

In random vibration, the frequency block serves two purposes. First, it is used for the integration
information for the entire model. Thus, I', for the referenced papers°>*! is integrated over
frequency and used for all output. In addition, if an output region is specified in the frequency
block, output acceleration and displacement power spectra may be computed for the given region
at the required frequency points. At this time, acceleration and/or displacement may be
specified in the frequency block for random vibration analysis. This output is described in more
detail below.

Random vibration analysis is trickier than most input. A number of blocks must be specified.
1. The Solution block requires the input for eigen analysis, and the keyword modalranvib.

2. The RanLoads block contains a definition of the spectral loading input matrix and other
input. Note that the input, SFr is separated into frequency and spatial components. The
spatial component is specified here using load keywords. See Section 8.3.22. The spectral
component is referred to here, but details are provided in the matrix-function section.
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3. The matrix-function section contains the spectral information on the loading. It references
functions for the details of the load. The real and imaginary function identifiers for this
input are specified here (4.10.17).

4. There must be a function definition for each referenced spectral function. Functions of time
or frequency are further described in Section 4.10.

5. There must be a frequency block that is used for integration and optionally also for output
of displacement and acceleration output. See Section 9.3.

6. As an undamped system is singular, some type of damping is required. Modal damping
terms are required. > See Section 6.7.

7. boundary conditions are supplied in the usual way, but the standard loads block is replaced
by the input in the ranloads section. The loads block will be quietly ignored in random
vibration analysis.

8. The outputs and echo sections will require the keyword vrms for output of RMS von Mises
stress. If the stress keyword is also found, then the natural stresses for solid elements will be
output. 4 The keywords rotational_displacement and rotational_acceleration in the
outputs and frequency sections will output the corresponding RMS and PSD quantities
respectively. Quantities output are listed in Table 5-26.

All other input should remain unchanged.

3Proportional damping, such as is applied with the alpha and beta terms, will not work in modalranvib.
“These stresses are linear functions of the displacement.
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Keyword Output Variable | Description
Vrms vrms Root Mean Squared von Mises Stress
DI1..D5 von Mises Stress SVD moments. Details in.>?
MO, M2, M4 von Mises Stress moments. noSVD
Xrms X component of RMS displacement
Yrms Y component of RMS displacement
Zrms Z component of RMS displacement
Axrms X component of RMS acceleration
Ayrms Y component of RMS acceleration
Azrms Z component of RMS acceleration
rotational_displacement RotXrms Rotational X component of RMS displacement
RotYrms Rotational Y component of RMS displacement
RotZrms Rotational Z component of RMS displacement
rotational_acceleration RotAxrms Rotational X component of RMS acceleration
RotAyrms Rotational Y component of RMS acceleration
RotAzrms Rotational Z component of RMS acceleration

Table 5-26. — ModalRanVib Output to Exodus File. The stress spectral moments are neither computed
nor output if noSVD is selected. The stress moments are available if noSVD is selected, and may be used
for fatigue. The RMS values of displacements and acceleration are components of a Hermitian tensor.
See Section 5.16.1 for details.

5.16.1.

Power spectral density

When requested in the frequency block, one output from the random vibration analysis is a power
spectral density or PSD (for displacement or acceleration). The power spectral density is a
measure of the output content over a frequency band, and usually measured in units of cm?/Hz or
some similar unit. Acceleration PSDs are often measured in units of g?/Hz. °

Like the input cross spectral forces, the output quantities are Hermitian, with 9 independent
translational quantities per frequency, at each output node for each type of output. The method for
transforming these quantities in alternate coordinate systems are in subsection Modal Frequency
Response Methods section Solution Procedures of the Theory Manual. The rotational terms can
be requested using the keywords rotational_displacement or rotational_acceleration. Note that
the cross correlation terms for rotation are not output.

Axx
Axy - iAxyi
sz - iszi

Axy + l'Axyl' sz + iszi
Ayz + iAyzi
Az

Ayy
Ay —iAy;

ARotXRotx

ARotyRaty

AR()tzRotZ ]

SPower spectral density output is requested in the frequency block. A collection of nodes is indicated and the
displacement or acceleration keyword is entered. PSDs of displacement or acceleration are available.
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Because the inputs are specified in terms of force cross-correlation functions, the standard
procedure for applying loads often involves application of a large concentrated mass at the input
location. The force may then be applied to the mass and the acceleration determined from

a = f/m, where we assume that m is much larger (100 to 1000 times larger) than the mass of the
remainder of the structure. Some confusion can arise in the scaling of the force.

The output PSD for acceleration is defined as follows.

Gi; = H, SuH);

Hj; is the transfer function giving a;/ f;, and Sy, is a power spectral density input. It has units

force /Hz.

Consider a single input, i.e. k = [, and with fy = myay.
Gij = Hzi<mkak,akmk>Hlj (5.16.1)
= (m3)Hyi{ak, axyHy, (5.16.2)

Thus, the acceleration PSD must be multiplied by the square of the mass to get the force PSD.
Sierra/SD applies the scale factor to the spatial force distribution (which is also squared), so the
scale factor in Sierra/SD should be my.

5.17. modalshock Solution Case
Parameter Type Default | Description
Damping coeflicient used for
srs_damp Real 0.03 the shock response spectra
calculation

Table 5-27. — modalshock Solution Case Parameters.

The modalshock solution method is used to perform a modal-superposition-based implicit
transient analysis followed by computation of the shock response spectra for the degrees of
freedom in a specified node set. More information about the about shock response spectra
solution cases is given in Section 5.27 describing implicit-transient-based SRS.

A frequency block must also be included in the input deck for modalshock solution cases to
define the frequencies and nodesets for computing the shock response spectra (see Section 9.3).
The parameters freq_step, freq_min, and freq_max are used to define the frequencies for
computing the shock response spectra. They are identified in the frequency section along with
an application region (see Section 9.3). The range of the computed frequency spectra is controlled
by freq_min and freq_max, while freq_step controls the resolution. The accuracy of the
computed spectra is not dependent on the magnitude of freq_step. This parameter controls the
quantity of output. Examples are presented in inputs 5.8, 5.9 and 5.13.
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5.18.

modaltransient Solution Case

Parameter Type Default Description
time_step Real Time step size
nsteps Integer Number of time steps to take
start_time Real 0.0 Solution case start time
nskip Integer 1 Results output frequency
rho Real 1 Select time integrator
load Integer Load. block to apply du.rmg
solution case. See Section 4.5
. alll none] Controls which result files are
write_files exodus| all . ) ) )
. written during this solution.
history
Exclude any modes below
Ifeutoff Real Inf this frequency from the modal
cuto ed - computation. Often used to
exclude rigid body modes.
Defines how often results are
flush integer 50 written to the exodus results
file. See Section 4.6.1
. Begin modaltransient solution
handoffStaticPreload bool false

from preloaded static state

Table 5-28. — modaltransient Solution Case Parameters.

Option modaltransient is used to perform a modal-superposition-based implicit transient
analysis. Damping for the model is defined in Section 6.7.

The parallel solution of modal transient may be slower than expected.
Only those DOFs requested for output are included in the solution; thus,
requesting output on only a small subset of the model can improve

solution speed.
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If output is required at few locations, it is recommended to set
write_files = history, or specify an empty outputs definition.
An empty outputs section applies to all solution cases, whereas the
write_files keyword applies only to the current solution case.

Forces and displacements on modal degrees of freedom are also available via the keyword
modalvars in the echo definition.

modaltransient supports restart in the eigen part of the analysis, the modaltransient part, or
both. In the latter case, two things would happen first. Any modes from the modal restart file are
read, and the time history data from any previous transient restart files (direct or modal) is read.
Afterwards, stepping in time continues.

An example of restart with the modaltransient solution is given below. In this case, the modal
solution is restarted prior to the modaltransient solution. The eigendecomposition would proceed
as follows

SOLUTION
eigen
nmodes 10
restart=write
END

and, subsequently, the eigen restart and modaltransient would be:

SOLUTION
case eigenvalue
eigen
nmodes 20
restart=read
case modaltrans
modaltransient
nsteps 100
time_step 1.0e-3
restart=write
END

The previous modaltransient cannot restart from the last computed time step when computing
additional time steps. To restart it is necessary to add option write in the modaltransient case.
For example, one could then do the following:

SOLUTION
case ’eigen’
eigen
nmodes 20
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restart=read
case 'modaltrans’
modaltransient
nsteps 100
time_step 1.0e-3
restart=write
case 'modaltrans’
modaltransient
nsteps 200
time_step 1.0e-3
restart=read

END
5.19. QEVP Solution Case
Parameter Type Default | Description

Table 5-29. — QEVP Solution Case Parameters.

Note: Options for the QEVP solution case depend on the algorithm used and are documented
below.

5.19.1. Quadratic Eigenvalue Methods Comparison

The quadratic eigenvalue problem is defined as,
(K + DA+ M) u=0 (5.19.1)

The solution of the quadratic eigenvalue problem (5.19.1), has applications in a variety of physics
solutions including coupled structural acoustics, general eigenvalue systems with damping, and
gyroscopic systems for rotating structures. Various methods have been developed to address the
solution to these problems. The solution to the problem is difficult, and knowledge of the types of
systems encountered can help significantly in addressing the robustness of each of the methods.
The methods are listed and described in the following paragraphs. Table 5-30 lists recommended
procedures for different problem sets.

Anasazi: It is possible to use the Anasazi method, although more testing is needed. It can be
used to address two problem areas, 1) the coupled structural acoustics problem, and 2)
gyroscopic systems from rotating frames. Currently, it requires that both the mass and the
stiffness matrix be non-singular. Previous versions of Sierra/SD used the solution case
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QEVP with no method keyword to denote the Anasazi method, and it is the default method
to keep consistent with this syntax.

A couple of the parameters for the Anasazi solver for quadratic eigenvalue problems are
described in the Table 5-15. Here shifts are not supported, and a warning message may be
avoided by setting shift to zero. Restarts are not supported either; set
implicit_restarts to 1. Restarts make the capability easier to use. Without restarts the
user is required to set the subspace size, subspace_size, to be sufficiently large. The way
that the algorithm works is to compute all the modes, and then compare a relative residual
to eig_tol. If the residuals are large, the modes are not returned to the user. It can be
helpful to use a larger value of eig_tol than the default, say 1073, In this situation, it is
helpful to set anverbosity to a large value, say And then examine other diagnostic
information, including the data written to the screen, to ascertain the accuracy of the modes.

Ceigen: The ceigen method uses methods in ARPACK, and solves the quadratic eigenvalue
problem. It is the method of choice for challenging problems.

SA_EIGEN: The sa_eigen method solves a coupled structural acoustics problem by solving a
linear, uncoupled eigenvalue problem on each of the domains, and using them as a basis to
reduce the coupled equations to a dense system. The dense system is solved using LAPACK
routines. The method is applicable to structural/acoustic systems. It is robust. Modal
truncation can introduce significant errors. Some solutions can fail (or convergence may be
slow) because the decomposition tools know nothing about the two domains.

PROJECTION_EIGEN: The projection_eigen method solves the quadratic eigenvalue problem
by projecting the problem into a subspace corresponding to the real-valued modes. This
smaller subspace is constructed by neglecting the damping matrix, symmetrizing the
stiffness matrix, and solving the eigenvalue problem,

Ku = AMu. (5.19.2)

This smaller problem is then used as a basis for solving the original quadratic eigenvalue
problem, which takes the form

Ku+ ACu + 1*Mu =0 (5.19.3)

The original quadratic eigenvalue problem is then pre and post multiplied by the
eigenvectors obtained from the subspace eigenvalue problem. This results in a small
quadratic eigenvalue problem which is then solved with a LAPACK method. Finally, the
modes from the reduced space are projected to the space corresponding to the original
quadratic eigenvalue problem.

As with the sa_eigen method, truncation error is a concern with the projection_eigen
method. The more modes one takes, the smaller the truncation error.

Use the keyword method followed by the name of the method (Anasazi, ceigen, sa_eigen,
Projection_eigen) to select a QEVP method. Below is a more detailed description of each QEVP
method, their parameters, and examples of how to use them.
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Problem Ceigen SA_eigen Anasazi | Projection_eigen
Damped Systems Acceptable | Acceptable Fails Acceptable
structural acoustics Fails Acceptable | Acceptable Acceptable
Rotational systems N/A N/A Acceptable Acceptable
Damped structural/acoustics Fails Acceptable Fails Acceptable

Table 5-30. — A 2005 comparison of quadratic eigenvalue problem methods. Although Ceigen and
Anasazi have changed substantially since 2005, this table has not been updated to reflect those changes.

5.19.2. Anasazi

The Sierra/SD interface to the Trilinos package Anasazi solves the quadratic eigenvalue problem
defined as
(K + DA+ Ma2)u=0 (5.19.4)

See Section 5.19.1 for a comparison of these methods for this problem. As currently
implemented, the Anasazi method applies to systems with a non-singular mass and stiffness
matrix. The damping matrix may be asymmetric. Options for input are described in Table 5-31.
An example is given below.

Table 5-31. — Options for QEVP Anasazi Solutions.

Option Argument Default Comment
nmodes Integer 10 number of modes
shift Real 0 ignored

reorthogonalize  Yes/No/Full ~ “Yes”  Reorthogonalize vectors
check_diag Yes/No/Full “Yes”  Check that vectors
diagonalize linearized system
ANverbosity Integer 17 Anasazi verbosity
ANblocksize Integer 1 Anasazi Block Size

Although modal truncation methods are an industry standard, the results sometimes are
inaccurate. A solution may not to change when the number of modes increases, and still be
inaccurate. Verification is entirely up the user in every case with modal truncation methods.

In addition to the shift, users must select eig_tol. But discerning an effective value depends on the
problem, especially on the shift and the linear solver accuracy. Too large a threshold (> 1.e —4)
degrades solution accuracy. Too small a threshold (< 1.e — 13) leads to divergence. However,
with these methods, diagnostic information is provided (written to the standard output stream) to
guide users with problem configuration and solution verification.

SOLUTION
case eigenvalue
QEVP
method=Anasazi
nmodes=14
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anverbosity=27
END

5.19.3. Damped Eigenvalue Problems

The QEVP solution with “method=ceigen” is used to select complex eigen analysis using the
ARPACK package. This computes the solution to the quadratic eigenvalue problem,

(K + DA+ M/lz) u=0 (5.19.5)

Note that two other solution methods may also be used to evaluate the quadratic eigenvalue
problem. Each method has its strengths and weaknesses. A comparison of these methods is
provided in Section 5.19.1.

The following table gives the parameters needed for complex (non-Hermitian) eigenvalue
problems. Additionally, the eigenvalue tolerance can be set with the eig_tol parameter in the
parameters block (Section 4.4).

Parameter Type Default | Description

Number of modes to
nmodes Integer 100 compute, reported as complex
conjugate pairs

Frequency at which to

viscofreq Real le-6 evaluate material damping

Table 5-32. — ceigen Solution Case Parameters.

The optional viscofreq keyword indicates the frequency at which the damping properties of
viscoelastic materials will be computed. It must be non-negative. The viscofreq parameter can be
confusing. In particular, viscoelastic materials typically have high damping at lower frequencies,
and lower damping at high frequencies. The viscofreq parameter sets a frequency from which we
estimate all the viscoelastic damping. Thus, if viscofreq is small, the damping is large. In
particular, if viscofreq is below the glass transition frequency, then damping appropriate to the
low frequency modes will be used. This high value of damping is applied to the entire spectrum.
It is generally better to over-estimate viscofreq than to underestimate it.

The reason for this difficulty is that even linear viscoelastic materials generate a more complex
equation than that shown in equation 5.19.5. With a single term in the Prony series, the equation
of motion for a damped viscoelastic structure can be written in the frequency domain.

S

K+ D + Ms? | u= f(s)

s+a)g
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Table 5-33. — Ceigen Tests.

Name Description

ceigen stiffness proportional damping
ceigen_visco | viscoelastic damping
ceigen_dash | dashpot damping
steel_in_foam | complex mixed materials

Here s is the Laplace transform variable and w, = 1/7 is the reciprocal of the relaxation constant.
This system is not a simple quadratic in s. Effectively, viscofreq approximates this system with
the linearized system below.

§ 2
K+D +M =
2r - viscofreq + w, sT|u=70)

Eigendecomposition of damped models is more difficult, and much less mature than ordinary
eigenvalue problems. The system of equations is more difficult, and more “tricks” must be used to
resolve issues that are generated, such as decreasing eig_tol. Even the post-processing can be
complicated. As usual, one must request displacement output in the output section (see 9.7.1).
The output file contains 12 fields (six real and six imaginary). Few post-processing tools handle
complex mode shapes. Also, see subsection Complex Eigen Analysis — Modal Analysis of
Damped Structures section Solution Procedures of the Theory Manual.

Because of the challenges of solving complex eigenvalue problems, it is important to understand
the problems for which we have evaluated and tested it. The tests in the test suite are listed in
Table 5-33.

5.19.4. SA eigen

The QEVP procedure with method SA_eigen provides a means of computing the modal response
of very lightly coupled structural acoustic system, using a modal truncation basis. For the more
tightly coupled aerospace vibration suppression problems only the CEigen and Anasazi methods
have worked. The quadratic eigenvalue problem describing this system can be written as

follows.
K, O C, L »| Mg 0O s |
15 2 ea] G E]ve]™ 2 )20 o

Here the subscripts refer to structural or acoustic domains, p, is the density of the fluid and L is a
coupling matrix. Note that for this formulation, ¢, represents the acoustic velocity potential,
which relates to the time derivative of the acoustic pressure, ¢, = Vii,. It helps to understand®
the capabilities and limitations of this analysis.
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Option Args | Description

nmodes int | Number of requested eigenvalues
nmodes_acoustic int Number of free-free acoustic modes in the reduc-
tion. Defaults to 2-(nmodes).
nmodes_structure int Number of free-free structural modes in the reduc-

tion. Defaults to 2-(nmodes).
acoustic_Ilfcutoff | Real | Low frequency cutoff to filter acoustic modes.

By default, all modes are retained
structural_lfcutoff | Real | Low frequency cutoff to filter structural modes.

By default, all modes are retained.
Used to eliminate negative modes

shift Real | Eigen shift used in computation of the subregion
modes. See 5.8. '
sort method string | magnitude: complex magnitude of A

frequency: Sort by frequency and then damping.
damping: Sort by damping and then frequency.
truefreq: Sort by frequency... avoiding zero en-

ergy round off.
none: Multicase requires None
linearization int 1A=[0L;-K-C];B=[10;0M]

2A=[-K0O;0M];B=[CM; MO0];
4A=[0-K;MO0]; B=[MC; 0M];
These follow the linearizations in Tisseur
reorthogonalize | string | no: no reorthogonalization

yes: reorthogonalize all modes

full: check all modes

check_diag string | no: no check for orthogonalization

yes: check redundant modes

full: check all modes

Table 5-34. — SA_Eigen Options.

The sa_eigen method solves this system by solving for the uncoupled eigenvalues in the two
domains, using them as a basis to reduce the coupled equations to a dense system, and solving the
dense system. Thus, it uses a modal reduction technique similar to the Craig-Bampton methods
(section 5.3) to generate a dense system of equations that are solved and results propagated to the
physical space. More details are available in the Theory Manual.

Options of the analysis are provided in Table 5-34, and an example is provided in input 5.10.
Boundary conditions are applied exactly as for the generalized eigenvalue problem. Exterior,
non-reflecting boundary conditions may be applied, but modal convergence is poorer. Loads are
irrelevant. Output is complex, as for the ceigen case (5.19.3).
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SOLUTION
case sa_eigen
QEVP
method=sa_eigen
nmodes=20
nmodes_acoustic=50
nmodes_structure=26
acoustic_lfcutoff=-

sort method = frequ
END

1

structural_lfcutoff=-1

ency

Input 5.10. SA_Eigen Example

Limitations: This is a modal superposition method. The Sierra/SD interface to the Trilinos
package Anasazi is a more complete but less robust method which does not rely on modal
truncation. The SA_eigen method is accurate for many structural acoustic environments.
Damping may be provided, but does tend to slow convergence. The method also depends on
the solution to separate structural and acoustic subregion eigen problems. These solutions
are not as robust as full system eigen analysis. Please see the notes in the verification
manual for convergence details. Table 5-35 summarizes the status of this procedure.

Low Frequency Cutoff: The parameters acoustic_lfcutoff and structural_lfcutoff remove low
frequency modes before initiating the QEVP. This will reduce the number of modes
(nmodes_acoustic and nmodes_structure) in the analysis. Negative cutoff frequencies are

allowed.
Analytic | Verification | Tested | Parallel | User
Reference Section Test Test
32 46 Y Y some

Table 5-35. — Verification Summary for SA_Eigen.

Specialized Output: There are a few items that are output specifically for the sa_eigen

procedures that can be helpful in assessing the solutions.

StructuralFraction It is useful to know which modes participate in which regions. This is

computed as follows.

Let ¢ be the eigenvector computed on the reduced space. We divide ¢ into its

structural and acoustic components. i.e.,

s
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We compute,
¢j : (bs
T T,
o165+ 9l - ba
where ¢ represents the complex conjugate transpose of ¢. Note that these products
are computed in the reduced space which has coordinates associated with each

structural or acoustic eigenvalue. In the reduced space, the mass matrix is identity, and
the vector product, ¢ - ¢ represents an energy norm.

Fstructure =

(5.19.7)

AcousticFraction The acoustic fraction is the analogue of the structural fraction (eq.

5.19.7) applied the acoustic domain. It represents the portion of the system level
complex eigenvalue that is associated with the acoustic domain.

ErrorNorm We define a normalized modal energy residual.

5.19.5.

- |67 (k + Ac + 2M) |
resid — ¢TK¢

(5.19.8)

Here ¢ and A are the estimates of the eigenpairs computed using the modal
approximation technique. The matrices, k, ¢ and m are the fully assembled stiffness,
coupling and mass matrices. This residual norm is a measure of the relative accuracy
of the eigenvalue solution. It is available in both the text results files and the output
Exodus files, and should be consulted to determine the convergence.

Projection_eigen

Of all the solvers available for quadratic eigenvalue problems, only the Projection_Eigen method
is guaranteed to always return a solution. On the other hand, no information is provided to the
user to assess the accuracy of this approximation.

Options of the Projection_Eigen solver are provided in Table 5-36. These parameters are identical
to those for the sa_eigen method.
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Option Args | Description

nmodes int

check_diag string | no: no check for orthogonalization
yes: check redundant modes

full: check all modes
sort method string | magnitude: by complex magnitude of A
frequency: by frequency and then damping.
damping: by damping and then

frequency.

truefreq: by frequency, avoiding zero
energy round off.
none:

Number of requested eigenvalues
shift Real | Eigen shift used in computation of the

subregion modes. See 5.8.
reorthogonalize | string | no: no reorthogonalization

yes: reorthogonalize all modes
full: check all modes

Table 5-36. — Projection_Eigen Options.

5.20. NIStatics Solution Case
Parameter Type Default | Description
1 leti f th
tolerance Real L6 Contro s comp etion of the
Newton iteration.
If the iteration count exceeds
max_newton_iterations Integer 100 this value before reaching .
tolerance, the Newton loop is
considered to have failed.
How often the tangent
update_tangent Integer 101 stiffness matrix is rebuilt
during the Newton iterations.
Number of load steps used to
num_newton_load_steps Integer 1 incrementally step up to the
final equilibrium position

Table 5-37. — NiStatics Solution Case Parameters.

If stiffness matrix K is a function of the displacement u in

K(u) = f,




then use NIStatics for nonlinear statics. Newton’s method applied to the residual force equations
to drive the residual » = p — f to zero. The residual vector r is the difference between the internal
force vector p and the external force vector f. The internal force vector is a function of the
structural displacements (and possibly velocities). External forces can also be a function of the
structural displacements in the case of follower loads such as surface pressure loads.

The tolerance keyword provides control over the completion of the Newton iteration. Once the
change in the L?-norm of the displacement decreases below tolerance, the loop completes
successfully.

The num_newton_load_steps keyword controls the number of load steps used to incrementally
step up to the final equilibrium position. Large loads may cause the Newton algorithm to diverge.
If this occurs, increase the number of load steps applied. Displacements will be output after each
load step which may be animated similar to transient dynamics simulations.

The update_tangent keyword controls how often the tangent stiffness matrix is rebuilt during the
Newton iterations. The default is set to update the tangent stiffness matrix at the beginning of a
load step. Setting update_tangent to 1 is equivalent to using a full-Newton algorithm where the
tangent stiffness matrix is rebuilt after each Newton iteration. For nonlinear (difficult) problems,
this option may be optimal, but for most problems the extra cost of assembling a preconditioning
the tangent stiffness matrix should be amortized over several solves. Note that for this option to
improve Newton’s method, the element types in the model must have the tangent stiffness method
implemented.

An example Solution section is shown below.

SOLUTION
title ’Example of a nonlinear statics solution’
nlstatics
tolerance = le-6

max_newton_iterations = 100
num_newton_load_steps 10 // split load into 10 increments
update_tangent 1 // full-newton algorithm

END
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5.21. NITransient Solution Case

Parameter Type Default Description
time_step Real Time step size
nsteps Integer Number of time steps to take
start_time Real 0.0 Solution case start time
nskip Integer 1 Results output frequency
rho Real 1 Select time integrator
load Integer Load. block to apply du.rmg
solution case. See Section 4.5
] all| nonel Controls which result files are
write_files exodus| all . ) ) )
. written during this solution.
history
tolerance Real le-6 Controls.completlon of the
Newton iteration.
If the iteration count exceeds
max_newton_iterations Integer 100 this value before reaching

tolerance, the Newton loop is
considered to have failed.

How often the tangent
update_tangent Integer 101 stiffness matrix is rebuilt
during the Newton iterations.

Defines how often results are
flush integer 50 written to the exodus results
file. See Section 4.6.1

Table 5-38. — NlTransient Solution Case Parameters.

The NITransient solution method is used to perform a® direct implicit nonlinear transient
analysis. A projector-corrector step is used. Note that for a linear system, the N1Transient
analysis will require two solves per time step. Nonlinearity can be controlled using the parameter
nonlinear_default 4.4

Stiffness proportional damping is silently ignored 6.7.1.

A successful nonlinear transient simulation sometimes requires fine tuning. The most important
diagnostic parameter is to add NLresiduals to the input deck echo section. . The discussion of this
topic resume below, in the discussion of update_tangent.
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Also note that although some options for NI'Transient have the same name as similar options for
N1Statics (5.20), there are subtle differences in what the options do.

The tolerance applies to the Newton iteration at each step. Once the change in the L?-norm of
the acceleration decreases below tolerance, the loop completes successfully. Note the difference
viz a viz NlStatics (5.20), where tolerance instead refers to the displacement.

If the iteration count in a given time step exceeds max_newton_iterations, the Newton loop is
considered to have failed. The limit on the number of iterations per time step may be set using
max_newton_iterations. The keyword has a different meaning in NIStatics (5.20), where
max_newton_iterations refers to the total number of Newton iterations, instead of the number of
iterations per time step.

In a NiStatics (5.20) analysis, load stepping can be used to help the convergence of the Newton
loop by cutting the total load into a series of incremental steps. This is controlled with the
num_newton_load_steps keyword. However, in NlTransient analysis, load stepping makes no
sense because the dynamic response of a structure subjected to a total load is different from the
response to a series of incremental loads. In effect, the load stepping is replaced by time stepping
in the case of nonlinear transient analysis. Thus, the keyword num_newton_load_steps is
inactive for nonlinear transient analysis.

For NlTransient problems, if Newton’s method diverges, either the tangent stiffness matrix has to
be updated more often (see update_tangent) or the time-step should be decreased.

Option update_tangent controls how often the dynamic tangent stiffness matrix is rebuilt during
the Newton iterations, with default 101. The tangent matrix will not be updated at all by default
unless a given Newton loop takes more than 101 iterations. Setting update_tangent to 1 is
equivalent to using a full-Newton algorithm where the dynamic tangent stiffness matrix is rebuilt
after each Newton iteration. Note that currently there is no option for forcing a tangent update at
the beginning of each time step, unless the update_tangent keyword is set to exactly the number
of Newton iterations taken per time step. For non-linear problems, some control of this option is
recommended. Note, for this option to improve Newton’s method, the element types in the model
must have the dynamic tangent stiffness method implemented.

5.22. Random Vibration Solution Case

Parameter Type Default | Description

Table 5-39. — Random Vibration Solution Case Parameters.

See (5.16).
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5.23. receive_sierra_data Solution Case

Parameter Type Default | Description
Include or exclude
include_internal_force offlon on computation of initial internal
force

Turn off the geometric

no_geom_stiff ;
-8 - stiffness term

Table 5-40. — receive_sierra_data Solution Case Parameters.

The solution case receive_sierra_data is used to input a deformed or preloaded model state.
Calculations in SIERRA codes such as Sierra/SM may be input to Sierra/SD. The intended
application is to compute large strain nonlinear responses in a separate code, followed by a
supported solution case in Sierra/SD.

Primary example use cases are as follows.

(a) Preload from Sierra/SM results output, where displacements and stresses are provided,
Sierra/SD reads those, adjusts the tangent stiffness matrix, and computes modes.

(b) Preload from Sierra/SM, where displacements and stresses are passed, Sierra/SD reads
those, adjusts the tangent stiffness matrix and equilibration forces, and then computes a direct
transient response to a user specified load.

(c) Implicit or explicit transient analysis in Sierra/SM, followed by a hand-off to an implicit
direct transient analysis in Sierra/SD. By default, Sierra/SD starts at the end time of the
Sierra/SM hand-off analysis.

In all cases, in addition to adjusting the stiffness matrix based upon the deformed model
configuration from Sierra/SM, the mass matrix is recomputed. If the deformation of the solid is
significant, as in the case of a highly-compressed foam, changes in the density of the material due
to the deformation should be considered. The hand-off from Sierra/SM to Sierra/SD conserves
mass as long as Sierra/SM outputs element-by-element deformed material density, and
Sierra/SD inputs this density. Consult section 5.23.2 for details on variables for hand-off.

Solution method receive_sierra_data helps with the following.
1. Update the initial geometry from the previously computed displacements.

2. Update the element stiffness matrices due to preload stresses. This geometric stiffness
correction is supported for volumetric, beam, shell, and membrane elements at this time.
The geometric stiffness calculation may be disabled with the no_geom_stiff keyword or
the blockwise parameter geom_stiff (table 6-5).
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3. Compute and apply an initial force associated with the input stress state. Disable this by
setting include_internal_force=o0ff command.

4. Update tangent stiffness of materials based the preloaded material state.

receive_sierra_data solutions require a multi-case solution. An example follows. In this
example preload data is received from the input Exodus file, that preload alters the stiffness
matrix, and eigenvalues are computed using this updated stiffness matrix.

SOLUTION
case transfer
receive_sierra_data
case eig
eigen
nmodes=40
shift=-3e6
END

The receive_sierra_data solution is specifically designed to read initial conditions and
tangent stiffness state computed in a Sierra/SM analysis. Note that connections between different
parts of the model specified in the Sierra/SM input deck are not transferred, e.g., contact
conditions, MPCs, and joints. These conditions may be equivalently specified in Sierra/SD. The
following options are available to receive_sierra_data.

include_internal_force When set to the default value (on), the input stress state is integrated to
generate an internal force body load. This load is included in the right-hand side of
subsequent static or transient analysis. If the Sierra/SM preload analysis is in static
equilibrium, the externally applied forces from boundary conditions will be in balance with
the internal forces generated by the elements. By default, the internal forces will be
computed again in Sierra/SD. Thus, if the Sierra/SD simulation includes the same forces
that preloaded the structure in the Sierra/SM simulation, then the internal force should also
be included to keep the model in static equilibrium. An alternative is to exclude the
preloading boundary conditions and set include_internal_force=off. In this case,
Sierra/SD will compute no initial internal force, and the initial state of the model will be
treated as if it is in perfect equilibrium. See the Verification Manual chapter “Sierra/SM to
Sierra/SD Coupling” for more detail on this topic.

no_geom_stiff This option can be used to include (geom_stiff=yes) or ignore
(geom_stiff=no) the preloaded stress contribution to the geometric stiffness matrix when
transferring data (section 5.23). See sections 5.23.1 and 6.6.1.9 for more details.

Option start_time is needed if a simulation does not restart the input. The start_time sets the
initial time of a transient analysis. By default, a transient case begins where a previous transient
solution case ended, or the time transferred from a receive_sierra_data or other preload
solution case. Otherwise, the default start time is 0.0. To set the start time in the input deck,
specify start_time.
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5.23.1. Geometric stiffness

Generally, elements in tension have higher effective stiffness, while elements in compression have
lower effective stiffness. At sufficiently large compression, element stiffness can become negative,
which causes severe problems for solver stability. Turning off geometric stiffness can be used for
debugging purposes, or to evaluate what effect the geometric stiffness term has on model
response.

If stiffness properties are not transferred from Sierra/SM to Sierra/SD, then it is often more
accurate for Sierra/SD to contribute a geometric stiffness to the input stiffnesses. The capability is
a well-established default feature, though in some cases it is excluded using the no_geom_stiff
(or blockwise geom_stiff) option.

It is possible to hand off the state of Sierra/SM, including the material state as specified by the
Lamé material library.** Consult section 6.1.4 for details on specifying material properties of a
Lamé material.

s Y
Sierra/SM incorporates both material and geometric stiffness due to its
fully nonlinear solid mechanics formulation. Thus, the default value for
element blocks associated with Lamé materials is geom_stiff=no.
When a built-in Sierra/SD material model is used, the default is
geom_stiff=yes.

Consult the Verification Manual chapter “Sierra/SM to Sierra/SD Coupling” for more detail on
this topic.

5.23.2. Receiving SM User Defined Data

The purpose of receive_sierra_data is to input data from a previous Sierra/SM analysis.
Data relevant to the load is mostly read in automatically based on expected naming conventions.
The fields relevant to receive_sierra_data are given in tables 5-41 to 5-43.

Only accurately labeled data will be transferred from the Exodus file. An exact match is typically
required, although some variables have multiple valid names. For example, both stress_xx and
stressxx are allowed. The data, typically written from Sierra/SM, may require special output
requests (in the Sierra/SM input file) for proper naming. See the Example Problems or
Verification Manuals for examples.

Alternatively, Sierra/SD also supports user-defined setup of some input variables using
initialize variable name = <key> in the FILE section, where the appropriate <key> for
each variable (if applicable) is listed in tables 5-41 to 5-43. read variable and variable
type lines may be used to read input variables from a non-default field name. See section 4.3 for
more information.
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Exodus Description | <key> (for initialize Effect

Label variable name)

displ_x nodal displacement(x) Added to mesh
displ_y displacement | displacement(y) coordinates, the initial
displ_z displacement(z) mesh configuration.
vel_x, vel_y nodal velocity(x),velocity(y) | Used to set initial
vel_z velocity velocity(z) conditions for

v_x and rotational_velocity(x) | transient analysis
Iv_y rotation rotational_velocity(y)

rv_z rotational_velocity(z)

force_internal_x | force from force_internal(x) Used for equilibrium

force_internal _y
force_internal_z

stress state

force_internal(y)
force_internal(z)

diagnostics

Table 5-41. — Nodal data used in receive_sierra_data.

Volumetric stress in Table 5-42 determines a geometric stiffness and an internal force. The
options to skip the geometric stiffness contribution are no_geom_stiff or the blockwise
parameter geom_stiff (table 6-5). The internal force contribution may be skipped by setting
include_internal_force=off. The Neo-Hookean, “neo_hookean”, and hyperfoam,
“hyperfoam”, Lamé models (only) are supported. And of these, only hyperfoam has a state. For
hyperfoam, comp is one of L11, .22, 1.33, L12, L23, L31, L44, L55 or L66.
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Exodus Description | <key> for Effect
Label initialize
variable name

stress_Xxx volumetric | stress(xx) Used to compute
stress_yy stress stress(yy) geometric stiffness
stress_zz components | stress(zz) and internal force
stress_xy stress(xy)
stress_yz stress(yz)
stress_zx stress(zx)
element_density density density Used to update

element mass
left_stretch_xx Element left_stretch(xx) | Used for material
left_stretch_yy Stretch left_stretch(yy) | tangent stiffness
left_stretch_zz left_stretch(zz) | calculations for
left_stretch_xy left_stretch(xy) | Lamé material
left_stretch_yz left_stretch(yz) | models
left_stretch_zx left_stretch(zx)
lame_state _<model> | Material lame_state and for Lamé
<model> comp State <model>(comp) | material model

tangent stiffnesses

Table 5-42. — Element data used in receive_sierra_data.
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Exodus Label Description <key> (for Effect
initialize
variable name)

memb_stress_xx | fiber membrane memb_stress(xx) Geometric stiffness
memb_stress_yy | stress components memb_stress(yy) and internal force
memb_stress_zz memb_stress(zz)
memb_stress_xy memb_stress(Xy)
memb_stress_yz memb_stress(yz)
memb_stress_zx memb_stress(zx)
Qlz stress components Qlzterm Geometric stiffness
Q2z Note: Qlz and Q2z are Q2zterm and internal force

defined instead of

memb_stress. Qlz, Q2z,

or both can be defined
fibermod fiber modulus fibermodulus Tangent stiffness
fiberdensity fiber density fiberdens Mass
fiberthickness thickness fiberthickness Tangent stiffness
ax primary fiber direction fiberdir Tangent stiffness
ay secondary fiber direction | fiberdir2 Tangent stiffness
compbendingmod | composite modulus compbendingmodulus | Tangent stiffness
corddiam cord diameter corddiameter Tangent stiffness
matrixmod matrix material modulus | matrixmodulus Tangent stiffness
El material modulus N/A Tangent stiffness *
E2
Gl12
nul2 Poisson ratio N/A Poisson ratio *
density material density N/A Mass *
Table 5-43. — Data transferred in receive_sierra_data specific to orthotropic_layer materials.

Some fields require the from_transfer keyword in the material definition (denoted by * in the Effect
column). These aren’t read in directly, but are dependent on other table inputs.
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Coordinate Update

The receive_sierra_data method uses Sierra/SM displacement to update the initial
coordinates of the mesh. Hand-off refers to using the output from Sierra/SM as input to
Sierra/SD.

The initial coordinates for Sierra/SD are updated with the transferred displacements.
X=X,+1U

Here x, is the location of the undeformed coordinates. Stiffness matrices, forces, mass, and tied
MPCs are then computed in the updated frame. Tied MPCs can be defined via tied surfaces or
contact.

Conserving mass through hand-off Because the Sierra/SD mass matrix is computed in the
deformed configuration, handing off element density from Sierra/SM is essential to conserve
mass, especially in models where material deformation is significant.

In order to hand off element-by-element density information from Sierra/SM, special output
options are needed; likewise, special material input syntax is needed to handle transferred density
in Sierra/SD. In the Sierra/SM input file, it is required to compute element density as a
user-defined output field. For example, an analytic function of mesh variables can be used,

BEGIN FUNCTION elem_density
type = analytic
expression variable: m = element element_mass
expression variable: v = element volume
evaluate expression = "m/v"

END

and corresponding outputs can be used to output the density to the Exodus mesh.

BEGIN USER OUTPUT

block = block_1

compute element element_density as function elem_density
END

BEGIN RESULTS OUTPUT out
database name = output.e
database type = exodusII
at time 0.0, interval =1
nodal variables = displacement as disp

element variables = stress
element variables = left_stretch
element variables = rotation

element variables

lame_state_hyperfoam
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element variables = element_density
END

In Sierra/SD, the material density must then be specified as a mesh variable in the material
definition.

MATERIAL FOAM
// original density = 26.
density exo_var scalar element_density
begin-lame-material
begin parameters for model hyperfoam
end
end-lame-material
END

Input 5.11. Example of reading density from Sierra/SM output.

A detailed example with syntax describing the hand-off between Sierra/SD and Sierra/SM is in
Chapter 3 of the Sierra/SD Example Problems Manual.**

Compatibility of Elements Between SD and SM

See section 7.35.

5.24. statics Solution Case

Parameter Type Default | Description

load Integer Load. block to apply du'rmg
solution case. See Section 4.5
rigid body components of

FilterRbmLoad Strin noFilterin loads to filter options are

tlterRbmLoa 8 & "nofiltering", "allstructural",

and "rotationonly"

Table 5-44. — statics Solution Case Parameters.

The statics keyword is required if a static solution is needed, i.e. the solution to the system of
equations [K]{u} = {f}. An example Solution section is shown below. When running a static
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solution with a floating structure, it is important to designate the num_rigid_mode parameter in
the PARAMETERS section so the solver converges, even when no body motion is expected.

SOLUTION
title "Example of a statics solution”
statics

END

Note: When applying a time-varying load to a statics solution case, the load value at time=0
(typically the first step) is used.

5.25. superposition Solution Case
Parameter Type Default Description
reduced_file String Ignored?

Table 5-45. — superposition Solution Case Parameters.

superposition is currently BETA release.
Enable with the “- -beta” command-line option.

The superposition provides superelement recovery capability. This recovers physical space
solutions from generalized degrees of freedom.

A CB model generates a transformation matrix consisting of a combined set of fixed interface and
constraint modes. See section 5.3. This modal basis may be stored in an exodus file.

A netcdf file containing the reduced order model is also created at this time. Subsequently, this
reduced model is inserted into a residual model for superelement analysis, say a transient analysis.
That analysis outputs the standard exodus results, and may also generate output on the netcdf file.
These data may be post-process using linear superposition to determine output quantities on the
original interior degrees of freedom of the superelement. This is illustrated in Figure 5-2.

The superposition method requires a single argument, the file name of the reduced order model
containing the output results. In addition, the geometry_file specified in the FILE section must
contain the modal basis for the Craig-Bampton reduction. See the example in input 5.12.

SOLUTION
superposition
reduced_file=rom-out.ncf
END

file
geometry_file basis-out.exo
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CB Reduction = Residual Solution = Superposition Solution

| y [ basis—out—superposition,ex(ﬂ

Figure 5-2. — Superposition Data Flow Diagram.

end

Input 5.12. Superposition Example. Output will be to ‘‘basis-out-superposition.exo”

Limitations

The superposition method is under development and contains the following limitations.
* Solutions are supported in serial at this time.
* Only displacement, velocity and acceleration may be output.

* Superposition is tested for Eigen and Transient solutions. There is no support for frequency
domain solutions at this time.

* Data recovery is possible for a single superelement in each run.

5.26. tangent Solution Case

Parameter Type Default Description

Table 5-46. — tangent Solution Case Parameters.

The tangent solution step requires a multicase solution (see paragraph 5.1.1). It forces an update
of the tangent stiffness matrix. It is typically used following a nonlinear solution step to ensure
that the following step begins using the tangent stiffness matrices computed from the previous
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result. However, it may also be used following a linear solution step, in which case the stiffness
matrix is computed again based on the current value of displacement.

During tangent the stiffness is computed again based on element configuration in the deformed
state. Tangent also adds any stress stiffening effects from the preceding load case. Stress
resultants from preloading are not added to stress resultants of subsequent cases after the tangent
solution, but do contribute to increasing the effective stiffness computed in the tangent stiffness.
For example, the stress stiffening that occurs from tension of a guitar string would be successfully
captured using the tangent solution case. As another example the stiffness of a warped plate may
be significantly different from the stiffness of a flat plate, tangent will take into account this
change in stiffness.

The tangent stiffness matrix is assembled at the subdomain level from computations at the element
level. It represents the partial derivative of the force with respect to the displacement, i.e.

0
Ktangent = £ (5261)

Preloading is incorporated by solving the eigenvalue problem for the tangent stiffness matrix.

5.27. transhock Solution Case
Parameter Type Default | Description
time_step Real Time step size
nsteps Integer Number of time steps to take
start_time Real 0.0 Solution case start time
nskip Integer 1 Results output frequency
rho Real 1 Select time integrator
load Integer Load. block to apply du'rmg
solution case. See Section 4.5
. alll none| Controls which result files are
write_files exodus| all . ) ) )
. written during this solution.
history
Damping coefficient used for
SRS_damp Real 0.03 the shock response spectra
calculation

Table 5-47. — transhock Solution Case Parameters.
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The transhock solution method is used to perform a direct implicit transient analysis followed by
computation of the shock response spectra (SRS) for the degrees of freedom in a specified node
set. Frequencies (see Section 9.3) and nodesets for the SRS are selected in the required input deck
frequency block. The options for configuring a transient solution case described in Section
5.28 are all applicable in the transhock solution case too. An example of a transhock solution
case and frequency block are shown in input 5.13. Damping for the implicit transient portion of
the simulation is defined in Section 6.7. The srs_damp is not used in the modal transient portion
of the simulation. Examples are presented in inputs 5.8, 5.9 and 5.13.

A standard algorithm%%6! is used to compute the shock response spectrum. MATLAB provides a

nice, interactive environment for this analysis once the time integration has been performed in
Sierra/SD. Sierra/SD performs identical calculations.

The shock spectrum procedure will compute acceleration results. The options specified in the
outputs and echo blocks are used in the transient portion of the analysis, but are ignored for the
post-processing of the transient results into shock spectra. Thus, if displacement, velocity, and/or
acceleration is selected in the outputs and/or echo sections for a shock spectra analysis, the results
echoed to the output listing or the Exodus output file will be time history results as requested, but
the shock spectra results will be for acceleration response for the nodes in the specified node set.
The calculated shock spectra are written to the frequency file (frq); they are not output to the
Exodus results file.

Transhock results differ in many subtle ways from transient results. Input deck requests for history
output are ignored. The nskip parameter is interpreted differently . The time marching
algorithm'® formulation is different.

Note that the accuracy of the computed spectra is independent of the output resolution,
freq_step.

SOLUTION
transhock
time_step .00005
nsteps 500
nskip 1
srs_damp .03
END

FREQUENCY
freq_min 100.
freq_max 10000.
freq_step 100.
nodeset 3
acceleration

END

Input 5.13. Transhock Example Input
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5.28. transient Solution Case

Parameter Type Default Description
time_step Real Time step size
nsteps Integer Number of time steps to take
start_time Real 0.0 Solution case start time
nskip Integer 1 Results output frequency
rho Real 1 Select time integrator
load Integer Load. block to apply du.rmg
solution case. See Section 4.5
. alll none] Controls which result files are
write_files exodus| all . ) ) )
. written during this solution.
history
. predictor-corrector
PredictorCorrector Integer -1 : .
implementation
ConstraintCorrectionFre- time-step frequency for
Integer 1 . .
quency constraint correction
ConstraintErrorDiagnostics | yes/no no prints constraint errors

Defines how often results are
flush integer 50 written to the exodus results
file. See Section 4.6.1

Frequency to update

nUpdateConstraints Integer 0 }
constraints
rigid body components of
. . e loads to filter options are
FilterRbmLoad String noFiltering -

"nofiltering", "allstructural",
and "rotationonly"

Table 5-48. — transient Solution Case Parameters.

The transient solution method performs a direct implicit transient analysis. The options are
described here.

Time_step The time_step defines the time step size. The time step size is constant for a period.
Multiple periods can be given as shown in Input 5.14.

Nsteps The nsteps defines the number of time steps to take. As shown in Input 5.14, multiple
periods can be defined with different numbers of steps.
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Start_time The start_time sets the initial time of a transient analysis. By default, a transient
case begins where a previous transient solution case ended, or the time transferred from a
receive_sierra_data or other preload solution case. Otherwise, the default start time is 0.0.
To set the start time in the input deck specify start_time.

Nskip The nskip controls how many integration steps to take between outputting results. It
defaults to 1, which is equivalent to outputting all time steps. Because transient analysis often
takes little computational time per step, the overall runtime can be significantly reduced by
choosing not to output the results at every step, i.e., setting nskip greater than 1. The nskip in
the solution section can be overridden for history (Section 9.2) and linesample (Section 9.8.9)
output by specifying nskip in those sections.

Load The load defines the name of the “load” block to apply during the solution case. See
Section 4.5.1 for details.

Defining Multiple time Periods We note that multiple time step values, along with the
corresponding number of steps, can be specified for transient analysis. This can be useful for
separating the simulation into a section of tiny time steps followed by a section of larger time
steps, or vice versa. The following provides an example of the use of multiple time steps.

SOLUTION
transient
time_step 1.0e-5 1.0e-3
nsteps 100 500
nskip 10 1
END

Input 5.14. Solution Example

In this case, the user requested 100 time steps of At = 107>, followed by 500 time steps with
At = 1073, There is no practical limit on the number of such regions that may be specified.

PredictorCorrector PredictorCorrector indicates whether predictor-corrector implementation
is to be used (see Theory Manual). It defaults to 1. If it is 1, predictor-corrector is always used,
while 0 indicates that it is never used. ConstraintCorrectionFrequency and
ConstraintErrorDiagnostics are related to the constraint errors arising in the predictor-corrector
implementation, with the first controlling how often the correction is applied, while the second can
be used to examine the evolution of constraint errors of displacement, velocity and acceleration.

5.28.1. nUpdateConstraints

nUpdateConstraints is currently BETA release.

Enable with the “- -beta” command-line option.

nUpdateConstraints defines the frequency to update constraints (e.g. MPCs and contact). When
it is undefined or set equal to O, the constraints will never be updated. A value of 1 results in the

237



constraints being updated every time-step. In addition to re-building the constraints, the nodal
coordinates will also be updated at the corresponding time-steps based on the interpolation of any
existing displacements on the mesh (if applicable).

The name of the displacement nodal variables can be defined by the initialize variable
name, read variable, and variable type options in the FILE section, as shown in
sections 4.3 and 5.23.

This option is related to the nodesets_with_disp option (section 4.4), which enables specifying
displacements on a subset of all nodes via nodeset output. However, nodeset displacements do not
currently support user-defined variable names as with nodal displacements.

5.28.2. FilterRbmLoad

Establishes a filter for rigid body components of the input load. The options are described in the
table. It defaults to unfiltered. The parameter may need to be combined with the RbmTolerance
and solver parameters. The FilterRbmLoad parameter is only supported for transient and static
solution cases. For other solution cases this parameter will have no effect on the solution.

During rigid body mode filtering a net force in a rigid body mode will be counter-balanced by a
force with a distribution defined by the rigid body mode shape times the mass matrix. For
example to counter-balance a net force in X direction effectively a gravity load would be applied
to the body where the sum of the forces of that gravity load is equal and opposite to the net force
to be balanced. For rigid body filtering a well-defined mass matrix is required for both transient
and static solution.

The rigid body load filtering should only be used on a model that has exactly the six standard rigid
body modes (translation along three coordinate axes and rotation about those axes).
Option Description

NoFiltering skip all RBM filtering for the load
AllStructural | apply filtering to all 6 structural RBM
RotationOnly | apply filtering to rigid body rotation only

See Section 8.3.21 for more details about the use of this option.
Numerical damping

Two time integrator schemes are available for direct time integration. The method and the
configuration of the integrator are selected using the keyword rho. If this keyword is not found,
the time integrator defaults to a standard Newmark beta!”?® integration scheme. With rho the
Generalized Alpha method?! !¢ is used, and the value of the numerical damping is controlled by
rho.
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Due to the inexactness of linear solvers, the Newmark beta integrator
is conditionally unstable. Without damping, a solution may gradually
diverge. Also, see subsection Linear transient analysis section Solution
Procedures of the Theory Manual. Either proportional damping or
numerical damping is strongly recommended in all cases.

The option rho defines the numerical damping of the Generalized Alpha method. rho varies from
0 (maximal damping case) to 1 (minimal damping case). If rho is not specified in the input
deck, the integrator defaults to the Newmark beta method. Otherwise, the code uses the value
of rho given by the user to configure the Generalized Alpha method. Therefore, there is no value
default for rho, as shown in the table above, since if it is not specified the code uses the Newmark
beta method instead. If rho is specified to be greater than 1 or negative an error message is
printed. rho determines Newmark beta, ay, and «,, of the Generalized Alpha method. More
detailed information on the implementation, and references can be found in the description of the
method in the Sierra/SD Theory Manual.

The following conditions suffice to achieve second order accuracy and unconditional stability:

Oy < oy <=

1

7n:§—am+af

1 1
Bn > 4_1+ E(a/f—am)

| =

The parameters are determined to satisfy the conditions. Specifically,

ay=p/(1+p)

am = 2p-1/(1+p)
Bn=0-ap+ayr) (1-a,+ay)/4
Yn=1/2—apy +ay

We note some special cases of interest. If p = 0, we have that @y = 0 and a,,, = —1. This is the
maximum damping case. If p = 1, we have that oy = @, = % which yields 5, = }1, and y, = %
This is similar to the classical undamped Newmark beta method, although we note that it is a
different algorithm since af = @, = % implies some lagging in the time-stepping procedure. The

classical undamped Newmark beta method has ar = «,, = 0.

Unlike proportional damping, there is no direct relation between rho and an equivalent modal
damping term. A value of rho=0.9 is recommended for most analyses. The Generalized Alpha
integrator imparts numerical damping to the solution that most strongly affects high frequency
content. Users must check that the damping in the frequency range of interest is physical. For
example with a time step size of 1e — 5, damping has the most effect at frequencies above the
Nyquist frequency .5e + 5.
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Initial Acceleration Determining the initial acceleration is necessary?’ for quadratic convergence.
If force, velocity or displacement is specified, an initial solve may be required to determine a
consistent acceleration. Remember that determination of the displacement at step n + 1 depends
on values at the previous step. Specifically, the acceleration at the previous step is given by the
solution to the equation,

A, = MY (F, + Kd, + Cv,)

where M, K, and C are the corresponding mass, stiffness and damping matrices.

If this mass solve is not performed, it is possible to introduce a spike in acceleration which can
oscillate through time. Initialization can be a somewhat tricky process. An example set of use
cases is provided in Appendix 8.5. By default, GDSW is used. Some combinations of MPCs can
lead to a singular mass matrix that will cause solver errors. For these cases the initial mass solve is
deactivated with the following command in the parameters block (see Section 4.4),

PARAMETERS
DoInitialMassSolve = false
END
5.29. TSR_preload Solution Case
Parameter Type Default | Description
Indicates that no system
matrices should be computed,
. but the linedata specified in
linedata_onl True|Fal
! —ony ruelFalse False the linesample file should be
computed for verification of
data transfer.

Table 5-49. — TSR_preload Solution Case Parameters.

The tsr_preload solution method reads an Exodus file with a previously computed Thermal
Structural Response (TSR) into Sierra/SD for a subsequent statics or transient dynamics analysis.
This is not a fully coupled calculation. Stress results are read from the geometry file, an
equivalent internal force is computed, and that internal force is combined with the applied force
throughout the transient run. If temperature data is also included in the file, it will be read and
used to compute temperature dependent material properties. A tsr_preload requires a
multicase solution, and it must be followed by a transient dynamics or statics solution (see
paragraphs 5.1.1 and 5.28 respectively).

Note that since the stresses are converted into a force, and since there is no immediate deformation
in transient dynamics, the elastic stresses output by Sierra/SD will be small initially, i.e. they will
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not contain a contribution from the thermal stress. However, at large times, the deformation from
the internal force will result in an elastic stress opposite to that of the thermal stress. The
linesample method 9.8.9 recovers the input thermal stress as an output quantity (in either
MATLAB or Exodus format).

The tsr_preload solution method is considered to be a temporary solution to a more
complicated problem. In the future, TSR analysis will involve coupling to other mechanics codes.
In many cases a thermal load (Section 8.3.7), may provide equivalent capability.

Data in the Exodus file from which TSR data is read must strictly match the following criteria.
There must be one time step in the result. That time step must have some different element fields
defined. These correspond to the six stress values of the stress tensor and the number of stress
tensors defined per element must correspond exactly to the number of integration points for that
element. For instance, a hex20 element requires exactly 27 stress tensor values per element. An
error is produced if the number of data points read in does not match the number of integration
points for that element. For instance, a fully integrated hex8 will produce an error if reading in
Gauss point data produced by a fully integrated hex20 element. Shell and beam type elements are
not supported in tsr_preload.

The labels for the stresses must be as shown in the table below where SigXX is interchangeable
with Sigma_XX or STRESS_XX. Both sequential and ijk numbering are supported for integration
point data. For sequential numbering, replace %d with an integer representing the integration point
value (0 to 26). Do not zero pad. IJK labels are detailed in section 9.7.20.6.

Name Definition

SigXX_%d oy, the xx component of stress
SigYY_%d oy, the yy component of stress
SigZZ_%d o, the zz component of stress
SigYZ_%d o, the yz component of stress
SigXZ_%d oy, the xz component of stress
SigXY_%d oy, the xy component of stress

Support for user-defined stress labels (and reading from an arbitrary input step) is available using
the initialize variable name interface shown in section 4.3. Note that the labels will still
need to follow the previously-outlined naming convention for integration-point data, i.e., the
user-defined stress label defines the root of the stress component name.

An example of a transient simulation with TSR preload follows.
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SOLUTION
title ’Pure bending from initial stress’
case TSR
tsr_preload
load 1
case bend
transient
time_step 1.e-6
start_time 1.0e-3
nsteps 3
nskip 1
load 2
END

If executed on a file with geometry_file = example.exo, this will produce two output files,
example-tsr.exo and example-bend. exo. The first of these has little useful information. The
second contains the displacements (or other variables) from the transient analysis.

5.29.1. Line Sample

One additional feature for thermal structural response is the ability to do line sampling 9.8.9 on
the original Exodus file containing the element stresses. This is useful for debugging and
verification. It allows the stresses along lines within the structure to be examined. Sampling
occurs for data stored on integration points using the variables names described above. Line
sample is used for energy deposition (see the Two Element Exponential Decay Variation Hex20
problem*®). Energy deposition is interchangeable with supplying an applied temperature.

In tsr_preload, the input Exodus file is required to contain at least one of the following fields:
stress, temperature or energy deposition. Any field that is not found in the input Exodus file is
reported as a zero field in the output line sample output file.

5.30. GeometricRigidBodyModes Solution Case

Parameter Type Default | Description

Table 5-50. — GeometricRigidBodyModes Solution Case Parameters.

Nominal rigid body modes may be determined from the coordinates. No attempt is made to
account for boundary conditions. This solution method requires that the GDSW linear solver be

used.
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The intent of the examples is to first introduce rigid modes, next use the modes to solve an
eigenvalue problem, and then demonstrate the Modal Transient capability 5.18. The third example
uses the modes in a modal transient simulation to deflate out the rotations. This section depends
on Section 8.3.21.

The geometry rigid body mode capability will always generate six modes and these modes are
explicitly ordered +X, +Y, +Z, +RX, +RY, +RZ.

Rigid body modes are requested in the Solution block.

SOLUTION
geometric_rigid_body_modes
END

PARAMETERS
num_rigid_mode 6
END

The number of rigid body modes must also be specified. Only values of 1,6 or 7 are supported.

Rigid body modes can be incorporated into the modes computed in a modal analysis, and then
used for other purposes. The resulting mode shapes are more accurate. Also, the rigid body
modes themselves are ordered in a way that makes sense to humans. Without the GRBM case, the
displacements and rotations are mixed together.

SOLUTION
case rigid
geometric_rigid_body_modes
case flexible

eigen
nmodes 10
shift -1e6
END
PARAMETERS
num_rigid_mode 6
END

Rigid body modes are the 6 lowest frequency eigenvectors. In this case 4 more modes are
computed, for 10.

In this example a modal transient simulation uses the geometric rigid body modes to deflate out the
(infinitesimal) rotation, while retaining the translational rigid body modes. This is equivalent to
use of the FilterRbmLoad for direct transient solutions (though accomplished differently).

SOLUTION
case out
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geometric_rigid_body_modes
case vibration
eigen
nmodes 10
case filter
modalfiltercase
modalfilter rotation
case transient
modaltransient
time_step 1 e-5
nsteps 62
load 42
END

PARAMETERS
num_rigid_mode 6

END

MODALFILTER rotation

add all
remove 4:6
END
5.31. waterline Solution Case
Parameter Type Default | Description
max_iterations Integer 100 Max1mum number of solution
1terations
tolerance_force Real 1.0e-6 Target force balance accuracy
point_a Real(3) Coprdmates of point on
estimated water surface
point_b Real(3) Cogrdmates of point on
estimated water surface
point_c Real(3) Coprdmates of point on
estimated water surface
Whether Ensight writes a file
VizOption none|Ensight none for visualizing the waterline
plane

Table 5-51. — waterline Solution Case Parameters.
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It can be advantageous to determine the waterline of a ship prior to commencing more complex
analysis. The waterline capability solves the nonlinear geometric equations of equilibrium for a
rigid ship in water. An example is shown in input 5.15.

SOLUTION
case ’'waterline’

waterline
max_iterations 100
tolerance_force 1.0e-6 // absolute tolerance on force convergence
point_a ® 0 ® // coords of point A’ on estimated water surface
point_b 1 ® ® // coords of point 'B’ on estimated water surface
point_c 1 1 0 // coords of point 'C’ on estimated water surface

load 1

case ’transient’

END

Input 5.15. Waterline solution case

LOAD 1
sideset 1 // wetted sideset
pressure = 1
function = 1 // this defines rho g h

body
gravity = 0 0 9.8
END

// this assumes rho=1000, g=9.8
FUNCTION 1

type Linear

data 0.0 0.0

data 1.0e6 9.8e9
END

Input 5.16. Corresponding Waterline load

The arguments point_a, point_b and point_c indicate the Cartesian coordinates of three
points A, B, C on the estimated water surface. These three points define a plane, which serves as
the initial guess of the waterline. The waterline normal is determined using the right-hand rule
with these points, as shown in Figure 5-3. The Newton’s method implementation then uses this
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plane as the initial guess, and begins iterations towards force and moment equilibrium. On
completion, we write out the coordinates of three points on the final (converged) waterline surface,
along with the Cartesian coordinate system defined by these points. This output appears in the
result file in text format. A grepos script for moving the body may also be written.

Normal

Figure 5-3. — Waterline Coordinate Definition. The plane of the surface is defined by three points: A,B,
and C. The 6 rotation is about the line from A to B, while the normal is defined using the right-hand
rule.

The optimization is configured as follows.
max_iterations sets the maximum number of iterations.

tolerance_force is a normalized force residual. The norm is computed from the residual vector,
Fresidual = [Fz/W» M01/(LW)a Mﬁz/(LW)]

where W = Mg is the total weight of the ship, and L is a characteristic length of the model.
VizOption may be none or Ensight to generate a visualization script.

In addition to the entries in the Solution section of the input, this method requires two load
entries and a function. The 1load entries define the sideset for the wetted surface and the gravity
load. Gravity is specified using the standard load keywords of a body load with a gravity vector.
However, for the waterline solution, the magnitude of the gravity vector is relevant. The gravity
direction is always directed opposite the normal to the surface for this solution type. The function
defines the pressure as a function of depth. In the example of input 5.15, the argument to the
function is the depth, 4. The function returns P = pgh. The waterline iteration may output nodal
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data during the iteration. Select force to output the buoyancy force. Select npressure to output
the nodal pressure. See the Outputs section, 9, for details.

5.31.1. Limitations

There are some limitations to this method.

gradient-based optimization: These powerful algorithms are based on nonlinear
gradient-based optimization and have subtle limitations. Limitations are listed below.

1. Singular tangent matrices are generated in various conditions, which cause the
solution to terminate. A common condition causing a singular tangent matrix is a
body completely submerged in a constant-density fluid. For simplicity, consider an
unrotated cube of edge length S. These arguments are valid for any rigid body. The net
force on the cube is,

Fret = (Abottom Poottom — Atothop) —mg (5.31.1)
= pfgSZ(hbottom - htop) —mg (5312)
= pr8S* = psgS’ (5.31.3)

where pr and p; are the densities of the fluid and solid respectively. Significantly, the
net force does not depend on the average depth. Thus,

8Fnet
K, =
t 82

=0.

K; = 0 for a ship that is completely out of the water too.

Real seawater is not constant density. An optimal solution may be found in this case.
However, because the pressure is usually expressed as a piecewise linear function, the
same problem occurs. Use of a runtime function may allow computation of
higher-order derivatives, but this has not been evaluated.

Figure 5-4 plots net force versus depth for a body. Only the partially submerged region
has a nonzero tangent matrix that can be determined by a gradient-based optimization
scheme.

2. Gradient-based solution methods often have trouble with local minima. These can
occur in the case of unstable systems, such as a light, tall cylinder floating on a dense
fluid. A local minimum occurs for the cylinder standing vertically. A global minimum
is achieved when the cylinder is perturbed and falls to the side.

3. Gradients may also go to zero for symmetry reasons. A perfect cylinder floating on the
water has no sensitivity to roll.
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Net Force

Depth

Figure 5-4. — Net Force vs depth for a Rigid Body. Only the unshaded region, where the body is
partially submerged, has a non-singular tangent matrix.

sideset orientation: The wetted surface defines the pressure surface. It does not need to be
closed. However, there can be no contribution to the net force from portions of the model

that are submerged, but not part of the sideset.
One and only one sideset defines the wetted surface. Its outward direction should point into
the water. There is no check for a reversal of the normal vectors on the sideset. This must be
evaluated by the analyst.

Z-orientation Current design requires that the initial configuration has gravity approximately
aligned with the global Z coordinate.

5.32. Gap Removal Solution Case
Parameter Type Default | Description
. . . suppress fatal error, gap
ignore_gap_inversion truelfalse false output behavior if true

Table 5-52. — Gap Removal Solution Case Parameters.

If two meshes are tied using either tied data or contact definition, then along the interface
opposite elements may initially overlap of leave gaps. Gap removal, which is done by default,
attempts to remove these gaps and overlaps. Gap removal is the same as initial overlap removal.
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The gap_removal solution case is used to debug contact setup prior to submitting a full run. The
gap_removal solution case runs quickly and uses low memory. This solution method enables
visualization of the constraints created and the gap removed from tied data 10.1 and contact
definition 10.2 blocks. The gap_removal solution method reads in the mesh, applies the
contact search and gap removal algorithm and writes out the output mesh with gap removed. An
example input is given below.

SOLUTION
gap_removal
END

TIED DATA

surface 1,2

name "tied_1-2"

search tolerance 1.0e-3
END

Removal of contact gaps is essential to maintaining rigid body invariance. This is illustrated in
Appendix 10.3. However, the removal of gaps in tied surfaces can occasionally result in distorted
elements which may make it difficult to impossible for the solver to converge. Thus, it can be
advantageous to investigate the results of gap removal before committing to a full and expensive
solution case.

Gap removal output includes the two element variables elementInversionFlag and
elementQuality. Any detected inverted element is flagged (one) by the Boolean (zero or one)
elementInversionFlag . The variable elementQuality is a condition number of the
deformed geometry of each element (one is ideal and high is worse) The same element quality
metric is used as described in Section 9.8.3.

If gap removal inverts any element the file name extension “-gap” will be appended to the output
exodus file and a fatal error will be given. One of the parameters described in Section 4.4
influences the Gap Removal solution case. The parameter is ignore_gap_inversion. It is false
by default. Set it to true to suppress both the fatal error and the “-gap” output behavior.

Gap removal for lofted surfaces is discussed in Section 10.3.

In addition to the element shape, information diagnostics regarding the contact constraints are
available. The rslt file will list basic information on the number of constraints found. Detailed
visual information on constraint locations is obtained by requesting constraint_info in the
outputs block as described in Section 9.8.1. Furthermore, adding MPC to the echo block prints
every contact created MPC as described in Section 9.9.3.

Coupled Electro-Mechanical Analysis Piezoelectricity is producing electrical charges on a
surface by the imposition of mechanical stress. Sierra/SD supports coupled electro-mechanical
physics to model piezoelectric materials subjected to electrical and mechanical forces. This
support includes static, transient, eigen, and direct frequency response solution methods,
piezoelectric and dielectric material models (6.5.9, 6.5.9), and voltage measurement based inverse
methods such as material and source identification. Electrical boundary conditions such as
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charge-based Neumann (8.3.13) and voltage-based Dirichlet(8.1.3, 8.1.4) boundary conditions are
also supported.®
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6. MATERIALS

The material section has a (unique) material identifier (an integer or a string name). The material
identifier is used in assigning material properties to element blocks. Material types and their
parameters are summarized in Table 6-1.

Table 6-1. — Material Stiffness Parameters.

material type parameters

isotropic any two of K, G, E or nu

orthotropic nine C;; entries

orthotropic_prop | El, E2, E3, nu23, nul3, nul2, G23, G13, G12
anisotropic 21 Cj; entries

For example,

MATERIAL steel
isotropic
E 3e7
nu .3

END

A materials may be isotropic, orthotropic, orthotropic_prop, anisotropic, or
isotropic_viscoelastic.

The Joint2G element 7.23 has material models for joints including an elastic-plastic model.

The default stress/strain ordering is XX, yy, zz, Zy, zX, Xy, Of

(6.0.1)

~ 0 O
N W A

5
1
3

6.1. Elastic materials

Elastic materials may be isotropic section 6.1.1, orthotropic section 6.1.2, or anisotropic
section 6.1.3. Some material models from the Lamé library are available section 6.1.4.
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6.1.1. Isotropic

Isotropic materials require specification of two of the following parameters. They can be defined
directly as parameter = <real>, as functions of temperature (Section 6.5.6), or as spatially
dependent properties (Section 6.5.7.)

Parameter Description
E Young’s Modulus
nu Poisson’s Ratio
G Shear Modulus
K Bulk Modulus

Isotropic materials are the default, and the keyword isotropic is not required. Of the four
parameters, exactly two must be supplied. They are related by

3KE
9K - E°

E=3K(1-2v), G-=

Internally, Sierra/SD stores the values of K and G.

6.1.2. Orthotropic

Orthotropic material entry is similar to the anisotropic case.

A difference is that the keyword orthotropic replaces anisotropic, and only 9 C;; entries are
specified. These entries correspond to Cyy, C12, C13, C2, Ca3, C33, C44, Css and Cgg. Like the
anisotropic material, the stress/strain ordering (6.0.1) is the default.

Alternatively, an orthotropic material may be specified using orthotropic_prop and the material
parameters E1, E2, E3, nu23, nul3, nul2, G23, G13, and G12 as shown in the following
example. As with isotropic materials, temperature-dependent parameters may be defined via a
function as parameter = function <string> (see Section 6.5.6). Note that all elastic
materials must satisfy requirements that the elasticity matrix is positive definite.

MATERIAL honeycomb
orthotropic_prop
E1 = 508.7
E2 = 7641.0
E3 = 14750.0
nul2 = .2
nu23 = .0825
nul3 = .1
Gl12 = 115
G23 = 2320.

G13 = 450.
density 0.5
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END

A single orthotropic layer may be specified using orthotropic_layer. An orthotropic layer must
specify 4 of the above parameters (E1, E2, nul2, G12).

The receive_sierra_data section 5.23 solution case transfers material parameters by file, also
using the syntax parameter = from_transfer. Here is an example:

MATERIAL 13
orthotropic_layer
El = 508.7
E2 = 7641.0
nul2 = 1.293
Gl12 = 115
density=0.5

END

If sensitivity analysis is being performed (see Section 4.8), one indicates the parameters for
analysis by following these parameters with the +/- characters. In the first entry method, a
sensitivity analysis must be performed on all 9 parameters. In the second, each individual
parameter must be requested individually. The concept is that the sensitivity is performed with
respect to the labeled parameters, i.e. either the set of C;; parameters, or each individually labeled
El term.

6.1.3. Anisotropic

Anisotropic materials require specification of a 21 element C;; matrix corresponding to the upper
triangle of the 6 X 6 stiffness matrix. Data is input in the order Cy;, C13, C13, C14, Cis, Ci6, Ca2,
etc. The C;; must be preceded by the keyword Cij. The keyword anisotropic is also required. The
stress/strain ordering (6.0.1) is the default.

This is generally consistent with published Materials Science data. However, NASTRAN and
Abaqus use a different convention. An input deck illustrating anisotropic material input is
provided in Section 11.2.

If an element block uses a coordinate system the anisotropic material is defined in the 7, §, 7 local
frame (section 9.8.11). If an element block does not use a coordinate system the anisotropic
material is defined in the X, Y, Z frame.

Note that anisotropic materials are NOT defined in the element orientation (section 9.8.4).

For anisotropic (and orthotropic) materials, the check to make sure material properties are
acceptable is skipped. A message is printed notifying the user that this check is skipped.
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6.1.4. Lamé Material

Lamé material is currently BETA release.
Enable with the “- -beta” command-line option.

Sierra/SD provides a limited capability to use linearized versions of the non-linear Lamé material
models in Sierra/SD. This can be used in conjunction with the capability to hand-off a nonlinear
preload to a linear Sierra/SD analysis. This hand-off is accomplished by reading in the element
variables stress, left_stretch, and Lamé state (e.g. lame_state_hyperfoam) at the last time-step
of your Exodus input file (see section 5.23). One example where this would be useful is
computing the tangent stiffness of a compressed foam.

Lamé materials are defined in a material section. As in input 6.1. A Lamé material definition
begins with begin-lame-material and ends with end-lame-material. Currently, only
Neo-Hookean and Hyperfoam materials are supported.

MATERIAL 1
begin-lame-material
begin parameters for model Hyperfoam

bulk modulus = 1.e6
Poissons ratio = 0.1

n=3

shear = 3.74e6, -3.17e6, 1.18e4

alpha = 2.536, 2.090, -8.807
Poisson = 0.5630, 0.5507 0.3662
end
end-lame-material
density = 5.0
END

Input 6.1. Example material section for a Lamé Hyperfoam material model.

Note: unlike the rest of a Sierra/SD input file, the material model definition (emphasized text in
input 6.1) must strictly follow syntax rules including newlines. Details of the allowed syntax for
each material model are given below.

Lamé Neo-Hookean model

Acceptable syntax for Neo-Hookean models is given below.
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BEGIN PARAMETERS FOR MODEL NEO_HOOKEAN

#

# Elastic constants

#

YOUNGS MODULUS = <real> E

POISSONS RATIO = <real> v

SHEAR MODULUS = <real> G
BULK MODULUS = <real> K
LAMBDA = <real> 4

TWO MU = <real> 2u

END [PARAMETERS FOR MODEL NEO_HOOKEAN]

A detailed discussion of the theory of the Neo-Hookean model can be found in the Sierra Solid
Mechanics User Manual.*

Lamé Hyperfoam Model

Acceptable syntax for Hyperfoam models is given below.

BEGIN PARAMETERS FOR MODEL HYPERFOAM

#

# Elastic constants

#

YOUNGS MODULUS = <real> E
POISSONS RATIO = <real> v
SHEAR MODULUS = <real> G
BULK MODULUS = <real> K
LAMBDA = <real> 4
TWO MU = <real> 2u
#

# Strain energy density

#

N = <integer> N

SHEAR = <real_list> y;
ALPHA = <real_list> «;

POISSON = <real_list> v;
END [PARAMETERS FOR HYPERFOAM]

As with Neo-Hookean models, a detailed discussion of the theory of the Hyperfoam model can be
found in the Sierra Solid Mechanics User Manual.*’
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6.2. Acoustic

Linear acoustic materials require the specification of the fluid density, and the linear speed of
sound. In addition, the keyword acoustic must be in the material block.

MATERIAL air
acoustic
density 1.293
cO® 332.0
cavitating
pvapor 0.0

END

Nonlinearity can be activated by the keyword nonlinear. Nonlinear acoustic materials require
one additional parameter, B_over_A, which is a measure of fluid nonlinearity. For air,
B_over_A= 0.4. Tables of B_over_A for various fluids can be found in.2°

Cavitation can be activated by the keyword cavitating. This requires an additional parameter,
pvapor, which is the vapor pressure with a default value equal to 0. Cavitating elements also
require the definition of vectors for hydrostatic_gravity and free_surface_point in the
block section as shown in input 6.2. hydrostatic_gravity and free_surface_point are
vectors used to compute the external pressure at the block.

BLOCK 1
material 1
hydrostatic_gravity = 0 0 -32.2
free_surface_point = 0 0 34.0

END

Input 6.2. This is an example of a block section for a cavitating material.

For computational acoustics see Section 4.6.4.

6.3. Linear Viscoelasticity

The limiting moduli of viscoelastic materials are the glassy modulus occurring at ¢ = 0 (w = 00),
and the rubbery modulus at the opposite extreme, ¢ = co (w = 0). Linear viscoelastic materials
require the specification of the density, and the limiting moduli K_g, G_g and K_co, G_oo.
Additionally the Prony series for the viscoelastic materials is to be specified using keywords
K_coeff, K_relax, G_coeff, and G_relax. Each parameter is required.
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For the bulk modulus K, the Prony series parameters are defined by the following equation:

K(t) = Koo + (Kg — Koo) Z KDtk 6.3.1)

1<i<n

Here K. and K, are shorthand for K_coeff and K_relax, and similarly for the shear modulus. The
Prony series for the shear modulus may have a different number of terms, say m, than the n term
bulk modulus series. This makes is possible to simulate a material with linear viscoelastic shear
modulus G, and isotropic bulk modulus. Think about what happens at # = 0 and r = +c0 in
equation (6.3.1). For the material to be linear viscoelastic, it is necessary that

ZKé =1 ,ZGQ =1, (6.3.2)

Note that the number of terms in K_coeff and K_relax must be the same, and the number of terms
in G_coeff and G_relax must be the same.

E_g, E_inf, G_g, and G_inf may be constant or temperature dependent. Temperature functions
can specify the value for the limiting moduli, for a given value of temperature. For example, if the
limiting moduli depend linearly on temperature, a linear function can be specified for the values of
E_g, E_inf, G_g, and G_inf. We refer to the example given below for the specifics on how to set
this up.

Temperature-dependence

The current temperature must be defined in each block that is assigned a viscoelastic material with
temperature-dependent behavior. A value of 0.0 is the default. See Section 8.3.7 for more details
on temperature specification in Sierra/SD.

Optional reference (Tp) and glassy (7,) temperatures may be specified for viscoelastic materials.
The reference temperature 7y is the temperature at which the input viscoelastic constants are
defined. The reference temperature 7y may differ from 7.

If none of the moduli are specified as functions, the values specified for these parameters
determine which model is used for temperature-dependent behavior. The T, parameter may be
given as a constant or as a spatially dependent property (Section 6.5.7.)

Two models are available:
(i) the Williams-Landel-Ferry (WLF) model,%” and
(i1) the Hinnerich’s model.

The WLF model’?3 is used when shifting temperatures above T, while the Hinnerich’s model is
used when shifting temperatures below 7,. Both models incorporate the reference temperature 7Tp.
The WLF and Hinnerich’s model use model-specific constants. Units of temperature must be
consistent with the values of the model-specific constants. The shift factors computed from the
Hinnerich’s or WLF equations are used to scale the coefficients in the Prony series.
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In terms of the current temperature in the element, 7;;.,,, the WLF model is

_ Cl (Telem - TO)
CZ + Telem - TO'

logy, (ar) = (6.3.3)

The material parameters C_1, and C_2 are determined experimentally. Typically, Ty is the glass
transition temperature of the material of interest. The shift factors computed from the WLF
equation are a strong function of temperature.

The Hinnerich’s model, provided by Terry Hinnerich’s, accurately characterizes many viscoelastic
materials below the glassy transition temperature. Its form is

logyo (ar) = ary * (1 — 72" Teem~T0)y (6.3.4)

where ar; and ar; are user-specified constants. This equation used to determine an approximate
set of shift factors when experimental data for a particular material is not at hand.

Note if a model is shifted through T, a composite shift is used. For example, if Ty is less than 7,
and T, ., 1s above Ty, first a Hinnerich’s shift is used to shift parameters from 7j to T, then a WLF
shift is used to transition those constants from Ty to T,.,,. These shifts are automatically computed
given Ty, Ty, block temperature, C_1, C_2, ary, and ar>. Note that if these shifting parameters are
not specified in the input file, then no shifting will be done and the relaxation times as specified in
the input deck will be used. If T, is unspecified, then it defaults to the provided value of Tj.

Either specify each shifting coefficient, or specify none of them.

After computing the shift factors using one of the two approaches given above, the relaxation
times are shifted. This occurs before computations begin using the relations,

K erax [l] = arKerax [l] (635)
Grelax [l] = arGyelax [l] . (636)

Example 6.3 demonstrates how Hinnerich’s model is used to set a linear viscoelastic material.

MATERIAL foam
isotropic_viscoelastic

T_0= 10

T_g = exo_var scalar t_g_input
C_1=15.

C_2=35.

aT_1=6.

aT_2=.0614

K_g = function 1
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K_inf 1.e7
G_g 1l.e2
G_inf 12.
K_coeff .5 .5
K_relax 3. 2
G_coeff .5 .5
G_relax 1 3
density 0.288
END

Input 6.3. Hinnerich’s viscoelastic material specification

As required in linear viscoelasticity, the coefficients of both K and G sum to 1.0. Also, in this case
we specify a temperature function for K_g. Thus, the value of K_g used in the simulations is the
value of function 1, at the particular element temperature T¢;.,,. The T, value is shown reading
from an input mesh exodus field named ’t_g_input’. T, can also be specified as a constant like the
other parameters.

The SM-style input syntax using the viscoelastic swanson model is also supported in SD. The
parameters in that style input are used in a preprocessing step to convert into the Hinnerich
parameters. An example of this associated SM input is shown in input 6.4.

MATERIAL foam
viscoelastic_swanson
density = 0.11330E-08
bulk modulus = 1500

al = 3.199653

pl = -0.155565

bl = 0

ql = 0.5

cut off strain = 0.01

prony shear infinity = 0.021048
prony shear 1 = 3.962759E-01
prony shear 2 = 1.748129E-01
prony shear 3 1.394151E-01
prony shear 4 8.754736E-02
prony shear 5 6.001257E-02
prony shear 6 = 3.952786E-02
prony shear 7 2.694688E-02
prony shear 8 1.717840E-02
prony shear 9 = 1.296047E-02
prony shear 10 = 5.981649E-03
prony shear 11 = 8.853162E-03
prony shear 12 = 9.439881E-03

shear relax time 1 = 1.00000E-04
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shear relax time 2 = 1.00000E-03
shear relax time 3 1.00000E-02
shear relax time 4 1.00000E-01
shear relax time 5 1.00000E+00
shear relax time 6 1.00000E+01
shear relax time 7 1.00000E+02
shear relax time 8 1.00000E+03
shear relax time 9 = 1.00000E+04
shear relax time 10 = 1.00000E+05
shear relax time 11 = 1.00000E+06
shear relax time 12 = 1.00000E+08
wlf coef cl = 5.94
wlf coef c2 = 151.60
wlf tref = 23.00
END

@—=mm

Input 6.4. SM viscoelastic swanson material specification

Limitations of Viscoelastic Use Linear viscoelastic materials are “linear” in the sense that
(linear) transient dynamics accommodates them exactly. There are limitations for the use of these
materials in Sierra/SD.

1.

6.4.

Viscoelastic materials in Sierra/SD only support a linear constitutive model and small
deformation. Internal forces are handled differently in linear and nonlinear transient
simulations. When using viscoelastic materials in a nonlinear transient simulation, in each
element block with a viscoelastic material it is necessary to specify nonlinear=no.

A statics simulation models long-time or slow response material properties. The
viscoelastic materials used are the G, and K.

. Likewise, Eigen 5.8 solutions and the modal based solutions derived from them apply only

the first terms of the Prony series for G, and K, which are used to define the elastic
constants of an isotropic elastic material. This is because the real modal solution must use a
constant mass and stiffness matrix, and has no damping contribution.

. It is possible to evaluate the eigenvalues expanded about a given frequency, viscofreq.

See the discussion of ceigen in Section 5.19.3. The damping matrix, C, is taken into account
in the eigenvalue problem. Few modal solutions are adapted to use these complex modes.

Complex Viscoelastic

The isotropic viscoelastic complex material model is currently BETA release.
Enable with the “- -beta” command-line option.
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Complex isotropic viscoelastic materials may be defined for Direct FRF solution cases with the
isotropic_viscoelastic_complex keyword. This material type has 4 required parameters,
representing the real and imaginary shear and bulk moduli: Greal, Gim, Kreal, and Kim. (The
real and imaginary components are commonly known as the storage and loss moduli,
respectively.) Each complex viscoelastic parameter must be defined by a frequency-varying
function, e.g., parameter = function <string>.

Example 6.5 demonstrates how a complex linear viscoelastic material is set.

MATERIAL 99
isotropic_viscoelastic_complex
Kreal = function 1
Kim = function 2
Greal = function 3
Gim = function 4
density 1.0

END

Input 6.5. Viscoelastic material specification

6.5. Properties

This section provides details on available keywords in Sierra/SD for input of material
properties.

6.5.1. Density

For solutions requiring a mass matrix, all material specifications must define density. This can be
set via the keyword density followed by a scalar value. Alternatively, the density can be defined as
a temperature dependent property (Section 6.5.6, as a spatially dependent property

(Section 6.5.7.), or be defined via a file transfer to receive_sierra_data solution case with
(density = from_transfer).

6.5.2. High Cycle Fatigue

Material parameters for high cycle fatigue (Section 5.11) may be provided to define the statistical
failure behavior of materials. These properties are summarized in Table 6-2.
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Parameter Type Default | Description
Fatigue_A1l Real 0.0 S-N curve constant
Fatigue_A2 Real -3.0 S-N curve slope
. S-N curve translation,
Fatlgue_A3 Real OO Seq — S(l _ R)A3
Fatigue A4 Real 0.0 S-N curve endurance limit,
ignored
R, the ratio of max/min stress.
Stress_Ratio Real -1.0 Thg default -1 indicates
oscillation about a zero-mean
stress state
Fatigue_A Real 1.0 S-N curve constant
Fatigue_m Real 3.0 S-N curve coeflicient
Fatigue_Stress Real 1.0 Stress unit conversion factor
to shift S-N curve by material
std_err Real 0.0 .
uncertainty
. to shift S-N curve by material
t_dist Real 0.0 .
uncertainty

Table 6-2. — Material Section Parameters for Fatigue Parameters.

6.5.3. S-N curve Definitions

There are two competing S-N curve definitions in literature, which are equivalent for S-N curves
that are linear in log-log space, and are both supported by Sierra/SD. The first is used by
Wirsching, Paez, and Ortiz in their book Random Vibrations Theory and Practice,®® and is
supported with the Fatigue_A, and Fatigue_m parameters:

NS" =A

The second is adaptable to a wider variety of materials, and is defined in Chapter 9 of MMPDS?’

(otherwise known as MIL-HDBK-5) as:
log p(N) = Ay + Azlogio( S (1-R)™ — Ay )

For real materials, A is always positive, and A, is always negative. A, gives the S-N curve its
negative slope, and A; represents the crossing of the S-axis on the S-N curve. For the case of an
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S-N curve which is linear in log-log space, A4 = 0 and the analysis is assumed to operate at a

constant stress ratio such that:
Seq = S(1 =R =5 (2)

and
logy (N) = A1 + Az log g (Seq)

These functions are equivalent, and the material properties can be mapped to each other by:

A2=—m

Note that A4 is equivalent to the endurance limit of the material, if it exists. Parameters

A, Ay, As, and A4 can all be found in MIL-HDBK-5%° as empirically derived values for most
metallic materials. See the example in Section 6.5.5. Since the Narrowband approach has an
inherent assumption of zero mean stress, the default is R = -1. While the user can specify a
different R-ratio, such usage would be inconsistent with the Narrowband and Wirsching
methods.

6.5.4. S-N Curve Units

While Sierra/SD requires only a consistent set of units, the introduction of experimental data with
their own units can confuse the solution. This is particularly challenging because the units for
some parameters are mixed, and the data is gathered and presented in only a single unit system.

The stress scaling parameter helps reduce that problem. Consider the scaled equation for narrow
band damage.

.
Dys = 22X (V20 Fyg)"'T (% + 1) 6.5.1)

A
Here F; is the stress scaling parameter. This parameter lets the user convert from the unit system
of the analysis to the unit system of the test data. Table 6-3 provides common conversions of these
stresses.

Model Experimental Units

Units PSI Ksi SI CG
PSI (Ibs/in%) 1 0.001 6894.76 | 68947.6
Ksi (K Ibs/in?) 1000 1 6894757 | 68947573
SI (N/m?) .000145037738 | 1.4503774e-7 1 10
CG (dynes/cm?) | .0000145037738 | 1.4503774e-8 0.1 1

Table 6-3. — Common Unit Scalings using Fatigue_Stress_Scale. The MIL-HNBK typically uses Ksi
for experimental units.
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6.5.5. Typical Material Data for Fatigue

Figure 6-1 shows typical fatigue data from MIL-HDBK-5.?° For a range of stress ratios in this
material, the number of cycles to failure is represented by the equation,

log g Ny = 9.65 — 2.8510g((Seq — 61.3)

In this range, and for this material, we have the definitions given in Table 6.5.5.

Parameter Value | Comment
Fatigue_A1l 9.65 | offsetin S-N curve. A} =log (A)
Fatigue_A2 -2.85 | slope of S-N curve, —m
Fatigue_A3 S-N curve translation, S¢;, = (1 — R)A
Fatigue_A4 61.3 | endurance limit
Stress_Ratio -0.60 | R, determines equivalent stress,
Seq = (1- R)A3
Fatigue_Stress_Scale | 0.001 | Stress unit conversion to Ksi
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MIL-HDBK-5J
31 January 2003

140 ; : _
4130 Sht Norm, KT=1.0 |:
: Stress Ratio
: -1.000 :
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Figure 2.3.1.2.8(a). Best-fit S/N curves for unnotched 4130 alloy steel sheet,
normalized, longitudinal direction.

Correlative Information for Figure 2.3,1.2.8(

Product Form: Sheet, 0.075 inch thick Test Parameters:
Loading - Axial
Properties: TUS. ksi TYS, ksi Temp., °F Frequency - 1100-1800 cpm
117 99 RT Temperature - RT
Environment - Air
Specimen Details: Unnotched
2.88-3.00 inches gross width No. of Heats/Lots: Not specified
0.80-1.00 inch net width
12.0 inch net section radius Equivalent Stress Equations:
Surface Condition: Electropolished For str tios of - 2
Log N;=9.65-2.85 log (S, - 61.3)
References: 3.2.3.1.8(a) and (f) Seq = S (1-R)™
Std. Error of Estimate, Log (Life) = 0.21
[Caution: The equivalent stress model may provide Standard Deviation, Log (Life) = 0.45
unrealistic life predictions for stress ratios beyond R?=78%
those represented above.]
Sample Size =23

For a stress ratio of -1.0
Log N, = 9.27-3.57 log (S,,,-43.3)

Figure 6-1. — S-N Curve for Steel Sheet.?’ Note that material parameters depend on the unit system.
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6.5.6. Thermal and temperature-dependent properties

The two key parameters in a material definition that affect thermal loading are the reference
temperature, T = Tref, and the coeflicient of thermal expansion (CTE), a; = alphat. These
parameters are involved in the calculation of thermal strains, that is,

€thermal = @t (Tcurrent - Tref) . (6.5.2)

A typical linear elastic material with constant CTE of 0.001 and a reference temperature of 300.0
can be defined by

MATERIAL 1
E 10e6
nu 0.3
Tref 300.0
alphat .001
density 0.1
END

The default values for Tref and alphat are both 0.0. If alphat is not specified, the material will
not undergo any thermal strain.

e N
Currently, isotropic thermal strain is supported only for isotropic,
isotropic viscoelastic, and anisotropic materials.

Shell and beam elements are not supported in thermal strains. If a
material with a coefficient of thermal expansion is used in a shell, beam,
or other unsupported element, Sierra/SD generates an error.

Material properties in Sierra/SD can also be specified to depend on temperature.
Temperature-dependent material properties are supported when temperatures are

(1) read in from an Exodus file, or
(i1) specified on a block-by-block basis.

In the case of Exodus temperatures, material properties vary from element to element, and the
values of the temperature-dependent material properties are calculated from an element average of
the Exodus temperatures. When temperatures are specified block-by-block, the temperature
dependence of the material properties can be specified explicitly in the input deck.

If temperatures are specified in the Exodus file and block-by-block in
the input deck, the input deck values take precedence.

266



Currently, the temperature-dependent material properties only affect the
computation for solid elements and hex shells.

For linear elastic materials, an example of specifying temperature dependent properties is given
below.

MATERIAL 1
E function=eTempFuncl
alphat .001
tref 100
nu 0.0
density 7700.0
END

MATERIAL 2
E function=eTempFunc?2
alphat .001
tref 100
nu 0.0
density 7700.0
END

MATERIAL 3
E function=eTempFuncl
alphat function = alphaFuncl
tref 100
nu 0.0
density 7700.0
END

FUNCTION eTempFuncl
type LINEAR
data 0.0 4.0
data 5.0e9 4.0
END

FUNCTION eTempFunc?2
type LINEAR
data 0.0 3.0
data 5.0e9 3.0
END

FUNCTION alphaFuncl
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type LINEAR

data 100.0 0.001

data 5.0e9 0.001
END

In this case, the elastic modulus of material 1 is specified by function eTempFuncl, the elastic
modulus of material 2 is specified by function eTempFunc2, and in material 3, the elastic modulus
is specified by function eTempFunc1, while the CTE is specified by alphaFuncl. The properties
of each element will be determined from its temperature relative to the reference temperature, Ttf,
and an interpolation using the function specified. In this example, the functions are trivial, and
thus the moduli of materials 1 and 2 will be 4.0 and 3.0, respectively, while the CTE is 0.001.
Note that the moduli, density, CTE, and any of the 4 elastic constants k, g, e, v can be specified as
temperature-dependent, and can be specified by different functions. In the above example, the
Poisson’s ratios are constant and only the elastic moduli and CTEs are temperature-dependent.

For viscoelastic materials, functions do not need to be specified in the
material block to designate temperature-dependence of the shift fac-
tors. This is accounted for automatically. See Section 6.3 on viscoelastic
materials for more details.

The thermal_load solution case keywords thermal_time_step and nUpdateTemperature can be
used to control the time and frequency at which temperatures are updated from the Exodus file. In
the case of temperature-dependent properties, nUpdateDynamicMatrices can also be used to
update the material stiffness based on the temperature read from the Exodus file.

For discussion of these and many more important details about temperature input and thermal
loads in Sierra/SD, consult Section 8.3.7.

If the thermal_time_step keyword is used, the temperature that affects material properties will be
the temperature read from the provided time step.

Alternatively the nUpdateDynamicMatrices keyword can be given to update the material
stiffness based on the last-read temperature. The last-read temperature is controlled by the
nUpdateTemperature keyword. Updating the dynamic matrices is computationally expensive
and should be done only when temperature has changed significantly.

6.5.7. Spatially Variant Material Properties

Multiple methods exist to define element-to-element spatial dependence in material properties.

Some material properties in Sierra/SD can be read on an element-by-element basis from the
Exodus mesh file. The syntax for this is parameter=exo_var scalar <string>. Here
<string> is the provided exodus field name. This must be a scalar field (one component) defined
on each element using the material.
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For linear elastic materials, an example of specifying Exodus-based properties is given below.

MATERIAL 1
E = exo_var scalar e_input
nu = exo_var scalar my_Poisson
density = exo_var_scalar elem_density
END

In this case, the elastic modulus of material 1 is specified by the exodus mesh field "e_input’, the
Poisson’s ratio by “'my_Poisson’, and the density by "elem_density’. The exodus based properties
can be used to define complex spatial dependence of material properties as may be found in
partially compressed foams for example. No time-variance of material properties is considered, if
the input mesh exodus file has multiple time steps the material property fields should be constant
over time to avoid confusion.

Additionally, it is possible to define material properties through the general function syntax.
Syntax and requirements are detailed in table 4-24. Unless otherwise specified material property
functions are evaluated as a function of temperature. The temperature can be defined via a block
temperature in the input deck, an element-by-element temperature in the exodus input mesh, or
nodal or Gauss point temperatures (which are then interpolated to the element centroid
temperatures) in the exodus input mesh.

MATERIAL based_on_function
E = function e_temperature_function

nu = 0.3
density =1
END

FUNCTION e_temperature_function
type linear
data 0 1.0e+6
data 400 1.0e+6
data 500 0.9e+6
data 900 0.3e+6
END

Alternatively specific input variables other than temperature can be explicitly defined in analytic
functions. Nodal function responses are mapped to element material properties by evaluating the
function at the nodes, and applying element shape functions to interpolate those values to the
centroid.

MATERIAL reads_from_nodal
E = function e_input_function
nu = 0.3
density =1
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END

FUNCTION e_input_function
type analytic
expression variable X = nodal some_mesh_var
expression variable Y = nodal another_mesh_var
evaluate expression "sqrt(X) + Y"

END

6.5.8. Specific Heat

Conversion of energy deposited in a structure to a change in temperature may be effected by a
specific heat.
Q0 =pVCAT. (6.5.3)

Here Q is the total heat energy, p is the density, V is the volume, C is the specific heat and AT is
the change in temperature. It is up to the analyst to ensure that consistent units are employed.
Note also that the analyst must determine under what conditions the specific heat is applied
(constant pressure or constant volume).

Specific heat is used only in applying boundary conditions. Energy deposited within a structure is
converted to temperature using equation 6.5.3. Once converted to temperatures, thermal stresses
and temperature dependent material properties may be applied. A fatal error is encountered if the
specific heat is not specified for each material containing an energy load. The keyword
defaultSpecificHeat defined in the “parameters” section, can be used to specify a default
specific heat for all materials.

MATERIAL ’Steel-SI’

E=2ell // Pa
NU=0.28
density=7850 // kg/mA3

specific heat = 0.45 // 1/(g K)
tref = 300 // K
alphat = 0.001

END

The reference temperature, Tf, 1s used for temperature-dependent material properties, such as in
viscoelastic materials:

0
AT = — 6.54
VC (6.5.4)
Tetem = Trer + AT (6.5.5)
€thermal = AT (Telem — Tref)- (6.5.6)
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Energy loads use the energy per unit mass or specific energy,

-2
pV

as described in Section 8.3.8.

6.5.9. Frequency dependence

For the CJdamp solution method (see Section 5.2), a frequency dependent damping coeflicient,
1n(f), may be specified. ! All other solution methods will ignore this keyword. The
CJetaFunction keyword requires as a parameter the identifier of a function. Its use is specified
in the following example. See Section 4.10 for details in specifying the function. If no function is
specified, the block will be treated as if the function were identically zero everywhere.

MATERIAL 1
E=1e7
NU=0.28
density=0.098
CJletaFunction=1
END

FUNCTION 1
name ’function to use for material 1 eta’
type linear
data 0.0 0.001
data 100 0.010
data 200 0.030
data 400 0
END

The function specifies the frequency and amplitude pairs for 7. The frequencies are in Hertz. The
CJdamp solution process interpolates the function at the eigenvalues to determine the effective
damping for any particular mode. Piezoelectric Material Sierra/SD supports two material
models which possess voltage degrees of freedom in addition to displacements and rotations:
dielectric and piezoelectric materials. The piezoelectric material is characterized by an
electro-mechanical coupling in the stiffness matrix. A piezoelectric material is defined by three
constitutive tensors: a rank four orthotropic elasticity tensor, a rank two anisotropic permittivity
tensor, and a rank three piezoelectric coupling tensor. See theory manual for further details on the
constitutive tensors. Piezoelectric material tensors may be specified in a material block by
including the keyword orthotropic_piezoelectric followed by the required three material tensor
specifications. The nine parameters defining an orthotropic elasticity tensor are given by the
keyword Cij followed by the upper triangle of a six by six matrix. The piezoelectric coupling

17 is twice the normal modal damping coefficient. Thus, if eta=0.02 for all materials, the equivalent modal damping
will be 1 percent.
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tensor is given by the keyword e_i j followed by a six by three coupling matrix. Sierra/SD
assumes the coupling matrix is in its stress-charge form (units charge/Area). The anisotropic
permittivity tensor is provided by the keyword permittivity_ij followed by a three by three
matrix. The permittivity matrix should be populated by absolute permittivity values (not
normalized by the permittivity of free space).

Here is an example of a PZTSA piezoelectric material where e0 is the permittivity of free space:

MATERIAL 1
orthotropic_piezoelectriC
Cij = 12.1el0 7.5el® 7.5el0
12.1e10 7.5el0
1.1ell
2.1el0
2.1el0
2.3el0
permittivity_ij = 916 * e0 0 0
0 916 * e 0 O
0 ® 830 * €0
e_ij = 0 0 -5.4
0 0 -5.4
0 ® 15.8
0 12.3
12.3 0 0
0 0 0
density = 7.75e3
END

Input 6.6. Piezoelectric Material

Dielectric Material A dielectric material, the second available material possessing a voltage
degree of freedom, is used to model the electrostatic behavior of materials that do not exhibit
electro-mechanical coupling (i.e., non-piezoelectric). Dielectrics can be generated with the
keyword dielectric, and are defined with only its permittivity tensor. The following is an example
of a dielectric input example.

MATERIAL 1
DIELECTRIC
permittivity_ij = 916 * e0 0 0
0 916 * e.® O
0 ® 830 * e0
END
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Input 6.7. Dielectric Material

6.6. Block
BLOCK 32
material 2
tria3
thickness 0.01 BLOCK aft_cover. .
END material aluminium
END
HEUSS 10 S8 MATERTAL aluminium
coordinate 1
e E = 7el0
Kx=1e6 nu :'®.35
density = 2700
= END
Kz=0
BlkBeta=0.0031
END Input 6.9. Labeled Block

Input 6.8. Numbered Blocks

Each element block in the Exodus file must have a corresponding block section in the input file.
The converse is not true — there can be block entries in the input deck that do not have
corresponding entries in the Exodus file. There are two cases where this can happen:

 Virtual blocks. These are blocks that have entries in the input deck and are intended to be
part of the model, but have no corresponding entries in the Exodus file. At this time, only
Joint2G elements (see Section 7.23) can be defined to be virtual blocks.

» Extra blocks that have entries in the input deck but are not intended to be part of the model.
These blocks are silently ignored by Sierra/SD.

It is an error to have multiple definitions for the same block. However, Sierra/SD does not report
the error. The behavior of Sierra/SD in this case is not defined. This section contains information
about the properties of the elements within the block.

6.6.1. Block Parameters

Parameters are either for specific elements or generic. An element block must specify its material.
The material reference is of the form, material=material_id, where material_id is a string
representing the material identifier (see Section 6). The optional parameters for elements are
coordinate frames, nonlinear behavior, block damping, and non-structural mass,

Finite element configuration beyond the coordinates is set manually in either the Exodus mesh file
(element attributes) or in the input deck (element parameters). The types of parameters depend on
the category of element. Table 6-4 summarizes the options for 5 categories of elements.
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Explanations and definitions are described in the corresponding sections of chapter 7. Parameters
apply to all the elements in the block. Attributes are specified for each element in the element
block; in this sense attributes vary in space.

Currently, four groups of elements have parameters. Shells have membrane and bending factor
factors 7.9.5. The Infinite Element 8.1.9 and Perfectly Matched Layer 8.1.10 are configured using
several unique block parameters. And the Beam2 7.11 and Nbeam 7.12 both have several
parameters.

Block labels can be provided in three forms. As shown in the example input 6.8 an integer number
can be given; the number refers to the Exodus block id number in the mesh. Alternatively this
number may be provided as *Block_## which is compatible with Sierra/SM syntax. The third
form is a block name, such as “aft_cover’ in example input 6.9. This is the name of the block in the
Exodus input mesh. Note that the material ID specified for Block 32 uses an index (material 2),
whereas Block aft_cover uses a specified material ID string aluminium. These refer to materials
defined by blocks Material 32 and Material aluminium respectively (see Sec. 6 for details).

Parameters that are generally applicable to almost all blocks are listed in Table 6-5. More detailed
descriptions are available in the following paragraphs.
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Table 6-4. — Element Parameters.

Element Type keyword Description
ConMass 1 Mass concentrated mass
2 Ixx xx moment of inertia
3 Iyy yy moment of inertia
4 Izz zz moment of inertia
5 Ixy xy moment of inertia
6 Ixz xz moment of inertia
7 Iyz yz moment of inertia
8,9,10 offset offset from node to CG
Beam 1 Area Area of beam
2 I1 First bending moment
3 12 Second bending moment
4 J Torsion moment
5,6,7 Orientation orientation vector. For
the orthogonal direction
8,9,10 offset beam offset
Spring 1 Kx spring constant in X
2 Ky spring constant in Y
3 Kz spring constant in Z
Triangle 1 thickness thickness
2 fiber orientation (theta) fiber orientation
3 offset shell offset in normal direction
Quad 1 thickness thickness
2 fiber orientation (theta) fiber orientation
3 offset shell offset in normal direction
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Table 6-5. — Parameters for (almost) Any Block.

Keyword Values Description
nonlinear yes/no blockwise nonlinear behavior
material string material identifier
rotational_type Eulerian or | blockwise behavior
Lagrangian | for
or none rotational dynamics terms
coordinate string reference coordinate frame
blkalpha Real blockwise mass proportional damping
blkbeta Real blockwise stiffness proportional damping
nsm Real blockwise non-structural mass
density_scale_factor Real blockwise density scaling factor
stiffness_scale_factor Real blockwise stiffness scaling factor
T_current Real Temperature of every element in the
block (default 0.0)
geom_stiff yes/no include/exclude("no")

geometric stiffness
See section 5.23
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6.6.1.1. Nonlinear Behavior

The nonlinear behavior of the block in nonlinear solutions is controlled by the nonlinear
keyword. The global default for block-level nonlinear behavior is set in the parameters section
(4.4). Within each block, we can override that default value. For example, to set a block to default
to linear behavior, we would have the following Block definition.

BLOCK 33
nonlinear=no
material 2
tria3
thickness 0.01

END

Similarly, to turn on the nonlinear behavior for the block, we would have

BLOCK 34
nonlinear=yes
material 2
tria3
thickness 0.01

END

Note that these block-level nonlinear flags override the global nonlinear_default keyword that is
set in the parameters section (4.4).

Some elements types are incapable of nonlinear behavior. This includes RBE3s, Rbars, and
Rrods. By default, use of these elements in nonlinear analysis will generate a fatal error. Use of
the command nonlinear=no in these element blocks will enable overriding this fatal error and
use pure linear behavior for these elements in the nonlinear analysis. Care should be taken with
this option, pure linear elements have some incompatibilities in nonlinear analysis. For example
use of pure-linear elements in nonlinear analysis can artificially constraint large rotations.

Linear element behavior in a nonlinear solution is limited to the linear
range of the element. Nonlinear transient and statics simulations store
rotations incrementally. Also, elements use Corotational formulations
if available. The Corotational formulations accurately model large de-
formations as long as strains remain small. However, rotations must
be less than 360°. For simulations involving large strains or rotations
greater than 360°, Sierra/SM is recommended.

Nonlinear statics and transient were barely documents experimental
capabilities that recently became production ready.
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6.6.1.2. Rotational Loading Matrices

For problems involving rotational loads, the rotational_type keyword allows the analyst to
specify which type of rotational formulation to use for a given block of elements. The Eulerian
formulation involves a fixed (non-rotating) coordinate system. The Lagrangian formulation
attaches a rotating coordinate system to the block. If the None options is chosen, then rotational
loads are ignored for this block. Thus, a structure with a rotating disk would only have the
rotational terms applied to the spinning disk, and not the entire structure. The default is for the
rotational_type keyword is None.

6.6.1.3. Coordinate Frame Reference

The reference coordinate system may be defined in a block. This definition applies to all the
elements of the block and the associated materials. At this point, the coordinate system is only
recognized for a subset of the elements. Further information on coordinate systems may be found
in Section 4.9.

Alternatively, input/transfer element fields may be used to define the axes of a local coordinate
system using the from_transfer keyword, as in the example below.

TRANSFER mesh_with_coords.exo
destination blocks = all

# x-axis (fields are "x-axis_x", "x-axis_y", "x-axis_z")
initialize variable name = material_direction_1

read variable = x-axis_

variable type = element

# y-axis (fields are "yx", "yy", "yz") -- (optional)
initialize variable name = material_direction_2
read variable =y
variable type = element

# z-axis (fields are "material_direction_3_x",
# "material_direction_3_y",
# "material_direction_3_z")
initialize variable name = material_direction_3
read variable = material_direction_3_
variable type = element
END

block all
material aluminum
coordinate from_transfer
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END

Finally, the intrinsic geometry may be used to define the local coordinate system using the
from_geometry keyword. If this option is chosen, a default coordinate system will be created
dependent on element type. For 1D elements, the x-axis is defined along the line connecting the 2
nodes, and the y-axis will default to the global y-axis or the orientation vector if it is defined.
In the event that these are incompatible, an alternative, orthogonal y-axis will be determined and
used. For zero-length elements, this will default to the global coordinate frame. An example input
section is shown below.

block all
material aluminum
coordinate from_geometry
END

6.6.1.4. Block Specific Damping

In Section 6.7, various methods of specifying the damping parameters for a model are identified.
In addition to these methods, block specific damping parameters may be applied. These apply a
stiffness (or mass) proportional damping matrix on an element by element basis within the block.
Thus, if a model is made of steel and foam, one could apply a 5% stiffness proportional damping
term to the foam, but leave the steel undamped.

There is no physical justification for proportional damping, and there is no expectation that it will
accurately represent damping mechanisms in a structure. However, it is easy to apply, and there
are cases where proportional damping may reveal a need for more accurate damping models. As
with all damping models, the effects depend on the solution type. For example, both Statics and
Eigen analysis ignore the damping matrix.

The damping matrix generated from block specific damping is defined as follows.

nblks
D = Z a; M; +BiKi (661)

Where D is the real system damping matrix, and @; and §; are the proportional mass and damping
coeflicients for block i. These coefficients are completely analogous to the system level
coeflicients described in Section 6.7. The damping contributions from these block parameters are
always added to the other contributions.

Block specific damping is applied using the blkalpha and blkbeta parameters. Block
proportional damping generates a damping matrix that would couple modal based solutions. It is
not currently available in modal solutions such as modaltransient. Also, see Section 6.5.9 for
material modal like damping.
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6.6.1.5. Non-Structural Mass

Non-structural mass (NSM) is specified per element block in the input deck. It is added to the
internal mass of the element. One reason to add a NSM is to use a gravity load to simulate an
external load. Another reason is to stabilize solutions with mass-less nodes. The units depend on
the element type as defined in Table 6-6.

6.6.1.6. Non-Structural Mass Corner Cases

As mesh topology determines the dimension, a Hexshell element is considered three-dimensional.
Layered shell elements add non-structural mass once per meshed element, not once per layer. The
conditions shown in Table 6-7 cause non-structural mass to be silently ignored and trigger no
warnings.

The following is an example of how to use non-structural mass in the input file:

//nsm specified in pounds per square inch
BLOCK 35

material 2

tria3

thickness 0.01

nsm 0.005
END

MATERIAL 2
density 0.5
END

Table 6-6. — Non-Structural Mass Units.

Element Type Units Example
ConMass Mass Per Element | 1bs
Spring or Joint2G | Mass Per Element | lbs
Beam or Truss mass/length Ibs / in
Two Dimensional mass/area Ibs / sg-in
Three Dimensional mass/volume lbs / cu-in
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Table 6-7. — Unhandled Corner Cases.

Element Type | State | Result
Beam or Truss Area=0 NSM Silently Ignored

Two Dimensional | Thickness=0 | NSM Silently Ignored

6.6.1.7. Blockwise Density Scaling

An element block may define a scale factor to be applied to the density of the material. This can
be used to calibrate the exact mass in each block and account for discretization errors, or to reuse
materials that only differ in density. The interaction of this feature with non-structural mass is
documented in Table 6-8.

The following is an example of blockwise density scaling in the input file:

BLOCK 36
material 2
density_scale_factor = 1.0025
END

MATERIAL 2
density 0.5
END

Table 6-8. — Combining NSM with Density_Scale_Factor.

Element Type Mass Per Element
ConMass NSM + Mass
Spring or Joint2G NSM
Beam or Truss NSM#*Length + Density*Scale*Volume
Two Dimensional NSM#*Area + Density*Scale*Volume
Three Dimensional | NSM*Volume + Density*Scale*Volume

6.6.1.8. Blockwise Stiffness Scaling

An element block may define a scale factor to be applied to the linear stiffness of the material.
This can be used to tune the precise stiffness of components without requiring separate material
definitions, usually when adapting a model to match test results. The stiffness_scale_factor
is applied to isotropic materials consistently, even if the Young’s modulus is not defined explicitly
by the user. Any valid combination of material constants will still be valid.
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The stiffness_scale_factor command is limited to isotropic material
models only.

* Itis ignored on blocks without a material, such as spring elements.

* Attempting to use stiffness_scale_factor with any anisotropic
material will result in an error.

The following is an example of blockwise stiffness scaling in the input file:

BLOCK 38
material 2
stiffness_scale_factor = 1.0025
END

MATERIAL 2
isotropic
E le7
nu 0.3
density 0.5
END

6.6.1.9. Geometric Stiffness Consideration

This option can be used to include (geom_stiff=yes) or ignore (geom_stiff=no) the preloaded
stress contribution to the geometric stiffness matrix when transferring data (section 5.23). See
section 5.23.1 and the no_geom_stiff keyword of the receive_sierra_data solution case

(section 5.23) for more details.

Piezoelectric Material Damping Only stiffness (blkbeta) and mass (blkalpha) proportional
damping can be applied to electro-mechanical materials, and damping models can only be
specified at the block level. Global damping is prohibited on any model containing piezoelectric
or dielectric materials. Voltage degrees of freedom do not couple with mass or damping (see
Theory Manual). Hence, a piezoelectric element’s damping matrix, defined by stiffness and(or)
mass proportional damping, is zero at all voltage degrees of freedom. The effects of mechanical
damping will only impact the voltage degree of freedom responses due to the electro-mechanical
stiffness coupling.
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6.7. Damping

The Damping section of an input deck is the interface to the two global viscous damping models.
Either modal damping rates or stiffness and mass proportional damping may be applied. The
options tabulated in 6-9 are described in the following sections.

Table 6-9. — DAMPING Section Options.

Parameter Description

alpha mass proportional damping parameter (real)

beta stiffness proportional damping parameter (real)

gamma uniform modal damping ratio (fraction of critical) applied to all
modes (real)

mode ADDITIONAL modal damping ratio applied to individual

mode(fraction of critical)

(integer, real)

ratiofun index of function to define modal damping ratios
FilterRbm remove rigid body mode contribution to damping
maxRatioFlexibleRbm controls check for 6 RBM with FilterRbm

The damping matrix or modal damping coefficient is determined by summing contributions from
all damping parameters given in Table 6-9. For modal superposition-based transient analysis,
modaltransient, all the given parameters are defined. For linear direct implicit transient analysis,
the modal damping parameters apply only to modes for which eigenvalues and eigenvectors have
previously been computed. This depends on the presence of the keyword nmodes in the solution
section of the input file. In the case of a modalranvib (or ModalFrf analysis in the case of
complex modes), modal damping is available, but the proportional damping parameters alpha
and beta are currently ignored.

The effect of the mass and stiffness proportional parameters on modal damping depends on the
frequencies of the modes. For modal-based analysis, the damping rate for mode i with radial
frequency w; is given as

(i =a/QRuw;) + B wi/2+T +mode(i) + ratiofun(i),

where the viscous damping term in the modal equilibrium equation is 2{;w;. For example the
following damping input section could be used in a modal transient analysis. 2

DAMPING
alpha 0.001 //
beta 0.00005 // C= .001 * M + .00005 * K
gamma 0.005 // 0.5% critical
mode 1 0.01 // gamma+mode_1 = 1.5% of critical

2Use of block specific proportional damping is explained in Section 6.6.1.
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1.0% of critical
2.0% of critical

mode 2 0.005 // gamma+mode_2
mode 3 0.015 // gamma+mode_3
END

It produces the following damping ratios.

Mode modal damping ratio modal viscous damping term

1 0.015+0.001/(2w;) + 0.00005w; /2 0.030w; + 0.001 + 0.0000Sa)i
2 0.010 +0.001/(2wy) + 0.00005w5/2  0.020w; + 0.001 + 0.00005w

3 0.020 + 0.001/(2w3) + 0.00005w3/2  0.040w3 + 0.001 + 0.0000Sw%

In direct transient analysis 3, the full mass and stiffness matrices are integrated for the solution.
Specification of a modal damping method triggers construction of a damping contribution® from
the previous modal solution. This contribution is combined with other damping terms such as the
proportional damping. Thus, the same damping input section would produce the damping ratios
shown above for the first three modes. Modal damping is applied to modes computed in a
previous solution case. *

The ratiofun keyword permits definition of modal damping terms based on a frequency
dependent function. The associated function definition (see Section 4.10) provides a table look up
for damping ratios. For example, consider a system with modes at 200 and 500 Hz. The following
example will establish modal damping ratios of .03 and .06 respectively. The function describes a
line defined by ratio(f) = 0.01 + 0.1/1000f.

DAMPING
ratiofun=100
END

FUNCTION 100
type=linear

data 0 0.01
data 1000 0.11
END

The FilterRbm keyword permits proportional damping without damping the rigid body response.
Thus, mass proportional damping can be used with no impact on the rigid body response. The
theory behind this method of damping is described in subsection Damping of Flexible Modes
Only section Solution Procedures of the Theory Manual.

In order for this method of damping to work properly, the structure must have the conventional six
rigid body modes of three translations and three rotations. A check of this condition is made

3i.e. non-modal based, but linear transient

A previous modal solution case must have been specified to use modal damping, otherwise Sierra/SD will warn the
user and abort.
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inside of Sierra/SD, and a fatal error results if this condition is not satisfied. Specifically, the

condition is met if Ko
RatioFlexibleRbm = —EPrll2 <€ 6.7.1)
|1 Kalloo || D |2

where K is the stiffness matrix, @, is the matrix of six rigid body modes, and ||Ky|| is the largest
entry on the diagonal of K. The scalar tolerance € can be specified using the
maxRatioFlexibleRbm keyword.

DAMPING

alpha=0.1

FilterRbm

maxRatioFlexibleRbm=0.001 // default is le-10
END

The FilterRbm option is compatible with the default Newmark-Beta time integration. If the
generalized-alpha time integration is used, then the parameter rho should be set to 0.5. For
additional details see the “Damping of Flexible Modes Only” section of the Sierra/SD Theory
Manual.

6.7.1. Nonlinear transient

Using the stiffness proportional damping parameter beta in a NlITransient analysis will generate
damping terms using the initial (or linear) stiffness matrix. The tangent stiffness matrix is not
used. This reason is that the tangent matrix would be required to compute the damping terms at
each iteration.

Nonlinear transient does not support modal damping.

While nonlinear solutions do not currently support standard modal damping, they may be
damping using the Distributed Damping method of the next section (6.7.2). Like modal damping,
this is a system level damping model.

6.7.2. Nonlinear Distributed Damping using Modal Masing Formulation

The purpose of this formulation is to implement a subsystem or system level nonlinear distributed
damping model into Sierra/SD. The theory on this method is found in the Sierra/SD Theory
Manual.® Distributed damping is a method developed to model the nonlinear damping response
of a subsystem. It implements the damping in a nonlinear manner with the use of an internal force
term. The damping is modeled by either an Iwan model or a linear damper, and distributed to the
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subsystem by a modal expansion. This method augments the internal force vector through a modal
Masing formulation. 2

Previous to the nonlinear transient solution which computes the distributed damping, eigenvectors
must be computed. This is done in a previous solution ’case’ option using “eigen” methods.

The damping section is used to define the type of damping behavior. Currently, only two types of
damping behavior are defined: a damper with optional cubic parameters, damper, and an Iwan
model, Iwan.*> Each mode will have a keyword defined after it with an associated parameter
number. The parameters are used to define the damping behavior. If nothing is specified for a
mode, then no damping for that mode is defined. An example input is shown below.

SOLUTION
case ’eig
eigen
nmodes 16
shift -1e5
case ’'nonlinear’
NlTransient
nsteps = 200
time_step = 5.0e-3
rho = 0.8

END

Input 6.10. Modally Damped Nonlinear Transient

*Masing and Iwan models are used almost interchangeably in this document. Iwan models are a subset of more
general Masing models.
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DAMPING
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode

END
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Input 6.11. Nonlinear Damping
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PROPERTY 1
Mu = 0.001
K=20
END
PROPERTY 2
Mu = 0.02
K=20
Mu3 = le-5
K3 = le-5
END
PROPERTY 3
chi = -0.82
phi_max = 1.0e-4
R = 7.6e6
S = 5.6e6
END
PROPERTY 4
chi = -0.80
phi_max = 1.le-4
R = 7.6e4
S = 5.6e5
END

Input 6.12. Nonlinear Damping: Corresponding Properties

6.7.3. Frequency Band Damping

Traditional damping models such as mass and stiffness proportional damping apply different
effective damping at different frequencies.. In contrast, frequency band damping enables a
nearly-uniform damping coefficient across a frequency range of interest.

127

Frequency Band Damping in Sierra/SD follows the approach of Huang et. al.,”” and may be

enabled using the following syntax for the direct transient solution case. Frequency band damping

uses a quasi viscous-material approach applied at the element level.

FREQUENCY BAND DAMPING
low frequency = <real>
high frequency = <real>
gamma = <real, ge 0, 1t 1>
block = <list(block)>
num filters = <int, ge 2>(5)
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END

Frequency band damping is only enabled/tested for transient and modal-
transient solutions.

The following commands are used by frequency band damping.

* low frequency and high frequency define the upper and lower frequency for application of
the flat damping region. Flat and maximal damping is applied in this range. However
substantial damping still occurs outside of the defined range. For example if the damping
was 5% between a low and high frequnecy of 100 Hz to 1000 Hz there would also be ~2%
damping out to 10Hz and 10,000Hz and ~0.5% damping out to 1 Hz and 100,000 Hz.

* gamma is the fraction of critical damping to apply. It has the same interpretation as the
gamma coefficient in modal gamma damping.

* block keyword may be used to restrict damping to a subregion of the model. For example,
block = 1:100 would damp only blocks between 1 and 100, block = foo,bar would
damp blocks “foo” and “bar”, and block = all remove 200:300 would damp all blocks
except blocks in the 200-300 range.

* num filters sets the number of distinct viscous damping mechanisms. A larger number of
mechanisms leads to a flatter damping over the range, but at a increased computational cost.
For most problems the default value of 5 provides sufficient accuracy.

Multiple frequency band definitions may be used to target different frequency bands on different
regions of the model.

Additional usage guidelines:

* Frequency band damping will introduce artificial reduction of natural frequencies. This
effect will get higher at larger damping ratios. A 5% damping will introduce roughly a 5%
artifical fregency shift.

» Application of excessively wide frequency bands can cause solver difficulties. In order to
apply flat damping over the full range set a lower frequency somewhat below the first
flexible mode and a high frequency somewhat above the maximum frequency of interest.

* Frequency band damping applies substantial damping outside of the low and high range. It
will typically be unfeasible to damp the same regions of the model at different gammas at
different frequency ranges.

Example:

low frequency = 100 # Low frequency for flat damping
high frequency = 1000 # High Frequency for flat damping
gamma = 0.02 # Apply 2% of critical damping
block =1 # Apply damping just to block 1
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7. ELEMENT LIBRARY

Sandia Labs has adopted the Exodus format for finite element mesh storage. In Exodus format
collections of elements are stored in element blocks. For this reason, generic information about
finite elements is described in Section 6.6. This section reviews the specific features of the
elements and pseudo-elements.

Element configuration through both the Exodus mesh file (element attributes) and in the input
deck (element parameters) is supported. The input deck parameters take precedence over the
element attributes. Recall that the parameters are summarized in Table 6-4. Parameters apply to
all the elements in the block. Attributes are specified for each element in the element block; in this
sense attributes vary in space.

Some elements have Exodus attributes. Such attributes may be specified either in the Exodus file
per element or the input deck per block or both. Input deck values override Exodus file values.
Attributes are described in this section. An attribute is either required or optional. The minimum
element diameter is 10719, If an element has diameter less than the minimum, then the behavior
Sierra is undefined.

7.1. Hex8

The Hex8 is a standard 8 node hexahedron with three degrees of freedom per node. It has 8
integration points, and trilinear shape functions. Isotropic and anisotropic materials are
supported.

There are three variations of Hex8. The default element is a bubble hex element. It is specified by
Hex8b. From a user’s perspective the Hex8b and the Hex8 are indistinguishable; both use 8 nodes
with 3 degrees of freedom per node.

The Hex8b element uses bubble functions®*3%3> to augment the standard element shape
functions. It bends more accurately than the Hex8.

The Hex8u specifies a selective deviatoric hex. By default, this element uses full-integration of
the deviatoric strain terms and single-point under-integration of the pressure term. The sd_factor
can be specified for this element which controls how the deviatoric terms are integrated. A
sd_factor value of 1.0 (the default) corresponds to full integration of deviatoric terms. A
sd_factor value of 0.0 would make the element behaves like an uniform gradient hex with no
hourglass control. Values between 0.0 and 1.0 are also allowed for the sd_factor which
correspond to a mixture between these two states. More information is given in the selective
Integration section Sierra/SD Elements of the Theory Manual.
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BLOCK
# Standard selective deviatoric formulation
Hex8u
material 1

END

BLOCK
# Under-integrated formulation for both pressure and deviatoric terms
Hex8u
material 1
sd_factor 0.0
END

The fully integrated Hex is specified by Hex8F. While it performs adequately when the element
shape is nearly cubic, it performs poorly for larger aspect ratios. For most problems involving
bending the Hex8b is recommended.

The only required parameter for these elements is the material specification. Any material may be
applied.

For computational acoustics, see Section 4.6.4.

7.2. Hex20

The 20 node variety of Hex element provides quadratic shape functions. It is a far better element
than the Hex8, and should be used if possible. The Hex20 element in Sierra/SD is similar to
elements found in most commercial codes. A material specification is required, and any structural
material may be used.

Shape Function and Gauss point locations for the Hex20 are described in Table 9-15, and in
subsubsection Shape Functions and Gauss Points subsection Quadratic Isoparametric Solid
Elements section Sierra/SD Elements of the Theory Manual.

The stress may be output at the Gauss points as described in Section 9.7.20.6.

7.3. Tet4

This is a standard 4 node tetrahedral element with three degrees of freedom per node. The Tet4
element has one integration point. The shape functions are linear. It is not recommended to use
only Tet4 elements for the entire mesh because standard, linear tetrahedron are typically much too
stiff for structural applications. The Tet4 is provided primarily for those applications where a mesh
may be partially filled with these elements. If a model is constructed of all tetrahedral elements
(as by an automatic mesh generator), the Tet10 is strongly recommended over the Tet4.
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A material specification is required, and any structural material may be used.

7.4. Tet10

This is a standard 10 node tetrahedral element with three degrees of freedom per node. The Tet10
uses 4-point integration for the stiffness matrix and 16-point integration for the mass matrix. The
shape functions are quadratic. This element is recommended for use in most structural analyses.

A material specification is required, and any structural material may be used.

7.5. Wedge6

The Wedgeb6 is a compatibility element for the Hex8, it is not recommended that the entire mesh
be built of Wedge6 elements. They are primarily intended for applications where triangles are
naturally generated in mesh generation. A material specification is required, and any structural
material may be used.

7.6. Wedge15

The Wedge15 element adds mid-side nodes to the Wedge6. Like the Hex20 and Tet10, it has
quadratic shape functions, and is recommended. A material specification is required, and any
structural material may be used.

7.7. Pyramid5

The Pyramid5 is a transition element between hex8 and tet4 blocks. They are generated
automatically by meshing programs like cubit. It is not recommended that the entire mesh be built
of PyramidS elements. A material specification is required, and any structural material may be
used.

Pyramid elements are not compatible with all Sierra/SD features.
Known limitations are listed below.

* They do not implement a condition number (section 9.8.3). This is because our condition
numbers are derived from Verdict,> which does not implement a pyramid condition
number.

* They are not currently compatible with mesh transfer (section 4.3.2), although it could
readily be extended to support them.
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7.8. Pyramidi3

The Pyramid13 element adds mid-side nodes to the Pyramid5, to transition between hex20 and
tet10 blocks. Like the Hex20, Tet10, and Wedgel5, it has quadratic shape functions, and is
recommended. A material specification is required, and any structural material may be used.

7.9. Two-Dimensional Shell and Membrane Elements

Sierra/SD supports a variety of topologically 2D elements that capture shell or membrane
behavior. A specific 2D element formulation can be selected by explicitly specifying the element
type in the input block with keywords such as QuadT, QuadM, Nquad, etc. For three noded
triangles if no specific element formulation is given then by default one of the Tria3 (isotropic
materials) or TriaShell (orthotropic or layered materials) shell formulations will be used. For all
other topologies (4-node quad, 8-node quad, and 6-node triangle) the default element is composed
of sub-triangles using the Tria3 or TriaShell shell formulations as described in Section 7.9.1

7.9.1. QuadT, Quad8T, and Tria6

The 4-node quad QuadT, 8-node quad Quad8T, and 6-node triangle Triab6 are all internally
composed of sub-triangles. Each element is the Sierra/SD default formulation for its respective
topology. These elements have both membrane and bending stiffness. The element stiffness and
mass matrices are derived by composing internally generated triangle elements, as illustrated in
Figure 7-1, 7-2, and 7-3. Output quantities such as stress are the average stress over the
sub-triangles. Since these elements are made up of multiple triangles, pressure force application
and stiffness across a single elements are not uniform. However, the stiffness and forces are
balanced in such a way to produce expected displacement and acceleration behavior. Though not
optimal, composing elements from low-order triangles is adequate for most applications.

The sub-triangles may be based on either the Tria3, or on the TriaShell element depending on
the material properties. The Tria3 is used for isotropic, single-layer elements. More complex
materials require use of the TriaShell. The underlying triangle formulation is determined
automatically by Sierra/SD, and cannot be selected by the user. See the description of the Tria3
and TriaShell for details of the formulations of the triangle elements that compose the QuadT,
Quad8T, and Triab elements.

Table 7-1 lists the supported inputs.

Sierra/SD example input files that use this element can be found in

Salinas_rtest/patchtests/quadt/quadt-patch8_test
Salinas_rtest/patchtests/quadt/quadt-patch9_test
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Figure 7-1. — QuadT Element.
The element is generated by internally combining two Triangle elements.

Triangle #2

Triangle #1

Figure 7-2. — Quad8T Element.

® oy ®
d D
® & ®

Figure 7-3. — Tria6 Element.
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Keyword Description

thickness Thickness of the shell
offset offset of the shell midplane: see Section 7.9.8
material Linear elastic material used by element
layer Layer properties: see Section 7.9.8
coordinate Base global coordinate system: see Section 7.9.7

rotate about axis ~ Coordinate system rotation: see Section 7.9.7

rotate about normal Coordinate system rotation: see Section 7.9.7
membrane_factor  Stiffness scale factor: see Section 7.9.6
bending_factor Stiffness scale factor: see Section 7.9.6

Table 7-1. — QuadT, QuadS8T, Tria6 Inputs.

7.9.2. QuadM

QuadM is a 4-node quadrilateral membrane element. It has membrane stiffness but no rotational
degrees of freedom (DOFs). Membranes are well suited to structures with very low bending
stiffness, such as fabric. Use of shell elements for such low-bending-stiffness structures can
generate a problematic near-singularity.

In the input deck a block section indicating QuadM is required.

For two-dimensional problems, the QuadM reduces to the standard plane elasticity element. For
three-dimensional problems, it behaves like the plane elasticity element in the plane, and like a
stretched balloon out-of-plane. Preloading creates the out-of-plane stiffness. An unloaded
element has no out-of-plane stiffness and may be singular. The out-of-plane behavior results from
an additional stiffness term that is applied to the out-of-plane DOFs. The stiffness resembles the
stiffness associated with Laplace’s equation. This additional stiffness is derived in classical
textbooks.>?

Table 7-2 lists the supported inputs.

Keyword Description

thickness Thickness of the membrane, required

sd_factor Selective deviatoric parameter used for numerical integration
material Linear elastic material used by element, required

coordinate Base global coordinate system: see Section 7.9.7

rotate about axis ~ Coordinate system rotation: see Section 7.9.7
rotate about normal Coordinate system rotation: see Section 7.9.7
membrane_factor  Stiffness scale factor: see Section 7.9.6

Table 7-2. — QuadM inputs.

Both full and selective integration methods are available for the membrane. The full integration is
the default. Selective deviatoric integration can be specified by using the parameter sd_factor.
For example, for full integrated membrane, one would specify
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BLOCK 11
QuadM
material 1
thickness 0.1
END

On the other hand, the following block would use the mean quadrature element with a selective
deviatoric parameter of 0.9

BLOCK 12
QuadM
material 1
sd_factor 0.9
thickness 0.1
END

Note that sd_factor must be between 0 and 1. With a value of 0, the element is a mean quadrature
element. With a value of 1, the element is again mean quadrature, but with fully integrated
deviatoric component. More details on the theory behind these elements is given in the Theory
Manual.

This element could be preloaded before the analysis of interest (e.g., a static preload followed by
eigendecomposition), or even in cases where no preload is applied but the membranes are
sufficiently constrained (such as a hex element with a layer of membrane elements on the
surface).

The QuadM element can be used in coupled simulations. In these cases, the Sierra/SM simulation
result is input to Sierra/SD for later analysis. These preloaded elements are non-singular.

The membrane element does not currently compute stress, strain, strain
energy, or strain energy density outputs. All these outputs will be
reported as zero for the element.

7.9.3. Nquad/Ntria

The Nquad and Ntria elements are isoparametric shells with membrane and bending stiffness.
They are shear-deformable elements with six DOFs per node which support isotropic, orthotropic,
and layered materials. The formulation of the Nquad/Ntria is generated by decoupling the
membrane and bending DOF. These elements currently only have linear behavior implemented. If
using a non-linear solution method, these elements will not calculate a true internal force, but a
linear force.
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The Nquad/Ntria isotropic stiffness matrix is based on the plane elasticity and shear deformable
(Mindlin) formulations as outlined in*’ (but not in later editions). The layered shell stiffness
matrix uses a composite laminate formulation.?’

In the input deck a block definition indicating either Nquad or Ntria is required. The block
definition must also have a material keyword referencing the isotropic material properties (Section
6) or orthotropic layer properties (Section 6.1.2) with properties Eq, E, vi2, and G12). An
example element block for a single layer isotropic material is shown below:

BLOCK 14
Nquad
thickness 0.1
material 2
END

BLOCK 15
Ntria
thickness 0.4
material 4
END

Inputs are given in Table 7-3.

Keyword Description
thickness Thickness of a single layer shell
material Linear elastic material used by single layer element
layer Layer properties: see Section 7.9.8
Nquad_eps_max  Numerical integration parameter
coordinate Base global coordinate system: see Section 7.9.7

rotate about axis ~ Coordinate system rotation: see Section 7.9.7
rotate about normal Coordinate system rotation: see Section 7.9.7

Table 7-3. — Nquad/Ntri inputs.

The stabilization method from Belytschko® is used for the Nquad element. Using single-point
integration KS[M] for the shear stiffness matrix leads to hourglass modes for some problems.
Using full integration K S[sz] can cause shear locking in some problems. Belytschko recommends
a shear stiffness matrix that is a linear combination of the reduced integration and full integration
shear stiffness matrices,

K, = (1 — o)k 4 gg 1221

The fraction, & = rt2/ A 1s a function of thickness and area. Here » = 0.03, ¢ is the element
thickness and A is the area of the shell. This automatic selection of £ works well for thin plates,
but can be a problem for thicker elements; & should never exceed 1. To limit shear locking, the
fraction may be capped using Nquad_eps_max, as shown in the example below.
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BLOCK 16
Nquad
thickness 1
Nquad_eps_max 0.1
END

The value for ¢ is adjusted using the function & = % This is done to address problems with

+
“elbow functions” in the code. Figure 7-4 shows this function for Nquad_eps_max = 1.

Figure 7-4. — Function for Nquad_eps_max.

The Ntria with orthotropic materials sets G»3 and G 3 to the input value of G ;.

7.9.4. TriaShell

The TriaShell is a 3-noded triangular element with 6 DOFs. The formulation of the TriaShell
is generated by decoupling the membrane DOF and the bending DOF. Allman’s Triangular (AT)
element” models the membrane DOF, while the Discrete Kirchhoff Triangle® (DKT) models the
bending DOF. These two elements are combined into the TriaShell element.

In general, the Tria3 element is preferred to the TriaShell because it is less prone to shear
locking behavior, and it is computationally efficient. The TriaShell element is required for
orthotropic or layered materials.

* TriaShells support orthotropic or anisotropic materials.

* TriaShells support layered materials. Note however that mass lumping is not allowed with
layered TriaShell elements.
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Keyword Description

thickness Thickness of the shell
offset Offset of the shell midplane: see Section 7.9.8
material Linear elastic material used by single layer element
layer Layer properties: see Section 7.9.8
coordinate Base global coordinate system: see Section 7.9.7

rotate about axis ~ Coordinate system rotation: see Section 7.9.7

rotate about normal Coordinate system rotation: see Section 7.9.7
membrane_factor  Stiffness scale factor: see Section 7.9.6
bending_factor Stiffness scale factor: see Section 7.9.6

Table 7-4. — TriaShell input options.

7.9.5. Tria3

The Tria3 is a three-dimensional triangular shell with membrane and bending stiffness. There
are 6 DOFs per node. In most respects it is similar to the TriaShell. It is the default element for
triangular meshes. The Tria3 was provided by Carlos Felippa of CU Boulder. The element
handles isotropic unlayered materials.

Keyword Description
thickness Thickness of the shell, required

offset offset of the shell midplane see Section 7.9.8
material must be isotropic, required

membrane_factor Stiffness scale factor, see Section 7.9.6
bending_factor  Stiffness scale factor, see Section 7.9.6

An example element block is shown below.

BLOCK 17

Tria3

Thickness 0.01

material 71

membrane_factor=0 // turns off membrane stiffness
END

7.9.6. Stiffness Scaling

The stiffness of the 2D element bending and membrane responses are computed independently
and can be independently scaled. Use membrane_factor and bending_factor to configure the
element. Each of these parameters default to 1.0. Reasons for scaling the element stiffness could
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include accounting for damage to the structure or tuning of model response to match experimental
data.

7.9.7. Shell Coordinate Systems

For orthotropic materials a coordinate system must be defined in the element to set the local
material orientation. First, a user-defined global coordinate system is referenced with the
coordinate keyword (Section 4.9.) The global coordinate system is evaluated at the element
centroid to define a local 7, §, f system for the element.

This 7, §, 7 coordinate system is projected onto the surface of the shell as shown in Figure 7-5.
This projection will rotate the coordinate system such that the 7, axis aligns with the shell normal
and 7, and §, are as close as possible to the original orientations of 7 and §. It is reccommended to
use a global coordinate system in which 7 lies as close as possible to the shell normal vectors to
minimize ambiguity in this coordinate system alignment step.

Two additional inputs are available in the shell block to alter the element local coordinate system.
First a rotation can be applied to the 7, §, 7 vectors prior to projection onto the shell plane with the
command:

rotate <real> about axis <int>

The rotation angle is given in degrees. The axis integer 1, 2, or 3, represents the 7, §, or 7
A) AL

coordinate axes. After rotation of the coordinate system the #/, §’, 7’ system is aligned to the plane
of the shell. See Figure 7-6 for an example.

A second input option can rotate the element local coordinate system after projection with the
command:

rotate <real> about normal

The angle is given in degrees. This will rotate the projected system around the 7,, vector as shown
in Figure 7-7.

Once a shell-local system is defined, the 7, and §, vectors will define the orientation of
orthotropic materials. The fiber_orientation command can do one more local rotation of this
orientation layer-by-layer as described in Section 7.9.8.
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e 3]

Figure 7-5. — Projection of global coordinate system to shell.

R
L

rotate 30 about axis 3

Figure 7-6. — Rotation of global coordinate system about axis prior to projection to shell.
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rotate 20 about normal

e 3]

Figure 7-7. — Rotation of local system about normal after to projection to shell.

7.9.8. Layered Shells

Several of the shell element formulations allow composing the element via a stack of layers of
different materials. This is used to model layered composites. When using layers, the available
materials are isotropic and orthotropic_layer. Each layer must specify a material and thickness. A
fiber orientation, which is a rotation of the layer material coordinate system with respect to the
element coordinate system, may optionally be given. Thickness and fiber orientation for a
multi-layer material must be specified layer by layer in the input deck. Exodus attributes may not
be used.

Keyword layer defines a new layer for the current shell. Layers of the shell are stacked from the
bottom to the top based on the order of the layer keyword in the input deck. The 1layer_ID input
is an identifier provided by the user and is not used to select stacking order. A shell may have up
to 250 different layers defined. Figure 7-8 shows a simple schematic explaining how layers are
stacked in Sierra/SD. An example element block for a four-layer orthotropic layered shell is
shown below. !

An important parameter for the layered shells with orthotropic materials is the specification of a
user-defined coordinate system with the coordinate option, see Section 7.9.7 In the example
shown here, a coordinate system is defined for the shell block and orthotropic material properties
are defined via a fiber orientation rotation with respect to that base element system.

IFor layered shells, the thickness parameter specifies the actual thickness of that layer of the shell. This is in
contrast to the Hexshell which specifies a relative thickness: see Section 7.10.
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Layer 2

Bottom ——

Figure 7-8. — Stacking arrangement for a multi layer shell element.

BLOCK 18
TriaShell
coordinate 1
layer <layer_ID>
material 1 thickness 0.02 fiber orientation 40
layer <layer_ID>
material 2 thickness 0.04 fiber orientation 44
layer <layer_ID>
material 3 thickness 0.03 fiber orientation 54
layer <layer_ID>
material 4 thickness 0.01 fiber orientation 4
END

BEGIN RECTANGULAR COORDINATE SYSTEM 1
origin 0.0 1.0 1.0
z point 2.0 1.0 1.0
xz point 0.0 1.0 10.0

END

Input 7.1. Layered Shell Example

Multi-layered shell stress can be written to the Exodus file. It is also written to the result file. if
stress is selected in the echo section. The layer stresses will be computed only at the midpoint of
each layer. Layer stresses at the top and bottom of each layer are not available.
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The Navy Layered Shell with orthotropic materials sets G,3 and G 3 to
the input value of G 5.

Offset Shells

By default, the meshed shell element lies at the midplane of the material volume represented by
the shell. Shells may be offset from the midplane by specifying the offset input. The offset vector
is the element unit normal vector scaled by the offset. An example is shown in Figure 7-9.

The resulting mass and stiffness properties are equivalent to the stiffness generated by translating
the shell by the offset vector, and constraining the resulting offset nodes to the untranslated nodes
using rigid links. The performance of offset shells is better than that of the constraint approach.
Note that for curved surfaces there may be modeling issues with offset elements since there is no
change in curvature with the change in radius.

T Normal

Offset = 0.05

T Normal

Default Offset 0.1 .

___________

,
s

Offset = -0.05 ",

Figure 7-9. — Offset examples for shell of thickness 0.1.

In the . inp file the element offset is specified as,

offset=-3.14e-2

Offsets may also be specified in the Exodus file via attributes (see Section 7.9.9.) Some
limitations of element offsets are described in Section 7.9.8.1.

7.9.81. Offset Shells and Lumped Mass

The elements more accurately model structures such as shells cladded on a volume. Offset
elements necessarily couple the rotational and translational DOFs. This results in off-diagonal
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coupling terms in the element stiffness and mass matrices.

Generally, the element stiffness matrix is fully populated and seldom is reduced. However, the
mass matrix may be lumped (diagonalized) as described in Section 4.6.4.

Mass matrix lumping decouples the translational and rotational DOFs,
which is inaccurate for offset shells. Specifically, while the total mass
is conserved, the center of gravity and mass moments are not. The
lumped mass looks as if it had not been offset. This is true even
with mesh refinement. The models of the consistent and lumped mass
are fundamentally different when element offsets are included. Mass
lumping with offset shell elements is discouraged.

7.9.9. Spatially Dependent Properties via Exodus Attributes

Certain 2D element properties can be defined either in the input deck or via attributes on the input
Exodus mesh. When a property is defined in the input deck it has a constant value for all elements
of the block. The advantage of Exodus attributes is that a different value can be used in each
element. This can be used to model properties such as variations in thickness in tapered shells.

The supported attributes are shown in Table 7-5.

Attribute Index Keyword Description
1 thickness Thickness of the shell
2 fiber_orientation Rotation of material with respect to
local coordinate system
3 offset Offset of the shell midplane with respect to

the meshed surface: see Section 7.9.8

Table 7-5. — Shell parameters that can be set via attributes.

If an input deck value is given for a shell property, such as thickness,
it will override any value given in the Exodus attributes. Furthermore,
attributes cannot be used with multi-layer shells; all multi-layer shell
element properties must be defined in input deck.
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7.10. Hexshell

The 8 noded Hexshell is a hybrid solid/shell element. It is meshed as a standard hex element, but
the formulation of the element is similar to that of a shell. Unlike a shell element, the thickness is
determined by the mesh. But, the element is designed to operate with many of the same features
as shell elements even when it becomes thin. Details of the element formulation are available in a
separate report.””> An introduction to Hexshells is readily available in,*> and the verification
manual*® discusses the results of the verification problems from?? for Sierra/SD.

The Hexshell has a preferential thickness direction that must be set correctly. There are three ways
to specify the thickness direction.

1. Using the tcoord, it may be specified by a coordinate frame.

2. An Exodus side set may be attached to one face of all the elements in a block using the
keyword sideset. The thickness direction will be defined to be the normal to the sideset’s
surface. For example, if the sideset is placed on a side of the structure that lies on the x-y
plane, then the thickness direction of the Hexshell will be defined as the z direction, since
that is the normal to the x-y plane.

3. Sierra/SD may attempt to determine the thickness direction from the topology. This is the
default option (because it is the easiest for the user), but it is also the least robust.

Sierra/SD attempts to identify the element orientation first using tcoord. The tcoord keyword
abbreviates thickness coordinate, and is only defined for Hexshells. If tcoord is not specified,
then Sierra/SD attempts to identify the element orientation second from the corresponding
sideset. These methods do not depend on the decomposition, but the third method does depend on
the decomposition. Lastly if no sideset is specified, Sierra/SD attempts to determine the thickness
direction from the topology.

The element orientation may be identified in the output using the eorient keyword. See
section 9.8.4.

Thickness Determination by Topology

When the element thickness must be determined by the topology, the mesh must follow these
requirements. The elements in the block must form a sheet. More than one disconnected portion
of the sheet is possible, but all portions must adhere to these requirements.

* Every element in the sheet must have at least two neighbors, e.g. the sheet can’t be a single
element. NOTE... at this time, this is true for the parallel decomposed mesh too. The
portions of the sheets found in each subdomain can not be a single element. We must be
able to eliminate the thickness direction of each element by its neighbor connectivity.

* The elements in the sheet may vary in thickness, but the sheet must be exactly one element
thick.
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* The elements must be connected as a single sheet. Thus, if the sheet turns a corner, it must
do so gently. The algorithm will fail if any element in the sheet is connected on the top or
bottom to another element in the sheet.

Determining element thickness from the topology has known limita-
tions, and is not planned for an update. This topology method is the
oldest and depends on the body being laid out in a layer one element
thick. Unfortunately, it is not well parallelized, as we do not have ghost
elements. The other two methods do not depend on the decomposition.

Hexshell Parameters

Hexshell elements require a material specification. Optional parameters include the sideset or the
coordinate frame and coordinate direction used to determine the thickness direction. The sideset
keyword must be associated with a defined sideset in the model. The tcoord keyword requires a
string and integer argument. The first is the Name of the coordinate system referenced. The
second is the direction (1, 2 or 3) associated with the coordinate system.

# Keyword Arguments Description
1 sideset ID/name sideset to specify thickness direction
2 tcoord ID/name and direction coordinate frame and coordinate direction

3 autolayers # of layers and material creates specified number of uniform layers of
specified material

An example specification for a multi-layer Hexshell is shown in input 7.3.

BEGIN CYLINDRICAL COORDINATE SYSTEM thickness
origin = 0 0 0
Z point =0 0 1
XZ point =10 0

END

Input 7.2. Hexshell: Coordinate Frame

BLOCK 86
Hexshell
sideset 88
layer 1 material 1 coordinate 1 thickness .4
layer 2 material 2 coordinate 2 thickness 0.6
END
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Input 7.3. Multi-layer input with thickness direction determined using a sideset

BLOCK 89

Hexshell

material 1

tcoord thickness 3 // azimuth
END

BLOCK 83 // the normal to
Hexshell // sideset 1 will be
material 1 // the thickness
sideset 1 // direction for block 83
END

Input 7.4. Hexshell: Block 89 defines the thickness direction using a coordinate frame and
the tcoord keyword.

Hexshell Multilayers

The formulation of the Hexshell supports multiple layers of orthotropic materials. Each layer has
an associated material, normalized thickness and coordinate. The coordinate is provided to permit
specification of the material coordinate. The thickness specifies the relative thickness of each
layer. The total thickness is determined from the element topology, but relative thicknesses for
each layer must be specified. If only one layer is specified, then the layer keyword is not required,
and the relative thickness is irrelevant (and not required). 2

There are two methods to specify multiple layers in a Hexshell. The first, illustrated in input 7.3,
provides complete flexibility over the material specification, orientation and thickness of each
layer. The autolayers feature provides are much more limited specification that is useful for
models of a single material with temperature dependence across the thickness. It creates the
specified number of layers, of uniform thickness, of a single specified material.

Stress output for HexShells is calculated for a standard Hex8 element,
even when multiple layers are defined.

Materials for all Hexshell specifications can be defined as a function of temperature, with the
temperatures defined through the exodus file as element variables. The temperature can vary over
both the elements and layers in the block.

Layers for Hexshells must specify the relative thickness of the layer. This is in contrast to layered shells which
specify the absolute thickness (Section 7.9.8.
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Hexshell

sideset 1
autolayers 4

| |
| BLOCK 70 |
| |

| material steel |
| END |
An example of the Autolayers command
' ' is provided to the left. Exodus ele-
E function 1 ment variables define the temperature
for each element on the block. Exo-
nu -3 dus1 t be of uniform thick
density 0.288 us layers must be of uniform thickness,
and must be labeled “layer_templ”,
“layer_temp2”, etc.

MATERIAL steel

| END

| |
FUNCTION 1
type Linear
| data 0 30e6 |
| data le6 20e6 |
| |
| |

END

When using temperature dependent materials, the temperature is obtained from the exodus file.
The modulus is calculated as a function of temperature, and used in the element stiffness
formulation. The temperature can vary both with layers and with elements. Any of the material
parameters in either an isotropic or orthotropic material can be set to be temperature dependent.
In the case of an isotropic material, any pair of two of the properties G, K, E, or v can be
temperature dependent.

The number of layers in the input file does not need to match the number of layers in the exodus
file. The temperatures in the exodus file will be interpolated piecewise linearly to the center of the
layer in the input file.

Temperature dependent orthotropic materials are supported for Hexshells only. Temperature
dependent densities are also supported.

Feature Analytic | Verification | Tested | Parallel | User

Reference Section Test Test
general yes 46 Y Y some
multiple layers no’ 46 Y

Felippa’s report contains some verification. It has not been carried into Sierra/SD.

Table 7-6. — Hexshell Verification Summary.
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The mass properties of a layered HEXSHELL are computed approximately as
follows.

1. The volume fraction, f;, and density, p;, of each layer is determined.

2. The contribution of the mass of the element is added to the nodes as if an
element of density p = }}; p; f; filled the entire element.

The net affect of this is that the mass is computed as if an average density were
applied. This could introduce minor errors if the element is thick and is much
denser on one side than another.

For a Hexshell if using tcoord, it is important to remember that the material definition may also
use a non-default coordinate frame. In the next example, the thickness coordinate, tcoord, and
the material definition use the same coordinate system.

BEGIN CYLINDRICAL COORDINATE SYSTEM 1000
origin 0.0 0.0 0.0
z point 1.0 0.0 0.0
xz point 0.0 1.0 0.0

END

BLOCK 79
Hexshell
tcoord 1000 1
material 8
coordinate 1000
END

7.11. Beam2

The Beam2 element formulation is described in Section 3.14 of.*> This element is similar to the
standard NASTRAN CBAR element, but it does not include a definition for a product of inertia or
area shear factors. A product of inertia and area shear factors are included in the CBAR element
in NASTRAN and are supported by the Nbeam element described in Section 7.12.

The use of a Beam2 element requires a block definition with a beam2. The block definition must
also have amaterial keyword referencing an isotropic material. Finally, the Beam2 element must
have a defined set of geometric parameters. Attributes may be defined in the input deck as follows.

BLOCK block_id
Beam?2
material = material_id
Area = area
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I1 inertia_about_1
I2 = inertia_about_2
J = polar_moment_inertia
orientation = x_orient y_orient z_orient
offset = x_offset y_offset z_offset
END

The keywords are defined in following sections.

The definition of the bending moments, /; and I, is consistent with commercial codes including
NASTRAN. The bending moments are the moments in their corresponding planes, not bending
about their axes. If the moments are unequal, then an coordinate frame is required to apply the
bending moments in the intended planes. If not specified, a warning will be output and the global
coordinate frame will be used by default.

7.11.1. Beam Element Coordinate Frame

Figure 7-10 illustrates how the coordinate frame (X ¢/em, Yelems Zelem depends on the element
vertex coordinates and the orientation vector, V. The x,;.,,-axis is determined from the
coordinates, Zejem-axis is along X ejem X V, and y e is parallel to Zeem X Xezem- If the provided V
is not orthogonal to the x.;.,,-axis, a warning will be output and an orthogonal axis will be
chosen. A similar coordinate system is used for the Nbeam. 7.12

\% /
yelem Xelem

A

N

\
A
=
D
W

Figure 7-10. — Beam Orientation and Local Coordinate System.

In Figure 7-10 the xj.p,-axis and Z,;.,,-axis define plane 2 the yj.,,-axis, laying in the 1-plane,
corresponds to a local 1-axis defined in a cross-sectional plane, a plane normal to the x .., -axis.
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The Z,7.m-axis, which lies in the 2-plane, corresponds to a local 2-axis defined in the
cross-sectional plane.

Four attributes are required. A cross-sectional area, area, must be defined. The cross-sectional
area can be defined with an AREA keyword. Two bending moments of inertia are also required. A
bending moment of inertia for the 1-plane (bending about the z.;.,,-axis) is defined by the I1
keyword. Bending moments in the 2-plane (or bending about the y;.,,-axis) is defined using the
I2 keyword. A polar moment of inertia, polar_moment_inertia, for torsion about the x.j,,,-axis
is required. The polar moment of inertia can be defined with the J keyword.

If the cross-section has the symmetry, I} = I, then the orientation vector V may be an optional
attribute. Otherwise, V is a required attribute. It is necessary for the bending properties to have
the correct global orientation. The components of the orientation vector can be specified with the
values x_orient, y_orient, and z_orient using an ORIENTATION keyword or attributes.

The origin of the 1,2 coordinate system at the beam endpoints is the corresponding grid points by
default. A user specified offset vector V, s translates the geometric location of the coordinate
system origin. This offset vector is shown in Figure 7-11. For the Beam2 element, one offset
vector translates both ends of the beam. The OFFSET keyword is optional. The offset vectors move
the beam neutral axis (the x,;.,,-axis) off the line that passes between the two grid points defining
the connectivity of the beam. An offset is defined by a vector with values x_offset, y_offset,
and z_offset. These values are associated with an OFFSET keyword.

When the offset option is used, the offset stiffness properties are equivalent to the stiffness
generated by translating the beam by the offset direction and constraining the resulting offset
nodes back to the untranslated nodes using rigid links. In addition, the offset mass properties are
equivalent to the mass generated by translating the beam by the offset direction and constraining
the resulting offset nodes back to the untranslated nodes using rigid links. For the Beam?2
element, only the component of the offset vector orthogonal to the element is used to compute the
offset behavior for both the stiffness and mass.

For curved surfaces it is possible for the offset element to be inaccurate. The reason is that the
radius changes, but the curvature does not change.

Refer to section 7.9.8.1 for limitations of element offsets.

Certain element attributes set in the mesh file are recognized in Sierra/SD. The element attributes
corresponding to the input deck parameters are tabulated next.

Use the mesh file to specify attributes per element and the input block to specify attributes per
element block. Input deck attributes override mesh file attributes. Attributes in the mesh file must
be in the order specified in Table 7-8.

The Beam2 element supports isotropic materials only.
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Figure 7-11. — Beam Offset and Local Coordinate System.

Table 7-7. — Element Attributes.

inertia_about_1 inertia_about_2
polar_moment_inertia area
X_orient y_orient z_orient
x_offset y_offset z_offset

The following section illustrates the use of the Beam2 keyword in an element block definition. The

element block has an integer block identifier of 3. This element block must consist of two node
elements.

BLOCK 37

Beam?2

material 7

area 0.71

I1 .05

I2 5e-2

J 0.994

orientation 1.0 -1.0 0.9

offset -3.14e-2 0.11 0.99
END

Finally, the coordinate system for a beam can be defined using the intrinsic geometry. This can be

done using the coordinate from_geometry option in the block definitions. See 6.6.1.3 for
more details.
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Table 7-8. — Attributes for Beam?2.

Keyword Description
1 Area Cross-section Area
2 I1 First bending moment
3 12 Second bending moment
4 J Torsion moment
5,6,7 Orientation orientation vector
8,9,10 offset beam offset vector

7.12. Nbeam

The Nbeam element was developed from the COSMIC/NASTRAN open source CBAR element.
Unlike the Beam2 element discussed in the previous section, the Nbeam element includes a
definition for a product of inertia and definitions for area shear factors. The Nbeam element,
currently, only has linear behavior implemented. If using a nonlinear solution method, the Nbeam
element will not calculate a true internal force, but a linear force.

The use of a Nbeam element requires a block definition with a Nbeam keyword. The block
definition must also have a material keyword referencing an isotropic material. Finally, the
Nbeam element must have a defined set of geometric parameters. Most parameters for the Nbeam
element may be entered either as attributes in the mesh file or through keywords in the block
definition. Some parameters can be reset from default values only by use of the keyword
definitions in the block definition. The general form of the block definition is as follows:

BLOCK block_id

Nbeam

material = material_id

Area = area

I1 = inertia_about_1

I2 = inertia_about_2

J = polar_moment_inertia

I12 = product_inertia_12

Shear_factor_1 = sfactorl

Shear_factor_2 = sfactor2

orientation = x_orient y_orient z_orient

offset = x1_offset yl_offset zl_offset x2_offset y2_offset z2_offset
END

The various keywords in the above block definition are described in following paragraphs.

Local coordinate frame The Nbeam uses essentially the same coordinates frame 7.11.1 as the
other beam elements, with the difference being that the Nbeam supports independent offsets at
either vertex. The x.;.,-axis lies along the length of the offset beam. In Figure 7-10 plane 1
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contains the user specified orientation vector, V and the (X,jem, Yeiem aXes. As is the case with all
the one dimensional elements x .., X V determines the z.¢,,-axis, and Zejem X Xejem gives the
yelem'aXiS~

As the Nbeam supports arbitrary vector offsets at each end, the orientation of the offset beam may
differ from the orientation of the geometry (see “offset” below) that is not offset.

elem

Offset 2

Offset 1 1

Plane 2

Figure 7-12. — Nbeam Orientation, Offset and Local Coordinate System. The coordinate system is in
the plane of the offset beam. The plane is defined by the offset beam and the orientation vector, V.

The x,7em-axis and Z,j.n,-axis define plane 2 in Figure 7-10. The y.j.,-axis, which lies in the
1-plane, corresponds to a local 1-axis defined in a cross-sectional plane, a plane normal to the
Xclem-axis. The z.em-axis, which lies in the 2-plane, corresponds to a local 2-axis defined in the
cross-sectional plane.

Area The cross-sectional area, area, must be defined either as exodus attributes or in the “block™
section. The cross-sectional area can defined with an AREA keyword.

Bending Moments The bending moments of inertia about orientation axes must be defined either
in the exodus file, or the “block™ section. A bending moment of inertia about the 1-axis (the local
cross-sectional axis corresponding to the yj.n,-axis), inertia_about_1, can be defined with the
I1 keyword. A bending moment of inertia about the 2-axis (the local cross-sectional axis
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corresponding to the z,/.;,-axis), inertia_about_2, can be defined with the 12 keyword. Finally,
a polar moment of inertia, polar_moment_inertia, for torsion about the x,;.,,-axis is required.
The polar moment of inertia can be defined with the J keyword.

The Nbeam element supports a product of inertia specification. The product of inertia about the
1,2-axes, product_inertia_12, is specified with the keyword I12. If the I12 keyword does not
appear, the value for product_inertia_12 defaults to zero.

Shear Factor The Nbeam element also has two area shear factor specifications. An area shear
factor is a constant by which an average shearing strain on a beam cross-section must be
multiplied to obtain the same transverse shear displacement as the transverse shear displacement
that will be obtained from the actual shear strain distribution for the cross-section. Typically, the
shearing strain varies over a cross-section. See Oden (Ref.3®) for a discussion of shear factors. An
area shear factor for shear in the 1-direction, sfactorl, is specified with a Shear_factor_1
keyword. If no Shear_factor_1 keyword appears, the value for sfactorl defaults to 1.0. An area
shear factor for shear in the 2-direction, sfactorz, is specified with a Shear_factor_2 keyword.
If no Shear_factor_2 keyword appears, the value for sfactor2 defaults to 1.0.

Orientation The orientation vector V must be specified to assure that the bending properties of
the beam have the correct global orientation relative to the rest of the structure. The components
of the orientation vector can be specified with the values x_orient, y_orient, and z_orient
using an ORIENTATION keyword, or mesh attributes. If no orientation or an orientation that is not
orthogonal is specified, a warning will be output and an orthogonal orientation vector will be
chosen.

Offset The OFFSET keyword is optional. The offset vectors move the beam neutral axis (the
X.1em-axis) off the line that passes between the two grid points defining the connectivity of the
beam. An offset is defined by a vector with values x1_offset, yl_offset, and z1_offset,
x2_offset, y2_offset, and z2_offset. These values are associated with an OFFSET keyword, or
attribute values.

When the offset option is used, the offset stiffness properties are equivalent to the stiffness
generated by translating the beam by the offset direction and constraining the resulting offset
nodes back to the untranslated nodes using rigid links. For the Nbeam element, the full offset
vector is used to compute the offset behavior, and different offsets may be applied at each end.

Note that for curved surfaces there may be modeling issues with offset elements, since there is no
change in curvature with the change in radius.

Refer to Section 7.9.8.1 for limitations of element offsets.

Many of the parameters described can also be defined as attributes in the mesh file. Attributes in
the mesh file must be in the order specified in Table 7-9. If an attribute is entered in both the mesh
file and the input file, the value in the input file will supersede the value in the mesh file.
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Table 7-9. — Attributes and Parameters for Nbeam.

# Keyword Description
1 Area Area of beam
2 I1 First bending moment
3 12 Second bending moment
4 J Torsion moment
5,6,7 Orientation orientation vector
8,9,10 offset beam offset vector
11,12,13 — offset of second node
- 112 product of inertia

- Shear factor 1 shear factor 1-direction
- Shear factor 2 shear factor 2-direction

The Nbeam element is restricted to isotropic materials. No stress or strain output is available for
Nbeam elements.

The following section illustrates the use of the Nbeam keyword in an element block definition. The

element block has an integer block identifier of 3. This element block must consist of two node
elements.

BLOCK 47
Nbeam
material 7
area 1.92
I1 2.6
I2 4.8
J 0.026
I12 -1.46
shear_factor_1 0.44
shear_factor_2 0.33
orientation 1.0 0.0 0.0
offset 0.5 0.5 0.5
END

7.13. TiBeam

This is a Timoshenko beam with consistent mass. For beams with an aspect ration of 100 there is
little difference between the beam?2 and the Tibeam. Beams with an aspect ratio of 10 differ
significantly. The Tibeam uses the parameters of a Beam2. In addition the effective area in shear
should be provided (the default is 2/3). For a beam with square cross section,
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BLOCK 53
Tibeam
material 1
// Shear_factor = 10(1+nu)/(12+11 nu)

areay = .85
areaz = .85
END

In this example, the area, 11, I, J and the orientation are all set in the Exodus file. Recall that for a
circular cross section, the approximate shear factor is given in terms of Poisson’s ratio, v, by

6(1 + v)/(7 + 6v). At this time, although the parser warns that areay and areaz are ignored,
they are parsed and applied.

7.14. Truss

This is the definition for a Truss element based on Cook (Ref.!”). Trusses have stiffness in
extension only. The Truss has 1 attribute as shown in the table. A linear elastic, isotropic material
is required.

# Keyword Description

1 Area Area of truss

No stress or strain output is available for trusses.

7.15. Ftruss

The Ftruss is a truss element whose stiffness is a function of the truss length.

Trusses have stiffness in only the axial direction. While they exist in a three-dimensional world,
forces orthogonal to the axial direction result in no resistance, i.e. they are singular. Setting the

axial force,
F(Lyp,t) = =K(|Ly|, ty) Ly (7.15.1)

depends on the vector Zn from the first point to the second at time ¢,. Note that |Zn| is the
instantaneous length of the truss. The force is always in the direction of the instantaneous
element.

Denote by K, the stiffness of a standard truss, and by L, the nominal
truss length. F = —K, dx implies that K = L’i‘fgx. The definition in
equation 7.15.1 was chosen so that a force may be applied when dx
vanishes.
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Table 7-10. — Ftruss Attributes and Parameters.

# | Name Type | Default | Comment
1 | Area Real 0 required if a material is specified.
2 | Scale Real | multiplier for the function

- | Function | string | required | function identifier (see Section 4.10)

- | Material | string | optional | If the material specification is provided, it
must point to a valid material (sec. 6), and
an area must also be provided.

If a standard (non-user-defined) function is used, the stiffness is a function of truss extension only.
It may not be a function of both extension and time.

Input to the Ftruss element is similar to that for the truss element. The attributes and parameters
are listed in table 7-10, and a demonstration example is provided below.

BLOCK 49

Ftruss

function 88

scale 1.0

material 17 //optional material

area 0.01 //area required if material defined
END

If the material keyword is not found, no mass matrix is generated for the element. If a material is
found, then area must also be defined. Like a standard truss, area is the first Exodus attribute.
The area and material properties are used only to compute the mass properties of the element, and
may be omitted. scale may be set either in the input deck, or in the Exodus file as the second
element attribute.

7.16. ConMass

Concentrated masses are used to apply a known amount of mass at a point location. The Exodus
file element topology is a sphere. Support for concentrated masses as two noded elements in
exodus has been deprecated.

Parameters for the ConMass are listed below. Because of difficulties in translation or generation of
the model, the parameters found in the Exodus file are not normally used for a ConMass. This
avoids the confusion generated when mass constant defaults may have been taken from beams for
example. As a result, all parameters must be specified in the input or the analysis will fail.

3Recall that attributes are ordered data that may be specified in the Exodus file, providing a variable which changes
with each element. Parameters may be specified in the input file, and are applied uniformly to all elements in the
block.
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This behavior can be tedious however, if many concentrated masses are found in the model, and if
the analyst is confident that the attributes are appropriate for these elements. In this case, use the
ConMassA element. It is identical to the ConMass, but uses the default attributes from the
Exodus file. Typically seven attributes would be specified there.

A concentrated mass must have a mass. If no inertia tensor is specified, then the concentrated
mass has 3 degrees of freedom, displacements. On the other hand a concentrated mass with an
inertia tensor has both displacement and rotational degrees of freedom.

# keyword Description

1 Mass concentrated mass

2 Ixx xx moment of inertia
3 Iyy yy moment of inertia
4 Izz zz moment of inertia
5 Ixy xy moment of inertia
6 Ixz xz moment of inertia
7 Iyz yz moment of inertia

8,9,10 offset  offset from node to CG

As an example element block,

BLOCK 13

ConMass

Mass 1000.0

Ixx 1.0

Iyy 2.0

IZZ 1.5

offset 30.0 40.0 50.0
END

The ConMass moments of inertia are defined at the location of the ConMass. The offset can be
used to specify inertial terms about a different point.

A ConMass element will activate either 3 or 6 degrees of freedom on the node the mass is located.
Every ConMass element will activate "DispX", "DispY", and "DispZ". A ConMass element with
non-zero inertial terms or an offset will activate "RotX", "RotY", and "RotZ". In a case such as a
spring-mass system where only one translational degree of freedom is desired, the mass should be
constrained in the other directions. If ConMass elements are attached to solid elements, through
shared nodes or a 2D element, either the inertial terms should be set to zero or the rotational
degrees of freedom should be constrained. Failing to properly constrain the ConMass may result
in a solver out-of-bounds error or incorrect results.
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7.17. Spring

The Spring element provides a simple spring connection between two nodes in a model. Note
that the direction of application of the spring should be parallel to a vector connecting the nodes
of the spring. It is usually preferable to have the nodes of the spring be coincident. Springs are
defined in the Exodus database using Beam or Bar elements.

The Spring element has three required parameters (translational spring stiffness). Rotational
parameters are supported using the RSpring element described in Section 7.18. Currently, there
is no way to attach off-diagonal elements, i.e. there is no K, spring element. If that is required, a
combination of a spring and a multi-point constraint must be used.

Springs can also be defined in user defined coordinate systems.

Attribute Keyword Description

1 Kx translational spring constant in X
2 Ky translational spring constant in Y
3 Kz translational spring constant in Z

Spring stiffness may be defined as a constant value, calculated from the output of a function, or
extracted from the Exodus element attributes (if the corresponding parameter is left blank).
Input 7.5 includes an example of each approach.

Note that when defined via a function, the input is the current displacement. For anltransient
solution, the function cubic_Ky from input 7.5 is equivalent to a spring3 with Kx1 = 1000, Kx2
= 2000, and Kx3 = 3000. For transient solutions, the spring stiffness will not be updated
unless the nUpdateDynamicMatrices parameter is used. In that case, the input displacement to
the spring function will be the displacement at the previous time step.

FUNCTION cubic_Ky
type = analytic
evaluate expression "1000 + d*2000 + d*d*3000"
END

BLOCK 54
spring
coordinate 7

Kx = leb

Ky = cubic_Ky

# Kz (from element attributes)
END

Input 7.5. Spring definition
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7.17.1. Spring Parameter Values

It is strongly recommended that all three values of the spring constants be nonzero. This is
especially important in parallel analysis performed using domain decomposition. Many domain
decomposition tools may partition the model such that zero spring constants lead to singular
domain stiffness matrices. This is true even if other elements may eliminate the singularity.

While setting nonzero spring stiffness helps to avoid solver problems, underlying domain
decomposition problems may still exist for parallel calculations. Domain decomposition tools
employ heuristics for connection of springs to solids; the models are not compatible. Finite length
springs often result in constraints on rigid body modes. # Springs fill an important analysis need,
but analysts may find that in many cases it may be better to replace the spring elements by solid
element meshes which more accurately represent the physical connection. While there are more
degrees of freedom in the calculation, the accuracy is enhanced, and domain decomposition
problems are mitigated.

7.18. RSpring

The RSpring element provides a simple rotational spring connection between two nodes in a
model. It is usually preferable to have the nodes of the spring be coincident. RSprings are defined
in the Exodus database using Beam or Bar elements.

The RSpring element has three required parameters ( rotational spring stiffness). It is strongly
recommended that all three components have some stiffness. This is particularly important when
doing parallel analysis (see the discussion in Section 7.17.1). Translational stiffness require the
use of the Spring element described in Section 7.17. Currently, there is no way to attach off
diagonal elements, i.e. there is no K, spring element. If that is required, a combination of an
RSpring and a multi-point constraint must be used.

RSprings can be defined in user defined coordinate systems. The relevant parameters are listed in
the table.

# Keyword Description

1 Krx rotational spring constant in X
2 Kry rotational spring constant in Y
3 Krz rotational spring constant in Z

As an example element block,

BLOCK 52
Rspring
coordinate 7
Krx=1e6

“This is not specific to parallel solutions. Most often, finite length springs introduce strain for a model rotation.
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Kry = 1.11E7

Krz 0.1
END
7.19. Spring3 - nonlinear cubic spring

The Spring3 element provides a nonlinear spring connection between nodes in a model. Note
that the direction of application of the spring should be parallel to a vector connecting the nodes
of the spring. It is usually preferable to have the nodes of the spring be coincident. Springs are
defined in the Exodus database using Beam or Bar elements.

The nine required parameters are translational spring stiffness. There is no way to attach off
diagonal elements, i.e. there are no K, spring elements. If that is required, a combination of a
spring and a multi-point constraint must be used. Cubic springs may be defined in user defined
coordinate system.

Each component of applied force is a cubic polynomial in the corresponding coordinate
direction,
Fy = Klu, + Kju? + K3u} (7.19.1)

Linear analyses use the first K| term only.

# Keyword Description

1 Kxl1 translational linear spring constant in X

2 Kyl translational linear spring constant in Y

3 Kzl translational linear spring constant in Z

4 Kx2 translational quadratic spring constant in X
5 Ky2 translational quadratic spring constant in Y
6 Kz2 translational quadratic spring constant in Z
7 Kx3 translational cubic spring constant in X

8 Ky3 translational cubic spring constant in Y

9 Kz3 translational cubic spring constant in Z

Here is an example element block.

BLOCK 51
Spring3
coordinate 7
Kx1 leb
Kyl 1.11e7
Kzl ®
Kx2 0
Ky2 0
Kz2 ®
Kx3 1le4d
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Ky3 1.11e5
Kz3 0
END

7.20. Dashpot

A dashpot represents a damping term proportional to velocity. Dashpot elements combine a
viscous friction damper with a simple linear spring. The spring is included to avoid singular
stiffness matrices when dashpots are connected without springs. Dashpots are currently only used
in transient dynamic, direct FRF and complex eigendecomposition. For other analyses only the
spring term will be used.

The damping factor is the damping matrix entry. It has units of force-time/length. For a single
degree of freedom system with a mass=M, the following equation is satisfied.

K-u+c-u+M-ii =f(1) (7.20.1)

Currently, dashpots are defined in the basic coordinate system only. Because they are single
degree of freedom elements, the direction must also be defined (i.e. cid=1, 2 or 3). There are three
parameters. All are required.

# Keyword Description

1 K translational linear spring constant
2 c damping factor
3 cid coordinate direction (1, 2 or 3)

As an example element block,

BLOCK 61
dashpot
cid=1 // dashpot is in the X direction
K=1e6
c=1e5
END

Dashpots may be represented in the Exodus file with any linear element. The Truss element most
closely mimics the dashpot’s single degree of freedom behavior, and may be the best definition for
domain decomposition tools.

Caution should be exercised when using dashpots (or any single degree of freedom element). The
remaining degrees of freedom must be properly accounted for, or the system matrices will be
singular. Care should also be exercised to ensure that if the nodes of the dashpot are not
coincident, that the constraint force lies along the axis of the element - failure to do this can result
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in models that have nonzero rotational modes. There may also be important domain
decomposition issues with dashpots. See Section 7.17 for a discussion.

7.21. SpringDashpot

The SpringDashpot element provides a general, fully coupled spring and dashpot connected to a
pair of nodes. Itis a linear element only, and is not Corotational. It supports stiffness and damping
in the translational and/or rotational degrees of freedom. The relevant parameters are described in
Table 7-11.

Name Description
Kxx Translation Stiffness, K,
Kyy Translation Stiffness, K,
Kzz Translation Stiffness, K,
Kxy Translation Stiffness, K,
Kxz Translation Stiffness, K,

Kyz Translation Stiffness, K,
Krxx Rotation Stiffness, Kr,
Kryy Rotation Stiffness, Kr,
Krzz Rotation Stiffness, K,
10 Krxy Rotation Stiffness, K7,
11 Krxz Rotation Stiffness, Kr,;
12 Kryz Rotation Stiffness, Kr,

O 0 I ON N B~ W~ FH

13 Bxx Translation Damping
14 Byy Translation Damping
15 Bzz Translation Damping
16 Bxy Translation Damping
17 Bxz Translation Damping

18 Byz Translation Damping
19 Brxx Rotation Damping
20 Bryy Rotation Damping
21 Brzz Rotation Damping
22 Brxy Rotation Damping
23 Brxz Rotation Damping
24 Bryz Rotation Damping
25 | coordinate | coordinate frame

Table 7-11. — SpringDashpot Parameters.

As shown in the table, all the elements of the matrices may be entered for this element. An
example follows.
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BLOCK 48

SpringDashpot
Kxx = led
Kyy = le4d
Kzz = 1e4
Kxy = -1le4
Kyz = -1le4
Byz = 3.2

END
7.22. Hys

The Hys element provides a simple, one dimensional approximation of a joint going through
microslip. Many simple joints can be represented by their hysteresis loop, a curve in the
displacement vs. force plane. The relevant parameters of this element are indicated in the table,
and illustrated in Figure 7-13.

# Keyword Description

I Kmax  maximum slope of f vs u curve
2  Kmin  minimum slope of f vs u curve
3 fmax  maximum possible force

4 dmax  maximum possible displacement

The fmax, dmax pair define the limits of applicability of the element. The element will fail if the
internal force exceeds fmax or the displacement exceeds dmax. The slope of the curve at the
origin is kmax. It represents the small amplitude response of the system. The slope at the
extremum, i.e. at (dmax,kmax) is kmin.

A Hys element uses a Beam or truss element in the Exodus file. At the current time, the element
may only be defined in the X direction. An example of the Sierra/SD input is shown below.

BLOCK 55
Hys
Kmax 4.5e+7
Kmin 3.0e6
fmax 5.9
dmax 1.0e-6
END
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7.23. Joint2G

The Joint2G element models adherence between surfaces. It is represented in the mesh by a
beam or bar element. To preserve rotational invariance 3.8.5, typically beam length vanishes. The
Joint2G element has the generic element properties 6.6 : materials, coordinate frames, optional
nonlinearity (Iwan elements), damping, and non-structural mass 6-6. In addition a Joint2G has a
shear axis, that will also be explained later.

Each Joint2G element connects a pair of nodes (or grids, hence the “G” in Joint2G). The
constitutive behavior of each of the degrees of freedom connecting its node pair may be specified
independently. A Joing2G elements is typically used with a rigid set 7.36

Relative displacement 9.7.10 may be output. The element responds with generalized scalar forces
corresponding generalized displacements. The EForce output option 9.7.8 includes the
generalized forces in the output.

The Joint2G element is used in the Tied Joint 7.38 pseudo-element. To make Sierra easier to use,
the beam element of a Tied Joint is added implicitly by Sierra. These Virtual elements are
included in the output mesh. This enables visualization of the Tied Joints. All references to
Virtual elements apply only to the Virtual elements added for the Joint2G pseudo-elements in
Tied Joints.

Joint deformation under cycling loading is complex. The Iwan element can accurately model
bolted joints, but depends on parameters that must be calibrated (using experimental data). The
Joint2G element was added with the Iwan models.
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Figure 7-13. — Hys element parameters.

7.23.1. Specification

A Joint2G pseudo-element is represented in the input Exodus mesh file by either a Beam or a
Bar element. Any element attributes are ignored. The Joint2G is configured in its input deck
block section and an optional Property section. In the example below, properties are assigned to
element block 1.

BLOCK 1
coordinate 5
shear_axis 2
Joint2G
kx=Iwan 1
ky=elastic 1.0e6
kz=elastic 1.0e6
krx=null
kry=null
krz=null

END

The above statement declares block 1 to be of type Joint2G. It also declares the constitutive
response in the x to be the 4 parameter Iwan model.*” The model parameters are specified in
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“Property 17 defined below. In this case, the four parameters chosen are y, ¢_max, R, and S. The
Iwan properties can be specified alternatively by the parameter set chi, phi_max, F_S, and beta.

PROPERTY 1
chi = -0.82
phi_max = 1.0e-4
R = 7.6€6
S = 5.6e6
END

Another Iwan element, the RIwan is described in Section 7.23.3. However, the elements are not
interchangeable. Although the Iwan and RIwan elements use the same terminology, some of the
terms, such as

¢max,

The constitutive behavior in the y and z directions is elastic with stiffness specified by the third
argument - 1.0x 10° in this case.

In this example, there is no specification for constitutive behavior in the three rotational directions.
The Null specification merely means that those degrees of freedom in the relevant nodes are not
activated or touched by this element. For technical reasons, we recommended that if any
rotational DOF is active (not Null), then they all should be active.

The directions X, y, and z are associated with the coordinate system declared for the block, e.g.,
coordinate system 5. The global coordinate system is the default.

In the case when the Joint2G element is used in conjunction with a Tied Joint, then the shear_axis
can be used to specify the x direction for the constitutive response of the Joint2G. Note that the
shear_axis parameter is only meaningful when the Joint2G is used in conjunction with a Tied
Joint.

The shear_axis parameter allows the user to specify the x direction for the constitutive behavior.
Since shear_axis is set to 2 in the above example, the x direction will be derived from the
second component of coordinate 5. For more information on the shear_axis parameter, we refer
to Figure 7-27 and Section 7.38.

7.23.2. Constitutive Behavior
Elastic

Undamped, linear elastic behavior is defined by the elastic followed by the value of the
parameter. No property section is required.
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Damper

Linear, damped behavior is obtained using a damper in the Joint2G definition, and using a
property definition to specify the stiffness and damping terms. Typically, each direction will
require a different property definition.

PROPERTY 102
K=1eb6
MU=.2

END

Input 7.6. Damper property card

BLOCK 59
Joint2G
kx=damper 1
ky=damper 1
kz=damper 1
krx=null
kry=null
krz=null

END

Input 7.7. Joint2G as damper

4-Parameter lwan Model (Ilwan)

The Iwan element is a collection of spring slider elements designed to provide a predicted model
of joint behavior (including energy loss). Joint modeling with Iwan elements is described
elsewhere.’*>* Descriptions of the relationship of the Iwan element to other joint elements are
also available.”!

The schematic of the Iwan model is shown in Figure 7-14. Parameters for the behavior may be
specified using either an older definition (Table 7-12), or a newer set (Table 7-13). The newer
parameters are summarized below.

chi: determines the slope of the dissipation-force curve. Typically, 0 < y < —1. A value of zero
corresponds to a coulomb type loss in Mindlin solutions. A value of y = —1 corresponds to
a viscous like (but amplitude dependent) loss with dissipation proportional to the square of
the amplitude. Dissipation follows the relation,

Dissipation ~ (Amplitude)¥*?
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Figure 7-14. — Iwan Constitutive Model.
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# Keyword Description

1 chi Exponent, y, describing slope of force-dissipation curve at small
amplitudes

2 R Constant coefficient in distribution

3 phi_max Maximum break free pseudo-force

4 S Strength of singularity in break free force distribution

alpha  Geometric factor specifying nonuniform spacing of dphi (op-
tional, default = 1.2)
sliders ~ Number of slider elements (optional, default = 50)

Table 7-12. — Older Iwan 4-parameter model.

# Keyword Description

1 chi Exponent, y, describing slope of force-dissipation curve at small
amplitudes

2 beta shape parameter of force/dissipation curve

3 KT Tangent stiffness at low loads

4 FS Maximum break free pseudo-force

alpha  Geometric factor specifying nonuniform spacing of dphi (op-
tional, default = 1.2)
sliders ~ Number of slider elements (optional, default = 50)

Table 7-13. — Revised Iwan 4-parameter model.

beta: determines the shape of the dissipation-force curve. Beta affects both the shape of the
hysteresis curve within microslip (Figure 7-15), and the abruptness of the transition from
microslip to macroslip as shown in Figure 7-16. 0 < 8 < oo.

KT: determines the slope of the force-displacement curve at low amplitudes. This is equivalent to
a spring constant, and is used as such in analyses for which the element is treated linearly.

FS: determines the force at which the last slider gives out, and element goes into macroslip. The
Iwan element is a statistical distribution of spring/slider elements. This is a point on that
distribution.

The Reduced Iwan improves on the Iwan by requiring less calibration. Mechanisms to capture
nonlinearity and dissipation are provided. Accuracy however depends on the fit with the
experimental data under varying loading conditions.
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Figure 7-15. — Dimensionless hysteresis curves for the four-parameter Iwan model with y = —1/2 and
two values of 3.
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Figure 7-16. — Dimensionless static loading curves for the four-parameter Iwan model with y = —1/2

and three values of 3, as the model goes into macroslip.
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7.23.3. Reduced Iwan Plus Pinning (Rlwan)

Reduced Iwan model, described later in the section, can be used as a constitutive model for a
Joint2G definition using the riwan. This can be used for any desired direction, using the
following format that requires an associated property block:

BLOCK 67
Joint2G
kx=damper 1
ky=riwan 2
kz=damper 3
krx=null
kry=null
krz=null

END

Input 7.8. Joint2G Element Block

Although the Iwan and RIwan elements use the same terminology, some of the terms, such as

¢max ’

PROPERTY 103
FS=4e3
Kt=1.5e7
chi=-0.5
beta=0.005
Kp=2e7
dp =2e-3

END

Input 7.9. Property text for the Joint2G

Description: An RIwan element!? is a modified and revised 4 parameter Iwan model. The
modifications include (a) simplification of the Iwan force by assuming that, upon load reversal, the
distribution of friction elements resembles scaled version of the original distribution, and (b)
incorporation of pinning forces through approximation of Hertzian contact. The monotonic
load-displacement curve for this element is shown in Figure 7-17, where the initial nonlinear
curve corresponds to microslip, the plateau corresponds to macroslip, and the steep linear curve
represents pinning. In summary,

Friwan = Fpin + FSliding- (7.23.1)
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Figure 7-17. — Reduced Iwan Load Displacement Curve.

where the pinning force is given by the linear relationship,

K,(u—96,), u>o,
K,(u+06p), u<-90,

where 6, is the pinning displacement shown in 7-17. The sliding force is given by

F + FS Flwan ( —FSIiSFO) loading

Fsiiging = (7.23.3)

—F -F .
Fo - —x Flwan (—MT_SFO) reverse loading

where Fj is the shifted central force with —Fg < Fy < Fg. Table 7-13 and Figure 7-17 define
Fs,Kr, x, B, Kp, 6p. We use the 4 parameter model Iwan force. Fj,q, =

1
Fs(x+1) ((L_L) MX+2+¢)X/I+AXM)
D (pris) (¥ xH X+ (7.23.4)
+ 55 B min(u, puax)

x+1
dMAX B

One Dimensional Gap Model (gap)

The Gap element model attempts to represent the behavior of a gap closure with a bilinear elastic
element. For proper numerical behavior, the stiffness of the open gap should not be more than a
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few orders of magnitude less than the stiffness when the gap is closed. The Joint2G
implementation of the Gap model is identical to the axial behavior of NASTRANSs cgap/pgap
element and the axial behavior of the stand alone version of the Gap element implemented in
Sierra/SD (Section 7.25).

Keyword Description

#

1 Ku Unloaded Stiffness
2 Kl Loaded Stiffness
3
4

uo Initial Gap Opening
FO Preload (force at UO)

PROPERTY 104
kua = 1e5
kl = 1leb6
Uuo = 0.01
FO = 200

END

Elastic Plastic Hardening Model (eplas)

eplas element is an elastic-plastic one-dimensional element with linear isotropic hardening. Both
the plastic strain and the hardening variable are initialized to zero. The parameters are illustrated
in Figure 7-18.

# Keyword Description

1 k Linear Stiffness
2 kp Hardening Stiffness
3 fyield  Force at Yield

PROPERTY 105
k = 1leb
kp = 1le5
fyield = 1le4
END
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Figure 7-18. — Eplas Model.

One Dimensional Spring-Dashpot Model (damper)

A damper represents a damping term proportional to velocity. Damper elements combine a
viscous friction damper with a linear or cubic spring. The spring is included to avoid singular
stiffness matrices when dampers are connected without springs. Dampers are currently only used
in transient dynamic, direct FRF and complex modal analyses. For other analyses only the spring
terms will be used. The behavior of this element is similar to dashpeot, but also includes cubic

terms.

The damping factor is the damping matrix entry. It has units of force-time/length. For a single
degree of freedom system with a mass=M, the following equation is satisfied.

K-u+p-u+M-ii+Ks-u’+pz-i’=f(t) (7.23.5)
# Keyword Description
1 K stiffness
2 Mu viscous damper coefficient
3 K3 Optional cubic stiffness coeflicient
4 Mu3 Optional cubic damping coeflicient

PROPERTY 106
K = 1leb
Mu = 1le2
K3 = 1le4
Mu3 = 0.1

END

// optional, default=0
// optional, default=0
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Additional Constitutive Behavior

The philosophy employed in the implementation of the Joint2G element of decoupling the
constitutive behavior from the element machinery should facilitate the implementation of other
constitutive models. Among those whose implementation is foreseen are the following:

* Bouc-Wen hysteresis model

* Preisach hysteresis model

7.24. Line Weld

Line welds offer a way to join two shells by a collection of virtual Joint2G elements

(section 7.23). The position of the line weld is defined by a collection of beams which are meshed
contiguously with one of the shells. Using a contiguously-meshed beam instead of the shell
directly to define the line weld position enables more general weld definitions (e.g. skip welds).

r=block 3 axis

surface_ 1

s=rxt

Ej—‘EZZerace_l normal

Figure 7-19. — Line weld definitions for attaching the purple and cyan shells. The line weld follows the
red beam, which is contiguously meshed with the purple shell.

In figure 7-19, the line weld will be used to join block 3 (in red) to surface 1 on the cyan shell.
This is accomplished in three steps, each illustrated by figure 7-20:

* Create a new virtual node (in green) coincident with every existing block node

* Tie each virtual node to the nodes of the shell on which it lies

* Create a zero-length, virtual Joint2G between every block node and its coincident virtual
node

Currently, line welds in Sierra/SD are only available for the elastic Joint2G axial constitutive
model. These can be thought of as a general translational/rotational spring, with axes as shown in
figure 7-19. Input 7.10 gives an example input for the line weld shown in figure 7-19. Note that
rotational stiffness is only supported along the direction of the beam (the “r-axis”). Any rotational
components along the other two axes will be ignored.
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Figure 7-20. — Line weld Joint2G connections. The Joint2G elements are initially zero-length, and
the green and red nodes coincident, but they are depicted with a finite deformation to delineate the
individual components.

In keeping with Sierra/SM syntax, line welds may be specified using a force vs. deflection
function as shown in Input 7.11. The current line weld capability is purely linear, and the line
weld stiffness k is determined by estimating the derivative with a forward finite-difference stencil,

i.e.,
k ~ lim —f(h) _ f(O)
h—0* h
A warning is issued if the corresponding backward stencil indicates that the derivative is not
well-defined. If
. f()-fO) . f(h)-[f(0)
m ———— # lim ————.

JL0+ h éio— h

A fixed step size is used, so although the code will detect the case where the limits are not equal, it
will not know whether the one-sided limits are well-defined. To aid the user in assessing the
validity of these operations, the estimated stiffness values and other critical information is
reported in the rslt file.

BEGIN LINE WELD
surface = surface_1
block = block_3
search tolerance = le-4

r displacement elastic = 1.0e6
s displacement elastic = 1.0e6
t displacement elastic = 1.0e6

r rotation elastic = 1.0e6
gap removal = on
END

Input 7.10. Line weld input corresponding to figure 7-19
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BEGIN LINE WELD

surface = surface_1

block = block_3

search tolerance = le-4
displacement function = R_force_function
displacement scale factor = 1.0
displacement function = S_force_function
displacement scale factor = 1.0
displacement function = T_force_function
displacement scale factor = 1.0
rotation function = Rrot_force_function

r rotation scale factor = 1.0

gap removal = on
END

H t+ n n H H

Input 7.11. Force function syntax for line welds

Gap removal is enabled by default, and can be disabled using the gap removal option. The gap
removal solution method 5.32 can make debug easier. Disabling gap removal can cause artificial
grounding of rigid body modes, but can avoid collapsing elements when the search tolerance is
large or when element quality is low. As with contact, the output mesh represents the model after
gap removal.

Adding 1ine_weld to an outputs or history block selects line weld output. To get the line weld
output in the history file, the beam block from which the line welds were created must be included
in the history section using block. The keyword 1ine_weld adds the additional outputs shown in
table 7-14 to the beam elements from which the line weld was created. The new virtual line weld
elements created in the mesh have the usual output associated with a Joint2G element, such as
eforce.

Line welds output force per unit length in the weld local coordinate system as
line_weld_force_rst and line_weld_moment_rst.
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Name type Description

line_weld_weld_active int A value of one marks beams within
search tolerance to the surfaces that
have active welds
line_weld_initial_weld_length real Length of the line weld beam element
line_weld_force vector Force per unit length produced by the
line weld in the global XYZ system
line_weld_moment vector Moment per unit length produced by the
line weld in the global XYZ system
line_weld_force_rst vector Force per unit length produced by the
line weld in the element local RST sys-
tem

line_weld_moment_rst vector Moment per unit length produced by
the line weld in the element local RST
system

Table 7-14. — Line weld output: note that these are intended to exactly match the equivalent outputs in
Sierra/SM.
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7.25. Gap element

Gap elements are modeled after the non-adaptive NASTRAN CGAP/PGAP elements. They are
intended to provide a simple, penalty type element suitable for modeling simple connections.
Note that these elements (like all beam-like elements) when embedded in solid meshes can result
in difficult domain decompositions, and lead to load imbalance.

The Gap element is inherently nonlinear. In linear analysis, the element behaves approximately
like a spring with the stiffness determined by KL and KU and a transverse stiffness, KT. The
parameters of the element are listed in the table below and shown graphically in Figure 7-21.

# Keyword Description

1 KU Unloaded stiffness

2 KL Loaded stiffness

3 KT Transverse stiffness (closed)
4 uo Initial gap opening
5
6

FO Preload, i.e. force at UO
coordinate Coordinate frame.

If the gap is open, then the element stiffness is the unloaded stiffness, Ky, which must be positive.
A gap is closed if Uy — Up > Uy. If the gap is closed (as shown in the figure), then the element
stiffness is the loaded stiffness, K; .

The initial gap opening and preload define the corner point in the force/deflection curve as shown
in Figure 7-21. Typically, these will be zero.

A Gap element provides for transverse stiffness and friction. When the gap is closed, the transverse
stiffness is KT. If the gap is open, the transverse stiffness is reduced to K7’ = KT x KU /KL.

The coordinate frame is an optional attribute of the gap element. The gap open and closes along
the X axis of the frame. Note that the direction of the coordinate frame is important. The element
determines a quantity UA — UB along this coordinate axis. This axis may not align with the
coordinate alignment of the elements, which can lead to confusion. If the coordinate frame is not
provided, each Gap element will have a coordinate frame generated such that the gap opens and
closes along the line between the two points. If the points are coincident, then a coordinate frame
must be provided.

The Gap element is a simple penalty type element that somewhat mimics the effect of a physical
gap. Choice of the value of KL is important to success of the element. Good values are somewhat
in the range of the neighboring element stiffness. Too large a value can lead to matrix condition
problems. Too small a value results in excessive softness and penetration in the gap.

Because the element is nonlinear, it has a significant impact on solutions. As described in Section
5.20 (and the update_tangent keyword), the default behavior for the nonlinear solver is a partial
Newton iteration. This means that the tangent stiffness matrix is not updated between iterations.
Thus, if KL and KU are different, the solver will be using the wrong slope in the newton loop.
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Many, many iterations may be required for convergence. You may want to turn on the ‘nlresiduals’
option in the echo section (see 9.9) which will put convergence information into the results file.

An example is shown below.

BLOCK 42
Gap
KL 4.5e+7
KU 3.0e6
KT=1e6
0 5.92
u0=0.98e-6
coordinate 5
END

F, compression Slope=KL

FO
Slope=KU
X compression

UA - UB

|
|
|
|
T
[8[0)

Figure 7-21. — Gap element Force-Deflection Curve.

Gap Issues

The Gap element is definitely more complex than most elastic elements. Here is a partial list of
“gotchas” that we have observed.

* Gaps should normally be zero-length elements. Like springs, a gap that has a physical
length will not be invariant to rigid body rotation. See Section 3.8.5. One approach to this
would be to use a combination of beam and Gap elements. Note however, that if KT is zero,
and the gap opens and closes along the line between the beam endpoints, the element is
invariant to rotation.

* The Gap element may use a coordinate frame to define its direction. In this case the
direction is not set by the nodal coordinates.

* The direction of the Gap element must correlate to the displacement difference from
UB — UA. Itis easy to get this direction reversed.
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Figure 7-22. — Mass bouncing off a Gap. With this large time step the model is not conserving energy.
Reducing the time step is required to correct the problem.

* If you set U0, you must also set F0. This element does not constrain the force/displacement
curve to go through zero. The input must do this. The Gap element may thus be used to
enforce an initial displacement or force. That may not be what you want. It can cause slow
convergence on the initial time step.

* Significant numerical damping may be required for convergence. Closing the gap can cause
energy to be moved into higher frequencies. Without numerical damping, this energy can
multiply until the solution becomes unstable. Numerical damping is best introduced by
setting “rho” in the time integrator. Values of “rho=0.2" to “rho=0. 7" have worked well.
It is problem dependent.

Physically closing a gap would cause some energy loss, either by microslip, or by a small
amount of local plastic deformation. Numerical damping can dissipate this energy that is
removed from the physical system by means that are not included in the finite element
model.

* This Gap element may not conserve energy. This is demonstrated in Figure 7-22, where a
mass is dropped onto a gap. A completely elastic rebound would take the mass back to zero.
Instead, it rebounds significantly above zero. This issue comes about because of time
discretization. The mass “penetrates” the gap region too far, which stores too much energy
in the element. It is then expelled with too much velocity. The only solution with this
element is to reduce the integration step.
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* Setting either KU or KL to zero is a recipe for disaster in parallel. Use a small positive value
even if physically the unloaded stiffness may be zero.

7.26. Gap2Db

The Gap element of the previous section provides a useful construct for planar type interactions.
A common modeling issue is a bolt hole that is too large. To model this interaction an ellipsoidal
Gap element (or Gap2D) may be required.

The Gap2D element operates like the Gap element except that the gap could open in 2
dimensions. The gap is open provided that the element displacement is within an ellipse defined

by the major and minor axes.
Uy \? Uy \?
( ) +( ) <1 (7.26.1)

[8]0):¢ uoy

The major and minor axes of the ellipse are defined in the x and y direction of the coordinate
frame.

Parameters of the Gap2D element are listed below.

While the gap geometry is defined as an ellipse, stiffness is not. In the open section of the
element, the in-plane stiffness is KU, and is independent of direction. Likewise, in the closed gap
region, the in-plane stiffness is independent of direction, and is defined by KL. The out of plane
stiffness for this element is always KT. Note that the transverse stiffness behavior is significantly
different from that of the standard Gap element.

The definitions above define the gradient of the force only, and for this nonlinear force, the value
of the force depends on the path chosen for integration. For this element, we define the force as
the integral along the shortest line from the origin.

In Figure 7-23, two possible integration paths are shown for arriving at the point (x1, y;). In the
first path, we integrate to (x1,0) and then up to (x1, y;). The y component of force is
y(l) = KL - y;. In path 2, we follow the straight line through (x;, y»). The associated force is
y(z) = KU -y, + KL(y; — yp). For this element, we always choose the shortest line path (path 2).
This ensures that the force is not history dependent.

# Keyword Description

1 KU Unloaded stiffness

2 KL Loaded stiffness

3 KT Transverse stiffness (z direction)
4

5

6

[8]0)2¢ Initial gap opening, major direction
uoy Initial gap opening, minor direction
coordinate Coordinate frame.
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Figure 7-23. — Gap2D force diagram.

7.27. GasDmp

GasDmp is currently BETA release.
Enable with the “- -beta” command-line option.

A GasDmp element is a nonlinear, beam-like element that simulates the damping forces on
MEMS devices due to gas pressure as MEMS beams vibrate. It has no stiffness, but has damping
roughly proportional to velocity/L>, where L is the distance from the beam to the substrate. It is
experimental. Contact Troy Skousen of Sandia National Labs or Professor Burak Ozdoganlar at
Carnegie Mellon. The parameters are implemented through the input file and not through the
Exodus file. Inputs to the GasDmp element are as follows.

# Keyword Description

1 \\ Beam width (Iength units)

2 dL Considered length of beam (length)

3 mm Molecular mass of gas (mass)

4 p0 Ambient pressure of gas (pressure)

5 T Ambient temperature of gas (temperature)
6 muRef Reference viscosity (pressure * time)

7 TRef Reference temperature (temperature)

8 wWWwW Viscous temperature exponent

7.28. Nmount

The Nmount element is a Navy-specific mount element that provides an external force at
user-specified points in the model. These forces are formed from a constitutive equation that is
supplied by the user in the form of a subroutine. One interface allows the user to provide an
arbitrary subroutine to evaluate the constitutive equation.

An example of the user interface is shown in input 7.12. Mount orthogonal directions must be
provided either as attributes in the Exodus file, or using the “Orientation” keyword in the “block”
section. The relation of the orientation vector to internal element coordinates is shown in Figure
7.28.1. Remaining information is provided in the “block™ section. Each mount type requires a
separate block entry. Mount parameters are provided as text input in the block section. A list of
built in Nmount types is listed in Table 7-15.
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BLOCK 41
Nmount
mount type = 99
parameters = 1.4 3.1 2.7
orientation = 0 0.7 1
END

Input 7.12. Mount Interface

Each mount type may require a different number of mount parameters. If more parameters are
provided than required for this mount, the additional parameters are ignored without warning. If
fewer parameters are provided than are anticipated for the mount, the last parameters are set to
zero, a warning is printed, and the analysis continues.

Mount type 7 is a special user subroutine mount. It uses Fortran or C functions that are compiled
at runtime. For this option user subroutine file must be defined in the file section. The user
subroutines are incorporated into a custom build of the Sierra/SD executable with a command
line like

sierra --make salinas -i my\_input.inp

Descriptions of the mount user subroutine formats and requirements are available.*’

Zelem = (Xelem X V)/(lﬁelem X ‘7|)

. . (7.28.1)
Yetem = Zetem X Xelem

Nmount orientation is explain in equation (7.28.1). In the figure, X,;.,, normalized vector from
node 1 to node 2, and changes as the structure deforms. The user provides the orientation vector
V.

Stability

The Nmount element applies a force to the joining nodes in much the same way as an externally
applied force. It provides no contribution to the stiffness matrix, and as such resembles an explicit
element. Thus, stability issues can arise with this formulation. For certain models, damping has
been shown to stabilize the formulation. The user may need to experiment with time step and
damping levels to determine appropriate parameters for a stable solution.
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Name Index | Comment/Parameters
1 = Axaal stiffness, Kr
. 2 = torsional stiffness
fail_truss 1 3 = critical value of tensile strain
4 = critical value of rotational strain
1 = Axaal stiffness, Kr
2 = Stiffness in S frame, Ks
) 3 = Stiffness in T frame, Kt
SpringDashpot 2 4 = Axial damping, Cr
5 = Damping coeflicient in S frame, Cs
6 = Damping coefficient in T frame, Ct
I = Model Direction (I=axial, 2=radial)
2 = Model Type (1=10k, 2=20k)
3 = Snubber gap
Snubber 3 4 = offset
5 = input weight on compression
6 = input angle of radial action
. . I = Torsional spring constant, Ky
TorsionalSpring 4 M = Ky(6, - 6))
=K,
2=K,
3=K;,
Test-spring 5 4 =Ky,
5=Kp,
6 =Ky,
F]: jXj ande:ngej
=K,
2=K,
3=K,
NLSpring 6 4=W,
5=W,
6=W,
F=Kx+Wx2
Mount behavior defined by
mount force subroutine = <string>
subroutine 7 mount init subroutine = <string>

mount size subroutine = <string>

Table 7-15. — Nmount Models and Attributes.
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7.29. Rrod

An Rrod is a pseudoelement which is infinitely stiff in the extension direction. The constraints for
a Rrod may be conveniently stated that the dot product of the translation and the beam axial
direction for a Rrod is zero. There is one constraint equation per Rrod.

The Rrod is specified using beams or trusses in the Exodus database, with a corresponding block
section in the Sierra/SD input deck. No material is required. A block may contain Any number of
connected or disconnected Rrod elements. The following is an example of the input file
specification for an Rrod if the Exodus database contains beams in block 1d=27.

BLOCK 27
Rrod
END

7.30. Rbar

An Rbar is a pseudoelement which is infinitely stiff in extension, bending and torsion. The
constraints for an Rbar may be summarized as follows.

1. the rotations at either end of the Rbar are identical,
2. there is no extension of the bar, and
3. translations at one end of the bar are consistent with rotations.

Table 7-16 summarizes the corresponding parameters.

The Rbar is specified using beams or trusses in the Exodus database, with a corresponding block
section in the input file. No material is required and any number of connected or disconnected
Rbar elements may be placed in a block. The following is an example of the input file
specification for Rbar elements if the Exodus database contains beams in block id=29.

BLOCK 29
Rbar
END

Rbar elements can be reordered so that the number of them connected to a single node is
minimized. Having a large number connected to the same node results in a populated matrix and a
slow computation. Therefore, reducing the number of connections can shorten run time. (see the
reorder_Rbar parameter in the parameters Section 4.4).

The Rbar attributes are listed in Table 7-16, and are described below. These attributes may be set
in the input deck in which case the attribute is used for every Rbar of the block, or may be set as
an element-by-element specific attribute in the input mesh file.
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Attribute default | description
RB_ID - translation identifier
CID_FLAG_INDEP | 123456 | independent coordinate flag
CID_FLAG_DEPEND | 123456 | dependent coordinate flag

Table 7-16. — Rbar Exodus Attributes.

RB_ID Sometimes a collection of Rbars is a description of a rigid body. This occurs for example
when translating a NASTRAN model containing RBE2 elements. During translation these
bars are grouped into rigid bodies based on their connectivity. The RB_ID is an index to
that grouping.

CID_FLAG_INDEP By default, all degrees of freedom are active on both nodes of the Rbar.
Independent dofs are activated on the first node. The CID_FLAG_INDEP allows control
over which degrees of freedom are activated. The flag is specified as an integer which is
sum of components. °

100000 X degree of freedom
20000 Y degree of freedom
3000 Z degree of freedom

400 R, degree of freedom

50 R, degree of freedom

6 R degree of freedom

Thus, ‘123456’ activates all dofs, and ‘123000’ activates only translations.

CID_FLAG_DEPEND By default, six dofs are eliminated from the bar. By setting this attribute
to a non-default value, constraint equations may be skipped. The values are the same as the
CID_FLAG_INDEP described above. As an example if an Rbar had a
“CID_FLAG_INDEP” value of “13456” the rbar would introduce only 5 rather than 6
constraints and the rbar could shear in the y direction.

Interaction of Rbars If two Rbars or sets of Rbars share a node then they are effectively merged
into a single rigid set. E.g., if an Rbar connects nodes 1 and 2, and another Rbar connects nodes 2
and 3 then the effect is the set of nodes 1, 2, and 3 act as a single rigid set of nodes. The same rule
applies to intersection of rigid sets 7.36 or the intersection of Rbars and rigid sets as the rigid set
capability is effectively a means to automatically generate Rbars.

RBE2

Sierra/SD has no support for the NASTRAN RBE2 element. However, in most cases the RBE2
element is not that different from a collection of Rbar rigid elements.

3Tt is an unusual descriptor, but it was designed to somewhat mimic the NASTRAN cid flag.
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7.31. RBE3

The RBE3 pseudo-element’s behavior is taken from the NASTRAN RBE3. More detail is found in
the Theory Manual section Sierra/SD Elements subsection Rigid Elements subsubsection
RBE3.

The element is used to apply distributed forces to many nodes while not stiffening the structure as
an Rbar would. The RBE3 uses the concept of a reference node.

Because all the nodes in an RBE3 are not equivalent, each RBE3 requires its own block ID. In the
Exodus file, all links connecting to a single RBE3 are defined in a single element block. The input
file then specifies that this is an RBE3 element block, as shown in the example below. If the model
requires many RBE3 elements, a separate block must be specified for each.

Usage

The optional parameters for the RBE3 pseudo-element are shown in the table below. These
parameters must be specified in the input file, not as attributes of the Exodus file.

Keyword value Description
refc string  reference node coordinates
WT 6 reals relative weight of coordinates

refc The REFC parameter sets the degrees of freedom to activate on the reference node. For
instance REFC="12" activates equations that constrain degrees of freedom associated with
X and Y translations. No other degrees of freedom are affected. If the REFC keyword is not
provided, it defaults to REFC="123456", i.e. constraint relations will be provided for the 6
structural degrees of freedom on the reference node.

WT. The contributions of each of the coordinates of the independent nodes may be scaled by WT.
Most typically this would be used to determine the relative weight of rotational degrees of
freedom on the independent nodes to the computation of the reference node rotations. The
default value is WT= 111000 which means that the rotations do not contribute to the
RBE3.

Generally we recommend that there be no contribution from the rotations. The rotation of
the element may then be determined solely from the translational degrees of freedom on the
independent nodes.

The formulation of the RBE3 is based directly on the published method from MSC/NASTRAN.
Details of the method are described in the Theory Manual section Sierra/SD Elements subsection
Rigid Elements subsubsection RBE3.
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Cautions in using RBE3

Albeit convenient, the RBE3 is not a true element. It can introduce complexity in the solution.

* A RBE3 may connect a large portion of the model. This degrades linear solver efficiency. As
a consequence, convergence may be slow.

* A RBE3 connected to many nodes requires a lot of memory. This memory is stored on a
single processor.

* No two MPCs should be linked together. Linear solvers may fail in this case.
* Accelerations (see Section 8.1.4) cannot be prescribed on an RBE3 or any other MPC.

* The element has no logic to determine which degrees of freedom of the independent nodes
are active. Thus, if you specify W7 = 111111 the element will try to determine its
rotation based on a combination of the translational and rotational degrees of freedom on
the independent nodes. If the rotational degrees of freedom are inactive, they are treated as
zero. This is rarely what is wanted.

» Care must be taken to ensure that only one node of the RBE3 has multiple connections to its
links. Further, every link in the RBE3 must be connected to the reference node.

* A Joint2G with side averaging uses two RBE3 elements.

* Many user issues are caused by RBE3 elements.

Example RBE3

The following is an example of the input file specification for an RBE3 if the Exodus database
contains beams in block id=31.

BLOCK 31
RBE3
refc=123456
wt=1 110 00
END
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7.32. Superelement

Keyword | value | default | Description

file string input file containing matrices

format string netcdf format of Superelement input file:
netcdf or DMIG

savememory yes/no no controls storage of matrices in memory

diagnostic integer 1 0 - run no diagnostics, 1 - compute Kr
* RBHN,
2 - compute eig(Kr,Mr)

map integer table of node/cid pairs

map string “ascending_id” or ‘“‘sorted” or “loca-
tions”

mode integer/real additional modal damping coefficients
applied to individual modes of superele-
ment

skip_output yes/no no option to disable netcdf output

sensitivity_param | integer/real parameter index and value of sensitivity
parameter may be used multiple times
to
specify different parameters

A Superelement is an abstract concept with different realizations in commercial codes. Sierra/SD
does not have a fully automatic Superelement capability, however, the Sierra/SD CBR solution
case 5.3 reduces an entire model to a reduced-order model that can be used in subsequent runs.
All Sierra/SD solutions support use of models with Superelements.

Superelements are used to decrease the total number of DOFs in a structure that consists of
substructures. One of the substructures is extracted into its own mesh (with GREPOS for
example) and the CBR solution reduces the substructure to a Superelement.

To use in subsequent analysis, a new structure needs to be created by removing the substructure
captured in the Superelement. Then, the Superelemnt is appended to the new structure to replace
the removed substructure. The Mksuper application handles some of the associated book keeping
in the Exodus mesh file for inserting Superelements. This process is documented in the Example
Problems Manual** in the Superelement Insertion section.

A natural case is that a substructure of a structure is meshed much more finely than is needed for
the current simulation. Among other things, replacing that substructure with a Superelement
reduces the amount of computation needed for these simulations.

Evaluating the suitability of a Superelement approximation is left to the user; tutorials are
available in the Example Problems Manual.*4
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Limitations

* The Superelement must be small enough (have a sufficiently small number of degrees of
freedom) to fit (in the virtual memory) a single MPI rank. No consideration for
Superelements which span processors is made.

* Nodes on the Superelement interface may be shared across processors. Interior degrees of
freedom are local to a single processor.

* Output of the interface node degrees of freedom will be made in the base model in the usual
way. Output of internal Superelement quantities will be made in the Superelement database
file. The Superelement modal degrees of freedom will be stored in the Exodus and
MATLAB output on the X-degree of freedom of newly created virtual nodes.

» No automatic data recovery is available.
* Only a single level of Superelement is supported.

* The mass properties report is computed by lumping mass to the interface dofs. For a
Superelement formed from a free-free system this will preserve the total translational mass
of the Superelement. However, the rotational inertia and center of gravity will not be
exactly preserved in the Superelement mass properties. If the Superelement has an internal
constraint or if for other reasons the Superelement cannot exactly reproduce rigid body
modes then the translational mass properties will not necessarily be preserved by the
Superelement.

* wtmass is not going to be applied to the mass matrix. It is assumed that the units are
already integrated as a result of using the wtmass option in the cbr solution

* No geometric stiffness effects are currently accounted for in Superelements. The default at
this time is for these elements to return zero geometric stiffness.

User Input

The following input is provided by the user. If format=DMIG, the connectivity information is read
from the DMIG file, and cannot be specified in any other way.

connectivity (Exodus): Note that codes such as NASTRAN input Superelements by connecting
to the nodes directly. Like any element with Sierra/SD the Superelement must be mapped
to a single processor. The Superelement must be in the finite element database used to
partition the elements. To provide the geometric connectivity to the model, the connectivity
must be added to the Exodus file in one way or another.

If the Superelement has the same number of nodes as a standard element, the analyst may
choose to use such an element to provide the connectivity. This can facilitate visualization
of the model. Sierra/SD does support an element with more nodes than required for the
connectivity map. Thus, a Hex-8 could be used to define the connectivity for a
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Superelement with 7 nodes on the interface. The connectivity map cannot have more nodes
than the element.

The Mksuper utility function will add a Superelement to an Exodus database. See.*

connectivity map (Exodus): The equations for the system matrices must be associated with the
nodes and degrees of freedom in the model. The following example creates a map for an
eight degree of freedom reduced order matrix. The first column of the map is associated
with the node index in the element. The second degree of freedom defines the coordinate
direction (typically 1 to 6 for x, y, etc).

// node cid
map O 0

0 0

1 1

1 2

1 3

2 1

2 2

2 3

In this example, the first two rows of the system matrices are associated with internal
degrees of freedom (DOFs) such as fixed interface modes. These interior dofs are indicated
by a zero for both the node index, and the coordinate direction. Row 3 of the matrix is
associated with the first node in the element connectivity, and with the x coordinate
direction. Row 8 is associated with the second node, and the z coordinate direction.

There must be exactly as many rows in the connectivity map as there are rows in the system
mass and stiffness matrices.

If the node index is negative, the row of the matrix associated with that degree of freedom
will not be mapped to the system matrix. This can be used to “clamp” a generalized degree
of freedom.

The node index is not the node number in the Exodus file. It is the
index into the element connectivity. Thus, for a four node element, the
index must never exceed 4. This permits the use of gjoin and other
tools without the need to reorder these terms in the input file.

Alternate formats may be used to provide the map between rows of the system matrices and
degrees of freedom of the residual structure. For these alternate formats to be used, the
netcdf file containing the Superelement data must include the cbmap data, which provides
an internal mapping between internal rows and columns and the internal nodes. These
methods include the following.
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map ascending_id or sorted If the user specifies the node number connectivity of the
Superelement in an ascending node order, then we can automatically generate the map.
 Note, either ascending_id or sorted may be used here, they refer to identical
algorithms.

map locations If the nodal coordinates of the Superelement are stored in the netcdf
reduced order model file, then the best match among coordinates of the residual and
the Superelement can be used to determine the map. This method works best if the
Superelement and residual have the same coordinate locations and if there are no
collocated nodes in the interface. Each Superelement interface node will be mapped to
the closest finite element model node. No search tolerance is needed as the closest
node is always found, even if it is far away. However, when using this option care
should be taken that Superelement interface nodes and finite element nodes match in
space. If a Superelement interface degree of freedom is mapped onto a finite element
node with significantly different coordinates the Superelement behavior may be
substantially degraded and the Superelement may no longer be able to represent rigid
body modes. A warning is emitted by Sierra/SD if a node match cannot be found
within a distance of one one-millionth of the characteristic model size.

system matrices: The system matrices may be provided in a netedf or DMIG file. These
matrices are available as output of the CBR reduction process (Section 5.3) and may also be
generated with other tools such as Nasgen. The file must contain the following.

Kr. The reduced stiffness matrix. This is required for all analysis.

Mr. Most analyses require a reduced mass matrix as well. Its dimension must match that of
the stiffness matrix.

Cr. An optional reduced damping matrix may be used. It must be of the same dimension as
Kr.

maps that connect the degrees of freedom of the Superelement to the degrees of freedom
of the residual structure.

An accurate reduced Kr for 3D analysis should have exactly 6 zero energy modes. It must
be symmetric (Sierra/SD will try to symmetrize it). Typically, Mr would be non-singular.
Failure to meet these requirements can confuse the entire solution procedure, and lead to
erroneous solutions.

transfer matrices (Exodus): Output of results on interior points in the Superelement are
facilitated using optional output transfer matrices (OTM). These are described in the section
on Craig-Bampton reduction (5.3). These matrices are written to the output Exodus file
only if Superelement output is requested in the Craig-Bampton reduction output
specification. The following matrices apply.

OTM Nodal output transfer matrix.

®With the Mksuper application, it is easy for the user to set up an element with ascending order, but most tools do
not know how to visualize the element. Visualization may be easier using standard elements, but the the restriction
that the connectivity have ascending node ids is confusing.
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OTME Element output transfer matrix.
OutMap An optional node map for the OTM.
OutElemMap An optional element number map for OTME.

mode: For nonlinear transient, additional damping parameters can be specified on a mode by
mode basis for each fixed-interface mode. When a mode is not specified, the properties
from the input system matrices will be used. When a mode is specified, the specified
properties will override the properties from the input system matrices. Currently, only three
types of damping behavior are defined: a damper with optional cubic parameters, damper,

an Iwan model, Iwan and a reduced Iwan model, riwan.*.

skip_output: Optionally provides a means of disabling all output to the netedf results files. This
is particularly useful if the analyst wishes to use the same netedf data for multiple
Superelements in the model. Without this keyword, each Superelement block would be
writing to the same file location, resulting in corrupted data.

output specifications: In the input deck Superelement output is selected from either the
outputs or echo sections by adding the word Superelement.

If requested in the outputs section, then a new Exodus file will be generated from the
information and name of the netcdf file. The number of nodes in the new file is the sum of
the number of nodes on the interface and the number of nodes in the OTM. The number of
elements is the number of elements in the OTME. All elements will be placed in a single
element block.

Because we don’t know the connectivity of the elements in the OTME, all such elements will
be defined as sphere elements, and will be collocated on a single node in the model. This
impedes visualization, but the element data is preserved for other types of post-processing.

Likewise, no coordinate information is available for the interior nodes of the model. These
elements will be located at the origin of the system.

sensitivity_param: If the Craig-Bampton reduction that generated the Superelement included
a sensitivity analysis, then the netedf file containing the Superelement matrices also
contains derivatives of the reduced matrices with respect to the parameters. This
information can then be used in the Superelement block to set the Superelement parameters
as needed. This uses the linear Taylor series expansion of the sensitivity information of the
Craig-Bampton model to compute the updated reduced matrices, and thus by-passes the
need re-generate the Craig-Bampton model when the parameters are perturbed. The
sensitivity_param allows the user to input specific values of the parameters for the
Superelement.

The above parameters are entered in the block section of the input file. For example,
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BLOCK 97
Superelement
file="example.netcdf’
// node cid
map 0

NDNRFR R PR
N~ WNRF~RS

2 3
diagnostic=1
sensitivity_param 1 0.01 // thickness in CBR shell model
sensitivity_param 2 30e6 // modulus in CBR shell model

mode 1 damper 1 // Only supported in nltransient
mode 3 riwan 2 // Only supported in nltransient
END

If using the mode option, property sections must also be defined. It is important to recognize that
the values of these parameters are in the modal space, so they need to be scaled appropriately. See
the Verification Manual*® for more details. Nonlinear parameters are also supported in nonlinear
transient (nltransient) solutions.

PROPERTY 1
K = 909.094116210938
Mu = 1.8181818281549
K3 = 82.64521119e8 //optional, default=0
Mu3 = 82.64521119e-3 //optional, default=0
END

PROPERTY 2
Fs=1.5e4
Dp=0.03
Kt=1.5e6
Kp=3.0e7
Chi=-0.5
Beta = 1lel®

END

In this case, there are two sensitivity parameters, one for the thickness of a shell block in the
Craig-Bampton model, and the other for the Young’s modulus in that same block. Note that the
format is assumed to be netcdf because the keyword format is not specified.
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DMIG Input Files

Matrix ‘ Acceptable Names
Stiffness (Kr) K2GG,KAAX
Mass (Mr) M2GG,MAAX
Damping (Cr) C2GG,BAAX

Table 7-17. — Acceptable names of matrices within DMIG input files.

* Sierra/SD does not check the file extension of DMIG input files. Files generated by
Sierra/SD use the .dmig extension, whereas direct output from NASTRAN uses .pch.
Both are acceptable as input.

¢ Allowable matrix names are listed in Table 7-17.

* Information required by Sierra/SD in parsing DMIG files comes from the matrices
themselves: all comments are ignored, including e.g., those providing information about the
dof map, number of interface modes, etc.

* The stiffness damping matrix K4AXX is ignored.

Finally, we show an example input deck for DMIG format:

BLOCK 99
Superelement
format = DMIG
file=rom4.dmig

END
7.33. Dead
Dead is now DEPRECATED.

Please consider using "omit block" (section 7.34) instead.

A dead element has no mass and no stiffness. It may be of any dimensionality: solid, planar, line,
or point. Interior nodes to a block of dead elements will not be included in the computation of the
model. There are also no parameters to be specified for dead elements.

Special care must be taken when dead blocks are used/referenced else-
where in your analysis. A few commonly-used cases are documented
below.
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Note that some loads and other boundary conditions on dead block regions will still be partially
applied. Namely, any nodes that are shared with the remainder of the model will be included. This

behavior is consistent for dead blocks and “body” regions, as well as nodeset or sidesets within an
dead block.

In contrast, sideset regions of dead blocks will be skipped (with a warning) when used with tied
data.

Sidesets on internal boundaries between dead blocks and active blocks
can cause unexpected behavior. Deactivation of the dead block may
deactivate the boundary condition on that internal sideset if the sides
are associated with the dead elements. This may be diagnosed by
visualizing the sideset normal, which points outward from its attached
element. It is recommended to avoid using internal sidesets due to the
ambiguity they can cause.

Extreme care must be used when combining dead element blocks with
sidesets in contact. Generally, dead blocks specified in contact defini-
tions or tied data will be ignored, and Sierra/SD will issue a warning

X message. However, sidesets of dead blocks will only be ignored in
contact surface definitions if the surface fouches only dead blocks. Any
sidesets that span both dead and active element blocks will not be fil-
tered from contact.

7.34. Omit Block

Blocks may be omitted from your analysis by adding a omit block line(s) to your FILE section.
Note: an omit block line may only contain comma or space-separated lists of valid block ids and
names; assemblies of blocks, ranges of block ids, and the remove keyword are not allowed.
Element blocks that are omitted from the input are also omitted from the output.

Note that while not required, including a corresponding BLOCK definition is recommended for
omitted blocks for for accurate syntax checking. This is in contrast to removing the block from the
mesh as a preprocessing step (e.g. with grepos), which would require the block definition to be
removed.

FILE
geometry_file = mesh.exo
omit block 12,wing tail
omit block block_123

END
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Input 7.13. Omit Block Example

Special care must be taken when omitted blocks are used/referenced
elsewhere in your analysis. A few commonly-used cases are documented
below.

Nodes that are only found in an omitted block (i.e. not shared) will be omitted as well. Attempting
to reference omitted nodes will result in a fatal error, for example when omitted nodes are found in
MPC definitions.

Sideset regions of omitted blocks will be skipped when used with tied data. Likewise, omitted
blocks and sidesets/nodesets of omitted blocks will be skipped when used in a contact
definition.

Loads or boundary conditions applied to omitted blocks are also ignored. Likewise for sidesets
spanning a dead block. For nodesets and “body” regions, any nodes that are shared with the
remainder of the model will still be included.

7.35. Compatibility of SD/SM Elements

Some default Sierra/SM element formulations differ significantly from the corresponding
Sierra/SD formulations. This means that on a coarse mesh these elements may produce different
results for a nominally equivalent problem. Additional inconsistencies may result from the
hand-off of Sierra/SM state via the receive_sierra_data section 5.23 solution case. For example
an equilibrium state in SM may not be a SD equilibrium state.

On the other hand, some Sierra/SM element formulations types are identical to the corresponding
SD formulations, including fully integrated formulations such as the Tet4, Hex20, and fully
integrated Hex8 element (Hex8f in SD, fully_integrated in SM). A fully integrated Tet10 behaves
slightly differently in SM than SD due to the SM default volume averaging behavior. The selective
deviatoric element are identical: SD Hex8u and SM selective_deviatoric. A Nquad’ shell
element in Sierra/SM is identical to a "Nquad’ in Sierra/SD, but all other shell elements differ.
One SM shell element formulations nearly matches the "Nquad’ formulation, the "BL_SHELL.’

Note, even when using equivalent element formulations full equivalency between SD and SM
only holds at very small strain and small deformation. At larger deformations SD and SM results
will diverge due to geometric non-linearities, differences in strain measures, and other linear vs.
non-linear effects.

See the Sierra/SD Verification Manual*® for additional information on these topics.
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7.36. Rigid set

Rigid Sets are intended as a usability tool to permit the analyst to treat a set of nodes as
completely rigid. The input is straightforward.

RIGIDSET setl
sideset 1
sideset 2:5
nodeset 88-90, wing
block 102
END

The above definition would establish a single set that is tied together. For purposes of error
reporting only, the optional name “setl” is associated with this example set. If multiple
independent sets are required, then multiple rigid set definitions may be made.

Table 7-18 shows the parameters. Any number of Rigidset sections may be introduced. Each
acts independently. Exodus sideset, nodeset, or block information may be included in the
definition. The rules for defining multiple nodesets, sidesets, or blocks at once are the same as the
history output Section 9.2.

Table 7-18. — Rigid set parameters.

Parameter type description
sideset int/name/list sideset(s)
nodeset (not recommended) int/name/list nodeset(s)
block int/name/list  block(s)
CenterNode tiedto node integer see below

Tied Node

tied node or center node A rigid set can be attached to a Tied Joint 7.38 or Joint2G 7.23. In
this case, a “reference” node may be generated and tied to another block or element. This is
accomplished with the keywords below.

CenterNode tiedto node XX block YY

The CenterNode command will create a bar element with two nodes, and associate it with block
YY. One end of the bar element is node XX. Node XX must exist in the input mesh. The other end
node of the bar element will be created on the fly at the centroid of the rigid set. Note this
capability only works for blocks with a single element. There are examples in.** Figure 7-24
illustrates the concept.
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@®— RigidSet

O CenterNode — virtual

. Reference Node — physical
- - = = Virtual Block

Figure 7-24. — The model illustrates the connection of a physical rigid set to a physical reference node
via a virtual center node and virtual connection block.

7.36.1. Voltage Rigid Sets

For many models using piezoelectric materials, a free surface of the piezoelectric tile may be
plated with a purely conductive material such as copper. The conductive layer results in an
equipotential surface. To simplify modeling an equipotential surface, Sierra/SD enables voltage
rigid sets, which enforce a spatially constant voltage on the nodes associated with specified
nodeset or sideset. Specifying voltage rigid sets are done in the rigid set block as shown in the

following.

RIGIDSET unique_identifier
sideset 1
voltage

END

Input 7.14. Voltage Rigid Set

7.36.2. Limitations

The rigid set meets an important need to tie together many nodes Generally they are much more
robust than generating collections of Rbar rigid elements or other rigid elements. However, it is
easy to generate redundant constraints through this input. Redundant constraints cause most linear
solvers to fail, and Sierra/SD may not always provide diagnostics. Generally,

1. Rigid sets should be completely disjoint, i.e. should share no common nodes. If two rigid
sets do share any node they are effectively merged as a single larger rigid set.

364



@—=mm

2. If a Rbar is connected to any node of a rigid set then effectively the combination of Rigidset
and connected Rbars behave as a single rigid system. Similarly, connecting two rigid sets
via a Rbar effectively merges the two sets into a single larger rigid set.

3. None of the nodes in the rigid set should be constrained (as through a boundary condition).

4. While nodesets can be used to define rigid sets, this is not recommended because parallel
decompositions may put only one or two nodes on a processor. So few nodes may introduce
local singularities in rotation that impact the linear solver. If possible, use sidesets or blocks
to define the rigid set.

7.37. Rrodset

Rrodset is currently BETA release.

Enable with the “- -beta” command-line option. Like the
Rigidset of Section 7.36, the Rrodset provides a convenient means of tying together a surface.
All the limitations of the rigid set apply here. Unlike the rigid set, the Rrodset constrains only the
distance between nodes on the faces, and no rotational degrees of freedom are constrained.
Additionally, only sidesets may be used to define a Rrodset. The Rrodset acts much like a fiber
textile: it resists stretching, but does not impede bending.

For a quadrilateral face, the Rrodset is equivalent to applying a rigid rod to each of the edges of
the face. A constraint is also placed across one of the diagonals of the face as shown in Figure
7-25. An example is shown below.

RRODSET
sideset 5
END

Figure 7-25. — Rrodset Constraints. The black lines indicate the edge of the element. Red lines are
corresponding linear constraints.

Like the Rigidset, the Rrodset may be used to connect a “reference” node to a block.

7.38. Tied Joint

The Tied Joint models a joint structure. At the heart of the Tied Joint is an Iwan model. The Tied
Joint supports flexibly mixing many models. An Iwan element may be used to represent the shear
response, and multipoint constraints may be used to represent the normal response. Energy loss of
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the joint can be approximated by the Iwan element, and normal surfaces alignment can be
preserved by the constraints.

Input Specification Refer to Figure 7-26 for reference to the model definition. An example input
is shown in input 7.15. There are several sections to the model definitions. Parameters of the input
are summarized in Table 7-19. Details are below.

Figure 7-26. — Tied Joint Geometry. The two side set surfaces are shown separated for clarity. A
virtual element is created which connects only the shear components of the joint. Normal components
are interconnected using Tied MPCs.

TIED JOINT

Normal Definition = slip

surface 3,5

connect to Block 59 // Joint2G block
END

// definitions for the referenced Joint2G
BLOCK 59

Joint2G

Kx=Iwan 1

Ky=Elastic 1le6

coordinate=5 // for anisotropic shear parameters
END

Input 7.15. Tied Joint Example

Name: Optional name of this joint. Useful primarily in diagnosing error messages.

Surface: Exactly two sidesets should be provided, these two sidesets will be connected via the
joint. For node-face MPCs involved in normal direction constraints the nodes of the second
surface (node-surface) are constrained to the faces of the first surface (face-surface)

366



surface 2 sidesets connected by the joints, in slip
constraints the first sideset is the face-surface
and the second the node-surface as in tied data

tied nodes a sideset connected by the joint, the face-surface
in slip constraints as in tied data
tied faces a sideset connected by the joint, the node-surface
in slip constraints as in tied data
normal
slip[none if s1ip, normal-only node-face constraints

search tolerance | if slip, defines node-face MPCs
edge tolerance | if slip, defines node-face MPCs

shear
connect to block | reference block for whole joint
side average, rigid or Rrod

Table 7-19. — Tied Joint Parameters.

Normal Definition: In the Tied Joint, the joint behavior in the normal direction can be governed
by the joint element or by distributed node-face MPCs on the sidesets.

Slip implies the surfaces will remain in tied contact, and shear effects are managed by the
“shear definition”. Tied node-face constraints will be created similar to the Tied
Data 10.1 command. These constraints only tie the normal deformation of the sides
together. The shear behavior of the joint will be managed by the single joint element.
In this case, the joint element will be located at the nearest node to the centroid of the
node-surface.

None implies that no specific node-face normal constraints will be generated. Surfaces may
separate or interfere and the joint normal behavior will be controlled only by the
whole-joint element. In this case, the joint will be located at the centroid of the
node-surface.

Connect to block: A reference to a block containing parameters for the whole-joint element, a
single element that connects the two sides of the joint. Usually a Joint2G element is used. If
the normal definition is none, then the whole-joint element must specify behavior in all six
dofs. Otherwise, if the normal definition is s1ip, then tied constraints are used to constrain
the normal motion of the joint and only the three dofs associated with plane motion in the
whole-joint element are used.

For non-isotropic shear behavior, the block may include a coordinate command. The frame
may be curvilinear (e.g. cylindrical), in which case whole joint quantities are evaluated at

the centroid of the surfaces (see coordinates, 4.9). To reference the basic (or default) frame,
use coordinate frame “0”. The coordinate frame is specified in the connected element frame.

For curvilinear coordinate frames, it may be difficult to exactly specify the orientation of the
centroid of the surface. Any user defined coordinate frame will be projected to the plane of
the surface at the centroid, and a new coordinate frame is generated for specification of the
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orthogonal, in-plane coordinates. The X and ¥ axes of the user-defined coordinate system
are projected to the plane, with the new third axis (Z’) in the normal direction.

In the case when the whole-joint element is a Joint2G element, the shear_axis can be
used in the block definition to define the coordinate direction used for the first in plane
constitutive component. We refer to Figure 7-27 for a description of the local coordinate
system used to specify the constitutive behavior of the Joint2G element. The surface
normal, 7, is obtained as the normal on the node that is closest to the centroid of the sidesets
that define the Tied Joint. This normal direction defines the Z’ axis of the local coordinate
system. The shear_axis definition specifies which of the 3 axis of the user-specified
coordinate system (in this example coordinate 5) is intended to be the first shear direction
for the constitutive response. Thus, if shear_axis is set to 1, then X’ is defined as the part
of the X axis from the user-defined coordinate system that is orthogonal to Z’ = n. If the Z
axis of the user specified coordinate system lines up exactly with the normal at the node,
then the shear direction will be in exactly the same direction as the X axis in the
user-defined coordinate system. Generally, they will not line up perfectly, and this is the
main reason why the shear_axis is needed. Once 7’ = n and X’ are defined, the
remaining component of the coordinate system ¥’ can be obtained by a cross product.

Figure 7-27. — The surface normal, n, is defined by the normal of the surface at the centroid point. The
shear axis direction (in this example X) is projected onto the surface as X’. Together, X’ and surface
normal provide the basis for the generated coordinate frame.

Side: The side defines additional constraints on the surfaces and how the tied joint Joint2G
element spreads load to the surfaces.

A tied joint is between two surfaces A and B. To create the tied joint first a point in space is
selected near the centroid of the joint. Next two new collocated nodes A, and B, are created
at this point. Node A, will track the average displacement of side A. Node B, will track the
average displacement of side B. The whole joint element, a Joint2G, is connected between
nodes A, and B, and controls the stiffness and damping of the joint.

average See Figure 7-28. A, and B, are connected to side A and B via RBE3 constraints.
One RBE constrains node A, to have the average displacement of side A and another
RBEs constrains node B, to have the average displacement of side B. The RBE3
constraints are added as bar elements to the output mesh file. Side average is the
default for “normal definition” of “slip”.
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rigid provides a means of constraining all the nodes on each surface to move together as a
rigid set (see users 7.36). See Figure 7-29. Side A is turned into a rigid set and side B
is turned into a rigid set. Node A, is added to rigid set A and node B, is added to rigid
set B. An RBE3 is not required in this case as the rigid set already guarantees that the
displacement at A, and B, track the average displacement of the sides. Side rigid is
default for “normal definition” of “none”.

Rrod provides a means of constraining all the nodes on the surface to move together as a
Rrodset (see users 7.37). See Figure 7-30. Side A is turned into a Rrodset and side B
is turned into a Rrodset. As with side=average RBE3 constraints are needed to
constrain nodes A, and B, to the average displacement of the two sides. The RBE3
constraints are added as bar elements in the output mesh file.

The side rigid option will create the stiffest overall joint behavior, average the softest, and Rrod
something in between. Using option rigid to avoiding a complex RBE3 constraint can also avoid
numerical issues that sometimes come with the average or Rrod options.

Side A

) _RBE3
Node AC
Joint2G Element

Node B,

“-.._RBE3

Side B .

Figure 7-28. — Construction of tied joint with side=average.
Not all Tied Joint specifications are fully consistent. In particular, the specification of the “normal

definition” and the “side” descriptions are not fully independent. Table 7-20 summarizes some
dependencies between these two parameters.
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Rigid Set

Joint2G Element

————————————————————————————————————————————————————————

Rigid Set

Figure 7-29. — Construction of tied joint with side=rigid.

g

Node A

C

Node B,

Figure 7-30. — Construction of tied joint with side=Rrod.
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Normal Definition

Side

Status

none

average

Rrod

rigid

RBE3s constrain joint end nodes to have the

average displacement of each surface.
RBE3s constrain joint end nodes to have the

average displacement of each surface. Addi-
tionally, each surface is turned into an Rrod-

set.
Each surface is turned into an rigid set which

also contain the joint end nodes. An RBE3 is
not needed in this case as the rigid set already
constraints the joint end nodes to have the
average displacement of the surfaces.

slip

average

Rrod

rigid

Node-face normal only constraints are added
to the surfaces. RBE3s constrain joint end
nodes to have the average displacement of
each surface. The shear deformation of the
whole-joint model is based on the relative lat-

eral motion of each side. _
Node-face normal only constraints are added

to the surfaces. RBE3s constrain joint end
nodes to have the average displacement of
each surface. Rrod constraints stiffen the sur-
face. The shear deformation of the whole-
joint model is based on the relative lateral

motion of each side. o
Invalid. Overly constrained joint. Fatal error.

Table 7-20. — Tied Joint, Normal and Side dependencies.
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7.38.1. Output Specifications

Because the Tied Joint is not fully represented in the Exodus database (except as a collection of
surfaces), standard element output capabilities are insufficient to represent the data. The data is
divided into two categories: configuration and results.

Configuration Output

The configuration output is only available in the text output of Sierra/SD, i.e. in the .rslt file. It is
requested with the keyword “input_summary” in the “ECHQO” section (see 9.9). This includes the
following.

1. The type of the normal enforcement.

2. Surface information.

3. Centroid of the surface pairs (if applicable).

4. Owning processor for the shear elements (if applicable).
5

. Shear models.

Results Output

The only results output that is currently available for a Tied Joint consists of the forces in the
Joint2G element that connect the two surfaces of the Tied Joint together. Currently, these forces
can be only obtained in the history (or frequency) file for a transient or nonlinear transient analysis.
They cannot be written to the global Exodus output file. If we consider the same example that is
given in input 7.15, we could obtain the element forces as follows for a transient analysis

HISTORY
block 11
EForce

END

or, for a frequency domain analysis,

FREQUENCY
block 11
EForce

END

where in this example block 11 is the Joint2G block that connect the two surfaces of the Tied
Joint together.
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8. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

BOUNDARY
sideset 5 // for nodes in sideset 5
absorbing // use an absorbing bc
sideset 2 // for the acoustic sideset 2
p=20 // fixed acoustic pressure

// (pressure release condition)

sideset acoustic_surface // for sideset "acoustic_surface"
pdot = 1.0 // constrain the time derivative
// of acoustic pressure for
// enforced accelerations

function = 2 // varying in time with function 2
p0=1.0 // and initial condition p® = 1.0
sideset 6 // for sideset 6
impedance_pressure=0.5 // use a pressure impedance bc
impedance_shear = 0.5 // and a shear impedance bc
sideset 7 // for sideset 7
slosh = 0.6 // use a slosh bc
sideset 8 // for sideset 8
infinite_element // use infinite elements
use block my_block // where the infinite element

// parameters are in the
// user-defined block "my_block"

sideset piezoelectric_side // for "piezoelectric_side"
V=2~0 // fixed voltage
// (electrical ground)
END

Input 8.1. Sideset
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An input deck has a boundary section for specifying boundary conditions. Node sets, side sets,
blocks, or node lists may be used to specify boundary conditions. The rules for defining multiple
nodesets, sidesets, or blocks at once are the same as the history output section, 9.2, and also
follows the rules for integer lists detailed in Section 4.1. Specialized coordinate systems that can
be used are described in section 4.9. The example in input 8.1 illustrates the method.

BOUNDARY
nodeset end_nodes // for nodes in nodeset "end_nodes"
x =0 // constrain x=0
coordinate 1 // for x/y/z in coord system 1
nodeset 1 // for nodes in nodeset 1
x =0.1 // constrain x=0.1
y =0 // and y=0
RotZ = 0 // and the rotational dof about Z
nodeset 13:15, widget // for nodesets 13-15 and "widget"
accelx = 0.3 // constrain the x-acceleration
function=1 // varying in time with function 1
disp® = 0.1 // and initial condition
vel0 = 0.2 // disp® = 0.1%0.3 and vel®0 = 0.2%0.3
END
Input 8.2. Nodeset
BOUNDARY
block fixed_block // for nodes in block "fixed_block"
fixed // constrain all dofs

node_list_file="nodes.txt’ // for nodes in the file "nodes.txt"
fixed // constrain all dofs
END

Input 8.3. Block or Node List

The descriptors for the displacement boundary conditions are, X, Y, Z, RotX, RotY, RotZ, P, and
fixed. Their application and meaning are listed in Table 8-1. An optional equals sign separates
each descriptor from the prescribed value. The value fixed implies a prescribed value of zero for
all degrees of freedom.

Note however that the syntax checking in the boundary block does not check for duplicate
boundary conditions, and silent failures are possible. For example in the example shown in
input 8.4, part of the input block is silently ignored.
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Keyword | Description

prescribed displacement keywords

X X Component of displacement
Y Y Component of displacement
Z Z Component of displacement
RotX Component of Rotation about X axis
RotY Component of Rotation about Y axis
RotZ Component of Rotation about Z axis
fixed Constrain all components of rotation and translation
P Acoustic pressure
A% Voltage
prescribed acceleration keywords
AccelX | scaling factor on X component of motion
AccelY | scaling factor on Y component of motion
AccelZ | scaling factor on Z component of motion
RotAccelX | scaling of rotational motion about X axis
RotAccelY | scaling of rotational motion about Y axis
RotAccelZ | scaling of rotational motion about Z axis
AccelV | second derivative of voltage
disp0 initial displacement
velO initial velocity
Pdot derivative of acoustic pressure
PO initial acoustic pressure
prescribed displacement keywords (Direct FRF-only)
DispX scaling factor on X component of motion
DispY scaling factor on Y component of motion
DispZ scaling factor on Z component of motion
RotDispX | scaling of rotational motion about X axis
RotDispY | scaling of rotational motion about Y axis
RotDispZ | scaling of rotational motion about Z axis
FreqV scaling factor on voltage
FreqP scaling factor on acoustic pressure

Table 8-1. — Dirichlet Boundary Enforcement Keywords.
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BOUNDARY
nodeset 10 // This
rotx = 0 // 1is
roty = 0 // parsed
rotz = 0 // as
nodeset 10 // expected
accelx=370.
function=1
accely=380. // Parsing
function=2 // silently
accelz=390. // ignores
function=3 // these!
END

Input 8.4. Example Silent Failure of Parsing

To apply functions 2 and 3, it is necessary to provide a nodeset for each function as in input 8.5.

BOUNDARY
nodeset 10 rotx = 0 roty = 0 rotz = 0
nodeset 10 accelx=370.0 function=1
nodeset 10 accely=380.0 function=2
nodeset 10 accelz=390.0 function=3
END

Input 8.5. Corrected syntax

The way that the parser works for the boundary block is that the text is divided up into consecutive
chunks by the keywords nodeset, sideset, block, node_list_file, and end. This is the
pattern followed in input 8.1. Within each chunk, any number of Dirichlet boundary enforcement
keywords (see Table 8-1) may be provided. Surprisingly, only the first function in a chunk is
parsed; any others are ignored. There is no warning for ignored text in the boundary block at this
time.

8.1. Boundary conditions

This section provides more information about more complicated boundary conditions that can be
applied using the boundary section of an input deck.
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Node_List_File To make it easier to apply boundary conditions, a node_list_file option is
provided. In this option, the user provides an additional text file that contains a list of global node
ids separated by white space. No comments, or other characters are allowed in the file, as shown
in input 8.1. The remainder of the boundary condition specifications are unchanged.

There are several limitations placed on collections of nodes specified in this
manner:

1. This is an inefficient method of supplying the nodes. It is recom-
mended that nodesets or sidesets be employed when practical.

2. No node distribution factors may be provided.
3. The output Exodus file will have no record of this list.

4. The global node numbers are the mapped Exodus global numbers,
which is the arbitrary node numbering provided by the analyst. Earlier
versions of Sierra/SD used “1 to N ordering, where N is the maxi-
mum number of nodes in the model. Recent versions always use the
mapped ordering for referring to global nodes.

5. There is no requirement that the nodes be sorted in the list, but re-
peating a node in the list can have undefined results.

8.1.1. Prescribed Displacements and Pressures

In linear statics, one may prescribe a nonzero displacement by entering a value following the
coordinate direction, as shown in input 8.6.

BOUNDARY
nodeset 1
X =3
y =0
z =0
rotx = 0
roty = 0
rotz = 0
END

Input 8.6. Prescribed Displacement for Statics
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For acoustics, pressures may be fixed by specifying p = 0, as in Table 8-1 on sideset 2. This
corresponds to a pressure release condition.

For linear statics, there must be no function entry following the entry. The load in this case is
introduced by the prescribed displacement. However, the loads section must exist (for error
checking purposes) even if it is empty.

Prescribed displacements have the same limitations as prescribed accel-
erations, described in Section 8.1.4.

8.1.2. Prescribed Displacement in Transient

Prescribed Displacement in Transient is currently BETA release.
Enable with the “- -beta” command-line option.

Similar to the transient acceleration capability 8.1.4, in direct transient analyses time-history
displacement boundary conditions may be specified with the keywords DispX, DispY, DispZ,
RotDispX, RotDispY, or RotDispZ paired with a function.

A voltage time history may be directly defined by keyword transV and a time history function .

8.1.3. Prescribed Voltage

For electro-mechanical coupled physics problems, constant voltage boundary conditions may be
specified on nodesets or sidesets using the keyword V in the Boundary block. In the following
example, electrical grounds were set at sideset 1 and nodeset 1, and a non-zero constant voltage
boundary condition set at sideset 2.

BOUNDARY
sideset 1
V=20
nodeset 1
V=20
sideset 2
V=2
END

Input 8.7. Prescribed Voltage
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8.1.4. Prescribed Accelerations

In transient dynamics, the acceleration on a portion of the model may be prescribed as a function
of time. As shown in Table 8-1. acceleration are specified using accelX, accelY, accelZ,
RotaccelX, RotaccelY, RotaccelZ, disp®, vel®, Pdot and accelV

A function must be used to apply the time-dependent boundary accelerations. Optional initial
displacement and velocity can also be specified; if not, they default to 0. In the example above, the
x acceleration of nodesets 13 through 15 and “widget” will be prescribed as 0.3 = f(z), where f(¢)
is defined in function 1. The accelx factor also scales the initial displacement and velocity. Thus,
initial displacement is given as 0.1 * 0.3 and the initial velocity is 0.2 * 0.3.

Prescribed accelerations are ultimately enforced in the code by integrating to produce a prescribed
displacement as

t t
u(t) = scale factor = l/ ( f(t)dt) dt + (t — tgar) * Vo + up| . (8.1.1)
Tstart

Tstart

The start time of the function, fy, is not the start time of the analysis. Accounting for this is
important in hand-off analyses. A function is required; not listing a function will generate an error
message. In the case of an acoustic sideset or nodeset, the prescribed value is the first time
derivative of acoustic pressure, denoted above as Pdot. This is because, internally, Sierra/SD
solves for the velocity potential, and the first time derivative of the velocity potential is the
acoustic pressure. Thus, by specifying the first time derivative of pressure, one is prescribing the
acceleration of the velocity potential.

An additional point to consider when applying prescribed accelerations is that the initial velocity
and displacement (denoted as disp® and vel0), are also necessary to completely define the
boundary condition. These values account for the constants of integration obtained when
integrating the prescribed acceleration to obtain the corresponding velocity and displacement on
the sideset or nodeset.

In the case of acoustics, only one initial condition is needed for p® which specifies the initial
acoustic pressure, since only the first time derivative of acoustic pressure is specified.

In the case of prescribed voltage acceleration, the descriptors disp® and vel@ are used to define,
respectively, the initial voltage and initial time derivative of voltage. By default disp®, vel®0, and
pO vanish.

In the case of a prescribed voltage time history, the prescribed value is the second time derivative
of the voltage, i.e., voltage acceleration (accelV ). However, since the first and second time
derivatives of voltage do not contribute to the equations of motion (see the Theory Manual for
details) a prescribed voltage ’displacement’ option should typically be used (See 8.1.2).

When prescribed accelerations are used, they induce a load on the structure. Thus, a loads
section, even if it is empty, must be present to use the prescribed acceleration capability. An error
message will be generated if the input file has no loads section.
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* Prescribed accelerations do not work with multicase solutions.
* They can only be applied in the standard Cartesian coordinate system.

* The nodes involved in prescribed accelerations cannot coincide with
nodes that are involved with MPCs.

* Prescribed accelerations can be used in meshes that have nonlinear
or viscoelastic elements only if the prescribed accelerations are not
applied directly to the nonlinear or viscoelastic elements.

8.1.5. Prescribed Frequency-Varying Displacements

For the direct frequency response solution method, a portion of the model may be prescribed
displacements as a function of frequency. As shown in Table 8-1 the descriptors for prescribed
frequency dependent displacements are DispX, DispY, DispZ, RotDispX, RotDispY, RotDispZ,
FreqP, FreqV. A function must be used to apply the frequency dependent boundary condition.

8.1.6. Nonreflecting Boundaries

Nonreflecting boundary conditions for acoustics and for elasticity may be specified using the
“absorbing” keyword.

This section allows the user to specify an exterior boundary for acoustic, elastic, or coupled
structural acoustic simulations. Once specified, first-order non-reflecting boundary conditions are
applied on this surface. The boundary is specified with a sideset. The sideset can be placed either
on acoustic or elastic elements. The code automatically determines whether the sideset is placed
on acoustic or elastic elements, and then applies the appropriate boundary conditions.

Only pressure waves need to be absorbed for acoustic elements, and the absorbing boundary could
represent an infinite fluid surrounding a structure. For elastic waves both pressure and shear waves
need to be absorbed, and the absorbing boundary could represent an infinite elastic medium, such
as in a seismic problem.

An example of this syntax is given below.

BOUNDARY
sideset 5
absorbing
radius = 1.0
END

The parameter “radius” specifies the radius of the sphere that defines the absorbing boundary. For
a planar absorbing surface, one can either specify no radius, or a large radius (the radius is equal
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to infinity for a planar surface). In those cases, the absorbing boundary condition reduces to a
plane-wave absorbing condition. We also note that the radius parameter refers to the distance from
points on the spherical surface to the center of curvature, not to the origin of the coordinate
system. Thus, it is independent of the coordinate system that is specified. For example, one could
shift the coordinates of the nodes of the acoustic mesh by any constant, but the radius parameter
would remain the same.

8.1.7. Impedance Boundary Conditions

Impedance boundary conditions are partially reflecting and partially absorbing. Thus, they are
somewhere in-between a rigid wall and an absorbing boundary condition. They reduce to these
special cases for certain choices of the impedance parameters.

An example syntax for an absorbing boundary condition is given below

BOUNDARY
sideset 6 // sideset on acoustic material
impedance = 0.5
sideset 7 // sideset on elastic material
impedance_pressure = 0.5
impedance_shear = 0.5
END

In this case, sideset 6 is attached to acoustic elements, and sideset 7 is attached to elasticity
elements. For acoustic elements, only one impedance parameter is needed, and it corresponds to
an impedance condition for pressure waves only (acoustic elements support no shear waves). For
elasticity elements, the impedance_pressure and impedance_shear correspond to impedance for
pressure and shear waves, respectively. This example specifies that sideset 6 is to have an
impedance of Z = 0.5p¢, where p is the density and c is the speed of sound. Thus, the
“impedance" parameter that is parsed in is the multiplier on the characteristic impedance pc.
Similarly, for the elasticity element the pressure and shear impedance would be Zp = 0.5pcp and
Zs = 0.5pcs, where cp and cg are the speeds of sound for the pressure and shear waves,
respectively.

Currently, impedance boundaries are only set up to work with the standard characteristic
impedance pc. Thus, specifying the “radius" parameter with an impedance boundary condition
will have no effect.

We note that if the impedance parameters are all set to 1.0, the problem reduces to the absorbing
boundary described in the previous section. If set to 0, the impedance condition becomes a
pressure-release boundary for acoustics and a free boundary for an elasticity element. If set to a
large number, the impedance boundary condition reduces to a rigid-wall condition for acoustics,
and a fixed condition for elasticity elements.
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8.1.8. Slosh

Slosh boundary conditions are applied at free surfaces that are effected by gravity. This type of
free surface is typically only important on the surface of a liquid such as water. It contributes to
the mass matrix, resulting in “surface” wave modes.

An example syntax for an absorbing boundary condition is given below

BOUNDARY
sideset 7
slosh = 0.102 // 1.0/9.8 (m/s*2)
END

This specifies that sideset 7 is to have a slosh boundary condition. In this case, the slosh
coefficient needs to be set to l, where g is the gravity constant. Thus, for SI units, the slosh
coefficient is 0.102. Currently, slosh boundary conditions are only valid for acoustic elements.
Applying them to elastic elements will generate an error.

8.1.9. Infinite Elements

In this section, we describe how to use infinite elements for acoustics. These elements serve as
both high-order absorbing boundary conditions, and far-field calculators that allow the analyst to
compute the solution at far-field points outside of the acoustic mesh. This latter step is a post
processing step.

The infinite element specification begins with a sideset on the Exodus file of interest. Currently,
that sideset has to be an ellipsoidal surface or part of an ellipsoidal surface. Thus, a full spherical
surface, hemispherical surface, or a quarter of a sphere would all be acceptable. Infinite element
accuracy will degrade if the element surfaces on the boundary do not adequately represent the
ellipsoidal surface. The finite element surfaces will be faceted, but enough elements on the
boundary are needed to represent the ellipsoidal curvature.

Once a sideset is identified for the infinite element surface, the boundary section in the input deck
would be modified as follows.
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Parameter Description Options | default

radial_poly the type of polynomial Legendre | Legendre
for radial expansion Lagrange

Jacobi

order the order of the radial basis 0-19 0

source_origin the origin of the ellipsoid 3 reals 000

ellipsoid_dimensions | radial dimensions of 3 reals 000
ellipsoid axes

neglect_mass indicates whether to neglect | yes orno | yes
infinite element mass

correct_mass whether to correct negative | yes or no | yes
mass terms.

use plane line intersect method

Table 8-2. — Available parameters for the infinite element section.

BOUNDARY
sideset 1
infinite_element
use block 57
END

BLOCK 57
infinite_element
radial_poly = Legendre
order = 5
source_origin = 0 0 0
ellipsoid_dimensions 15 15 30
neglect_mass = yes

END

where block 57 contains the infinite element parameters. The number 57 is arbitrary; the user can
pick any number (or name) that is not assigned to a block in the input mesh (Exodus) file. The
parameters are summarized in Table 8-2. Currently, only Legendre polynomials are available for
the radial basis. The order of the polynomial can vary from 0 to 19. Order O corresponds to a
simple absorbing boundary condition. Higher orders will be more accurate, but also more
computationally expensive. The source point is the location of the center of the ellipsoid that the
infinite elements emanate from.

The ellipsoid_dimensions parameters indicate the axial dimensions of the ellipsoid in the global
coordinate system. They are specified as ellipsoid radii instead of ellipsoid diameters. In the case
of a sphere, all 3 parameters are equal and the radius of the sphere. These parameters are currently
required, and an error will be generated if they are not specified.

The neglect_mass keyword indicates whether to neglect the mass matrix contributions from the
infinite elements. By default, neglect_mass is yes. Note that for a spherical surface, the mass
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matrix contributions from an infinite element are identically zero. However, when numerically
generated, small entries will be present in the mass matrix, and thus an option is provided to
include these terms in the analysis. Neglecting the mass, yes, is recommended in most cases.

Infinite elements only require a specification of a sideset on the surface of interest. No elements
need be set up explicitly on this interface. Internally, Sierra/SD constructs virtual elements and
virtual nodes that define the actual infinite elements, but the analyst need not build a layer of
elements on the boundary of the sideset.

The infinite element formulation in Sierra/SD uses a Petrov-Galerkin formulation, instead of a
standard Galerkin formulation. As a result, nonsymmetric system matrices are encountered with
infinite elements. This restricts the solver options to the GDSW solver for time and frequency
domains (i.e. Direct FRF). Infinite elements can be used either with purely acoustic problems, or
with coupled structural acoustics. The formulation is the same, and the GDSW solver is required
for the solutions since nonsymmetric matrices are encountered.

8.1.9.1. Far-Field Postprocessing

The infinite element formulation allows the analyst to compute the response outside of the
acoustic mesh as a post-processing step. The response can be computed at any point outside the
mesh, and for any time interval. Currently, the linesample capability is used to write out the
far-field data (see Section 9.8.9). This data may be written in a readable MATLAB format, which
can easily be read in to create plots of the data.

The output will be written to a MATLAB m-file with the name “linedata.m” or “linedata.exo”,
depending on which option is selected for output. One file is written per analysis (results are
joined analogous to history file output). For example, reading this file in will create vectors
FieldTime and displacement. The acoustic pressure is found in displacement .

We note that the infinite element output in the far-field is always given with respect to some time
shift. Details of this are given in the Theory Manual on infinite elements. The shifted times are
included in the 1inesample output for the analyst to use. These allow for plotting the time
histories against the appropriate time vectors.

The shifted time output is available in the linesample output in a nodal array called FieldTime.
The dimension of the FieldTime array is the same dimension as the acoustic pressure output, since
each node in the linesample output has its own FieldTime array. One FieldTime array is available
for each sample point in the 1inesample output.

The following command in MATLAB will plot the pressure for the first sample point.

FieldTime = nvar09;
pressure = nvar01;
plot(FieldTime(1, :),pressure(l,:))

The linesample points defined in the linesample file can contain points that are both inside and
outside of the acoustic mesh. For points that are inside of the mesh, the FieldTime array for each
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node will be identically equal to the time array. For points outside of the acoustic mesh (i.e. inside
of the infinite element mesh), the FieldTime values will be larger than the corresponding time
values in the Time array, since the acoustic waves will take additional time to reach these far-field
points.

8.1.10. Perfectly Matched Layers

Perfectly Matched Layer (PML) elements enforce acoustic baffle boundary conditions. A detailed
explanation of theory and implementation of our PML formulation is available.'* These elements
serve as an absorbing boundary condition for outgoing acoustic waves, much like infinite
elements. Unlike infinite elements, they are linear elements, and do not exhibit the large matrix
condition numbers and convergence issues that can accompany infinite elements. Table 8-3
summarizes the parameters.

While PML are a separate block of elements in the finite element boundary, in an input file they
are treated like a boundary condition. The boundary section is set up as follows:

BOUNDARY
sideset 1
pml_element
use block 217

END

The user picks a number (or name) that is not already assigned one of the other element blocks.
Here the user chose 217.

BLOCK 217
pml_element
pml_thickness 1
stack_depth 1
source_origin = 0 0 0
ellipsoid_dimensions 15 15 30
loss_function = polynomial
loss_params 0 960 960 O

END

And here, PML elements will be in block 217 of the output mesh.

For PML, a loss function is a definition of the rate of decay of the outgoing wave. While the
choice of the loss function o(d) is discussed in the literature,'%!'!-3 papers in the literature use a
range of formulations and implementations, and it is still unclear what the best choice is for any
given problem. Typically, the loss function starts at a low value (often zero) to minimize
numerical reflections, and increases at an increasing rate to maximize the loss terms near the outer
boundary. One option is the polynomial loss function, that includes the constant, linear, quadratic,
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Table 8-3. — PML Element Parameters.

Parameter Description Options
pml_thickness length of PML extrusion Real
from boundary
stack_depth number of elements through | Integer
PML thickness
source_origin the origin of the ellipsoid 3 real numbers
ellipsoid_dimensions | radial dimensions of ellipsoid | 3 real numbers
loss_function type of function describing singular or
PML decay polynomial
loss_params constants in loss function 4 real numbers

and cubic terms, with four parameters that define the loss function

R
o(&) =cl+c> + 3 + o4
(§) =cr+ea +esg+cas

(8.1.2)
where c1, ¢3, c3, and ¢4 are specified in the input file, £ is the distance along the normal from the
Gauss point to the inner ellipsoid boundary, and ¢ is the total thickness of the PML layer. The loss
function is normalized such that changing the thickness of the PML layer does not change the
maximum value of o. Another option is the singular loss function.!! (equation (8.1.3)), which is

unbounded at the outer boundary.
C1

(&) =- ; (8.1.3)

PML elements can be extruded from either Tet4 or Hex8 meshes. Note that Tet4 is the default; for
PML elements extruded from Hex8 meshes, it is necessary to specify Hex by modifying the
boundary section as follows:

BOUNDARY
sideset 1
pml_element
use block 217
hex

END

8.1.10.1. Limitations

PML is only supported for certain formulations and element types. The implemented PML
formulation only applies in the frequency domain, and will throw a fatal error for frequency or
time domain simulations. Additionally, PML is only supported for Tet4, Wedge6, and Hex8
elements, which limits the exterior of the acoustic domains to those element types.
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8.1.11. Periodic Boundary Conditions

Periodic boundary conditions can be applied in Sierra-SD using begin-periodic block. Built on
the tied data algorithm, periodic boundary conditions are currently supported for structural/solid
surfaces, with the displacement on the side B surface specified relative to the displacement of the
side A surface. The A and B surfaces within a begin-periodic block may not share nodes, but
surfaces across various begin-periodic blocks can share nodes (e.g. standard representative
volume element (RVE) model would have three begin-periodic blocks, with the surfaces in each
block sharing nodes with surfaces in other blocks, at the RVE edges). The surfaces can be curved,
but the user must ensure that they have the same geometry, translated in space. Meshes on the two
surfaces need not match. Matching meshes are however recommended whenever feasible, to
ensure accuracy of the computed stresses on the surfaces. See discussion in Tied Surfaces section
above regarding inaccuracies in stresses at the tied surfaces with mismatched meshes. The
underlying algorithm results in non-homogeneous MPCs from a node-face constraint algorithm.
Naturally, for matching meshes, these MPCs reduce to node-to-node MPCs.

Like a tied data block, each begin-periodic block represents a single pair of opposing sides
connected by periodic boundary conditions, as shown in the example below.

BEGIN-PERIODIC
side A = 12
side B = 18
name "PBC-x-12-18" // used as a descriptor for the output
geometric offset 10.0 2.0 3.0
search tolerance = le-7

Ux = 0.5
Uz = 0.25
END

BEGIN-PERIODIC
side A =1
side B = 6
name "PBC-y-1-6" // used as a descriptor for the output
search tolerance = le-7

Ux = 0.5
Uy = -0.5
END

In defining surfaces, care must be exercised to ensure that the normal vectors of the two surfaces
point towards each other. The keyword “geometric offset” represents the distance from the A
surface to the B surface in x, y and z directions. Similar to the TIED DATA block, the keyword
“search tolerance” represents the normal distance from a node on the B surface, shifted by the
geometric offset, to the face on the A surface. See Figure 10-2 for further details. The keywords
“Ux,” “Uy” and “Uz” represent the displacement of the B surface relative the A surface in x, y and
z directions respectively. The description of all the parameters are shown in Table 8-4.
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8.1.11.1. Usage Guidelines

The user is referred to the verification manual for examples of periodic boundary
conditions(PBC), one with unidirectional PBC and the other with multi-directional PBC, and their
application to simulating periodic volume elements (PVE). Here, we provide some guidelines and
cautionary remarks associated with PBC and PVE.

1. Matching meshes of the pair of sidesets with the PBC are preferred, but not necessary. One
trick for generating matching meshes for symmetric PVEs (with deterministic microstructure) is
to split the PVE using plane(s) of symmetry and meshing one part and mirroring the meshed
volume to get the complementary volume.

2. Non-matching Meshes: When the microstructure is random or lacks symmetry, PBC may need
to be applied to connect non-matching meshes. Such situations may encounter local oscillations
in stresses on the surface, associated with the underlying node-face contact strategy. These
oscillations are expected to decay quickly going into the volume, making the volumetric average
more accurate. Since micromechanics modeling often involves average stresses, the error in
homogenized global material properties is expected not to be significant provided that the
representative volume element (RVE) is large enough (which will also be a requirement from the
standpoint of representing random microstructure).

3. Geometric Offset: Theoretically, geometric offset should not be needed in the
periodic-boundary block. However, whenever the opposite faces have non-matching meshes, there
can be errors in automatic computation of offset, which involves centroid computation of the
sideset that may involve discretization errors. Given this, whenever feasible, it is recommended
that the geometric offset be provided in the input. Note that this comment applies only to
non-matching meshes; automatic computation of geometric offset would not have any errors for
matching meshes.

4. Imposition of Homogenized Strain: The user is referred to the verification manual (problem on
PVE) for details of imposing global strain tensor through multi-directional PVE.
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Table 8-4. — Parameters for Periodic Boundary Conditions.
Parameter type | description

Name String | name of periodic boundary condition block
defaults to periodicBC

side A Integer | sideset A id

side B Integer | sideset B id

Geometric | 3 Reals | x,y,z components of B sideset location relative

Offset to a sideset automatically computed if not

explicitly specified, explicit specification
is recommended for non-matching meshes)

Search Real | search tolerance normal to the face

Tolerance default 1.0e-8

Ux Real | x-displacement of B sideset relative to A sideset
default value is 0.0

Uy Real | y-displacement of B sideset relative to A sideset
default value is 0.0

Uz Real | z-displacement of B sideset relative to A sideset

default value is 0.0

8.2. Exodus Mesh Boundary Condition Input

Several boundary conditions may be set to values specified in the mesh geometry file or input
sources. This is used to hand-off loads an earlier finite element analysis, even a previous
Sierra/SD simulation. The pressure determined in another code, and output to a sideset and can
put input on the sideset, determining the right-hand side in a Sierra/SD analysis.

The Exodus file input data is defined at one or more time slices that do not necessarily correspond
to Sierra/SD time steps. Figure 8-1 summarizes the rules for interpolating the input time slides to
Sierra/SD time steps.

The value of a boundary condition at a time . . .
* ... before any input Exodus time steps is the initial input value.
* ...between two input Exodus time steps is determined by linear interpolation.
e ... after the last input Exodus time step is the last input Exodus time step.

An example of interpolating Exodus data do Sierra/SD time steps is shown in Figure 8-1.
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Figure 8-1. — Example of Interpolation of Exodus Data to Analysis Steps.
8.2.1. SpatialBC Functions

This appears to be a capability that was added for a specific purpose that was mistakenly exposed
to users.

The Spatial boundary condition function is used to set a boundary conditions from the input
Exodus mesh geometry file. It resembles the randomlib function 4.10.8. The difference is that
the randomlib function uses a nodeset associated with the specified sideset. With Spatial
boundary condition, the nodeset is specified directly.

The variable input from the Exodus file is specified with the parameter exo_var, followed by
either scalar or vector, sets the variable input from the Exodus.

In the example the input scalar is acceleration in the Z direction:

BOUNDARY
nodeset NS_top
function from_mesh
accelz =1

END

FUNCTION from_mesh
type = spatialBC
nodeset NS_top
exo_var scalar Acc_Z

END
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Here “Acc_Z” is the exact name of a field on the Exodus nodeset. Exodus field names are
case-insensitive.

Sierra/SD has only a couple regression tests of SpatialBC, and each test uses exactly the same
boundary condition. Each results in a confusing and misleading warning about missing sidesets.
The vector input feature is completely untested.

8.2.2. ExodusRead functions

A ExodusRead function reads in data from either the entire Exodus file, or a nodeset, sideset, or
block that covers an area of interest. If a set is specified in the function block, then data
corresponding to that set is read in from the Exodus file. Otherwise, the variable is read from the
entire mesh as a nodal or element variable (rather than a nodeset or sideset variable). For
backwards compatibility the ReadSurface, ReadNodal, ReadNodalSet, and NodalForce
functions are all treated as an ExodusRead function.

Loads such as pressures or tractions are integrated over the surface while forces are applied
directly to nodes.

This function is used to read in surface velocities or accelerations which are used as a boundary
condition for acoustic analysis. It can also be used for applying time and spatially-dependent
pressure or traction loads on a structure. For this case, the load output variable currently only
outputs element data for values read from a sideset. Nodal values, like those used in randomlib
functions, are output as 0. There is 1 and only 1 test of read surface with a traction load.

As currently implemented, the ExodusRead function operates only by reading data from an
external Exodus data file. The name of the variable to read from the Exodus file must be specified
in the input deck using the exo_var keyword. Also, the variable must be specified to be a scalar
or a vector, using the syntax given in input 8.8. Pressures require a scalar variable, and tractions
require a vector variable. An example for ExodusRead functions is given in input 8.8. A sideset
matching the corresponding Load sideset is required. The interp selected the temporal
interpolation algorithm as was described for the randomlib function. The default option, linear
interpolation, is the only option available.

In input 8.8, the keyword exo_var specifies the type of data, such as vector or scalar, and the
name of that variable in the Exodus file. In the case of a vector, the name of the variable as given
in the input deck should be the base name of the variable, without the suffix of ‘x’, ‘y’, or ‘z’. For
example, for the data given in input 8.8, a vector nodal variable with a base name of name
‘traction_load’ should be available in the Exodus file. Thus, the data in the Exodus file would
have names traction_loadX, traction_loadY, and traction_loadZ. In the case of scalar
data, the base name given (i.e. traction_load in input 8.8), should match exactly the name of

the nodal variable in the Exodus file.
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LOADS
sideset 1
traction 1 1 1
function 55
END
FUNCTION 55
type=ExodusRead
interp=linear
exo_var vector traction_load
END
OUTPUTS
velocity
END

Input 8.8. Example ExodusRead Traction Specification

LOADS
block 1
point_volume_accel = -1.0
function = 77
END
FUNCTION 77
type=ExodusRead
exo_var scalar dd_vol
END

Input 8.9. Example ExodusRead Point_Volume_Accel Specification

ExodusRead functions ignore distribution factors when used to apply loads. See section 8.3.19.

In addition to reading data from the geometry file, ExodusRead may also be used to read pressure
loads from a separate source exodus file using the copy variable interface of a transfer section
(section 4.3.2 and input 4.4). Note that a pressure boundary condition (or load) may only be
applied on a side set.

Furthermore, the load data may also be interpolated in time to match the Sierra/SD time step. A
linear interpolation is performed by default for the time step. If the nearest time step match is
desired, set interpolation = none in the function definition. If there is only one time step on
the source mesh, then that value is used for all time in the destination Sierra/SD run.
Extrapolation is not performed if the target time is not within the time interval of the source mesh.
Instead, the closest valid time on the source mesh is used.
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8.2.21. Input an Acoustic Point Source from a Volume

There are 3 tests that exercise the capability to input a scalar acceleration from the whole mesh
(body) or an element block. In acoustic point source analysis volume velocities may be input from
an Exodus file using a ExodusRead function. In theory, the Exodus file contains the first or
second derivatives of the volume velocity at the corresponding times. The name of the field input
from the Exodus file is specified with the exo_var keyword. Table 8-5 lists the run time
parameters for exodusread functions. An example is provided in input 8.10. The keyword
exo_var must be followed by two keywords, specifying first whether the data is a scalar or a
vector, and second specifying the name of the variable on the Exodus database. Only scalar
variables are supported for point volumes. Thus, Table 8-5 specifies that a scalar variable with the
name volume_acceleration should be available on the Exodus database. The interp parameter
is the same as was described for the randomlib functions in Section 4.10.8. It specifies the type
of temporal interpolation.

ExodusRead determines what, if anything, to read by accepting the first match found. One after
another, it searches for 3 things, and errors out if the last search come up empty. The first search is
for a nodal variable with the specified name (i.e.,volume_acceleration in the example above).
Next it looks for an element variable with the same name. Finally, it searches for a face variable.

Table 8-5. — ExodusRead function parameters.

Keyword | Values Description
type ExodusRead required to specify function
interp temporal interpolation scheme

none=nearest
linear=linear interpolation
exo_var | scalarlvector <name> | Exodus variable type and name

FUNCTION 55

type=ExodusRead

interp=none

exo_var scalar volume_acceleration
END

Input 8.10. Example ExodusRead Function Specification

8.2.3. Input an Acoustic Point Source from a Node Set
Input volume velocities for acoustic point source analysis from the input Exodus mesh geometry

file with the ExodusRead function. Velocities are input at each time specified in the Exodus file.
Spatially dependent velocities are input at each nodeset node.
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If a nodeset is used in the exodusread function this nodeset must match the definition in the load
section.

FUNCTION 55

type=ExodusRead

interp=none

nodeset=NS_top

exo_var scalar volume_acceleration
END

Input 8.11. Example ExodusRead Function Specification

8.2.4. In-Core Transfer Functions

A limited capability exists to perform in core transfer of variables between physics codes via MPI
messages rather than Exodus files. In this use case both codes are run simultaneously with the
results from the load producing code constantly being fed to the load using code. The main use
case for this capability is to hand-off boundary conditions from one code to another without the
need for huge intermediate Exodus files with a large numbers of steps.

8.24.1. Transfer from Fuego

One field that may be transferred in core is the divergence of Lighthill’s tensor from Fuego to
Sierra/SD. This is a nodal value that can be used as an acoustics load term. An example of the
relevant input for this case is:

PARAMETERS
mpmd_transfer_type = fuego
END
LOADS
nodeset = 1000
Lighthill = 1.0 #Sets load type and scale factor
function = from_fuego
END
FUNCTION from_fuego
type transfer
END

An example of the job execution syntax for this case is:

$ mpirun -n 1 fuego -i Fuego.i : -n 1 salinas -i Salinas.inp
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8.2.4.2. Transfer from SPARC

Another field that may be transferred in core is the traction load from SPARC to Sierra/SD. This
is a face-based term that can be used for structural loads. An example of the relevant input for this
case is:

PARAMETERS
mpmd_transfer_type = SPARC
mpmd_transfer_sidesets = 5

END

LOADS
sideset 5
traction = 1.0 1.0 1.0 #Sets load type and scale factors
function = SPARC

END

FUNCTION SPARC
type transfer

END

An example of the job execution syntax for this case is:

$ mpirun -n 1 sparc -i SPARC.i -c¢ ® : -n 1 salinas -i Salinas.inp

8.3. Specific Load Types

The input deck syntax for loads is presented in the General Commands section 4.5
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Section Keyword Parameters

body -
Region n.o deset z:ziijname
(defines application area) ;lliii{et z d/ZZZE
node_list_file file name
force vall val2 val3
moment vall val2 val3
Load Type gravity vall val2 val3
(defines application method) pressure value

point_volume_vel | value
point_volume_accel | value

acoustic_vel value
acoustic_accel value
Lighthill value
surface_charge value
traction vall val2 val3

thermal load -
energy_load -
optional specifications

Coordinate Frame

coordinate id/name
(for vector loads only)
Scale Factor Multiplier scale vall
Function (Required for function id
transient analysis)
follower follower yes/no

Table 8-6. — Load Specification Keywords.

8.3.1. Pressure

The pressure load type may only be applied to a sideset. Total forces are defined by integrating
the pressure load over the faces. Pressure forces are always in the direction of the face normal.
Positive pressures values act in a compressive sense on the surface.

By default, pressure loads are not follower loads, i.e. pressures are applied based on the area and
normal of the undeformed elements for the entire simulation. The follower keyword may be
applied to recalculate the area and normal of the faces each time step. See section 8.3.2 for
follower stiffness specification.

The loads for every 3-D and 2-D element is calculated consistently when a pressure load is
applied. For more details on the implementation, see the programmer’s notes. It is important that
consistent loading be used. This is especially true for shell elements where the consistent loading
is required to properly apply rotations.
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8.3.2. Follower Stiffness

The follower stiffness that corresponding to an applied pressure load may be included. A follower
pressure load applied to a structure will follow the structure during deformation, always remaining
normal to the surface where they are applied. As such, the applied force due to a pressure load
depends on the deformed state, and this induces a follower stiffness matrix that contributes to the
overall stiffness matrix of the structure.

The boundary where the pressure is applied is specified with a sideset. Also, the magnitude of the
applied pressure field must be specified, as shown in the example below. The follower stiffness
matrix scales linearly with the magnitude of the applied pressure.

LOADS
sideset=1
pressure = 10.0
follower=yes
END

In the above example, sideset 1 is used to denote the surface where the pressure is applied. The
parameter "pressure" specifies the magnitude of the applied pressure field.

Similar to other load-based stiffness modifications such as gyroscopic loads the same follower
stiffness contribution will be used for all solution cases. The first load that defines a follower
stiffness will be used for follower stiffness in all cases. Any subsequent follower loads will be
ignored for left-hand side contributions.

8.3.3. Traction

The traction load type may only be applied to a sideset. Total force are defined by integrating the
traction load over the face. Traction loads can be in an arbitrary direction with respect to the face.
By default, tractions are applied based on the global XYZ coordinate frame.

If the analyst provides a coordinate frame with the traction definition, then that frame is projected
onto the surface of each element. Figure 8-2 illustrates that projection. Note that when a
coordinate system is used, there can be a mesh dependence on which direction the forces are
applied. Note that the third coordinate of the traction will always be applied along the surface
normal, and that the third component of the vector will always correspond to the surface normal
(and hence will be applied as a pressure).
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Consider a user defined coordinate frame, Cyser defined by the basis vectors,
(X,Y,2)

A surface normal, n, is defined by the element normal. The user defined coordinate
frame is projected onto the surface as follows.
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This transformation is singular when Y Xn is zero. Near that location, the transformation
is modified.
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When normalized, (X’,Y’, Z’) form the basis for a coordinate frame, Cp. on the
surface of the element in which to apply the tractions.

Note: This transformation is dependent on the direction of the element normal, . If VA
is in the opposite direction of n, the Y direction will be preserved, but the X’ direction
will be the opposite of X. This preserves the right-hand rule.

Figure 8-2. — Coordinate Frame Projection for Tractions

8.3.4. Acoustic Velocity and Acceleration

The acoustic_vel and acoustic_accel boundary conditions can only be applied to a sideset.
Acoustic boundary conditions may only be used with acoustic elements and materials.

The acoustic_vel and acoustic_accel keywords specify the fluid velocity and fluid acceleration in
the normal direction of the element faces in the sideset, respectively. Note that these are the
counterparts to the pressure load for structures in the sense that they are Neumann boundary
conditions.

We note that the acoustic_vel and acoustic_accel approaches should yield the same acoustic
response, provided that the acoustic_vel time function is precisely the time integral of the
acoustic_accel function. This time integration must include the constant of integration. If the two
time functions for acoustic_vel and acoustic_accel are complementary in this way, the acoustic
pressure output from these approaches will be the same up to first order. They are not exactly the
same since the time derivative of velocity potential is needed to generate the acoustic pressure for
output, and that time derivative is only first-order accurate.

An example of the acoustic_vel keyword is given below.

LOADS
sideset 1
acoustic_vel = 1.0
function = velocity_function
END

In this case, sideset 1 is given a prescribed normal velocity of amplitude 1, with a time
dependence given by function velocity_function.

Currently, a given load case cannot contain both an acoustic_vel and an acoustic_accel input.
Only one or the other can be specified in a given load case, though for a multicase solution the
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acoustic_vel and acoustic_accel inputs could be present in separate load cases. For coupled
structural acoustics, only the acoustic_vel keyword may be used. For analysis involving only
acoustic elements, either keyword can be used.

The sign conventions of the acoustic_vel, acoustic_accel keywords are important. For the
acoustic_vel and acoustic_accel cases, the equations of motion are given by,

1
;ﬁ - Ap =- /qu(a -n)dI’ (8.3.1)

or, in discrete form,
Mp+Kp=f (8.3.2)

where p is the density, g is the surface shape function, a is the acceleration vector on the surface,
n is the normal to the surface, and I" is the portion of the surface where the loading is defined. M,
K, and f are the mass, stiffness, and discrete force vectors. We denote a - n = a, as the normal
component of acceleration. We also note that this force has a negative sign in front of the integral,
which comes from the variational formulation. This implies an inverse relationship between
surface acceleration and acoustic pressure. Thus, if the acceleration is oriented in the same
direction as the normal, then a, will be positive, and thus the total force vector will be negative.
Intuitively, this makes sense, since if the acceleration is in the same direction as the surface
normal, mass will be ejected from the acoustic space, causing a decrease in pressure. Conversely,
if the acceleration is oriented in the opposite direction as the surface normal, then a,, will be
negative. This will cause the total force vector to be positive, resulting in a positive pressure.
These makes sense, since in this case mass will be added to the acoustic space, causing an
increase in pressure.

8.3.5. Acoustic Point Volume

point_volume_vel and point_volume_accel may only be applied to acoustic elements. In all
cases, a time function is required that defines either the time or frequency dependence of the
loads.

The point_volume_vel and point_volume_accel keywords prescribe an acoustic point source on
a nodeset. This force is the product of the fluid density with the first and second derivatives,
respectively, of volume of the source. The function for the point source contains the time history
of the first (for point_volume_vel) and second (for point_volume_accel) time derivative of
volume.

Since the code scales by density in the internal calculations, there is no need to multiply the time
history of volume by density to get the acoustic force. The units of the input time functions for
point_volume_vel and point_volume_accel are volume per unit time and volume per unit time
squared, respectively. See the theory notes on structural acoustics for a more detailed
discussion.

Currently, the point acoustic source is only implemented for the time domain (transient)
calculations.
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The sign conventions of point_volume_vel and point_volume_accel keywords are important.
For the point_volume_vel and point_volume_accel boundary conditions, the equations of
motion are given by

I 9’V
Zp —-Ap = pﬁé(x - X0) (8.3.3)
or, in discrete form,
Mp+Kp=f (8.3.4)

where %Z—I‘Z/ is the second derivative of the volume change with respect to time, and 6 (x — xq) is the
Dirac delta function that makes the term zero everywhere except where x = xo. We note that V' is
the volume of fluid added to the surrounding acoustic space, not the volume of the point source
per se. Thus, the sign of the acoustic pressure will be related to the sign of

o’V
o =V
A positive V;; would result in a positive acoustic pressure, implying that fluid mass is added to the

surrounding acoustic space. Conversely, if V, is negative, mass will be subtracted from the
acoustic space, and thus a negative acoustic pressure will result.

The previous example involved spatially constant functions of time. Acoustic boundary conditions
with spatially-varying functions of time are supported through the Exodus Read function as
described in section 8.2.2 respectively.

LOADS
nodeset 1
point_volume_accel = 1.0
function = accelFunc

END

FUNCTION accelFunc

type LINEAR

name "volume_acceleration"

include inc/volume_acceleration.inp
END

Input 8.12. Example Input for Point Acoustic Load. In this case, nodeset 1 would consist of a
single node, and the file ''volume_acceleration.inp'' would contain the second time derivative
of volume velocity of the source, with units of volume per time squared. Note that the
amplitude of the point source is taken to be 1.0, and that it does not include the density
multiplier.

8.3.6. Lighthill

The Lighthill load may only be applied to acoustic elements. Keyword Lighthill prescribes the
divergence of the Lighthill tensor at nodes. The double divergence of the Lighthill tensor is a
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source term for noise generation in the pressure formulation of acoustics. And the divergence of
the Lighthill tensor is a time varying vector quantity can be applied as a nodeset load using the
Exodus Read function. A Lighthill load is only implemented for the transient simulations. It is
only valid for the pressure formulation of acoustics and can only be used with acoustic_accel
loading. The outputs keyword acousticlighthill outputs the acoustic Lighthill source term.

OUTPUTS
acousticlighthill
END

Input 8.13. Example of Lighthill output.

8.3.7. Thermal

The thermal_load option is used in conjunction with a spatial temperature specification for the
structure. The temperature distribution can either be specified via the input Exodus file, or on a
block-by-block basis, as described below. Based on the temperature distribution, a thermal load is
computed and then applied to the structure.

If the solution method is selected to be statics, the thermal_load option will provide the thermal
load necessary to solve the thermal expansion problem. If the solution method is transient
dynamics, the same thermal load will be applied as in the statics case, but modulated by the
function that is specified below the thermal_load keyword. This corresponds to a thermal shock
analysis. Thus, for a transient dynamics problem that includes damping, and with a function that
is equal to 1.0 for all time, the transient analysis would eventually converge to the same solution as
obtained in the statics analysis, which would be the solution from a classical thermal expansion
analysis. On the other hand, for a transient dynamics problem with a thermal_load in which the
associated time function is not equal to 1.0, the thermal load will be scaled according to that time
function. For example, in the case of a mesh that has block-by-block values of temperature
T_current specified in the input deck, and a thermal load function that ramps up from zero to one,
the actual thermal load applied to the structure will be multiplied by that time function. In this
case, the full thermal load will only be seen after the ramp in the time function is completed.

With a thermal load, a statics simulation has advantages over a transient simulation. In the
transient simulation, a dynamic preload is computed that will oscillate about the solution of the
thermally loads statics problem. If damping is used, this dynamic preload will converge to what
would be obtained from using a statics analysis. However, in some cases such as when rigid body
modes are present, a transient analysis may be the only option for applying the preload.

The temperature field can either be read from an Exodus file, which would typically be the result
of a thermal analysis, or it can be specified on a block-by-block basis in the input deck. For
temperature fields that change from element to element, the temperatures must be read in from the
Exodus input file. For uniform temperature distributions, it is more efficient to specify them
block-by-block in the input deck. If temperature is specified in multiple places, the order of
precedence is block temperature, nodal temperature, centroid temperature, and finally Gauss point
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temperature. Note, nodal and Gauss point temperatures are later interpolated to element centroid
temperatures that are used for calculation.

Currently, the thermal_load only affects the computation for solid ele-
ments and hex shells. For most element types, a warning will be issued,
but for 1D element types that do not have a material section, they will
be silently ignored.

Output stress and strain

Sometimes it is of interest to output the stress after a thermal load analysis. In this case, the
stresses that are output to the Exodus file will be the mechanical stress, rather than the combined

thermal-mechanical stress.

There is a known bug in the way that thermal stresses are computed,
particularly when temperature comes from the Exodus file. If thermal
stresses are needed, then extreme care should be taken.

Mechanical stress is the same as elastic stress. Strain, elastic_strain, and thermal_strain
output are all available.

Input deck syntax

If temperatures are specified using the input deck, then each block must be given its own
temperature. In the example below, there are 2 blocks, and each is given a different temperature.

BLOCK 1
material 1
T_current 100

END

BLOCK 25
material 2
T_current 200

END

Note that if T, ren; 18 specified for some blocks and not for others, the code issues an error.

For thermal statics or thermal transient analysis, each material block must be given two additional
parameters, the reference temperature, T;.f = Tref, and the coefficient of thermal expansion, a; =
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alphat. When temperatures are specified in the block or read in from the Exodus file, the
material properties can also be specified as temperature-dependent. For a detailed description and
examples of material thermal property and temperature-dependent property definitions, refer to
section 6.5.6.

The default Exodus file labels for temperatures are shown in the table below. This is the default
variable format for Sierra/SD. However, it is also possible to read in element variables and
variables of different names. Using the keyword thermal_exo_var in the parameters section
(4.4) allows specifying the name of the temperature variable in the Exodus file. A nodal variable
name is expected. Sierra/SD will fall back to an element variable if no nodal variable of the
specified name is found. If neither an element nor nodal variable of the given name is found, a
fatal error occurs.

The thermal_load command cannot be used with energy_exo_var.
Consult section 8.3.8 for guidance on using energy_exo_var.

Name Definition

TEMP the nodal temperature

The thermal_load case can be used in a multicase solution method. In that case, the stresses and
internal forces from the thermal analysis are used as initial conditions for the next case. For
example, for a fixed-fixed cantilever beam that is subjected to a uniform temperature increase, the
beam will undergo a stretch due to the thermal static analysis, and will have residual stresses. If
this beam were then subjected to an eigen analysis in a subsequent case, the modes would be
modified due to the geometric stress stiffening. Conversely, for a fixed-free beam, there would be
no residual stresses and thus no effect on subsequent cases. Note that the displacements from
thermal analysis are not carried over to subsequent cases. Thus, to get the total displacement from
a thermal analysis followed by transient, one would need to add the displacement results from the
two cases separately.

When temperature is read from the Exodus input mesh using either the default temperature file
name or the thermal_exo_var keyword a constant temperature can be read from a single time step
with the keyword thermal_time_step in the parameters block. Alternatively a time variant
temperature can be updated periodically from the mesh file with use of the keyword
nUpdateTemperature in the solution case input. The nUpdateTemperature keyword defines
how often (i.e., every n steps) temperature should be updated. In a transient simulation, updating
the temperature from the Exodus file can be expensive; thus, it may be advantageous to update
only at a larger interval, if temperature is evolving slowly. When reading transient temperature
data from the input mesh the closest Exodus time step at or below the current time step is used.

Unlike several other Exodus input capabilities in Sierra/SD, temper-
ature input does not currently support interpolation between Exodus
time steps.
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When a new temperature value is read, that temperature is used immediately to update the applied
thermal strain. In the case of temperature-dependent material properties, the
nUpdateDynamicMatrices keyword in the solution case can also be used to update material
properties (see section 6.5.6).

The thermal_time_step keyword must be specified in the parameters block, to specify which
time step of the previous thermal analysis should be used to extract temperature data. The
following gives an example.

PARAMETERS
thermal_time_step 10
thermal _exo_var "TEMP"

END

The Exodus files can contain multiple time steps of temperature data. The user can select which
time step is to be used for defining temperature data in Sierra/SD, using the keyword
thermal_time_step. In this example the tenth time step will be read in from the Exodus file. The
default value for the thermal_time_step is 1.

The nUpdateTemperature keyword is placed in the solution case to specify how often to update
the temperature that is read in.

SOLUTION
transient
nUpdateTemperature 5
END

Here a new temperature is read in every 5 time step. If the transient solution specifies the last
time step from the thermal analysis, then the final temperature will be used.

The next example presents input for thermal statics analysis.

SOLUTION
statics
END

PARAMETERS
thermal_time_step 10
END

LOADS
body
thermal_load
END
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8.3.8. Energy Deposition

Input from energy deposition are similar to thermal loads (section 8.3.7). These loads are
specified when energy is deposited directly in the structure as with an X-ray deposition. For
consistency with other applications, the energy is defined as specific energy, i.e. the energy per
unit mass. Such direct energy deposition is converted to a change in temperature after which
thermal strains and loads are computed exactly as for the thermal_load approach.

Energy is converted to a change in temperature using the specific heat of the material (see
section 6.5.8).
E = C,AT.

E is the specific energy of the body, C, is the specific heat capacity for constant volume, and AT is
the change in temperature.

The energy load is specified using the keyword energy_load. All other parameters are identical to
thermal_load. Note that by the nature of these loads there is often an exponential decay in energy
as a function of depth. For this reason, it is advantageous to specify the loads at Gauss points,
particularly when using higher order elements, even though loads will be interpolated to the
element centroids. Energy loads can also be specified at nodes or centroids. Nodal energy loads
should be avoided because it is not clear which materials specific heat to use when converting an
energy load to a temperature change for nodes on the interface between two materials. For this
case Sierra/SD will use the specific heat of the material that is processed last (which is not
typically what is required by the analyst). Sierra/SD generates a fatal error if the specific heat is
not specified for a material with an energy load.

Energy may also be used as an input for thermally dependent material properties. To ensure that

the energies are converted to temperature before determining the material properties, identify the
variable name from the Exodus file with the energy_exo_var and energy_time_step keywords,

rather than the thermal_exo_var and thermal_time_step keyword.

Using thermal_exo_var with energy_load generates a fatal error. Con-
sult section 8.3.7 for guidance on using thermal_exo_var.

8.3.9. Force

Point force loads may be defined with the force load. Note, the load is applied at each and every
node in the nodeset, sideset, block, or other application region. Thus, force loads are typically
applied as point loads on a conmass or other point entity. Force loads on mesh constructs that
contain many nodes such as sidesets is allowed but discouraged. To apply a known force
distributed across a sideset or other large application area a RBE3 should typically be employed.
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8.3.10. Moment

Point moment loads may be defined with the moment load. Note, the load is applied at each and
every node in the nodeset, sideset, block, or other application region. Thus, moment loads are
typically applied as point loads on a conmass or other point entity. Moment loads on mesh
constructs that contain many nodes such as sidesets is allowed but discouraged. Additionally, the
point moment loads are only meaningful on nodes that have an underlying rotational degree of
freedom, such as a conmass with inertia or a node of a shell or beam. If a moment is applied to a
node connected only to solid elements without underlying rotational degrees of freedom that load
will have no effect or will generate an error. To apply a known net moment to a sideset or other
large application area a RBE3 should typically be employed.

8.3.11. Pressure Z

The pressure_z exists to simplify the common case of depth-dependent pressure loading. An
example is shown in input 8.14. This loading is applied only in the basic coordinate frame, and
the analyst must specify that the pressure is either below or above an offset to the coordinate axis.
The pressure is always proportional to the depth. In the example of input 8.14, the pressure is zero
atx =5, 10 at x = 4, 20 at x = 3. At depths above the waterline, the pressure is zero. Any of
the basic coordinate directions (x, y, or z) may be used as a reference.

// depth dependent pressure for a waterline at x=5.

LOADS
sideset 2
pressure_z 10.0 below x = 5
sideset 20 // air
pressure_z le-4 above x = 5

END

Input 8.14. Depth Dependent Pressure Load Example. This load section applies a pressure
to sideset 2 which is proportional to the distance below x = 5.

8.3.12. Random Pressure

A hypersonic vehicle is a prime example of a random loading. The correlations of a turbulent
pressure boundary condition are low in time and complicated in space.

This type of random pressure loading is developed for use of direct transient loading typical of a
turbulence load on a hypersonic vehicle. Throughout the development, we maintain a concept of
flow direction, and correlation distances that may be different in flow and transverse directions.
By computing the random pressure fields as part of the time evolution, we avoid the need to
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compute these complex quantities before the run. A linear solve at each step is required to
compute the loads.

A correlation matrix is the inverse Fourier transform of the spectral density matrix. It is most
general type of input. Load option RandomPressure provides a simplified means of specification
of the loading. The material in this section is consistent with and builds on section 4.10.7.

Subsection Random Pressure Loading section Loads and Materials of the Theory Manual®
describes the approximations involved in the implementation. These approximations are
summarized in Figure 8-3.

The simplified correlation matrix is not general, but may be useful
for a large class of problems. It has the following limitations.

1. The system must be time stationary.

2. The correlation function must be separable (a product of tem-
poral and spatial correlations).

3. The same PSD shape must apply throughout the entire hyper-
sonic vehicle body. The PSD may be scaled as a function of z,
but there may be no change in the shape.

4. The PSD must have a cutoff. The time integration must occur
above this cutoff frequency.

5. By default, the temporal function is represented by a sinc
function. This may be replaced by a user defined temporal
function.

Figure 8-3. — RandomPressure Loading Approximations.

The random loading is a component of the loads section. An example is shown here, and
described in Table 8-7.

LOADS
sideset 22
RandomPressure
correlation_length_z
correlation_length_r

2.0 // required
0.67 // required

cutoff_freq = 16.8 // required
correlation_function = 20 // defaults to sin(x)/x
PSD_scale_function = 10 // defaults to Sigma=1
NTimes = 5 // defaults to 5
coordinate 1 // defaults to basic frame

MinimumNodalSpacing = 1.0e-5 // defaults to 1.0e-8
NumberOfInitializationSteps = 100 // defaults to 5
END
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Parameter Type | Default | Comment
correlation_length_z real | required | spatial decay in flow direction
correlation_length_r real | required | spatial decay orthogonal to the flow
cutoft_freq real | required | cutoff frequency
correlation_function string %
PSD_scale function string | X(z) =1
NTimes int 5
coordinate string 0 defaults to basic frame
MinimumNodalSpacing real l.e — 8 | smallest allowable inter-node spacing
Random_Seed int ignore | random number seed
NumberOflnitializationSteps | int 5 iterations to improve initial

spatial distribution

Table 8-7. — Random Pressure Inputs.

Details for the parameters to the correlation matrix input are described below.

correlation_length_z Spatial decay in the flow direction, L. The flow direction is the Z axis of
the coordinate frame. The correlation function C(AZ) is proportional to exp (-AZ/L,),
where AZ is the distance between two points in the flow direction.

Correlation_Length_R Correlation_length_r is the spatial correlation distance in the radial or
transverse direction. The correlation function is proportional to exp (—v/(Ax2 + Ay2)/L,).

Cutoff_freq The cutoff frequency, F, is important to the operation of the RandomPressure
algorithm. No energy may be found in the PSD above this frequency. The time integrator
may not sample the system lower than this frequency, i.e. dt < 1/F,.

NTimes The matrix is proportional to the number of time values assembled, and affects the
interpolation as described in the Theory Manual section Loads and Materials subsection
Alternative Derivation Based on Lagrange’s Equations subsubsection Separation of spatial
and temporal components

Typically, few terms are required. Note that there are 2 * NTimes + 1 terms in the sum, and
the dimension of the correlation matrix grows commensurately. The number may depend on
the interpolation time step and on the shape of the PSD. Default=5 (which produces 11
terms in the sum).

CORRELATION_FUNCTION The temporal time function, whose argument is (#; — 7). By
default this function is sin(x)/x, with x = 7F,(t; — ;). It must be an even function of the
argument.

PSD_SCALE_FUNCTION provides a means of scaling the power spectral density as a function
of flow direction. This type of input requires that the PSD have the same shape at all
locations, but the value may be scaled. Scaling the PSD effectively scales the standard
deviation of the pressure. Default is no scaling. The function must be positive for all values
of the coordinates.
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coordinate is an optional coordinate frame that is used to define the flow direction. The Z
component of that frame is the direction of flow. By default, the basic frame is used.

MinimumNodalSpacing Some models can contain co-located nodes on the surface where the
random pressures are to be applied. This can cause the correlation matrix to be singular,
since the repeated nodes would result in two identical rows in the correlation matrix. The
MinimumNodalSpacing keyword allows the analyst to specify the smallest inter-node
spacing (absolute) that is allowed on the surface where the random pressure is being applied.
Any nodes that are closer than that tolerance will be treated as identical in the correlation
matrix manipulations. The Exodus file and corresponding nodal output will not be
changed. This will avoid a singular correlation matrix, but does not alter the mesh database.

NumberOfinitializationSteps Initially the pressure spatial distribution may be too correlated.
Mesh resolution exacerbates this issue. Increasing the NumberOfInitializationSteps
mitigates the issue. Each initialization step requires about as much CPU time as an implicit
time step. Default=5 (values below 5 are discouraged).

OMEGA_C Deprecated. Use Cutoff_freq.
ALPHA_Z Deprecated. o, = 1/L..
BETA_T Deprecated. 8; = 1/Lg.

The computation of the random pressure loads depends on matrix factorizations (subsection
Random Pressure Loading section Loads and Materials of the Theory Manual*®).

However, the Cholesky matrix factorizations are defined only if the correlation matrix is
(numerically) non-singular. At this time, the code stops with an error if this occurs. A common
cause of this error is using too many time steps NTimes with too small a time step. For this
reason, the condition number of the temporal correlation matrix is always evaluated, and, if it is
singular, the cutoff frequency is decreased. In this case the warning message

Singular temporal correlation matrix
Increasing Delta_T to

will be printed in the result file for processor 0. Another source of ill conditioning is the use of
large correlation lengths correlation_length_z or correlation_length_r, or a fine mesh.

For this reason inverse condition number estimates are printed in the result files. An inverse
condition number is the relative distance to a singular matrix, and is denoted Rcond, for reverse
condition number. In double precision, a Rcond below 1072 indicates that the factorization may
fail. The precise statements in the results files are

TemporalCorrelationMatrixRcond =
Estimated SpatialCorrelationMatrixRcond = ...
Estimated CorrelationMatrixRcond = ...
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8.3.13. Surface Charge

For electro-mechanical coupled materials such as dielectric or piezoelectric materials, surface
charges may be applied to a specified sideset using the keyword surface_charge in the loads
block. The surface charge is mechanically analogous to a pressure, where surface charge
represents a charge per unit area and is applied only to the voltage degrees of freedom. Surface
charges can be applied for direct frequency response and transient solution methods. An example
is provided below.

Loads
sideset 1
surface_charge = 1 // scalar multiplying the specified function
function 1 // surface_charge function

END

Input 8.15. Surface Charge Example

8.3.14. Gravity

The gravity load is used to apply a mass proportional load to the structure. A typical use is for the
gravitational force acting on a structure. The gravity load can also be used to apply the pseudo
force on a body in an accelerating frame. Additionally, gravity can be applied in a spatially
varying way via either a ExodusRead function or analytic functions as a general mass
proportional body load.

Gravity loads are only allowed in whole mesh (body) regions.

8.3.15. Angular Velocity and Angular Acceleration

Often when analyzing rotating structures, it is convenient to perform the analysis in the rotating
frame where the structure is not undergoing large displacement. Analysis in that frame introduces
“fictional” or “pseudo” forces with centrifugal, ! Coriolis and Euler contributions. These are
termed “forces”, but the contributions are introduced from operating in a non-inertial coordinate
frame as described in the Theory Manual section Loads and Materials subsection Analysis of
Rotating Structures.

The associated keywords are found in Table 8-8.

I'There is often confusion about the description of the “centrifugal” or “centripetal” term. The centripetal force is a
real force applied in the inertial coordinate frame which causes an object to travel in a circular path. The centrifugal
force is the pseudo-force that appears from inertial terms in a rotating coordinate frame.
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Option Parameters

angular_velocity vell vel2 vel3
angular_acceleration accell accel2 accel3
coordinate coordinate name

Table 8-8. — Rotating Frame Parameters.

The Galerkin framework used for finite elements introduces matrices associated with these pseudo
forces. In addition to the standard mass and stiffness matrices that arise in linear structural
dynamics, force-based matrices are also common. These include follower stiffness matrices from
applied pressures, and Coriolis/centrifugal matrices in rotating structures.

Input 8.16 provides the corresponding Sierra/SD input for a rotational load applied to a body. The
centrifugal stiffness and Coriolis coupling matrices are both derived from the rotational velocity
of the structure, which uses the keyword angular_velocity. The vector angular velocity
components are specified after the angular_velocity keyword.

An angular acceleration, Q, may also occur, as when an aircraft carrying a weapon makes a rapid
course correction. This angular acceleration results in a pseudo-force, called the Euler force, that
is tangent to the angular acceleration vector. Application of angular acceleration is restricted to
linear and nonlinear statics analysis in Sierra/SD.

For static loads analysis angular acceleration and angular velocity are applied independently. A
similar static loads analysis of a rocket provides envelope survivability information during launch.

LOADS
body
angular_velocity = 0.0 2.0 0.0
coordinate =1
body
angular_acceleration = 0.0 0.0 3.0
coordinate = 3
END

Input 8.16. Application of centrifugal and Euler forces. The loads above apply an angular
acceleration of 3 radians/s” in the Z-direction of coordinate frame 3, and an angular
velocity of 2 radians/s in the Y-direction of coordinate frame 1. Angular acceleration is
applicable only in statics.

Left-hand Side contribution Angular velocity introduces both left-hand side matrices and
right-hand side force vectors. The algebraic expression for dynamics can be written as follows.

Mii+Gi+ (K + Ky + Ko+ Ko )u = fo + fo. (8.3.5)
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Symbol Description

K, angular acceleration Symbol \ Description

K, geometric stiffness matrix fa angular acceleration
G Coriolis matrix fe centrifugal force
K. centrifugal softening matrix

Table 8-9. — Notation for stiffness and damping matrices (left) and forces (right).

Except for K, every matrix term is constant, depending only on the geometry the elements, and
the angular velocity or acceleration respectively. Coriolis and centrifugal terms are independent of
displacement, u.

For readers missing the Euler stiffness matrices, here the term acceleration stiffness matrix is used
instead.

For linear analysis (both linear statics and linear transient dynamics), the geometric stiffness terms
is zero. However, since this term depends on stress, which is proportional to displacement, the
geometric stiffening is typically proportional to the square of the angular velocity. As the
geometric stiffening is typically of the same magnitude as centrifugal softening (also proportional
to ), confusion can arise.

Even if the input deck selects multiple simulations, the matrices are typically generated only once;
exceptions occur for nonlinear solutions and for the tangent method. It is recommended that
linear solution cases include an update to the tangent stiffness matrix as part of a Multicase
solution. An example is shown in input 8.17.

SOLUTION

case sl
statics
load=1

case up
tangent

case s2
statics
load=1

END

Input 8.17. Example using Tangent Update

Limitations There are some limitations for the rotational frames’ implementation.

1. Statics analyses are limited to models with essential boundary conditions that eliminate all
rigid body modes.

2. Statics appropriately applies the centrifugal and Euler forces. The left-hand side matrix for
geometric stiffness is only properly updated if the tangent step is applied.
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3. In a single case solution, eigenvalues will include Coriolis, centrifugal and acceleration
terms if angular velocity or acceleration is specified in the loads section. This is the case
even though there is no true load for QEVP.

4. Currently, QEVP solutions can be computed for rotating structures only if there are no rigid
body modes in the structure. An example is shown in input 8.18. In this case, a static
preload with a rotational load is computed, followed by a tangent update, and then followed
by a QEVP analysis. This type of analysis would be useful for examining the effect of
rotational loading on the modes of a structure. However, this will only work correctly if
there are no rigid body modes in the structure.

5. One rotational frame is applied to the whole model. For example, if a helicopter is modeled
in a fixed frame, then the associated rotor could only be modeled in this fixed frame.

6. Rotational loads applied in the rotating frame are linear loads, and do not require a follower
keyword.

7. For transient dynamics, the time varying function must be 1.0.

8. Superelements do not retain full accuracy. It is recommended that interface dofs for
superelements retain either 3 or 6 degrees of freedom.

9. The left hand side terms applies to all cases in a multicase solution. If more than one
angular velocity or more than one angular acceleration load is defined only the first load will
be used for left hand side contributions.

SOLUTION
case ’statics’
statics
load=1
case ’up’
tangent
case ’'qgevp’
QEVP
method=projection_eigen
nmodes=100
load=1
END

Input 8.18. Example of using QEVP for Tangent Update

A time varying function with magnitude 1.0 for the full time span
should be used for time varying solution cases. Additional work would
be required to apply general loading patterns.
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Update the tangent matrix to enhance numerical accuracy, at the expense
of greater computational expense.

8.3.16. Modal Force

Modal force loading can be used to directly load specific modes in the modaltransient solution
case. An example input follows.

ECHO
modalvars
END

LOADS
body
ModalForce
function gravity_function
END

FUNCTION gravity_function
type table
tablename 28
END

TABLE 28
dimension 2
size 100 9
delta 0.000005 1
origin 0.000005 0
datafile=Qforce.txt
END

The format of Qforce.txt is identical to the output from a traditionally loaded modal transient
solution with echo modalvars. echo modalvars does not print out a load at time zero, so either
the load at time zero should be added to the datafile, or origin should be used to specify the first
time in the file. Loads can be linearly interpolated between time values in the datafile. With
redundant modes, some modes can change between subsequent Sierra/SD runs. Care should be
taken to ensure the load are applied correctly.

Full details of table input are discussed in section 4.10.19. Only two-dimensional tables are
supported for modal force loading, with rows representing equally spaced time steps and columns
representing each mode. Modal force loading is the only load type that supports two-dimensional
table inputs.
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8.3.17. Applying Loads for Static Analysis

Static loads only require the definition of the load region and load keyword (e.g. force) with its
accompanying parameters. A function may be used instead. In this case, the function will be
evaluated at time 7 = 0.

8.3.18. Time Varying Loads

Additional options provide the capability of varying the load over time. The load options
include,

* scale with one parameter provides a scale factor to be applied to the entire load set. Only
one scale may be provided per load set.

* function. A time varying function may be applied by specifying a function ID. Only one
function may be applied per load set. The function is defined in the function section (see
section 4.10 on page 123). The loads applied at time 7 for a particular load set will be the
sum of the force or moment vectors summed over the nodes of the region and multiplied by
the scale value and the value of the time function at time .

If no function is applied for a particular load, then the function is defined
as 1.0 for all time. All loads will be applied to the transient solution,
regardless of whether an explicit time function is defined.

8.3.19. Temporal Loads from Exodus
Loads may be read in from previous analyses when stored in the input Exodus data file. These are
read using an 8.2.2 function.

Note that exodus read functions do not trigger follower stiffness calculations when used as
follower loads. A warning is issued when the follower stiffness calculation is skipped.

Also, note that exodus read functions ignore distribution factors on sidesets. A warning is issued
in this case when the distribution factors are ignored.
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For Complex Analysis
Option Parameters

iforce vall val2 val3
imoment vall val2 val3
igravity  vall val2 val3
ipressure vall

itraction vall val2 val3

8.3.20. Frequency Dependent Loads

Frequency dependent loads may be applied for frequency response analysis. The real part of these
loads is applied exactly as above with the understanding that the functions referenced apply to
frequency not time. Frequency dependent loads may include an imaginary component. This is

done by prefixing the load types listed above by the letter “i”. Thus, the imaginary part of the
load uses these load types.

A function should be associated with each such load. An example follows.

LOADS // example for FRF analysis
nodeset 1
force=1 0 O // the real part of the load
function=11
nodeset 2
iforce=1 0 0 // the imaginary part of the load
scale .707
function=12
END

8.3.21. Rigid Bodly Filter for Input

For some analyses, it is advantageous to remove rigid body components of a solution. The input
forces may be filtered so that only self-equilibrated forces are applied. This process of removing
the rigid body component from the solution is sometimes called ‘Inertia Relief” or ‘Inertial
Relief’.

The rigid body filter is applied using input in the transient or statics solution section and is
illustrated in the example of input 8.19. The filtered force values can be output by requesting the
force output option (section 9.8.5).

While the filter can ensure equilibrated loads, additional parameters may be required to help the
linear solver address the singularity generated by floating structures. Typical input is provided
here, with details in the appropriate sections.

The constrain_rbms solver option must be used in conjunction with FilterRbmLoad only when
the rigid body modes are in the null space of the system matrix. For example, constrain_rbms

416



should be used for statics where the system matrix is the stiffness matrix, but constrain_rbms
should not be used for transient where the system matrix includes inertial terms.

Currently, only GDSW supports selectively constraining rigid body modes. The FilterRbmLoad
parameter is supported for transient and static solution cases. For other solution cases this
parameter will have no effect on the solution. > The similar capability for modal solutions is
presented in section 5.30.

SOLUTION
statics
solver=gdsw
solver_options=gdsw_options
FilterRbmLoad=allStructural
END

PARAMETERS
RbmTolerance=1e-10
END

SOLVER_OPTIONS gdsw_options
constrain_rbms "X Y Z RotX RotY RotZ p"
END

Input 8.19. Rigid Body Filter Example Input

The names of the rigid body modes to constrain are the same as those setting boundary conditions
8.1. The ‘p’ keyword refers to the constant pressure in a structural acoustics problems, and the
other six are the typical rigid body modes of a structure in Cartesian coordinates. 3

If the rigid body filter is activated, Sierra/SD calculates the corresponding rigid body modes,
checks the residuals, and report a fatal error if the residual norms,

KD, |2
[1Kalleo D [|2

are larger than RomTolerance. The default RbmTolerance is 10~'°. Each module that needs the
rigid body modes will recalculate them.

ZModal solutions, such as modaltransient, do not use FilterRbmLoad. However, see** for means of accomplishing
the same process by direct use of the geometry rigid body modes.

3The keywords are “x”, “y”, “z”, “RotX”, “RotY” “RotZ” and “p”. The set of these keywords must be enclosed in
quotation marks.
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8.3.22. RanLoads

The RanLoads section is used to provide input information for spectral input to a random
vibration analysis. In a random analysis, the output response relates to the input, as follows.
a; 1s the output quantity at degree of freedom, i. For example, a; may be the

acceleration power spectrum, measured in (in/s*)?/Hz.
H;; is the transfer function from input i to dof j.

Sik 1s the input power spectrum. Typically, this is in units of (force)?/Hz. Tt is
dimensioned to the number of independent inputs.

Furthermore,
ai(w) = D H}{(0)S(w) Hin (). (8.3.6)
Jk

The RanLoads section provides a specification for S (w). Note that this input will contain both
a spatial and spectral component. In Sierra/SD, we require that each matrix element in the input
power spectrum be expressible as a product of spectral and spatial components. Y; is a spatial
loading term associated with the i’ row and column of S, and F; ;18 a spectral only matrix
function.

Sij(@,x) = ()Y} () Fyj () (83.7)

It typically has units of 1/Hz.

The RanLoads section contains the following required keywords.
Parameter Argument Description

matrix  [nt/String matrix-function identifier
load Integer ~ row/column identifier

The matrix keyword identifies the appropriate matrix-function (see Section 4.10.17). The
matrix-function determines the dimensionality of the input (using the dimension keyword). It
also determines the spectral characteristics of the load.

The spatial characteristics (which correspond to Y; in equation 8.3.7) are determined in load
sections within the RanLoads definition. There must be exactly as many load sections as the
dimensionality of input. For example, if the Srr matrix is 3 X 3, then there should be 3 separate
load sections. Each load section within the RanLoads block must be followed by an integer
indicating to which row/column it corresponds. The details of each load section are identical to
the over all loads section (see section 4.5) except that no time/frequency function is allowed. Note
that only one load is required per row of the Srr matrix, but each entry of the matrix may have a
spectral definition (identified by a real and/or imaginary function).

The following example illustrates the definition of a single input specification. The loading is
scaled so that a 1000 Ib (or 454 kg) mass located on the input point (in nodeset 12 here) is scaled
to produce a unit g%/Hz loading.
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RANLOADS

matrix=1
load=1
nodeset 12
force=0 1 0

scale 1.00e3 // needed to convert to g

// loads input in lbs. The PSD is in g*2/Hz.
// F = accel * mass

// accel * (scale_factor)

// accel * ((1000%.00259)*386.4)

END

Scaling the input force for a random vibration analysis can be confusing. # This is especially true
since enforced acceleration cannot be used to apply the force . The example above uses United
States customary units. The wtmass parameter has been applied. In SI units, wtmass= 1, and the
force would need to be multiplied by g to apply the input as acceleration in g’s.

The input acceleration may be examined by evaluating the output PSD at the input degree of
freedom. This is done by putting the applied load set into the frequency section (9.3), and adding
the acceleration keyword. The output is in the native units of analysis. For the example above,
the output will be in (in - Ibm/s*)?/Hz, and must be divided by (386.4)? to convert to g2/Hz.

8.4. Initial Conditions

Initial conditions are specified via the initial-conditions section. The initial conditions are used
as the initial state for transient analysis. Both linear and nonlinear transient are supported. The
variables supported for initial conditions are given in Table 8.4.

“Note that we are scaling the spatial forces, ¥;, which are combined as a product in equation 8.3.7. Thus, the scale
factor is linear in the load. The resulting input power spectrum, S;;, will contain the square of the scale factor.
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Keyword Field Names Description

displacement dispX, dispY, dispZ, Translational displacement
displacement_x,
displacement_y,
displacement_z

velocity velX, velY, velZ, Translational velocity
velocity_x,
velocity_y,
velocity_z

rotation rotX, rotY, rotZ, Rotations for beams,

rotational_displacement_x, | shells, etc.
rotational_displacement_y,
rotational_displacement_z

rotational_velocity | velRX, velRY, velRZ, Rotational velocity
rotational_velocity_x, for beams, shells,
rotational_velocity_y, etc.
rotational_velocity_z
acoustics acoustics Primary acoustic variable,
usually pressure
acousticsdot acousticsdot Derivative of primary

acoustic variable,
usually particle velocity

Each term may be initialized in one of three ways. Initial conditions may be either
1. Read in from the Exodus file,
2. specified globally in the initial-conditions section,

3. or specified on a block-by-block basis in the input deck.

8.4.1. Reading Initial State from a Sierra/SM Analysis

To specify initial conditions to an SD analysis from an existing Sierra/SM analysis result, a
special solution case, receive_sierra_data, is available. Consult section 5.23 for a detailed
description of this option.

8.4.2. Reading Initial Conditions from the Mesh File

Initial conditions can be read from fields present on the mesh file. This method would usually be
used when handing of initial conditions from the end state of a previous Sierra/SD or Sierra/SM
run. The time command can be used to set which time step from the exodus file the initial
conditions are read from. Valid options for time include reading from a specific time, start time of
the transient simulation, or from the first or last step of the Exodus database. By default, time is
set to the first step of the input Exodus database.
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step = <int>time_step|last|first
OR

time <real>time_val|last|first|transient_start_time

Note that as with Exodus in general, steps are one-based: step = 2 refers to the second step on
the mesh. In the case of time = <real>, the step chosen will actually be the nearest step with a
time greater than or equal to the requested value.

An example of initial conditions input from Exodus file is given below. In this case, Sierra/SD
will read both velocity and displacement initial conditions from the last time step of the Exodus
file using the field names in Table 8.4.

INITIAL-CONDITIONS
velocity=from_file
rotational_velocity=from_file
displacement=from_file
rotation=from_file
time = last

END

8.4.3. Setting Initial Conditions in the Input Deck

An example of setting initial conditions globally is given below.

INITIAL-CONDITIONS
velocity=1 0 0
END

In this case, the entire model is given an initial velocity of 1 in the x direction, and O for the y and
z directions.

An example of the third option (block-by-block specification) follows.

INITIAL-CONDITIONS
velocity=by_block
END

BLOCK 1
velocity
END

100

BLOCK 2
velocity
END

010
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In this case, the velocity is read in from the input deck on a block-by-block basis. If two blocks
share nodes and are given different initial conditions, then the results may be unpredictable, since
the common nodes on the blocks would have conflicting initial conditions. Thus, it is
recommended to verify that blocks are disjoint before specifying different initial conditions on a
block-by-block basis.

Initial conditions are currently only implemented for transient analysis. They can also be used in
multicase solutions, but they will only have an effect on the transient analysis that are in the
multicase solution. For multiple transient analysis in a multicase, only the first transient analysis
will use the initial conditions. The subsequent transient cases will get initial conditions from the
previous case.

Care must be taken when setting initial conditions. If initial conditions
are set from a Sierra/SM analysis, then that analysis must in general
have small deformations. For example transferring an initial condi-
tion displacement from Sierra/SM with significant rigid body rotation
would yield large stress in a linear Sierra/SD analysis due to the in-
compatible linear and nonlinear deformation state. Additionally, for
elements like shells the nodal rotations must be compatible with the
overall translational displacement.

8.5. Use cases for initial acceleration

All these cases can be applied as a spring mass system.

1. Apply force, displacement and velocity as an initial condition for transient dynamics.
Compute,
A, = (Fapplied +Cv, + Kdy) /M

With a constant force, we should get a constant acceleration.

2. Apply a static load to the mass on the spring. Then apply (in a second case) the same load
as a transient load. This should also result in a constant displacement.

3. TSR read. Read a static stress to the body. This is usually followed by a subsequent
transient run.

Ring down is expected. Internal stresses are not treated the same as applied forces. Applied
external forces are not carried forward. Internal stresses are carried forward in the solution.
When you start the transient run, you have an internal force only. Compute

An = (Finternal)/M
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4. receive_sierra_data. Read undeformed coordinates, X,, and a nodal displacement, U,,.
Compute initial coordinate,
X=X, +U,.

Afterwards, no load is required to maintain the X; configuration. Initial stresses may cause a
deformation from that initial system. We may get velocity, force, and acceleration from file.

5. Prescribed acceleration. A, = a(t). This is applied only on a surface or node set. We
convert this to a prescribed force, and treat it identically to an applied force.

6. Restart. A(0), v(0) and d(0) are prescribed at all locations. No solve needed.

7. There is a jump in force at some time other than t=0. Do nothing. We assume that the
analyst wants it to ring.

8.5.1. Summary

* Use velocity, displacement from state change (whether read_sierra, user input, or
multicase). Eigen may store displacement on the database. It is never used in a subsequent
transient or statics analysis. It is always used in modal superposition cases. We get this by
calling them PHI.

* Retain stresses across state change (multicase or read). Some cases retain stresses (statics,
TSR, transient). Eigen may compute stresses, but does not store them on the database.

* Do NOT retain accelerations or forces across state change. We should use the forces
calculated at that time (in the next state) for computing the balance.
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9. OUTPUT

This chapter identifies how to select different types of simulation data for output in different
formats. The primary results are reported in the output Exodus file. This file can be large. The
output syntax for over 50 different fields is described in section 9.7.

Two smaller and more specialized Exodus files can also be output, the History (see section 9.2)
file and, for frequency response data, the Frequency (section 9.3) file.

Sierra/SD has the capability to output select variables in MATLAB format, as well, which is
explained briefly in section 9.4.

Sierra/SD also supports the User Output capability of Sierra/SM, to reduce the need for external
post-processing tools and allow finer-grained access to the user to interact with Sierra/SD
behavior over the course of a simulation. Many flexible user output options are detailed further in
section 9.5.

9.1. Exodus

Geometry-based finite element results are written to an output Exodus file. The name of this file
is generated by taking the base name of the input Exodus geometry file, and inserting -out before
the file extension. For example, if the input Exodus file specification is example . exo, output will
be written to example-out.exo. When using a multicase solution (Section 5.1.1), the case
identifier is used in place of out. More details are available in the file section (4.2).

Non-geometry-based finite element data, including system matrices and tables may be output in a
format that is compatible with MATLAB. These text files have the extension m. The base file
names describe the nature of the output. These files are generated in the current working
directory.

Table 9-1. — Output section options

Option Description Section
acceleration acceleration at nodes 9.7.3
acousticlighthill acoustic Lighthill source term N/A
aforce acoustic forces N/A
block_energies block kinetic and strain energies 9.7.32
constraint_info nodal constraint information 9.8.1
disp displacements at nodes 9.7.1
EForce element forces for beams 9.7.8
ElemEigChecks first,seventh, and largest eigenvalues 9.8.2
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All the various options of the outputs section are shown in Table 9-1. The next sections describe
each of the options and their results assuming an input file named example.inp and a geometry

ElemQualChecks
energy

eorient

faa

fatigue

force
GEnergies
globals

Kaa
line_weld
Maa

material
material_direction
MLumped
MPhi
mesh_error
MFile
nodal_charge
pressure
rainflow
reaction_force
relative_disp

RHS
statistics
strain
stress
stress = gp

principal_stresses

signed_vonmises
temperature
velocity

voltage
vonMises

vrms

on || off || (any boolean), default is on
element strain energy and strain energy
density

element orientation vectors (geometry-
defined coordinate system)

force vector in the a-set

Fatigue Damage Estimates

the applied force

global sum of energies

ensure global output

stiffness matrix in the a-set

line weld elements

mass matrix in the a-set

material parameter element output
user-defined element coordinate system
nodal lumped mass in modal solution
Mass x Displacement in modal solution
mesh discretization errors

MATLAB MFiles

applied charge at nodes

pressure load vector

Rainflow cycle counter output

the Dirichlet boundary reaction force

1D element nodal separation

RHS of system of equations to be solved
Mean and Std deviation of some variables
element strain

element stress

element stresses at Gauss points

element principal stress vectors and mag-
nitudes

element signed von Mises

element centroid temperature

velocity at nodes

voltage at nodes

element von Mises stress

RMS quantities (random vibration only)

9.8.3
9.7.30

9.8.4

9.7.37
9.7.40
9.8.5
9.7.30.1
9.7.31
9.7.36
9.7.9
9.7.35
9.8.10
9.8.11
9.7.41
9.7.38
9.7.33
9.7.34
N/A
9.7.13
9.7.39
9.7.7
9.7.10
9.8.6
9.5.7
9.7.19
9.7.20
9.7.19.1
9.7.20.3

9.7.20.5
9.7.29
9.7.2
9.7.29.1
9.7.20.4
9.7.21

file named example. exo.

OUTPUTS
Maa
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>

Kaa
// displacement
END

9.1.1. Database Name

Option database name in the outputs section allows the user to specify an output file name

instead of the default behavior as described above. As before, -out (or the case name for
multi-case solutions) will be inserted before the file extension.

For example, the following input snippet would produce the output file name
new_example-out.exo instead of the default example-out.exo.

FILE
geometry_file = example.exo
END

OUTPUTS
database name = new_example.exo // default is ’example.exo’
// output keywords

END

which would result in output written to the Exodus database new_example-out.exo.

Although database name is supported, the solution case name must
still be appended to the database name for compatibility with Sierra/SD
multicase analyses.

9.1.2. Properties

Exodus Output Properties is currently BETA release.
Enable with the “- -beta” command-line option.

Some options are available to control the contents of Exodus output files. These options can be
used to shrink the output size or change the format of the output file. These properties are preceded

by the property keyword in any input deck. Available properties are given in Table 9-2.

The below example parameters would provide minimal output file size for a run.

OUTPUT
property integer_size_db = 4
property real_size_db = 4
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Table 9-2. — Exodus Property Output Options.

Property Type Description

integer_size_db Number of bytes for integers in Exodus output. Valid sizes
are 4 or 8. By default, the size is the same as used
in the input mesh file. 8 byte integers are required
if node/element IDs greater than about two billion are used.

real_size _db Number of bytes for real numbers in Exodus output. Valid sizes
are 4 or 8. Default is 8, double precision. Use of 4

byte single precision output will roughly halve the

output size but reduce output accuracy. Of

particular note, Do not use four byte reals for

restart.

compression_level Compression level can be given values from zero to nine.
Zero is no compression and nine is maximum compression.
The default is generally zero compression. The compression
level provides only a suggestion to the Exodus library, the
actual amount of compression will vary. Potentially
compression can reduce the size of the file by a factor of
three or more. Compressed files may be incompatible with
some post-processors.

maximum_name_length | Sets the maximum allowable name length for Exodus field names.
Valid values are in the range (32, 256], and the default is 64.
Increasing this property can be useful for example if a user has
very long user output names, which would otherwise be truncated.
Alternatively, it can be lowered to shrink the file size if desired.
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property compression_level =
property maximum_name_length
END

9
= 32

9.2 History

There are two types of outputs available in the history file:

1. All results from the outputs section can be output to a specified region of the model, such as
a block, side set, or node set. For a list of supported output names, refer to Table 9-1. See
Section 9.2.1 for details.

2. Several special global history outputs that pertain to locations in the model, not node sets,
side sets, or element blocks, may also be output to the history file. See Section 9.2.2 for
details.

Note that the following outputs section names are ignored when found in the history section,
since they involve auxiliary output files and formats, while history only supports Exodus format.

e MFile
e Kaa, Maa, Faa

¢ vrms

9.2.1. History Output for Node Sets, Side Sets, and Element Blocks

In addition to the outputs selection options, which control the variables that will be output to the
history file, options are also available in the history section to control the model regions on which
the variables are written to output. The user may specify node sets, side sets, a node list file (see
Section 8.1), or element blocks. If side sets are selected, the output will include the nodes
associated with the side sets, as well as the elements themselves. Selecting an element block
automatically selects the associated nodes in that block. History also supports variables defined
on virtual blocks, such as the element force in a virtual Joint2G element block. The default is no
output selection; note that a warning will be issued when no model region is specified, and
requested variables that pertain to a region of the model will not be output to the history file at
all.

Multiple regions may be selected using a series of MATLAB concatenated ranges in the input
syntax, similarly to subdomain selection in the echo block (Section 9.9.5), and the keyword all can
be used to select all nodesets, sidesets, or blocks for output. For example,

HISTORY
nodeset tail,1:10,17
sideset all
nodeset ’8,15° coordinate 4
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block ’5,6, nose’
stress
disp
nskip 10
element centroid stress nearest
location 0 1 2 as stress_gauge
element strain nearest location 1 2 1 as strain_gauge
element stress at element 1 as element_1_stress_gauge
element strain nearest center of
sideset wing as sideset_1_strain_gauge
node acceleration at node 7 as node_7_accel_gauge
node displacement nearest location 2 2 10 as disp_gauge
END

The corresponding nodeset, block, and sideset IDs/names should be specified as shown in the
above example, with either a list of IDs/names, or the keyword “all”. The rules for specifying
these lists are the same as for integer lists, and are detailed in Section 4.1.

Unlike subdomains, node set and side set IDs need not be contiguous in the Exodus file. If the
selection criterion is a range, it may identify nonexistent sets. These will be silently ignored. In
example 9.2.1 above in which nodesets tail, 1:10 and 17 are selected, the Exodus mesh must
have nodeset number 10. Nodeset, sideset, and block names/IDs in the history file must be
consistent with the corresponding Exodus input file.

9.2.1.1. Coordinate transformations

Any number of nodeset, block, and/or sideset selections can be specified in the history section.
Nodeset, sideset, and block specifications may be followed by an optional coordinate entry. If a
coordinate is specified (see section 4.9), all nodal results for the nodes in the region are
transformed to the specified coordinate system before output to the file. If a particular node is
identified in more than one specification, a warning will be issued to the log .rslt file, indicating
which coordinate system will be used. The coordinate keyword for history section output will
only work with nodesets, sidesets, and blocks; it is not supported for node list files.

The coordinate name of nodes in the history file may be printed out in the echo file by specifying
nodes in the echo section of the input. The coordinate ID will also be written to the history file as
a nodal variable CID, provided any nonzero coordinate frames have been specified; if the
coordinate name is not convertible to an integer id (i.e., if it is a string), the CID output will be

-1.

While the history file provides a convenient means for transforming coordinates, its applicability
may be somewhat limited when output in many coordinate frames is desired. In particular, only a
single history file is written in each analysis, and only one coordinate frame may be output per
node. The history file will display variables as Cartesian regardless of coordinate choice.

Table 4-21 shows the corresponding values for cylindrical and spherical coordinates.

430



9.2.2. Global History Output Near a Location in the Model

The history data of a mesh entity near a location can be written to the output file as a global
variable using any of the following syntax:

Node |Element (optional, for element)centroid
<string>variable_name
Nearest Location <real>global_x <real>global_y <real>global_z
as <string>history_variable_name

Node |Element <string>variable_name
AT Node|Element <int>global_id
AS <string>history_variable_name

Element <string>variable_name
Nearest centroid of sideset <int(/string)>sideset_id(/sideset_name)
AS <string>history_variable_name

Outputs at multiple locations can be requested in the history block. Each output location needs a
unique history_variable_name. This capability currently only supports output of data at the
closest location for three-dimensional elements or the closest centroid for both two- and
three-dimensional elements (using the optional centroid flag). The closest location to the
centroid of a specified sideset is calculated at the nearest point on a three-dimensional element
surface that touches the given sideset. Data requested at a specified element is calculated at that
element’s centroid for both two- and three-dimensional elements; one-dimensional elements are
not currently supported. If a one-dimensional element is specified directly, or if no elements in the
model satisfy the search conditions, the .rslt file will issue the user a warning.

By default, Sierra/SD will look for the variable_name field(s) in the HISTORY region. For
nodal fields only, fields from a different region may be used by adding from
OUTPUTS | FREQUENCY after the variable name.

NODE <string>variable_name from OUTPUTS | FREQUENCY
NEAREST LOCATION <real>global_x <real>global_y <real>global_z
AS <string>history_variable_name

NODE <string>variable_name from OUTPUTS | FREQUENCY
AT NODE <int>global_id
AS <string>history_variable_name

Note that to match the Exodus convention, user-specified element, nodal, and sideset IDs should
be one-based, i.e., starting from one, not zero.
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Model regions, such as side sets, node sets, or element blocks, need not
be specified to obtain global history outputs in the history Exodus file.
A warning that no region has been specified will still be output to the
result log file. In the context of global history outputs, this warning can
be safely ignored.

Note that any output request may be used for element or nodal output, but only a subset have been
tested. For element outputs, testing has focused on stress, strain, von Mises stress, and vrms
outputs. Also, note that only stress/strain/VonMises are valid for non-centroid nearest
location and nearest centroid of sideset element outputs. Tested nodal outputs include
displacement, velocity, acceleration, and force. Additionally, any nodal field may be used in place
of the nodal request.

A similar capability and syntax is used in Sierra/SM. A summary of the global history data
output will be written to the log file in the following format:

GLOBAL HISTORY OUTPUT

Prefix Block Entity, GId(: Type) Variable Near At
stress_gauge 1 element 1: Hex8b stress 0,1,2) (0.5,0.5,0.5)
strain_gauge 1 element 5: Hex8b strain (1,2,1) (1,2,1)
stress_gauge 1 element 1: Hex8b stress N/A (2.5,1.5,0.5)
strain_gauge 1 element 6: Hex8b strain 2,3,1) (@2,2,1D)
accel_gauge N/A node 7 accel N/A (1,1,0)
disp_gauge N/A node 38 disp (2,2,10) (2,2,1)

In the Exodus history file output, the global variable’s prefix, or history_variable_name in the
syntax given above, is prepended to the element variable’s regular output name (Sections 9.7.20
and 9.7.19 give details on stress and strain variable names in Sierra/SD). For example, if two
outputs are requested near a shell centroid and a solid with names “‘shell_strain” and “solid_stress,”
respectively, the corresponding global variables written in the history file would be

shell_strainSStrainX1l, shell_strainSStrainYl, shell_strainSStrainXY1,
shell_strainSStrainX2, shell_strainSStrainY2, shell_strainSStrainXY2,
shell_strainSStrainX3, shell_strainSStrainY3, shell_strainSStrainXY3,
solid_stressVStressX, solid_stressVStressY, solid_stressVStressZzZ,
solid_stressVStressXY, solid_stressVStressXZ, solid_stressVStressYZ

Variables requested for global history output will be output on every other element block in the
history block.
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9.2.3. Output database options

In transient dynamics solutions 5.28, user control of output step interval nskip and output buffer
Flush 4.6.1 operations are provided to increase efficiency of output. The history file respects the
nskip and flush parameters set in the solution block, but additional user control is provided for
history files by inserting the nskip and flush parameters in the history block. In that case, history
files for all multicase solutions will have output and buffer flushing at the intervals specified in the
history section, and the entries in the solution section will be ignored for history files.

As with output in general (section 9.1.1), users can define a custom history output file name via
the database name keyword. Additionally, Exodus properties can be defined as shown in
Section 9.1.2.

Only one history file will be written per analysis. The name of the history file is derived from the
name of the Exodus output file, except that the extension is “.h”.

9.3. Frequency

The frequency section provides information for data output from the Modal FRf, Direct FRF,
shock, modalshock, and random vibration solution methods. One frequency file is written per
analysis. The name of the frequency file is derived from the name of the Exodus output file,
except that the extension is “.frq”. The section format follows that of the history section. As in the
case of the history section, data can be written to a sideset, nodeset, node_list_file, or a block. In
the case of output to a block, the block can be a virtual block. Thus, one could output element
force on a Joint2G element. Solution methods that do not write frequency domain output silently
ignore the Frequency section.

The frequency section also includes the definitions of the frequency values for calculation. A
frequency section (with some output selection region) must be selected for any solution method
requiring frequency output. To fail to do so is an error, since the solution would be computed and
no output provided.

As with output in general (section 9.1.1), users can define a custom frequency output file name via
the database name keyword. Additionally, Exodus properties can be defined as shown in
Section 9.1.2.

The frequency values may be specified using the methods specified in Table 9-3. The methods are
mutually exclusive, i.e., do not mix keywords from the “linear” method with those of the “table”
method. An example follows.

FREQUENCY
nodeset ’1:10,17°
sideset ’'3:88’
block 5,6,3
disp
acceleration
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Table 9-3. — Frequency Value Specification Methods.

Method | Keyword | Description |

freq_min | minimum frequency (typically in Hz)
method=linear | freq_max | stop frequency

NF number of frequency intervals.
freq_step | frequency increment (or use NF)
freq_min | minimum frequency (typically in Hz)
method=log | freq_max | stop frequency
NF number of frequency intervals.
method=table table name of a 1D table (see Section 4.10.19)

freq_min=10 // starting frequency in HZ

freq_step=10 // frequency increment

freq_max=2000 // stop freq. Outputting 201 freq points.
END

For the “log” method, Ng + 1 total frequencies are obtained by the following equation:

k Fon
Fy = Fin exp (N—Flog(F “x)) Vk e [0,Nr]. (9.3.1)

min

For the “linear” method, the following combinations of inputs are supported:

freq_min/freq_step/freq_max N + 1 frequencies: [Fpin, Fuin + Fsteps -+ 5 Fmin + N % Fyep]
where N is smallest integer such that F,;, + N * Fep > Fpax
freq_min/freq_step/NF Nr + 1 frequencies: [Fiin, Fuin + Fstep, ==+ s Fmin + NF * Fyep]
freq_min/NF/freq_max Ny + 1 frequencies: [Fyin, Fpin + Af, -+, Fin + Np * Af]
where A f = Imax—Fumin mw;v;F min

Frequency output region

The controls in the frequency section also affect data written to the results (or echo) file. In
particular, the echo file contains data only for those nodes in the selection region of the frequency
section. Selection of a specific output (such as displacement or acceleration) is independent. For
example, you may echo only displacements, but write displacements and accelerations to the
Exodus frequency output file. The history section (9.2) has more information on specification of
the output region.

The SIERRA translator exo2mat may be used to translate the output into MATLAB format for
further manipulation and plotting.
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9.4. MATLAB output format

In the following example, the mass and stiffness matrices are output in MATLAB format, but the
displacement variables will not be output. As usual, output in MATLAB format is distinguished
by file names ending with the extension .m. For example, on one processor, a mass matrix is
written to the file Maa.m. Scripts are provided for assembling the subdomain matrices into the
global matrix in MATLAB.

9.5. User Output

Sierra/SD enables several output processing operations to be computed during the run via the
user output blocks. Use of these outputs can simplify post processing and reduce the need to
output large quantities of data or time steps to generate quantities of interest.

The user output command syntax computes new output fields. These output fields can then be
included in outputs, history, or frequency outputs.

9.5.1. Element Variable Spatial Statistics

USER OUTPUT
block <list>(block names/ids)

compute global <string>Namel as average|avg
<~ of element stress|strain|vonMises (weighted by volume)

compute global <string>Name2 as max|min|maxabs|minabs|sum
— of element stress|strain|vonMises
END

These user output commands calculate the spatial statistics of an element variable within a
user specified list of blocks as a global variable. Multiple blocks can be selected in the same way
as subdomain selection in the echo block (Section 9.9.5). The names such as Name1 and Name2
are given in the input deck. These names can then be included in outputs, history, or
frequency sections to turn on that user output in the corresponding output file.

The optional *weighted by volume’ command performs a volumetric average over the elements.
Without this command an equal weight per element average is used.

The max and min commands output the maximum or minimum value for each stress/strain
component over all elements in the set. For example, given the values {1, —10, 5}, the max would
be 5 and the min would be —10. In contrast, the maxabs and minabs commands output the value
with the maximum or minimum magnitude. Thus, given the same values {1, —10, 5}, the maxabs
would be —10 and the minabs would be 1.
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9.5.1.1. Element Averaging Example

USER OUTPUT
block = block_5
compute global strain_gauge as average of element strain
— weighted by volume
END

HISTORY
strain_gauge
END

If block_5 contained solid elements then the outputs would be a set of global variables
stress_gaugeVStressX, stress_gaugeVStressXY, stress_gaugeVStressXZ, .... Where
each value is the volumetric average of the strain over all elements in block_5.

9.5.2. Nodal Variable Spatial Statistics

USER OUTPUT
block <list>(block names/ids)
surface <list>(sideset names/ids)
nodeset <list>(nodeset names/ids)
compute global <string>Name as max|min|maxabs|minabs]|sum|avg]|average
— of nodal <string>Variable (from OUTPUTS|HISTORY |FREQUENCY)
END

This user output section calculates the spatial statistics of a nodal variable or field within a user
specified region for output file or history file as a global variable. Multiple regions are selected in
the same way as subdomain selection in the echo block (Section 9.9.5).

Each user output can then be included by name in the outputs, history, or frequency section,
as with element outputs (section 9.5.1).

The Variable used can typically be one of three things:
* One of the output requests typically available from outputs, history, or frequency files.
* One of the output fields written to the outputs, history, or frequency fields.
* A previously computed user output

By default, Sierra/SD will look for the Variable field(s) in the same region where the
user-defined field is declared. A from keyword may be appended to the expression variable
line to always read fields from a particular output region.

This is best shown via example.
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USER OUTPUT

nodeset = 6

compute global avg_accelY as avg of nodal AccelY from OUTPUTS
END

OUTPUTS
accel
END

HISTORY
avg_accelY
END

Input 9.1. Nodal Statistics of a Field

In this case AccelY is one of the fields written by the accel request in the OUTPUTS region. The
outputs written to the HISTORY region will be a single global variable avg_accelY, which is
average Y acceleration of all nodes in nodeset 6.

USER OUTPUT

nodeset = 5

compute global dl1 as max of nodal disp
END

OUTPUTS
dl
END

Input 9.2. Nodal Statistics of an Output Request

In this case disp is one of the output requests that can be normally requested in outputs,
history, or frequency sections. The outputs written to the Exodus results will be three global
variables d1DispX, d1DispY, and d1DispZ as the maximum displacement values seen at a node
in nodeset 5.

USER OUTPUT

nodeset = 7

compute nodal coord_r as function rCoord

compute global coord_r_min as min of nodal coord_r
END

OUTPUTS
coord_r_min
END
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Input 9.3. Nodal Statistics Output of a Previously Computed Output

In this case coord_r is computed on each node of nodeset with ID 7 by a function rCoord
defined in user output 9.5.6, then the global coord_r_min is computed as the minimum value of
coord_r on any node. The output of this combination of operations is the single global variable
coord_r_min.

9.5.3. The Closest Distance Output

USER OUTPUT

skin blocks = <list>(block names/ids)
block <list>("A" block names/ids)

surface <list>("A" sideset names/ids)
nodeset <list>("A" nodeset names/ids)

compute global <string>name_1 as closest distance
— to block <list>("B" block names/ids)
<~ (search node_face|node_node|mixed)

compute global <string>name_2 as closest distance
< to surface <list>("B" sideset names/ids)
< (search node_face|node_node|mixed)

compute global <string>name_3 as closest distance
<— to nodeset <list>("B" nodeset names/ids)

compute nodal <string>name_4 as closest distance
— to surface <list>("B" sideset names/ids)

compute nodal <string>name_5 as closest distance
<— to block <list>(B block names/ids)
END

The closest distance output computes the closest distance between two different pieces of the
mesh.

The compute global option requests, as a single global variable, the closest distance between the
“A” set blocks, sidesets, nodesets and the “B” set blocks, sidesets, or nodesets. This is the
minimum separation distance between these two sets anywhere in the model in the current
displaced shape as computed by closest point projection.

When skin blocks is used, all skinned blocks will only use nodes on their exterior surface,
omitting interior nodes in the context of that user output section. This can improve performance
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when there are many interior nodes, and can be less cumbersome than creating sidesets for all
closest distance interfaces.

An optional search command applies to the block/sideset from the compute global line. For
mixed the default is node_face. While the node-face search calculates the distance from the
nodes in set “A” to the closest face in set “B”, the node-node search option computes the closest
distance from the nodes in set “A” to the nodes in set “B”. If the “B” set contains only nodesets,
then only the node_node search can be used, and a search option there will be ignored (with a
warning).

The closest distance nodal variables is currently BETA release.
Enable with the “- -beta” command-line option.

The compute nodal option computes the closest distance between each node in the “A” set to the
faces in the “B” set. This output is a full field result for the closest distance calculation.

9.5.3.1. Modal Random Vibration Closest Distance Output

The closest nodal outputs have special meaning for the modalranvib solution case (section 5.16),
where Sierra/SD does not typically calculate or output enough information to post-process the
difference in displacement between two points. The names (and meanings) of the nodal closest
distance outputs also change in modalranvib results.

The closest distance nodal outputs are available in PSD form if requested in the frequency section
during modalranvib (table 9-4).

Real Names Imaginary Names Purpose
<name>_RelDispGxx | <name>_ImagRelDispGxx Power spectral density
<name>_RelDispGxy | <name>_ImagRelDispGxy | of relative displacements
<name>_RelDispGxz | <name>_ImagRelDispGxz
<name>_RelDispGyx | <name>_ImagRelDispGyx
<name>_RelDispGyy | <name>_ImagRelDispGyy
<name>_RelDispGyz | <name>_ImagRelDispGyz
<name>_RelDispGzx | <name>_ImagRelDispGzx
<name>_RelDispGzy | <name>_ImagRelDispGzy
<name>_RelDispGzz | <name>_ImagRelDispGzz

<name> Distance to the closest point

Table 9-4. — ModalRanVib Frequency Closest Distance Nodal Output. <name> is the name of the user
output request.

Additionally, the closest distance nodal outputs are available in RMS form if requested in the
outputs section during modalranvib (table 9-5).
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Real Names Imaginary Names Purpose
<name>_RelDispRMSxx | <name>_ImagRelDispRMSxx RMS of relative
<name>_RelDispRMSxy | <name>_ImagRelDispRMSxy displacement
<name>_RelDispRMSxz | <name>_ImagRelDispRMSxz
<name>_RelDispRMSyx | <name>_ImagRelDispRMSyx
<name>_RelDispRMSyy | <name>_ImagRelDispRMSyy
<name>_RelDispRMSyz | <name>_ImagRelDispRMSyz
<name>_RelDispRMSzx | <name>_ImagRelDispRMSzx
<name>_RelDispRMSzy | <name>_ImagRelDispRMSzy
<name>_RelDispRMSzz | <name>_ImagRelDispRMSzz

<name> Distance to the closest point

Table 9-5. — ModalRanVib Exodus Closest Distance Nodal Output. <name> is the name of the user
output request.

9.5.3.2. Closest Distance Examples

USER OUTPUT
block block_5
compute global dist57 as closest distance to block block_7
compute global dist59 as closest distance to block block_9
END

HISTORY
dist57
dist59

END

Input 9.4. Closest Global Distance

This will output a two global variables dist57 and dist59 which are the closest distance
between blocks 5 and 7 and blocks 5 and 9 respectively in the current deformed configuration.
This form of the command will work with the statics, transient, Modaltransient, and NITransient
solution cases.

USER OUTPUT

block block_11

compute nodal dist_to_surf_6 as closest distance to surface 6
END

HISTORY
dist_to_surf_ 6
END
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Input 9.5. Closest Nodal Distance

This will output nodal variable dist_to_surf_6 which at each node of block_11 is the distance
from that node to the closest part of block_6. For the statics, transient, and modaltransient
solution cases this will be a single value per node. For the modalranvib solution case this will be a
set of variables describing the statistical properties of that distance calculation.

9.5.4. Temporal Variable Statistics

These user output variables support the same use case as the Statistics file, with more
granular control over variable selection, and broader support for variables to be derived. These
user output variables are intended as a replacement for the Statistics file. The rules
governing output "frequency" are consistent with Outputs 9 , History 9.2 , and Frequency 9.3. In
transient and modaltransient simulations the number of steps skipped between writing output is
configured using the option nskip5.28.

Statistical user output values do not match values in the Statistics file. The cause of this is
the inclusion of the model’s initial state in user output calculations, and its exclusion from
Statistics file calculations. The OutputInitialTime parameter has no effect on either
calculation.

USER OUTPUT
compute element <string>namel as average|standard deviation|rms|min|max
< over time of element <string>varl

compute nodal <string>name2 as average|standard deviation|rms|min|max
< over time of nodal <string>var2
END

This user output block computes two new derived variables namel and name2 by applying an
operator over time to the built-in variables varl and var2. These derived outputs require time
histories, and are only tested for transient, modaltransient, and statics solution cases.

Temporal statistics calculations periodically output the specified statistical value of the chosen
field each point in the model has experienced up until that time, at each requested output step. To
avoid outputting intermediate steps and instead output only the variable statistic over all time, set
nskip in the corresponding history, frequency, or solution section to the final time step.
Note that other requested output quantities will also be affected by the nskip option. Sample
input is included in the examples section below.

Supported operators include minimum(min), maximum(max), mean estimate(average), the root
mean square (rms), and the standard deviation. Note that the standard deviation
operator uses Bessel’s correction in its calculations. That is, we define the variance as:

N

N
1 _ 1 Z _
m E (X,‘-X)Z, not ﬁ (x,'—X)Z.
i=1

i=1
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The source variables varl and var2 must be built-in variable request strings; “chaining” derived
variables together is not currently supported. Additionally, these variable request strings must
match variable requests in other contexts; Stress and Displacement are valid, but StressXX
and DispX are not.

Most built-in variable requests represent several variable fields in the results file. Therefore,
derived variable fields are defined by prepending the user string name1l to the built-in field names
StressXX, StressYY, StressZZ, ... The result in this case would be name1StressXX,
namelStressYY, namelStressZzZ, ...

Every built-in element request and most built-in nodal requests are available for use in derived
outputs.

Some specialized nodal requests are not currently supported for derived
outputs. For one example, variables derived from AcousticLighthill
will always report 0. This is a known deficiency which can be addressed
as needed.

9.5.4.1. Temporal Statistics Examples

The below input example writes three nodal variables RMSAccAccelX, RMSAccAccely,
RMSAccAccelZ which is the root-mean-squared acceleration components seen at each node over
time.

USER OUTPUT
compute nodal RMSAcc as rms over time of nodal accel
END

OUTPUT
AvgAcc
END

The following input snippets demonstrate how to output only the maximum over all time of
element von Mises stress at the final simulation time step.

SOLUTION HISTORY
Transient Nskip = 15030
Time_step = le-4 Block All
nsteps = 15030 Max_VM_Stress
END END

USER OUTPUT
Block all
Compute element Max_VM_Stress as Max Over Time of element vonMises
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END

9.5.5. Rotating Output Variables

USER OUTPUT
transform nodal |element|global variable <string>Variable to|from
< coordinate system <coordinate>|from_geometry as <string>Name
END

User outputs can also be used to rotate variables, including 2D and 3D stresses, into a given
coordinate system. This is similar to the Variable Transformation Command in Sierra/SM.
This is enabled for both vectors and tensors for element and nodal vars, and for global vectors.
The Variable here is defined the same way as in section 9.5.2. To is used for transforming
variables from global into a new coordinate system. From is used for transforming variables from
a given coordinate system into the global coordinate system. See section 6.6.1.3 for info on the
from_geometry option.

Below is an example where transform is used to rotate stresses and net forces:

USER OUTPUT
transform element variable VStress to coordinate system swap_XZ as
— transformS
transform nodal variable nodalStress to coordinate system swap_XZ as
< rotated_node_stress
transform global variable NetForce to coordinate system swap_XZ as
<— rotated_NetForce
END

OUTPUT
stress
stress=nodes
force
transformS
rotated_node_stress
rotated_NetForce
END

This will write rotated versions of all of the associated derived variable fields to outputs. For
shells, stress is transformed on a layer by layer basis. The "*" is used followed by the layer number
in this special case. An example of this is shown below, where the shell stress (typically in the
element-local coordinate system) is transformed into the global coordinate system.

USER OUTPUT
transform element variable SStress*1 from coordinate system
— from_geometry as global_sstress*1

443



transform element variable SStress*2 from coordinate system
<— from_geometry as global_sstress*2
transform element variable SStress*3 from coordinate system
— from_geometry as global_sstress*3
END

OUTPUT
stress
global_sstress*1
global_sstress*2
global_sstress*3
END

@—=mm

9.5.6. Analytic Function Output

Nodal, element, and global variables can also be defined based on the output of an analytic
function as follows:

Global Analytic Function Output is currently BETA release.
Enable with the “- -beta” command-line option.

USER OUTPUT
surface <list>(surface names/ids)
nodeset <list>(nodeset names/ids)
block <list>(block names/ids)
compute nodal <string>name as function <function>
compute element <string>name as function <function>
compute global <string>name as function <function>
END

where <function> refers to the function ID of a valid analytic function (section 4.10.9). The
analytic function computes a single value at each node or element. If the surface, block, or
nodeset option is combined with nodal function output, the function is only be evaluated at the
nodes of the corresponding mesh region, with a value of zero elsewhere in the mesh.

9.5.6.1. Total Pressure Example

FUNCTION totalPressure
type = analytic
expression variable scatteringPressure = nodal apressure
expression variable incidentPressure = nodal acousticIncident
evaluate expression = "scatteringPressure + incidentPressure"
END
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FUNCTION cavitationFlag
type = analytic
expression variable totalPressure = nodal totalPressure
evaluate expression = "totalPressure < ® ? 1 : 0"

END

USER OUTPUT
compute nodal total_pressure as function totalPressure
compute nodal cavFlag as function cavitationFlag

END

OUTPUT
total_pressure
cavFlag

END

For an acoustic scattering transient analysis this example computes a nodal field
total_pressure which is the summation of two other fields computed by Sierra/SD, the

scattering and acoustic pressure. Further if that total pressure is below zero it sets a cavitation flag

to “1” on the node, if the total pressure is positive then the cavitation flag would be “0”.

9.5.6.2. Displacement Magnitude Example

FUNCTION mag

type = analytic

expression variable dX = nodal dispX

expression variable dY = nodal dispY

expression variable dZ = nodal dispZ

evaluate expression = "sqrt(dX+2 + dY+2 + dz+A2)"
END

USER OUTPUT

nodeset 3

compute nodal dispMag as function mag
END

OUTPUT
dispMag
END

This output will compute at each node of nodeset 3 the magnitude of displacement and output it as

a nodal value.
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9.5.7. Statistics

For transient dynamics solutions only, summary statistical information may gathered and output
for the time history of variables listed in Table 9-6. We gather information about the mean, the
min/max, and the standard deviation. Data is gathered at each time step, independent of the
frequency of output (e.g. nskip is ignored).

Because this is summary data, it is not convenient to append this data to the file used for output of
the time history. Another file is generated with a . stat extension to store that data.

Statistical data requires two keywords for output. Both “statistics” and the keyword associated
with that output quantity must be selected. For example, to output statistics of the force, the
following output section is required.

OUTPUTS
statistics
force

END

As with output in general (section 9.1.1), users can define a custom statistical output file name via
the statistics block:

STATISTICS
database name = <string>
END

Keyword Section | Comment
Displacement | 9.7.1
Velocity 9.7.2
Acceleration 9.7.3

Force 9.8.5 | applied force
RHS 9.8.6 | Right-Hand Side vector at each load.
vonMises 9.7.20 | von Mises stress, supported for echo output only.

Table 9-6. — Supported Statistical Data types for Transient Dynamics. Selection of these quantities along
with “statistics” results in an addition Exodus file containing mean, min/max and standard deviation
data.

9.6. Output of Internal Variables

Output of Internal Variables is currently BETA release.
Enable with the “- -beta” command-line option.

A limited capability exists to write internal nodal variables to the Exodus output file.

The syntax is given below:
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OUTPUTS
node|nodal variables = <string>internal_name (as <string>output_name)

END

where internal_name is the name of the nodal field used internally (e.g., dispX for the
X-component of displacement), and output_name is an (optional) user-defined alias to use when
writing to file.

Alternatively, vector-valued variables may be referred to by the root name and a component. For
example, using internal_name := disp(X) would select the X-component of displacement.

Vector-valued variables like displacement can also use a shorthand notation for defining all
components at once. This is accomplished simply by replacing internal_name with the root
name. For example, nodal variables = disp as d would output all displacement fields
(stored internally as dispX, dispY,...) as dX, dY,....

As this is a beta capability it has some usability limitations. In most cases to properly output an
internal variable with a different name, it must also be output with the standard. For example to
output displacement in a Sierra/SM compatible field use the following

OUTPUTS

disp

nodal variables = disp as displacement_
END

This will output displacement information in SD default named fields dispX, dispY, and dispZ as
well as the same information to the fields ’displacement_x’, ’displacement_y’, ’displacement_z’.

Outputting to both locations is currently required to get the correct information populated.

9.7. Output of Simulation Results

Simulation results can determine over 50 different fields. The output syntax for each of the
quantities is described in this section.

9.7.1. Displacement

Option disp will output the displacements calculated at the nodes to the output Exodus file. The
output file has the following nodal variables.
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Variable | Description
dispX | X component of displacement
dispY | Y component of displacement
dispZ | Z component of displacement
rotX Rotation about X
rotY Rotation about Y
rotZ Rotation about Z

In addition, if the analysis involves complex variables (ceigen Section 5.19.3, frequency response
analysis such as ModalFrf or sa_eigen), then the imaginary vectors are also included. The
imaginary component of the vector has “imag” prefixed to the name. For example, the imaginary
component in the X direction is “imagDispX”.

9.7.2. Velocity

Option velocity will output the velocities at the nodes to the output Exodus file.

9.7.3. Acceleration

Option acceleration will output the accelerations at the nodes to the output Exodus file.

9.7.4. Rotational_displacement

Option rotational_displacement will output computed root mean squared (RMS) quantities
for rotational displacement in a random vibration analysis to the output file. In the frequency
section, it will output the corresponding Power Spectral Densities to the frequency file. (See
section 5.16).

9.7.5. Rotational _acceleration

Option rotational_acceleration will output computed root mean squared (RMS) quantities
for rotational acceleration in a random vibration analysis to the output file. In the frequency
section, it will output the corresponding Power Spectral Densities to the frequency file. (See
section 5.16).
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9.7.6. Constraint force

Option constraint_force will output the forces required to tie blocks together due to
multipoint constraints, RBE3s, Rbars, or rigid elements, including tied surfaces (see section 10.1)
and contact definition (section 10.2). Additionally, it will output the net constraint force on the
active degrees of freedom, and the net moment about the origin of constraint forces on the active
degrees of freedom. This output is currently only active for the static and transient solution cases
and for the GDSW solver.

9.7.7. Reaction Force

Option reaction_force will output the Dirichlet boundary reaction force vector to the output
Exodus file. Additionally, it will output the net reaction force on the active degrees of freedom,
and the net moment about the origin of reaction forces on the active degrees of freedom. This
output is currently only active for the static and transient solution cases and for the GDSW
solver.

9.7.8. EForce

Option eforce will output the element forces for line elements (such as beams and springs) to the
output Exodus file. Each two node, one-dimensional element will have 6 force entries for each
node, for 12 element forces per element, and an additional 3 variables describing the difference in
displacement across the element. Eforce results are output to the element local coordinate system
which is defined by the user in the block section using the coordinate parameter. If no coordinate
parameter is input, the global coordinate system will be used by default.

The element force is not a stress or a strain, and should not be used as such. If you want beam
stresses, you may want to mesh that portion of the structure either as a shell or a solid. Only
limited stress output is available for beams. EForce is used primarily to help understand the
behavior of nonlinear line elements such as the Joint2G element (see Section 7.23). The output is
the direct output of our internal force routine (which is a nonlinear routine). It can be confusing to
output these nonlinear forces in a linear analysis. !

Eforce variable names are different for each solution case. When requested in typical analyses,
such as statics, transient, or eigen, eforce produces the variables in Table 9-7. For FRF
solutions, “Imag” is prepended to the existing names 9-8. For modalranvib, only translational
forces are output, and are different between outputs and frequency files. In an outputs result file,

IConfusion arises because of the transformation to the element coordinate frame. For finite length elements, we
perform a transformation of the element coordinate frame based on the displacements. After the coordinate frame
is transformed, we express the element force in the new coordinate frame. This is done for both linear and nonlinear
analyses. The resulting element force is no longer linear in displacement. Zero length elements use the global
coordinate frame by default. Forces for zero length elements are linear in the displacement.
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you will see the RMS of the force in the translation directions 9-9. In frequency, the Spectral
Densities of the element force are represented by a Hermitian tensor at each frequency 9-10.

Variable Names
eforcel x
eforcel _y
eforcel z

emoment]_x
emomentl_y
emomentl z
eforce2_x
eforce2_y
eforce2_z
emoment2_x
emoment2_y
emoment2_z
e_dx
e_dy
e dz

Table 9-7. — Typical Output.
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Real Names

Imaginary Names

eforcel x
eforcel _y
eforcel z
emoment]l_x
emomentl_y
emomentl_z
eforce2_x
eforce2_y
eforce2_z
emoment2_x
emoment2_y
emoment2_z

Imageforcel_x
Imageforcel_y
Imageforcel_z
Imagemoment]_x
Imagemomentl _y
Imagemomentl_z
Imageforce2_x
Imageforce2_y
Imageforce2_z
Imagemoment2_x
Imagemoment2_y
Imagemoment2_z

e _dx Image_dx
e_dy Image_dy
e_dz Image_dz
Table 9-8. — FRF Output.
Real Names | Imaginary Names

eforceRMS_x
eforceRMS_y
eforceRMS _z

ImageforceRMS_x
ImageforceRMS_y
ImageforceRMS_z

Table 9-9. — ModalRanVib Exodus Output.

Real Names | Imaginary Names
eforce_xx Imageforce_xx
eforce_yy Imageforce_yy
eforce_zz Imageforce_zz
eforce_xy Imageforce_xy
eforce_yz Imageforce_yz
eforce_xz Imageforce_xz

Table 9-10. — ModalRanVib Frequency Output.

451




9.7.9. Line_Weld

Option Line_Weld outputs line-weld-specific outputs as described in Section 7.24). The outputs
include whether a given beam is in an active weld, and the force per unit length produced by the
weld

The force returned is in the element (not global) coordinate frame.

9.7.10. Relative_Disp

Option relative_disp in the outputs, history , and/or frequency section(s) will output the
relative displacement between the two nodes of 1-D elements in the model. That is, it will output
the difference in displacements across the 1-D element. Currently, relative_disp is only supported
for the Joint2G element type, and is not supported for FRF solutions. Relative rotations are not
available. For solutions other than modalranvib, including FRF, this data is also accessible
through eforce.

relative_disp is output in the element-local coordinate system if a coordinate system has been
defined for the Joint2G block, and in the global coordinate system otherwise. This is consistent
with eforce outputs, but differs from displacement outputs. Using the coordinate keyword in
the outputs , history, or frequency will not affect this output.

relative_disp is particularly useful for the modalranvib solution case, where Sierra/SD does not
typically calculate or output enough information to post-process the difference in displacement
between two points. The names of relative_disp outputs also change in modalranvib results. See
tables 9-11, 9-12, and 9-13.

Variable Names
RelDispX
RelDispY
RelDispZ

Table 9-11. — Typical Output.

Real Names | Imaginary Names
RelDispGxx | ImagRelDispGxx
RelDispGyy | ImagRelDispGyy
RelDispGzz | ImagRelDispGzz
RelDispGxy | ImagRelDispGxy
RelDispGyz | ImagRelDispGyz
RelDispGxz | ImagRelDispGxz

Table 9-12. — ModalRanVib Frequency Output.
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relative_disp outputs are available in PSD form if requested in the frequency section during
modalranvib (Table 9-12). Note that the diagonal relative_disp terms are output for both real
and imaginary components. Hermitian symmetry is assumed in the calculation of relative_disp
outputs, and incorrect results will be reported if this assumption is broken. Neither the input load,
nor the relative_disp output should have non-zero imaginary terms along the diagonal. That is,
ImagRelDispGxx, ImagRelDispGyy, and ImagRelDispGzz should all be zero. The warning
message “Correlation Matrix is negative” indicates you may have this problem.

Real Names Imaginary Names
RelDispRMSX | ImagRelDispRMSX
RelDispRMSY | ImagRelDispRMSY
RelDispRMSZ | ImagRelDispRMSZ

Table 9-13. — ModalRanVib Exodus Output.

relative_disp outputs are available in RMS form if requested in the outputs section during
modalranvib (Table 9-13). Only diagonal terms are reported. The imaginary diagonal terms are
set to 0.

9.7.11. Residuals

For most solution types, a linear solver is used to compute systems of the form Ax = b. For direct
serial solvers, these systems are typically solved to numerical precision. However, with iterative
solvers the solution is only approximate. Sometimes it is advantageous to evaluate the
performance of the solver. For example, regions with large residuals may be candidate areas for
mesh refinement, or may point to other mesh problems.

Eigen. For eigenvalues, the residual is (K — A;M)¢. The vector is not normalized by the norm of
¢, or any other quantity. A nodal residual work is also output. This is the product
T (K — 2;M)¢ summed to the nodes, i.e., on a given node we sum the contributing degrees
of freedom. Again, the value is not normalized. With mass normalized eigenvectors (which
do not have units of length), the units of the residual work are not energy, and the term may
well be negative. The residual is output for each mode.

Transient Dynamics. For transient analysis the residual reported is Au — b, where A is the
dynamics stiffness matrix defined in subsection Linear transient analysis section Solution
Procedures of the Theory Manual. A displacement-based Newmark-Beta integrator has
dynamic stiffness,

2 4
K+—C+—M.
At At
The residual is output at each time step.

In addition to the residual vector, the norm of the residual is output as a global variable.
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9.7.12. Tindex

It is occasionally useful to examine the residual after each iteration or solve. In the cases of
nonlinear transient or nonlinear statics analysis, there may be many solves per output. Because of
limitations in the output database format, it is difficult (or impossible) to intersperse the residuals
from each solve with the usual solution output. However, it is possible to select between the
standard time step and an “iteration time step”. Note that the Exodus database writes output for
each “time step”. It uses the step number as an index to the data, and only one such index is
supported. When we substitute the iteration number for the time step we can write the data
properly, but once iteration has completed, we may not write data using the other index (time step,
or mode number). Should that occur, we would have residuals from one iteration sharing the same
time axis index with transient data. The parameters for the option are listed in Table 9-14.

Keyword | Application
standard | use time step or mode number as index
iteration | use the iteration count as index

Table 9-14. — TIndex parameters.

OUTPUT

disp

residuals

Tindex=iteration // output on each iteration
END

Input 9.6. TIndex example

TIndex makes sense only in solutions that require multiple iterations per solve, such as nonlinear
solutions. In other solutions, it is ignored, and output is provided at the standard time step.

NOTE: TIndex is a debugging function. As such, we do minimal checks.
In some solutions, it might be possible to output data using both steps.

9.7.13. Pressure

Option pressure in the outputs selects applied pressure output to the Exodus file as both a sideset
variable and a new nodeset variable. The addition of nodeset pressure output enables restarts
using the output pressure as an input load. For most applications this also provides a useful tool
for checking input loads.
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9.7.14. NPressure

Option npressure in the outputs will output the nodal pressure to the output Exodus file as a
nodal variable. This output is only available for solutions that introduce nodal pressure (currently
only the random pressure loading).

9.7.15. APressure

Option APressure in the outputs will output the acoustic pressure to the output Exodus file as a
nodal variable. For purely acoustic elements, this will result in one degree of freedom per node.
At the wetted interface, the nodes of node-face interactions inherit the degrees of freedom from
the face, this will result in four degrees of freedom per node in the output Exodus file.

9.7.16. acousticlncident

Option acousticIncident outputs the incident pressure from scattering loads. This pressure is for
visualization purposes only.

9.7.17. acousticHydrostatic

Option acousticHydrostatic outputs the hydrostatic pressure defined for acoustic materials. This
hydrostatic pressure is defined the commands hydrostatic_gravity and free_surface_point in the
block input and primarily affects cavitation computations.

9.7.18. APartVel

Option APartVel in the outputs will output the acoustic particle velocity to the output Exodus
file as an element variable. This is the velocity of the fluid particles. It is computed in Sierra/SD
as the gradient of the velocity potential. For purely acoustic elements, this will result in three
degrees of freedom per element.
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9.7.19. Strain

Option strain will output the strains for all the elements to the output Exodus file. The total
strain €, elastic strain €€, and thermal strain €? are defined by:

1 T
€ =3 (Vu +Vu ) 9.7.1)
€ =¢ — €¥ (9.7.2)
€} =aAT (9.7.3)

They can be requested separately by using the options
* strain: €

¢ elastic_strain: €

o thermal_strain: €.

Strains will be output for shell elements. The output variable names start SStrain. Shell elements
output engineering strain. E.g., shells output €,y, €y, 7y, Where 7, = 2¢,,. This is distinct from
solid elements which output strain as €y, €yy, €;;, €y, €y, €. This difference in strain definition
means that for an equivalent deformation a shell element will report twice the numerical shear
strain that a solid element will report even though the two shear states are identical.

SStrainX1, SStrainY 1, SStrainXY1 - top layer of the shell
SStrainX?2, SStrainY2, SStrainXY2 - mid-plane of the shell
SStrainX3, SStrainY3, SStrainXY3 - bottom layer of the shell

For elastic strain,
SElasticStrainX1, SElasticStrainY 1, SElasticStrainXY1 - top layer of the shell
SElasticStrainX?2, SElasticStrainY?2, SElasticStrainXY?2 - mid-plane of the shell
SElasticStrainX3, SElasticStrainY 3, SElasticStrainXY3 - bottom layer of the shell
and for thermal strains we have

SThermalStrainX1, SThermalStrainY 1, SThermalStrainXY1 - fop layer of the shell
SThermalStrainX2, SThermalStrainY2, SThermalStrainXY?2 - mid-plane of the shell
SThermalStrainX3, SThermalStrainY3, SThermalStrainXY3 - bottom layer of the shell

Strains are evaluated in the local element coordinate system. The local element coordinate system
and also the ordering of the layers both depend on the ordering of the element’s nodes.

The following strains will be output for volume elements:

VStrainX, VStrainY, VStrainZ,
VStrainYZ, VStrainXZ, VStrainXY

Likewise, for elastic and thermal strains, we have
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VElasticStrainX, VElasticStrainY, VElasticStrainZ,
VElasticStrainYZ, VElasticStrainXZ, VElasticStrainXY
VThermalStrainX, VThermalStrainY, VThermalStrainZzZ,
VThermalStrainYZ, VThermalStrainXZ, VThermalStrainXY

Note that these strains are in the global coordinate system, not the local coordinate system.

For more information on stress/strain recovery, see Section 9.7.22.

9.7.19.1. Strain = GP

An output specification of strain = GP reports strain at the Gauss points of volumetric
elements. For more information, see section 9.7.20.6.

9.7.20. Stress

Option stress will output the stresses for all supported elements to the output Exodus file.

This is the Cauchy stress 0€ = C : €°; see equation 9.7.2.

9.7.20.1.  Shell Stresses

The following stresses will be output for shell elements.

SStressX1, SStressXY 1, SStressXZ1, SStressY 1, SStressYZ1, SStressZ1, SvonMisesl - top layer of the shell
SStressX2, SStressXY?2, SStressXZ.2, SStressY?2, SStressYZ2, SStressZ2, SvonMises2 - mid-plane of the shel
SStressX3, SStressXY3, SStressXZ3, SStressY3, SStressYZ3, SStressZ3, SvonMises3 - bottom layer of the s}

Note that the top layer of the shell is determined by the ordering of the
nodes of the shell, and can be output by using the eorient output options
(see section 9.8.4). Also, the stresses are in the local (XY) element
coordinate system defined by the ordering of the nodes.
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9.7.20.2. Volume Stresses

For volume elements, the stress is always output in the global coordinate system, not the local
coordinate system. The following stresses will be output for volume elements:

Variable Value
VStressX Oxx
VStressY Tyy
VStressZ O,
VStressYZ Oy;
VStressXZ Oz
VStressXY Oxy

VonMises von Mises stress

For more information on stress/strain recovery, see Section 9.7.22.

9.7.20.3.  Principal Stresses

Option principal_stresses will output the three principal stress vectors and magnitudes in
order of descending signed value. Principal_stresses are only supported for volume
elements.

The magnitudes are output as:
Max_Principal_Stress, Intermediate_Principal_Stress, Min_Principal_Stress
The eigenvectors are output as:

Max_Principal_Stress_x, Intermediate_Principal_Stress_x, Min_Principal_Stress_x,
Max_Principal_Stress_y, Intermediate_Principal_Stress_y, Min_Principal_Stress_y,
Max_Principal_Stress_z, Intermediate_Principal_Stress_z, Min_Principal_Stress_z
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9.7.20.4. Von Mises stress

Option vonMises will output the von Mises stress for all the elements to the output Exodus file.
For volume elements, the output will be the von Mises stress of the element as VonMises. Surface
elements define stresses on the top, center and bottom layers. The von Mises stress is reported in
the output Exodus file at each of the 3 layers (SVonMises#) as well as the maximum over all
layers (VonMises). See section 9.7.25 for more information on shell stress recovery. For beam
elements, the von Mises stress is reported at each stress recovery point (VonMises_SRP#), as well
as a maximum over all stress recovery points (VonMises). See section 9.7.26 for more
information on beam stress recovery.

Note that the von Mises stress is computed and output as a portion of the output if full stress
recovery is requested. This option provides a mechanism for reducing output. Thus, if full stress
output is requested, then the vonMises will provide no additional output. In other words,
specifying both vonMises and stress in the outputs section is redundant, but does not result in
an error.

9.7.20.5. Signed von Mises Stress

Option Signed_VonMises will output the magnitude of von Mises stress, given the sign of the
principal stress with the largest magnitude. Signed_VonMises is only supported for volume
elements.

The output variable is:

Signed_VonMises

9.7.20.6. Stress = GP

An output specification of Stress = GP reports stress at the Gauss points of volumetric
elements. It is currently only available for Hex20, Tet10, Wedgel5, and Pyramid13 elements.
Note that for a Hex20 there are 27 Gauss points with 6 stresses, for 162 outputs per element.

Stress components are labeled as SIGMA_XX_etype_GP%d, where %d is replaced with the ijk
numbering scheme detailed below, and _etype is replaced with the element type (e.g. _hex20 or
_tetl®).

The Gauss point ordering assigns each component of a given gauss point a value based on its
relative position vs. the other gauss points in that component’s direction.

For example, a hex with 2 points in each direction (-A, +A) would have the following relationship
between labels and parametric coords:
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(-A, -A, -A) > "000"
(+A, -A, -A) -> "100"
(+A, +A, -A) -> "110"
(-A, +A, -A) -> "010"
(-A, -A, +A) > "001"
(+A, -A, +A) -> "101"
(+A, +A, +A) -> "111"
(-A, +A, +A) -> "011"

Likewise, a tet with 2 unique gauss point values a & b, with b>a would have the following
labels:

(b, a, a) -> "100"
(a, b, a) -> "010"
(a, a, b) -> "001"
(a, a, a) -> "000"

The gauss point labels for a Hex20 element is shown below.
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number labelsuffix | X Y Z
1 111 0O 0 O
2 112 0O 0 A
3 110 0O 0 -A
4 121 0O A O
5 122 0O A A
6 120 0O A -A
7 101 0O -A O
8 102 0 -A A
9 100 0 -A -A

10 211 A 0 O
11 212 A 0 A
12 210 A 0 -A
13 221 A A 0
14 222 A A A
15 220 A A -A
16 201 A -A 0
17 202 A -A A
18 200 A -A -A
19 011 A0 0
20 012 A0 A
21 010 A0 -A
22 021 AA O
23 022 AA A
24 020 AA A
25 001 A A0
26 002 A A A
27 000 A A A

Table 9-15. — Hex20 Gauss Point Locations. The constant A=0.77459666924148. The unit element is
2x2x2, with a volume of 8 cubic units.
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9.7.20.7. Stress = Nodes

Stress = Nodes is currently BETA release.

Enable with the “- -beta” command-line option. An output
specification of Stress = Nodes computes a set of nodal stress fields nodalStressX,
nodalStressY, nodalStressZ, nodalStressXY, nodalStressYZ, nodalStressXZ. These
nodal fields are computed using an L, projection of the element Gauss point field data, allowing
one to visualize field variation within an element. Additionally, von Mises (section 9.7.20.4) and
principal stresses (section 9.7.20.3) will be output at each node.

The nodal stress fields are currently available only for Hex8, Hex20, Wedge15, Tet10, CuTet10,
and Pyramid13 element types. Tet10 and CuTet10 elements project stress to the element vertices
using the shape functions of a lower-order Tet4 element formulation. The edge nodes are
subsequently assigned averaged values from connected vertices to avoid intrinsic interface
discontinuities. The nodal stress fields will be zero on any element types that are not currently
supported.

The L, projection requires solving a linear system of equations for each output step. The cost of
formulating and solving this system of equations may impact run time. There are currently no
user-configurable solver options to control the projection linear solver.

Diagnostic information on the projection linear solve statistics (number of iterations, final solve
residual) may be requested using the debug option in the ECHO section.

9.7.21. Vrms

Option vrms will output computed root mean squared (RMS) quantities from a random vibration
analysis. These quantities are written to a separate output file. Quantities output include the RMS
displacement, acceleration and von Mises stress. With the SVD option, the D matrix terms>>
which contribute to the von Mises stress are also output (see Section 5.16).

9.7.22. Stresses and Strains

Stress and strain values at element centroids are available. Solid element stress is evaluated in the
global or basic frame. However, shell element stress and strain are evaluated in element space.

The total strain (9.7.1), elastic strain (9.7.2), and thermal strain (9.7.3) can all be requested
separately; see Section 9.7.19. The stress reported is always the Cauchy stress 0¢ = C : €°; see
Section 9.7.20.
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9.7.23. Stress/Strain Truth Table

The Exodus data format provides an element truth table. Element variables are defined globally
(for all element blocks), but output data is stored only for those blocks that have entries in the truth
table. Thus, in Sierra/SD if stress output is requested (see Section 9.7.20), then stress variables
are defined for solids and shells. ! Space is allocated in the output Exodus file, and data is written
only if it is applicable. Table 9-16 illustrates this for stresses. A similar table can be generated for
strains. Note that volume stresses always start with “V”” and surface stresses start with “S”. Note

that “vonMises” is the only entry that applies to both solids and shells.

Table 9-16. — Element Stress Truth Table.

Variable Element
Name Solid Shell Beam
SStressX1 aioP
SStressY1 ;;p
SStressXY1 7
SvonMises1 alop
SStressX?2 o mid
SStressY?2 0';";"
SStressXY2 i
SvonMises2 g mid
SStressX3 grDottom
SStressY3 aportom
SStressXY3 Toonom
SvonMises3 grhottom
VStressX Ox
VStressY Tyy
VStressZ 0,
VStressYZ Oyz
VStressXZ Oy
VStressXY Oxy
VonMises Oy | max(oym,)
Signed_VonMises +0um
Max_Principal_Stress o]l
Intermediate_Principal_Stress | ||os||
Min_Principal_Stress o ]|
Max_Principal_Stress_x Oy
Max_Principal_Stress_y Oly
Max_Principal_Stress_z o1z
Intermediate_Principal_Stress_x | o7y
Intermediate_Principal_Stress_y | o,

I'The variables are defined for solids and shells even if only one or the other occurs in the model
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Intermediate_Principal_Stress_z | o7,
Min_Principal_Stress_x O3y
Min_Principal_Stress_y T3y
Min_Principal_Stress_z 03,

ElemForce forces

9.7.24. Solid Elements

If stresses are requested, solid elements will output the values of stress at the element centroid.
The values reported are the engineering stresses in the global coordinate system.

If principal stresses are requested, solid elements will output the three principal stress vectors and
magnitudes in order of descending signed value. The vectors are of unit length, defined in the
global coordinate system.

9.7.25. Shell Elements

Shell elements introduce two complexities to stress/strain recovery. First, it is often important to
recover data from the virtual surfaces of the elements (where the stresses are highest). This
requires data recovery at the top, mid-plane and bottom surfaces. Second, there are no stresses or
strains normal to the surface. Thus, stresses are naturally reported in the surface of the element.
This can also introduce confusion about the in-plane coordinate frames. As shown in Figure 9-1,
the stresses and strains are recovered in the physical space x;, x, coordinate frame, which has been
mapped from the 71, 77, frame in element space. Note that the direction of the x| vector depends
on the ordering of the mesh, and may vary from element to element in the same surface mesh.
Element orientation vectors may be output with the eorient keyword described in section 9.8.4.
von Mises stress, an invariant, is independent of the element orientation.

Stress recovery for the TriaShell is interesting. A TriaShell is a shell element created by
combining Allman’s triangle’ with a DKT element.® Its stress vector & = (o, oy, a'xy)T is the
sum of stresses 7, for Allman’s triangle and &y, for the DKT element,

5- = 5‘a, + a-dk[. (974)

Allman’s triangle represents the membrane dof, i.e., (u, v, 6,). If the element lies in the x-y plane,
then 8, and By are rotations of the normal to the undeformed middle surface in the x-z and y-z
planes, respectively.
Bx
{«} = By.y (9.7.5)
ﬂx,y + IBy,x

{€} is the strain vector, and [ D] is the elasticity matrix for Allman’s triangle. The stresses through
the three surfaces of the shell element are the same. Therefore,

G = [D]{e€}. (9.7.6)
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Figure 9-1. — Tria3 Stress Recovery. Stresses are output in the orthogonal x;, x, coordinate frame in
physical space, which has been mapped from the 7, 1, frame in element space.

physical
triangle

X2

element
triangle

2

—_—

m

For the DKT element, z is the coordinate direction normal to the element, with z = O representing
the mid-plane. [D] is the elasticity matrix.

Take = z[D]{«} 9.7.7)

O ar: does vary with the thickness of the element. Note, the above stress equations are written with
respect to a local element coordinate system as shown in Figure 9-1.

Combining the stress vectors from Allman’s triangle and the DKT element above yields the stress
vector for the element which is output in the local element frame.

For composite elements (such as QuadT, Quad8T and Tria6), the stresses are computed from the
underlying Tria3 element and then transformed to the element orientation of the composite
element. For the quad elements, the stress of the two central triangles is averaged. Figures 7-1,
7-2 and 7-3 describe these composite elements.

Stress output for HexShells (section 7.10) is calculated for a standard
Hex8 element, even when multiple layers are defined.

9.7.26. Beam Elements

Reporting stresses for line type elements (Beams, Rods, Springs, etc) is even more problematic
than it is for shells. For many of these elements an axial stress could be reported. But, for beam
elements that stress could not include the effects of beam bending unless details of the beam cross
section were available. For some elements (such as a spring) no concept of stress is even correct.
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As a consequence, we do not report stresses for most line type elements. However, some recovery
may be obtained using the element force output (see Section 9.7.8).

For Beam2, Nbeam, and TiBeam elements (sections 7.11 to 7.13), axial stress will be reported if
stress is requested in the outputs section. Additionally, stress recovery points may be requested
using the stress recovery point keyword. For each stress recovery point, the bending and 2 shear
stresses will be reported (see input 9.7). Each stress recovery point represents a point on the beam
cross-section and is defined by a pair of offsets in physical coordinates from the neutral axis of the
beam. The von Mises stress at each stress recovery point is reported, as well as the maximum von
Mises stress over all the stress recovery points. If no stress recovery points are requested, von
Mises is taken to be absolute value of the axial stress.

BLOCK beam_block
material=1
beam2
Area=8
I1=2
I2=10
=7
stress recovery point

(=]
(O, NV, |

END

Input 9.7. Beam Stress Recovery Points Example

9.7.27. Surface Projection of Element Variables

Element output such as stress, strain or temperature is evaluated at the element centroid.
Hexahedra, tetrahedra and prisms support the projection of some element quantities to element
faces. We do this by sampling the gradients of the element shape functions at the local coordinates
associated with that face’s centroid.

Notes:
1. Surface Projection is triggered by the output_sideset_data parameters flag.
2. Surface Projection results are stored as sideset variables on the Exodus mesh.

3. Only some outputs have been enabled for surface projection, most notably the strain tensor,
stress tensor, and von Mises stress.

4. Due to the nature of bubble shape functions when sampled away from the element centroid,
the default Hex8 element (Hex8b) will report skewed surface projection results, and is not
expected to give the same benefit as other volumetric elements, given the same
displacement field.
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Figure 9-2. — Convergence of maximum stress at element centroids and surfaces.

5. Even when using the bubble hex element, surface projection is expected to give a more
accurate representation of maximum stress, given that the maximum stress occurs on a
sideset figure 9-2.

9.7.28. Ddamout

Table 9-17 lists the nodal and element variables that are output when the ddamout keyword is
selected in the OUTPUTS or HISTORY sections. Element variables will be skipped when writing
to the history file.

In Ddam analysis some of this data is also written to text files.

NRL sums of variables are calculated across modes with the equation:

Where:
R;, 1s the maximum absolute value at location i for all modes.

R;}, is the value at location i/ and mode b.
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Table 9-17. — Variables that are output from DDAM analysis.

Option data type | Description
DDAM_MDISP nodal modal displacements
DDAM_MVEL nodal modal velocities
DDAM_MACC nodal modal accelerations
DDAM_MFOR nodal modal forces
DDAM_NRL_SDISP nodal nrl-summed displacements
DDAM_NRL_SVEL nodal nrl-summed velocities
DDAM_NRL_SACC nodal nrl-summed accelerations
DDAM_NRL_SFOR nodal nrl-summed forces
DDAM_VStress element | modal volumetric stresses (tensor values)

see sections 9.7.20, 9.7.22 and 9.7.24
DDAM_NRL_SUM_ VStress* element nrl-summed volumetric stresses
DDAM_SStress* element | modal surface stresses (tensor values)

at each of 3 shell layers

see sections 9.7.20, 9.7.22 and 9.7.25
DDAM_NRL_SUM_SStress* element nrl-summed surface stresses
DDAM_axialStress element | modal axial stress (1D only)

see sections 9.7.20, 9.7.22 and 9.7.26
DDAM_NRL_SUM._ axialStress element | nrl-summed axial stress (1D only)
DDAM_bendingStress* element | modal bending stress (1D only)

at each stress recovery point

see sections 9.7.20, 9.7.22 and 9.7.26
DDAM_NRL_SUM_bendingStress* element nrl-summed bending stress
DDAM_shear Stress* element | modal shear stress (1D only)

2 shear directions at each stress recovery point

see sections 9.7.20, 9.7.22 and 9.7.26
DDAM_NRL_SUM_shear Stress* element nrl-summed shear stress
DDAM_MVMSTR element | modal von Mises stress

see section 9.7.20.4
DDAM_NRL_SVMSTR element | nrl-summed von Mises stress
DDAM_HYDROSTATIC element | modal hydrostatic stress (3D only)
DDAM_NRL_SUM_HYDROSTATIC element | nrl-summed hydrostatic stress
DDAM_MaxShear element | modal max shear stress (3D only)
DDAM_NRL_SUM_DDAM_MaxShear | element nrl-summed max shear stress
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N is the number of modes.
Finally, we note a couple of additional details for output of DDAM data.

* In parallel runs, the text file output will not include nodal variables, since that data would
not be usable in that form. Instead, that data could be written to the Exodus file with the
ddamout keyword.

* History output of DDAM data will only write the nodal variables, not the element variables.
Element variable history output for DDAM analysis is currently not in place.

9.7.29. Temperature

The Temperature keyword is a single keyword that can be used to trigger Exodus output of
element temperature at the centroid. Element temperature can either be read in as input
temperature or calculated from energy deposition. The element centroid temperature can
originate from the reference or block temperature, and the centroid, nodal or Gauss point Exodus
data. If temperature is specified in multiple places, the order of precedence is block temperature,
nodal temperature, centroid temperature, and finally Gauss point temperature. Note, nodal and
Gauss point temperatures are later interpolated to element centroid temperatures that are used for
calculation.

9.7.29.1. Voltage and Charge

The voltage keyword is a single keyword that can be used to trigger Exodus output of the nodal
voltages for electro-mechanical coupled models. The nodal_charge keyword is a single keyword
that can be used to trigger Exodus output of the applied nodal charges.

9.7.29.2. Volume

Keyword Volume selects Exodus output of element volume in the undeformed state. Volume is
the integral of shape functions for solid elements. For shell elements the volume is the area times
the thickness of the elements. For bar and beam elements the volume is length times the
cross-sectional area of the element.

9.7.30. Energy

Option energy will place strain energies and strain energy density in the output Exodus file. Note
that the current implementation of strain energies requires updating the element stiffness matrix,
which can be expensive.
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9.7.30.1. GEnergies

Option GEnergies in either the echo or outputs will trigger computation of global energy sums
for the results or output Exodus file, respectively.

strain energy The strain energy is computed from u’ Ku/2 where u is the displacement and K is
the current estimate of the tangent stiffness matrix.

kinetic energy Computed as v/’ Mv/2. Here v is the velocity and M is the mass matrix.

work As a particle moves along x(7) in the force field F, it does work

x(1)
W(t) = /(0) F(x)dx
:‘/tF(T))'C(T)dT
0

The simplest possible approximation is used,
n
W, ~ D" Fuit.
i=0

Integral approximation errors may introduce inconsistencies with the other energies. For the
outputs case, the total energy is written out at each time step.

Strain energy calculation may not be complete for nonlinear solutions
with linear viscoelastic materials.

When used in statics solutions, GEnergies only currently works with
echo, not results output.

The strain energy and work are currently not computed correctly in
X models with non-zero displacement, velocity, or acceleration boundary
conditions.
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9.7.31. Globals

Option Globals in the outputs section will ensure that any global data is output, even if no other
outputs are requested. Without this option (and with an empty output block), no output file would
be written. If no global data is defined for a given solution type, or if any other outputs are
requested, this option will have no effect. This option is also available for history, frequency, and
statistics output, and behaves similarly.

The globals option does not actually trigger any global out-
puts. Instead, it simply ensures that default global fields (e.g.
EigenFrequency, EigenVectScale, and ModeNumber for eigen) will
still be output in the absence of other output requests such as displace-
ment.

9.7.32. Block_Energies

Option block_energies in the echo or outputs will trigger block-wise energy sums for the results
or output Exodus file, respectively. The energy computations are done as described in 9.7.30.1,
where the displacement and velocity vectors have been restricted to the element block. Kinetic
and strain energies are computed. Global variables in the Exodus file are “KineticEnergy_" and
“StrainEnergy_" with the block name appended.

9.7.33. Mesh_Error

The mesh_error keyword causes mesh discretization error metrics to be computed. These are
computed as output quantities, but the overhead associated with the metrics is not negligible.
Mesh discretization quantities depend upon the solution type, and are not available for all
solutions. Output is typically available as element quantities (usually in the mesherr field). For
some mesh discretization errors, a global quantity is also output. See [66] for a detailed
description of the MeshErr calculation.

Output | Description
ErrExplicitLambda | Relative error in A.
ErrExplicitFreq | Frequency error estimate (Hz)

We note that for eigenvalue analysis, relative errors are reported for the eigenvalue when using the
mesh_error keyword. Thus, for a given eigenvalue A, the reported error is

Ap—A
ErrExplicitLambda = h

(9.7.8)
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This is more convenient since the analyst does not have to divide by the eigenvalues to see the
percent error. The global variable ErrExplicitFreq provides an absolute estimate (useful in
plots for example).

The error (R) for a single element (K) is given as

1
Ri(un, 01) = V - o (up) + Oppuin + Z SR (9.7.9)
7

where 6 is the eigenvalue, p is the density, and u is the displacement for mode /. Rp is the error
on a single face
Rp(up) = Jr(NF - o (up)) (9.7.10)

where Jr is the jump of the stress across the element boundary in the direction of the element
normal. Then, the global error estimate is written as:

h2 hr
MeshErr = —X  J|IRkI]? + IR ¢||2 (9.7.11)
Zel psz,min Zf: PdF,min /

where / is the element length, p is the element order, and d is the maximum eigenvalue of the
element or face.

9.7.34. MFile

Option MFile instructs Sierra/SD to output many MFiles including Ksrr.m, Mssr.m in the
standard format 9.4. A partial index of the files written using this option is provided in Table 9-18.
For a model with a large numbers of elements, the MATLAB files are also large in size. Binary
MATLAB output is no longer supported.

MATLAB Output Example As an example, consider obtaining the Y component stiffness matrix
diagonal entry of global node 77. The maps may be used as follows.

 Search through xxx_gid.m to find the global node number 77. Call index at which the node
is found is inode.

* Calculate the GSet index, which in this case is igset = (inode *9) + 2. The 9 is for 9-DOFs
per node. The 2 is for Y being the second DOF of the nine (X, Y, Z, RotX, RotY, RotZ,

Acoustic, Voltage, Temperature.)
* Lookup the Aset index, iaset = ASetmap(igset)

* If iaset is zero, then there is no defined stiffness matrix diagonal (could be an undefined
DOF, or a fixed DOF.) Otherwise, the stiffness diagonal is kaa(iaset,iaset).

OUTPUTS

mfile
constraint_info
END
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Table 9-18. — Data Files Written Using the MFile Option.

| Filename | Description
Stiff.m Unreduced stiffness matrix including all
active dofs
Kssr.m Reduced stiffness matrix
Kgeomssr.m Geometric stiffness matrix
Mass.m Unreduced mass matrix
Mssr.m Reduced mass matrix
LumpedMass.m | unreduced lumped mass matrix
xxx_gid.m global IDs of the nodes

ASetmap_a.m

Map to convert from G-set to A-set
The right-hand side is the equation number.
The left-hand index is 9*(node index)+coordinate

Dampr.m

unreduced damping matrix (real components)

Dampi.m

unreduced damping matrix (imaginary components)

xxx_accelN.m

G-set acceleration output of step N

xxx_accel_aN.m

A-set acceleration output of step N

xxx_afN.m

G-set applied force output of step N

xxx_af aN.m

A-set applied force output of step N

xxx_dispNN.m

G-set displacement output of step N

xxx_disp_aN.m

A-set displacement output of step N

xxx_presN.m

G-set nodal applied pressure of step N

xxx_pres_aN.m

A-set nodal applied pressure of step N

xxx_velocN.m

G-set velocity output of step N

xxx_veloc_aN.m

A-set velocity output of step N

modal_amp.m

modaltransient output of mode amplitude vs time

* Above the xxx refers to the input file name root.

* G-set output has dimension 9 (number of nodes).

Sierra/SD adheres to the standard MATLAB conventions 9.4.

Some solution methods will not write all files. For example,
there are no mass matrices output in the solution of statics.
Generally, matrices are output in sparse symmetric row format.

The 1 to N node ordering of the input Exodus file defines the
ASetMap. Output file ordering may be different if there is a
node order map.
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Outputs % MATLAB
mfile CT = Constraints();
end GsetDofForRow = GsetDofForRow();
N = size(GsetDofForRow, 1);
C=CT,;

p = GsetDofForRow + ones(N,1);

! !

% SPC Included % SPC Eliminated

L = Stiff; L = Kcsr;

K=L+tril(L,-1); K= L+tril(L-1);

u =5d_Disp1; u_a=S5d_Disp_at;

active_dof =ASetMap_pre_mpc; aset ={\S~3%hn7)ap.g

ug = u(active_dof(p)); ug = u(aset(p));
assert(norm(C*ug) < 1.e-12) assert( norm(C*ug_a) < 1.e-12);

Figure 9-3. — In models with constraints, due to a contact or tied data input deck section for example,
the MFile output includes the constraint matrix. This figure describes how to use it for a serial run

Input 9.8. MFile output of constraints matrices

Outputs % MATLAB

mfile CT = Constraints();

Constraint _info GsetDofForRow = GsetDofForRow();

end N = size(GsetDofForRow, 1);
- Cc=

p = GsetDofForRow + ones(N,1);

! !

% SPC Included % SPC Eliminated
L = Stiff; L =Kesr;
K=L+tril(L,-1); K= L+ tril(L,-1);
u=Sd_Disp1; u_a=Sd_Disp_al;

etMap_pre_mpg Sl o)
ug = u(active_dof(p)); ug = u(aset(p));

Figure 9-4. — In model with constraints, if both mfile and constraint info output are selected, then in
addition, the constraints on the x degrees of freedom are also listed.

9.7.35. Maa

Option Maa selects the analysis-set mass matrix (if it exists) for output to the file Maa .m as usual
94.

9.7.36. Kaa

Option Kaa will output the analysis-set stiffness matrix to a file named Kaa.m as usual 9.4.

9.7.37. Faa

Option faa will output the analysis-set force vector (if it exists) to a file named Faa.m. following
the standard convention 9.4.
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9.7.38. MPhi

Option MPhi triggers computation and output of the mass matrix product M ® to the Exodus file
for the mode shapes, ®, computed in the previous modal solution. MPhi is only implemented for
the modal solution case. A consistent mass matrix is used. Mass matrix output is explained in
Section 9.7.35. Like the mode shapes, the mass matrix is defined only on the analysis-set dofs. An
ASetMap is also provided. The M ® vanishes on fixed dofs. The names of the different dofs at a
node are specified in Table 9.7.38.

MPhi Variable Names
MPhi_X (x translation)
MPhi_Y (y translation)
MPhi_Z. (z translation)
MPhi_RX (x rotation)
MPhi_RY (y rotation)
MPhi_RZ (z rotation)
MPhi_A (acoustic)
MPhi_V (voltage)
MPhi_T (temperature)

9.7.39. Rainflow Cycle Counting

Option rainflow triggers the rainflow cycle counter to track stress cycles encountered by each
element over time. Rainflow relies on Signed_VonMises to convert the stress tensor to a scalar
signal, and is intended as a preprocessing step to time domain fatigue calculations. Rainflow is
only supported for volume elements, and only in transient analyses.

The output variables are:
NumCycles, LastCycleAmplitude, LastCyclePeak

These outputs contain insufficient information to be useful on their own except in simple
verification exercises. Rainflow is intended to be a silent dependency of fatigue, rather than a
standalone output option.

9.7.40. Fatigue Damage

Option fatigue will output a damage estimate for each element using the stress history of that
element. This process is supported for transient solutions and for modal random vibration, but in
very different ways.
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In a transient analysis, fatigue damage is calculated using stress cycles identified by the
rainflow algorithm, and applying those cycles to the Walker damage function:

logio(N) = Ay + Az % 1og10(Smax * (1 = R)A3 —Ay)

Where S, 1s the peak stress of the cycle, S, is the minimum Stress of the cycle, and
R = Syin/Smax- The number of cycles to failure N is then related to damage D by:

D=1/N

Ay, Ay, Az, and A4 are material constants. Note that a cycle is ignored if S, <= 0 or
Smax * (1 = R)A3 <= Ay, because purely compressive cycles are assumed to cause no damage, and
because cycles below the endurance limit causes no damage.

The output variable is:

Damage

In modal random vibration, fatigue is its own solution case. See section 5.11 for more details.
The output variables are:

NarrowBandDamageRate, WirschingDamageRate, ZeroCrossingRate,
PeakFrequency, Damage, Vrms

9.7.41. MLumped

Option MLumped will output the lumped mass matrix to the Exodus mesh as a nodal variable.
MLumped is only implemented for the Eigen solution case. The lumped mass output is based on
the analysis-set reduced mass matrix. Thus, mass on fixed degrees of freedom will be zero.

MLumped Variable Names
M_X (x translation)
M_Y (y translation)
M_Z (z translation)
M_RX (x rotation)
M_RY (y rotation)
M_RZ (z rotation)

M_A (acoustic)
M_V (voltage)
M_T (temperature)
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9.8. Output of input for checks

Core input fields can be output for sanity checks: forces 9.8.5, materials 9.8.10, user-defined
material direction 9.8.11, and geometry-defined element orientations 9.8.4. Diagnostics are
provided for elements 9.8.2, 9.8.3, assembled matrix diagonals 9.8.8 9.8.7 linear system
right-hand sides 9.8.6 and constraints 9.8.1. Finally Line Sample 9.8.9 returns input field values
along a user specified line.

9.8.1. Constraint _Info

Linear system solvers are sensitive to redundant or inconsistent constraints. The option
constraint_info selects nodal constraint information that is useful in preparing models with
tied surfaces or other types of multipoint constraints. The Gap Removal solution case section 5.32
is too, and they are often used together.

Constraint information has several fields.

MPC_Status Indicates if a given node is involved in any MPC equation. A value of *1’ indicates
the node is used in at least one equation, "0’ otherwise.

MPC_Touched Indicates how many times a given node shows in MPC equations.

Node_Face MPC_Count For only node-face contact constraints, this indicates how many times
that a node is used as the node of a node on face constraint. A value greater than one can be
problematic as a given node can only be correctly tied to a single face without introducing
over-constraint.

Node_Face MPC_Redundancy For only node-face contact constraints this highlights nodes
that may be over-constrained. Pay attention to values greater than one. The
Node_Face_MPC_Redundancy is typically one less than Node_Face_MPC_Count unless
there are more than 3 independent constraints for a specific sideset pair, as may occur if a
sideset pair is used in both a tied constraint and a slip contact, or Tied Joint.

Node_Face MPC_Gap indicates the distance the node of a node-face constraint must be moved
to be placed on the face. Many problems with constraints stem from surfaces that do not
properly match up geometrically.

Node_Face MPC_Both_Node_and_Face For node-face constraints only this indicates if a
particular node acts as a node in one node-face constraint and also is attached to the face of
separate node-face constraint. A ’1° means such situation occurs. In some cases such nodes
may be part of a problematic cyclic constraint. However, in other cases this situation may be
expected and cause no problems.

MPC_Origin Indicates what capability created the MPC. For example sliding contact vs. tied
contact. The index number output matches a table in the rslt log file. Currently, this output
is only available from node-face contact constraints.
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9.8.2. ElemEigChecks

Option ElemEigChecks will turn on the element output of the lowest eigenvalue, the 7th
eigenvalue (commonly the first flexible eigenvalue), and the largest eigenvalue of the element
stiffness matrix. The output will be stored in the Exodus output file. The element variable names
for the 1st eigenvalue, the 7th eigenvalue, and the maximum eigenvalue are ElemFEig_1st,
ElemEig_7th, and ElemEig_max, respectively. Note that this output is not supported for rigid
elements (RBE2, RBE3, Rrod) and will be skipped on those blocks. Finally, if ElemEig_1Ist <
-le-12 ElemEig_max, a negative eigenvalue warning will be printed.

9.8.3. ElemQualchecks

Option Elemqualchecks takes a boolean, e.g., on (the default) or off. Unless this option is off,
all the elements in the input file are checked for quality using various element quality metrics. If
the option on is selected and the element’s condition numbers falls outside the acceptable range, a
warning message is printed. A summary is also printed, reporting the min/max quality of each
block in the mesh.

The Tet4, Wedge6, Hex8, Tria3, and Quad4 elements implement a condition number from
Verdict.®? The acceptable limit for that warning may be modified by the condition_limit
parameter, specified in the parameters section (4.4), and defaults to 10°. The following table
shows the acceptable ranges.

Element Type | Full Range | Recommended Range

Tet4 1 -00 1-3
Hex8 1-00 1-8
Wedge6 1 —o0 1-5
Tri3 1 -0 1-1.3
Quad4 1-o00 1-4

Additionally, several other element types inherit their condition number from the elements listed
above. Those are listed in the following table.
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element uses condition number of | element

Tet10 Tet4
CuTet10 Tetd
Hex20 Hex8
Hexshell Hex8
Wedgel5 Wedge6
Tria3 Tri3
Triab Tri3
TriaShell Tri3
NTria Tri3
QuadT Quad4
QuadM Quad4
QuadT™ Quad4
Quad8T Quad4
QuadS_GY Quad4
NQuad Quad4
KHQuad Quad4

Table 9-19. — Elements using other elements condition number.

These approximations are optimistic as the condition number of the element is based on the
overall element topology and rather than the specifics of the element formulation. For example the
KHQuad, NQuad elements use a bilinear mapping while the QuadT uses two affine mappings
(behaving as two triangles side by side.) In other cases elements such as NTria and Tria3 both use
affine mapping but different details of element formulations may make them sensitive to different
types of poor shapes. For higher order elements, such as Tet10 or Hex20, the element quality is
typically determined just by the vertex nodes. Mid-edge nodes that conform to a curved geometry
lead to much more accurate simulation than is possible with polyhedral elements, but, on the other
hand, these elements are also more sensitive to poor element quality. The quality metrics
discussed here ignore mid-edge nodes.

Some Sierra/SD elements that can invert do not implement a condition number. This is true for
Pyramid5/13, InfiniteElement, PHex, PTet, PWedge and PmlIsoSolid elements. Condition
numbers are also unimplemented for rigid elements, superelements, and all 1 dimensional and 0
dimensional elements.

9.8.3.1. Additional Volumetric Element Shape Metrics

In addition to condition number quality checks solid elements are checked for negative volumes.
Negative volume can occur if the node ordering for the element establishes a “height” vector using
the right-hand rule that is in the opposite direction of the actual element height. In other words,
the nodes should normally be ordered in a counter clockwise direction on the bottom surface of
the element.

479



These negative volumes are checked by evaluating the Jacobian at the element integration points.
A negative Jacobian indicates the element is either fully inverted, or poorly shaped. The various
solid element formulations have differing degrees of rigor in these checks. For example at Tet10
element evaluates these Jacobians based on only the vertex node positions, and, by using the
absolute value of the Jacobian, can never detect an inverted element. For simulations in which
inverted elements are undesirable, the CuTet10 is recommended.

Some codes such as NASTRAN, are insensitive to this ordering. If element checks are run, then
Sierra/SD will correct (and report) any solid elements found to have negative volumes. Without
these corrections, the code will continue, but results that depend on these elements are suspect.

It is strongly recommended that any Exodus file with negative volumes be corrected.

9.8.3.2. Additional Shell Shape Metrics

In addition to a shape based condition metric shell elements output a “Thickness Ratio” metric as
the ratio of the thickness 7 to a length /,

/1. (9.8.1)

The length is defined as the minimum diagonal for quadrilaterals or the minimum edge length for
triangular elements. The acceptable range may be modified by the min_thickness_ratio and
max_thickness_ratio parameters, specified in the parameters section (4.4), and defaults to

107 — 10. Shells with large thickness to length ratios can be ill-conditioned and have stability
problems. Elements with very small length to thickness ratio can also be ill-conditioned due to a
vanishing rotational stiffness term.

9.8.3.3. Additional Beam Shape Metrics

Beam elements implement a “Area Ratio” metric as the ratio of cross-sectional width sgrt(a) to
element length /.

Va/l (9.8.2)

where a is the cross-sectional area, and / is the beam length. The acceptable range may be
modified by the min_area_ratio and max_area_ratio parameters, specified in the parameters
section (4.4), and defaults to 107 — 50. Additionally, beam elements also implement a bending
moment metric:

/1 (9.8.3)

where 1 is first bending moment, and I, is the bending moment of a square cross-section (a?/12).
And likewise for /5 (the second bending moment). The acceptable range may be modified by the
min_moment_ratio and max_moment_ratio parameters, specified in the parameters section (4.4),
and defaults to 107+ — 10%.
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Nbeam elements (section 7.12) also implement an offset length ratio metric:
|l = 1ol/lo (9.84)

where [ is the beam length with offsets, and [y is the length without. The acceptable maximum
value may be modified by the max_offset_ratio parameter, specified in the parameters section
(4.4), and defaults to 0.15. This is consistent with the GeomCheck condition for NASTRAN
CBAR elements, which the Nbeam was developed from.

Beams with properties outside of the listed ranges will have very poor numerical conditioning and
may cause issues for accurate and robust solution.

9.8.4. Eorient

Option eorient in the outputs will output the element orientation vectors for all elements. The
element orientation is a design quantity that normally does not change significantly through the
course of an analysis. This output is provided to help in model construction and debugging.

The orientation vectors are output as nine variables that collectively make up the three vectors
required for element orientation. The output variables and the associated meanings for various
elements are shown in tables 9-20 and 9-21 and figure 9-5.

Table 9-20. — Element Orientation Outputs.
Name Description

EOrient] X
EOrient]l | Y first orientation vector
EOrientl _Z
EOrient2_X
EOrient2 Y | second orientation vector
EOrient2 Z
EOrient3_X
EOrient3_Y | third orientation vector
EOrient3_7Z

Table 9-21. — Element Orientation Interpretation.

Element | EOrientl | EOrient2 | EOrient3
Beam?2 axial first bending (I1) | 2nd bending (12)
Shells Element X Element Y Normal
Solids Element X Element Y Element Z
Hexshell | Element X Element Y thickness
ConMass null null null
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(a) Hex8 (b) Tet4

(¢) QuadT (d) Beam2

Figure 9-5. — Diagram of Element Orientation for Several Common Element Types.
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9.8.5. Force

Option force will output the applied force vector to the output Exodus file, and the net force
applied to active degrees of freedom, and the net moment about the origin of forces applied to
active degrees of freedom. The net force is calculated from the right-hand side given to the solver,
so implementations that modify the right-hand side (cavitation) may display non-physical net
forces and moments. Net forces are available for static and direct transient solution cases.

If rigid body filtering is requested via the FilterRbmLoad option (section 8.3.21), the
intertialrelief option in the outputs section will also output the filtered force to the output
Exodus file, and the net force and moment about the origin. The naming convention for both
nodal and net (global) values are force_inertia_relief for forces, and moment_inertia_relief for
moments.

9.8.6. Right-hand side

Option RHS selects the right-hand side vector for the analysis type. It is used for verification and
debugging purposes. For statics and dynamics, it represents the applied forces, pressures, inertial
forces, or any pseudo forces introduced in preload (say by TSR).

9.8.7. KDiag

Option kdiag in the outputs will output the maximum and minimum values of the diagonal of the
stiffness matrix as nodal variables KDiagMax and KDiagMin. These are the max and min of the 7
variables associated with the 3 translational, 3 rotational and 1 acoustic degree of freedom on each
node. These values are primarily useful for diagnostics purposes, where they may help identify
stiff regions of a model. All 7 terms may be seen by outputting KDiag in the echo section.

Figure 9-6 illustrates the use of this option. Note how the center sections of the model are
highlighted by their stiffness terms. This tool is especially important for analyzing some
collections of beams. Beam stiffness is proportional to 1/L3. A common mistake is to generate
stiff beams, which can ruin the numerical solution. See Section 9.8.8 for a related diagnostic on
the dynamics matrix. 2

The stiffness diagonal and dynamic matrix diagonal depend to some extent on the linear solver used. Domain
decomposition solvers generally use Lagrange multipliers to eliminate constraints, while some sparse solvers
remove constraints through reductions of rows and columns of the matrices. Because the matrices to be solved are
different, the diagonals and conditioning of the matrices are also different.
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Figure 9-6. — Example KDiag output.

9.8.8. ADiag

Option ADiag in the outputs will output the maximum and minimum values of the diagonal of
the dynamics matrix as nodal variables ADiagMax and ADiagMin. Refer to the KDiag section,
(9.8.7), for format information.

The “dynamic matrix” is the matrix which is solved by the linear solver. The “ADiag” diagnostic
can help identify regions of the model that may contribute to poor matrix conditioning. Summary
of a few of the dynamics matrix terms are listed in Table 9-22. Refer to the Theory Manual for
details of the matrix to be solved. Dynamics matrix output is available for most solvers (including
GDSW), and for some solution methods.

Solution Matrix Comment

eigen K—-oM real eigenvalue problem

transient | K + ﬁM + %C standard Newmark-Beta

Statics N/A dynamics matrix is stiffness matrix
QEVP N/A unimplemented

Table 9-22. — Selected Dynamic Matrix Definitions.

9.8.9. Line Sample

The line sample (LineSample) section of the input file provides a means of evaluating and
outputting fields or internal variables at sampling points within a structure. These sampling points
are defined on a series of lines.
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Section 5.29 discusses the primary application of line sample, verification of stress field input to
Sierra/SD from TSR. Line sample is used for energy deposition (see Two Element Exponential
Decay Variation Hex20 in the Verification manual*®). Energy deposition is interchangeable with
supplying an applied temperature. Line sample is also used for far-field processing in acoustics
problems (see 8.1.9.1 or How To**), for example with infinite elements.*?

Keywords for the line sample input are listed in the table below. An example follows.

Keyword Arguments
samples per line integer
endpoint 6 real numbers
format string
nskip integer
database name string

samples per line The number of sample points on each line. All lines will have the same
number of samples.

endpoint The endpoints of the line. There should be 3 real numbers for the XYZ location of the
beginning of the line, followed by 3 real numbers at the end. There can be any number of
endpoint entries.

format The format of the output file. Two output formats are supported: Exodus and MATLAB
MFile. The default is MFile.

nskip Results output frequency; defaults to the value specified in the solution section; see
Section 5.28.

database name The name of the output file; defaults to linedata.m for MATLAB output and
linedata.exo for Exodus output.

There is no need to join this data for parallel runs. In those output files, a nodal variable called
Displacement will be created. The entries in this array correspond to 3 displacement variables,
3 rotation variables, acoustic pressure, voltage, and temperature. For transient data, the time
values are also output for each array.

LINESAMPLE
samples per line 5
endpoint 0. 0. 0. 1. 1. 1.
endpoint 0.0 0.5 0.5 1. 0.5 0.5
format exodus

END

9.8.10. Material

The material keyword will output material properties for each element. Currently, this
capability is only enabled for elasticity calculations, and is also not enabled for Lamé materials or
isotropic_viscoelastic_complex materials.
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9.8.11. Material Direction

Local coordinate systems may be defined to orient directional materials (sections 4.9, 6.6.1

and 6.6.1.3). The material_direction output provides the user-defined coordinate system (7, §, 7)
vectors at each element. Visualizing these vectors can help inform if material coordinate systems
have been setup as intended. Additionally, these coordinate vectors are the rows of an 3 x 3
rotation matrix for transforming quantities between the global (X, Y, Z) and local (7, $, 7)
coordinate systems within the element.

Table 9-23. — Material_Direction Outputs.
Name Description
material_direction_1_X
material_direction_1_Y first coordinate vector
material_direction_1_Z
material_direction_2_X
material_direction_2_Y | second coordinate vector
material_direction_2_ 7
material_direction_3_X
material_direction_3_Y | third coordinate vector
material_direction_3_Z

9.9. Echo

Results, in ASCII format, from the various intermediate calculations may be output to a results
file, e.g. example.rslt, where the file name is generated by taking the base name of the input
deck (without the extension) and adding the extension rs1t. Output to the results file is selected
in the Sierra/SD input file using the echo section. An example is given below, and the
interpretation of these keywords is shown in Table 9-24.

ECHO
materials
elements
Jacobian
mesh
nodes
MPC

END

Joint2G elements are supported as virtual blocks. With virtual blocks, the element variable such
as element force, eforce, is also written to the results file.

Use input off to not echo anything .
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Table 9-24. — Echo Section Options.

Option Description
ADiag diagonal of dynamics matrix
acceleration nodal accelerations (better in output section)
block block wise mass properties (used only following mass)
debug debug output
displacement nodal displacements (better in output section)
EForce element force for beams
ElemEigChecks element eigenvalues
elements element block info, i.e. what material,

element type, etc
Elmat element material properties
energy element strain energy and strain energy density
orient element orientation (geometry-defined)
fatigue fatigue related parameters
force applied forces (better in output section)
GEnergies global kinetic and strain energy sums

block_energies
input (<bool>)
input_summary
Jacobian

KDiag
line_weld

mass

materials
memusage

mesh
mesh_error
Modal Vars
MPC
NLresiduals

nodes

residuals

rhs

strain

stress

subdomains “0:3:6,10”
threading_summary
timing_summary
used

velocity

vonMises

vrms

block kinetic and strain energies

echo of post-Aprepro input (for parse errors) — default = input on
summaries of many sections

block summary of Jacobians

diagonal of stiffness matrix

Line-weld-specific output variables

mass properties in the basic coordinate system
material property info, e.g. E, G

prints per processor per task memory use

to results file and an external text file

summary of data from the input Exodus file

mesh discretization error metrics

modal force and amplitude for modal solutions (echo section)
MPC equations

turns on residual output per iteration

of the Newton loop for nonlinear solution methods
nodal summary

residual vectors

Right Hand Side vector (better in output section)
element strains at centroids

element stresses at centroids

Controls which processor will output results file
threading summary table

timing and threading summary tables

summary of unused variables (see section 9.9.1)
nodal velocities (better in output section)

von Mises stress only

RMS quantities (random vibration only)
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9.9.1. Used

The used option will list any unused variable requests to the log/rslt file. For example, requesting
acceleration in a statics solution case will result in the following message:

NOTICE: ’out’ analysis has no support for these output variables:
’acceleration’

Without it, the following general note will be printed when unused variables are found.

Some requested output variables do not apply to all solution cases.
See more information and a list of valid exodus output options by
requesting ’'used’ in the ECHO section.

9.9.2. Mass Properties

The mass properties may only be reported in the Echo section only. The mass properties are the
total mass, the center of gravity and the moments of inertia of the system. They are reported in the
basic coordinate system. Furthermore, moments are about the origin, not about the center of
gravity. Masses are reported in a unit system consistent with the input, with or without the
wtmass parameter (see Section 4.4).

Note that dead/omitted blocks do not contribute to the total mass of your system.

Although mass properties are reported for any problem, they are unde-
fined and nondeterministic in certain categories of analyses. Any model
with a Superelement 7.32 has undefined mass properties. Also, mass
properties are undefined for all acoustic problems, including structural
acoustic models and Wet Modes simulations. Finally, mass properties
are undefined for all Waterline simulations.

An additional option of block may be used in the echo section to output the block wise mass
properties to the results file. Please note that the block wise mass properties, though summed for
all processors (if running on a parallel machine), are only output to the result file from the first
processor (processor 0). The block wise mass properties option, called block, reports the number
of blocks, the mass of each block, and the center of gravity of each block along the x, y, and z axis.
Please note that block may only be used in the echo section following the mass option as shown
below.

ECHO
materials
elements
mass=block
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nodes
END

Note: dead/omitted blocks (or in general any block with zero mass) will be reported in the
block-wise mass properties table with zero mass, zero moment of inertia, and “N/A” center of
gravity.

9.9.3. Multipoint constraints

Text descriptions of the MPC equations are output to the result file using MPC . This is a check on
the input deck. An example of the output format is as follows

MPC
coordinate O
25 P 1
106 P -1
// G = 0.000000
// the source is global
END

In this case, the MPC equation is constraining the acoustic pressure in nodes 25 and 106 to be
equal in the global (default) coordinate system.

9.94. ModalVars

modalvars text output which contains modal forces and modal amplitudes for modal based
superposition solutions including “modaltransient” and “ModalFrf”. Four text files are written:
Qdisp.txt, Qvel.txt, Qaccel.txt and Qforce.txt. Each line of the file contains data for a
solution increment (a time or frequency step). For transient solutions, each column corresponds to
a mode in the solution. Because FRF solutions are complex, two adjacent columns describe the
complex modal amplitude (or force) for a mode. In terms of the physical force at time ¢, F(t,),
and the i’ eigenvector ¢;, the modal force displacements, and accelerations are

fqi(tn) = ¢1TF(tn)
u(t,) = Z ¢i%’(tn)

ity) = ) 4idi(tn)
i(1y) = ) $idi(tn)
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The expressions in the frequency domain are

fqi(wn) = ¢1TF(wn)
u(w,) = Z ¢iQi(wn)

i(wp) = Z ¢igi(wn) = iw Z ¢iqi(wn)
li(wy) = Z ¢igi(wn) = ~w Z ¢iqi(wy)

The text files are readable by either MATLAB or MS/excel.

9.9.5. Subdomains

In parallel calculations, one results file is written per subdomain. Only data associated with that
subdomain are written to the file. By default, results are only written to subdomain O (the root
processor), and in the results for subdomain 0 will always be output. Use the “subdomains” option
to specify additional subdomains for which data will be written. The subdomains specification is
made using a MATLAB like string, as detailed in Section 4.1. For example,

subdomains ’0:2:8’

selects subdomains 0, 2, 4, 6 and 8 (again, subdomain 0 will always be output, and so it is
redundant here). The following selects subdomains 0, 2, 3, 4, 6, 8,9 and 15.

subdomains 0:2:8,3:3:9,15

In addition, the keyword “all” selects all subdomains.

9.9.6. Memusage

The Memusage keyword selects memory usage information output for the results file. In addition,
it also requests that a per processor, per task break down be written to a separate text file. The
memory in the text file is shown in megabytes. The output for the text file will be formatted as
follows:

1 2 3 4

40 41 41 42 Minitialization"

23 12 15 15 "assembling matrices"
45 56 65 54 M"initializing solver"
10 25 12 52 '"writing output"”

The primary use of the memory usage printing is to diagnose where or why memory is being
exhausted by an analysis.
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9.9.7. Elmat

The bulk modulus, mass density and shear modulus of each element are reported if the Elmat
keyword is added to the echo section.
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10. CONTACT

10.1. Tied Surfaces

Tied surfaces provide a mechanism to connect surfaces in a mesh that will always be in contact.
Because the surfaces are always tied, the constraints may be represented by a set of linear
multipoint constraints 4.11. Tied surfaces are also known in the literature as glued surfaces or as
tied contact. They are used almost exclusively to combine two surfaces of a mesh that have not
been meshed consistently.

There are some ways of combining surfaces that have not been consistently meshed. The simplest
method constrains the nodes of one surface (node-surface) to lie on the faces of another surface
(face-surface). In this method, the constraint is called inconsistent because the mesh does not
ensure that linear stress will be maintained across the boundary. The stress and strain in the region
of the constraint will be wrong. However, loads are properly transferred across the boundaries, so
a few element diameters away from the boundary, the stresses and strains should be approximately
correct.

Tied surfaces can currently be specified for structural-structural interfaces, acoustic-acoustic
interfaces, and structural-acoustic interfaces (i.e. wet interfaces). The syntax in the tied data
section is the same. For structural-structural interfaces, the nodal displacements on the
node-surface are constrained to lie on the faces of the face-surface. In the last case, the nodal
acoustic pressures on the node-surface are constrained to match the interpolated value of pressure
on the face-surface.

For tied structural-acoustic interfaces, it is necessary to ensure a weak continuity of both stress
and displacement (velocity) across the wet interface.®>*> Also, we recommend that the acoustic
surface be defined as the face-surface (and hence should have its sideset number listed first in the
input deck). Defining the structural surface as the face-surface sometimes causes an error related
to singular subdomain matrices.

A simulation may have multiple tied surfaces as long as certain requirements are met. For
example, acoustic-acoustic and tied structural-acoustic data blocks in the same input deck are
supported. However, it is necessary that each sideset be exclusively attached to either structural
elements or acoustic elements. A sideset containing both acoustic and structural elements is not
supported. This does not restrict the possible types of analysis. It can increase the number of tied
data blocks. However, this extra input will reduce confusion and likely also reduce potential
modeling errors.

The keyword transverse controls the constraints on transverse displacements. Transverse
displacements can be tied or slip. Its default is tied. The tied option is the standard
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inconsistent tied surface approach. The slip option only constrains normal degrees of freedom
between the surfaces. In this option, the tangential degrees of freedom are free to slide. This
would be the case if there was no friction between the surfaces. The friction option for
specifying a simple friction model is not currently supported.

In a tied data block, if the tied contact is inconsistent, i.e., the method is not mortar or other
options, then by default the gap is removed. Gap removal only works with tied data. In the tied
data section, the order of the surface ids is important. The first surface id becomes the face
surface, and the second becomes the node-surface. Gap removal moves node-surface nodes to the
face surface. Set gap removal to off to skip gap removal. ACME’s gap and push back vector
quantities provide the gap. Updated coordinates instead of the original coordinates appear in the
output Exodus file, and are also used by the system matrices.

Debugging tied contact is easier using the gap removal solution case 5.32.

10.1.1. Contact Normal Vectors

For all the contact type interactions, including tied surfaces, tied joints, and contact definition the
algorithms used restrict the search to matching faces that have opposing normal vectors. For
solids, this is seldom an issue. The normal vectors for a solid are always outward from the solid,
so two interacting solids (unless they occupy the same volume), will naturally have opposing
normal vectors. However, the situation for shell-shell or shell-solid interactions can be more
complicated.

Sidesets may be created from the top or bottom surfaces of the shells. Thus, the shell surface has a
natural normal direction determined by its connectivity, and the sidesets generated from the shells
have a direction too. The sideset direction may align or oppose the direction normal of the shell
itself. If the shell normal does not oppose the normal of the mating surface, no interactions will be
found, and the surfaces cannot be tied. See Figure 10-1.
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Normals are aligned. No Interactions are Possible

w

Normal Opposed. Interactions are Possible

Figure 10-1. — Shell Normal in Contact or Tied Interactions.

495




10.1.2. Mortar Methods

Mortar methods may also be used to tie the surfaces. This is currently under development, but
some capability is available. Large tied surfaces using the mortar methods may have many fully
coupled constraints which can overwhelm most parallel solvers. The cost in computing the mortar
contribution is higher than the inconsistent method, but the solution will typically be much better
in the region of the constraint.

Two different mortar methods are available. Both constrain surfaces together in an integral (or
weak) sense. Standard mortar methods are somewhat simpler, but can result in a constrained
system which fully couples all the nodes of both surfaces together in a single constraint. Dual
mortar methods are much more friendly to the linear solver, as the constraint system decouples the
constraints similarly to what is seen in node-face contact. The dual mortar method is the default.

Mortar methods are specified by adding mortar to the tied data block. To select the type of
method, standard or dual, in the parameters block specify MortarMethod=standard or
MortarMethod=dual respectively. !

10.1.3. Node to Face

Tied surfaces are specified by a listing of face-surface and node-surface side sets. Any number of
tied data blocks may be specified in the input. Each tied data block represents a single logical
pairing of constraint side sets.

TIED DATA
tied faces 12
tied nodes 18
name "tying_12-18"
transverse slip
search tolerance = le-7
edge tolerance = le-8
gap removal = on

END

In the example above, sideset 12 is the face-surface. Side set 18 is the node-surface. Each node in
the node-surface may be tied to the nearest face in the face-surface by a constraint equation. The
transverse degrees of freedom are allowed to slip in this example. If the transverse keyword
were omitted, standard tied surfaces would be used.

Tied surfaces use a node-face search algorithm. In this algorithm, the “search tolerance”
represents the normal distance from a node on one surface to a corresponding face on the other.
Thus, the search tolerance will typically be small and represents the amount the two surfaces may
not be coincident. This is in contrast to a node-to-node search, where the “search tolerance”
represents a search radius. See Figure 10-2.

There is no means of applying standard mortar methods to some interactions, and dual mortar methods elsewhere.
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I}TQde:Lo\—Node

Node—to—Face

Figure 10-2. — For node-to-node searches the search tolerance, must be large enough to capture nearby
nodes. For node-face searches (as used in tied surfaces), it should only capture the nearby surface.

Special care should be used when using the “edge tolerance”. If this tolerance is too large,
non-intuitive interactions can be created.

The current implementation ties a face-surface that consists of the two-
dimensional faces of shell or solid elements. It is not possible to tie a
node to the one dimensional edges of shell elements.

The relevant parameters for tied surfaces are shown in Table 10-1.

Table 10-1. — Tied Surface Parameters

Parameter type description

Name String name of tied data block, useful for diagnosing
error messages, defaults to tied

Surface integer pair | face-surface and node-surface sidesets
separated by comma or space

Tied Faces <sideset> | face-surface sideset

Tied Nodes <sideset> | node-surface sideset

Search Tolerance Real face normal of search tolerance
defaults to 1e-8

Edge Tolerance Real search tolerance beyond an edge facet
defaults to 1/10 search tolerance.

Method String inconsistent (default most solvers)
mortar

Transverse String tied (default)
slip (transverse displacements can slip)

Gap Removal String Yes (default: for inconsistent only )
No

smooth angle Real maximum angle for smoothing (def=30)

smoothing resolution String “node” or “edge” based

Smoothing parameters may be needed to control smoothing of the normal. Figure 10-3 illustrates
the normal definitions on a faceted surface. The discontinuity in normal vectors can be an
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important consideration on curved surfaces where faceting affects tangential sliding. Smoothing
parameters are illustrated in Figure 10-4 and include the following .

smooth angle If an angle between two faces exceeds this value (in degrees), then the angle is
considered to be “sharp”, and no smoothing is done. Default is 30°.

smoothing resolution The resolution method can be either node based, or edge based. This
may be needed to control smoothing on edges that include both a sharp and a non-sharp
edge. Default=node.

Figure 10-3. — Normal Definitions on Faceted Geometry. When low order elements are used to describe
a curved boundary, the normal is poorly defined at the edge of the facets.

smooth angle

smooth distance

Figure 10-4. — Smoothing Parameters for Surface Normal Vectors. No smoothing occurs for faces
that are misaligned by more than the specified “smooth angle". Within the “smooth distance", normal
vectors vary linearly with relative distance from the node.

10.2. Contact Definition

The contact definition block provides flexible syntax to define tied MPCs. The contact definition
provided a similar capability to Tied Data (see Section 10.1) but with a more powerful and flexible
ways to define contact surfaces. The contact definition capability leverages the same Dash contact
algorithms used in Sierra SM. Both the syntax and capability of the Dash contact definition is
compatible with SM recommending Dash contact for both SM/SD hand-off analyses and analyses
with a lot of general contact.

A brief description of contact definition commands is given here. More detailed descriptions of
how contact surface and interaction definition commands function can be found in the Sierra Solid
Mechanics User Manual.*’

The full set of available contact commands are as follows:

BEGIN CONTACT DEFINITION <name>
contact [surface|nodeset] <surf_name> contains <strings>
skin all blocks = off|on(off) [exclude <names>]
gap removal = off|on(on)
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Begin Interaction Defaults
general contact = off|on(off)
self contact = off|on(off)
normal tolerance = <Real>
normal tolerance behavior = auto|user_defined
constraint formulation = Node_Face|Face_Face(Node_Face)
friction model = tied|frictionless(tied)
cutoff variable <String> ‘<’|‘>’ <Real>
End Interaction Defaults

Begin Interaction
normal tolerance = <Real>
normal tolerance behavior = auto|user_defined
side a = <string_list>
side b = <string_list>
surfaces = <string>
interaction behavior = No_Interaction
constraint formulation = Node_Face|Face_Face
friction model = tied]|frictionless
cutoff variable <String> ‘<’| ‘>’ <Real>

End Interaction

Begin Dash Options
separate disconnected mesh components = true|false(false)
ignore_shells = true]|false(false)
End Dash Options
END CONTACT DEFINITION

Information is presented in the format command = option (default) format. For example gap
removal is on by default. Debugging contact is easier using the gap removal solution case 5.32.
Gap removal is another name for initial overlap removal.

A begin interaction section can only define interacting surfaces, if the surface is assigned a
local name. To define a surface named surf_name, use

contact surface <surf_name> contains <entity_strings>

Here ‘entity_strings’ may reference blocks, sidesets or nodesets in the input mesh. It may
reference a block, surface, or node set by its name. Or mesh entities can be accessed using the
Sierra/SM convention, by index using ’block_##’, ’surface_##’ or "nodelist_##’.

General contact is a far-reaching capability. If there are 2 (i.e. more than one) interaction, and
general contact is on, then the contact module automatically detects all interactions between any
pair of surfaces (except self interactions, and assuming that self contact is off).
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10.2.1. Defining Contact Surfaces

Each contact definition block is a self-contained description of contact surfaces and how those
contact surfaces interact. Several options are available for defining contact surfaces as shown in
the following examples.

// Create contact surface from exterior skin of blocks
contact surface fixtures contains block_1 block_9 block_12

// Create contact surface from union of sidesets
contact surface bolt_flange contains surface_l surface_10

// Shortcut to create contact surface based on the
// exodus part names.

contact surface block_7

contact surface surface_10

contact surface bearing contains bearingl bearing2

// Create contact nodeset from union of node sets
contact nodeset nsl contains nodelist_7 nodelist_11

// Create contact nodeset containing all nodes in a
// set of blocks
contact nodeset ns2 contains block_15 block_19

// Generate exterior skins for all blocks
skin all blocks = on

// Generate exterior skins for most blocks
skin all blocks = on exclude block_7 block_11

The skin of a finite element block contains all the exterior faces. When using ’skin all blocks’ one
contact surface is created for each block in the mesh, the contact surface is given the same name
as the block. The block skinning algorithm is described in the Sierra SM Users Manual. For a
model using only solid elements block skinning relieves the user from having to set an extensive
number of sidesets in the input mesh.

Note the commands that create contact surfaces from blocks only work on solid and shell elements
(hexes, tetrahedra, wedges, quads, triangles, etc.). If “ignore_shells” is set to true in the Dash
options block, then all-to-all contact will ignore shells. Sidesets can be used to define contact
surfaces on either solid or shell blocks. Contact nodesets can be defined on any element type,
solid, shell or beam. When defining interactions a contact nodeset must be paired with a sideset or
block skin to find node-face constraints. Two contact nodesets cannot directly interact.

In rare situations poorly posed cyclic/self contact constraints are created that are problematic for
the linear solver. First the model is divided into disjoint components (without shared nodes). Pairs
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of disjoint components then tie to each other with one sided node-face interactions. Multipoint
constraints tie nodes on one side of the interface to faces on the other side of the interface. Parts
sharing nodes may have no unique node-face pairing. A conformally meshed part that contacts
itself has no unique pairing.

If no unique pairing exists, nodes on side A of the interface generate MPCs with faces on side B
and also nodes on side B generate MPCs with the faces of side A. The constraints may be
over-determined. Some redundant constraints are removed. Determining unique constraints is an
open problem.

The Interaction Weight Matrix shows the potential node-face interactions specified in the input
deck. It is in the log file. A pair of surfaces must be in proximity to actually interact.

disjoint iflJ =JI=0

depender'lt nodel %fIJ = landJI =0 (10.2.1)
symmetric iflJ =JI=H

error otherwise

Ideally the weight is either 1 or 0. This indicates one-way node-face pair where nodes on one side
of the interface interact with faces on the other side. Self contact is denoted by H for half. For self
contact nodes on side A of the interface interact with faces on side B and also nodes on side B
interact with faces one side A. Such self contact constraints are often redundant and cyclic. The
attempt to remove and make the contact constraints uniquely determined creates messages and
warnings about removed and redundant constraints. Even after the redundant constraint removal
step the self contact constraints can cause solver robustness and accuracy issues. Thus, self
contact should be avoided.

The disconnected component finder is available for setting up contact surfaces. Say a mesh
contained a flashlight with four batteries, and the four batteries were all in the same element block
in the mesh. The disconnected component finder would split this battery block into four separate
contact surfaces. The disconnected component finder is useful for setting up interactions in a way
that avoids self contact. See the Sierra/SM User Manual*’ for more details on use of the
disconnected component finder.

10.2.2. Setting up Contact Interactions

Once the contact surfaces are defined, the next step is to set up the interactions between those
contact surfaces. The interaction defaults block can be used to define both which surfaces
will interaction with each other and how those surfaces interact. One and only one interaction
defaults block may be present in a contact definition. The interaction block can enforce
contact between specific surface pairs and set the interaction parameters for that pair (overriding
the interaction defaults behavior for the surface pair.) Any number of interaction command
blocks may be present in the contact definition.

Contact is used to tie structures together that are in adjacent. The normal tolerance defines how far
away from a face a node can be and still find contact. By default, a reasonable normal tolerance is
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automatically computed in the Dash contact library of 15% of the characteristic element length.
Thicknesses of shell elements are also considered in the default tolerance. For shell blocks, the
default search tolerance is set to at least sixty percent of the maximum element thickness of the
elements in the block.

BEGIN CONTACT DEFINITION <name>

Begin Interaction Defaults
General Contact = 0ff|On(0ff)
Self Contact = O0ff|On(0£ff)
Normal Tolerance = <real>
Normal Tolerance behavior = auto|user_defined
Constraint Formulation = Node_Face|Face_Face(Node_Face)
Friction Model = Tied|Frictionless(Tied)
cutoff variable <String> ‘<’| ‘>’ <Real>

End Interaction Defaults

Begin Interaction
Side A = <string_list>
Side B = <string_list>
Surfaces = <string_list>
Normal Tolerance = <real>
Normal Tolerance behavior = auto|user_defined
Constraint Formulation = Node_Face|Face_Face
Friction Model = Tied|Frictionless
Interaction Behavior = No_Interaction
cutoff variable <String> ‘<’|‘>’ <Real>

End Interaction

END CONTACT DEFINITION

Command options:

* General Contact: On means that every surface will contact every other surface. By default,
the Dash contact library will pick which surface is used for nodes and which for faces in
each surface-to-surface pairing automatically. Generally the surface with the smaller
characteristic face (defined by the smallest face width anywhere on the surface) will provide
the nodes and the coarser the faces. Note, if surfaces have a large variation in mesh size the
less-optimal node/face pairing may be selected by default as the default node/face pairing is
controlled by the smallest surface face, not the characteristic size of faces actually in
contact. Additional considerations may also be taken into account for selection of node and
face surfaces such as avoiding cyclic constraints.

* self contact: Self contact on indicates a surface may contact itself, this could occur if a
structure folds over on itself. Self contact should generally be avoided in SD as it leads to
over-constraint problems.

* normal tolerance: The default face-sized based search distance can be overridden by
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manually specifying the normal tolerance. This tolerance has units of length.

normal tolerance behavior: This option controls the behavior when the user-defined
normal tolerance is smaller than the default (15% of element characteristic length) threshold.

auto : use the maximum of the user-defined and auto-generated tolerances. Note: this
means that user-defined tolerances smaller than the default threshold will be ignored.
This is the equivalent to the behavior in Sierra/SM.

user-defined : respect the user-defined tolerance, even if the auto-generated tolerance is
larger. This is the default behavior in Sierra/SD.

Note: as of the 5.26 release, the behavior of Sierra/SD and Sier-
ra/SM differs when a user-defined normal tolerance is smaller than the
default 15% threshold. Sierra/SM behavior is equivalent to normal
tolerance behavior = auto, while Sierra/SD defaults to normal
tolerance behavior = user-defined. To match Sierra/SM be-
havior (or Sierra/SD behavior prior to 5.26), use the interaction (de-
faults) option normal tolerance behavior = auto.

constraint formulation: The constraint formulation line defines the constraint type to be
used. Only the node_face option should be used with Sierra/SD. The face_face option is
experimental.

friction model : The friction model line selects the type of contact constraint, either tied or
frictionless. Tied contact ties all translational DOFs together at the interface preventing
any normal or tangential motion. For structural problems each of the three translational
degrees are constrained together. Rotational DOFs are never tied. For acoustic-acoustic
contact the acoustic degree of freedom is tied together. For structure-acoustic contact the
normal-motion of the structure is tied to the acoustic degree of freedom. The frictionless
keyword selects sliding contact that is tied in the normal direction only. For frictionless
structural contact only the surface-normal motion of the contacting surfaces are constrained
together, the surfaces are free to slip in the tangential directions. The normal direction for
the frictionless constraint is taken from the normal of the contacting face. For
acoustic-acoustic or structural-acoustic contact frictionless contact is equivalent to tied.

SIDE A SIDE B : For node-face contact the nodes are defined by the B surface and the
faces by the A surface. If multiple surfaces are given for side A or side B, then the faces of
each side A surface will be constrained to then nodes of each side B surfaces.

surfaces defines a set of surfaces in contact. The Dash library picks the node-face pairing
automatically based on relative mesh density and other considerations such as avoiding
cyclic constraints. If more than two surfaces are given a contact interaction will be formed
between each surface in the list and each other surface in the list. Using SIDEA or SIDEB
and SURFACES commands in the same interaction section will cause an error.

503



* Interaction Behavior The special interaction behavior command allows turning off contact
between specific surface pairs. The no_interaction option would generally be paired with
interaction defaults general contact on and used to turn off specific pairings where contact
should not occur, such as slide lines.

* cutoff variable The cutoff variable interaction option enables users to further filter
contact based on any nodal input variable. Fine-grained contact information determined by
Sierra/SM may be passed to Sierra/SD to refine its contact constraints. Including the
following lines in a contact definition will ignore contact where the Sierra/SM celement
field is below 0.55 on the nodes of the node-face constraints.

Begin Interaction Defaults
cutoff variable celement < 0.55
End Interaction Defaults

Multiple such lines may be defined in a single interaction or interaction defaults block. This
would enable the filtering of constraints based on the union of multiple nodal variables, or
only retaining contact where a variable is inside a range (a, b) (i.e. cutoff variable
var_name < aand cutoff variable var_name > b). This union effect also applies
when cutoff variables are defined in both the interaction defaults block and an interaction
block. This means that, unlike other interaction defaults, the default cutoff variables defined
here cannot be overridden at a single interaction, they will simply add an additional filter. If
it is desirable to apply a cutoff variable at all interactions except for 1, the cutoff variable
would have to be defined at all other interactions explicitly.

10.2.3. Gap removal

As with tied surfaces 10.1, 5.32 the Contact Definition by defaults removes gap from the
interaction constraints. Gap removal can optionally be turned off. All contact constraints are
node-on-face contacts. Gap removal is accomplished by moving the node to the face.

GAP REMOVAL = OFF|ON(ON)

The rewards and risks of gap removal are described in Section 5.32.

Gap removal will trigger output of an element quality table listing the worst element in each
block before and after gap removal. The element quality metric used in this table is not consistent
with Sierra Solid Mechanics. Element condition number is used instead. This maintains
consistency with other features within Sierra Structural Dynamics, and with other Sierra
applications such as Cubit.

The table will begin with the header shown below:

ELEMENT CONDITION QUALITY INFORMATION
A value of 1.0 is an ideal element. As the value approaches INF the quality is
decreasing. Values less than or equal to zero indicate the element cannot
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compute condition number. For example a beam, conmass, Rbar, etc.

A value of

N/A also means no shape metric exists for that element topology. Element quality
can be plotted on the mesh with the ElementQuality variable, triggered by the

gap\_removal solution case.

————————————————————————— e B i

The table contents below the header are too wide to fit in this document.

10.2.4. Examples

// Most basic contact definition to tie everything that touches
BEGIN CONTACT DEFINITION
skin all blocks on
BEGIN INTERACTION DEFAULTS
general contact = on
END INTERACTION DEFAULTS
END CONTACT DEFINITION

// Tie a few specific surfaces, like in ’'tied data’ block
BEGIN CONTACT DEFINITION
contact surface s2 contains surface_2
contact surface s3 contains surface_3
contact surface s4 contains surface_4
BEGIN INTERACTION
side A = s2
side B = s3 s4
normal tolerance 0.25
END INTERACTION
END CONTACT DEFINITION

// All-to-all contact with some custom tolerances
BEGIN CONTACT DEFINITION
skin all blocks = on
BEGIN INTERACTION DEFAULTS
general contact = on
normal tolerance le-3
END INTERACTION DEFAULTS
END CONTACT DEFINITION

// Tie the nodes of the two bolt flanges to a fixture block
BEGIN CONTACT DEFINITION

contact nodeset boltFlangel contains nodeset 901

contact nodeset boltFlange2 contains nodeset 902
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contact surface fixtures contains blocks_1 block_3 block_4
BEGIN INTERACTION
side A = fixtures
side B = boltFlangel boltFlange2
END INTERACTION
END CONTACT DEFINITION

// All-to-all contact, but turning off tying of a specific
// surface pair and using sliding contact for different
// surface pair.
BEGIN CONTACT DEFINITION
skin all blocks = on
BEGIN INTERACTION DEFAULTS
general contact = on
END
BEGIN INTERACTION
surfaces = piston piston_housing
friction model = frictionless
END INTERACTION
BEGIN INTERACTION
surfaces = drive_shaft drive_bearing
interaction behavior = no_interaction
END INTERACTION
END CONTACT DEFINITION

10.2.5. Notes and Usage Guidelines

* Multiple ’begin contact definition’ blocks may be included in a single analysis. However, as
with Sierra/SM using multiple contact definition blocks is generally discouraged. If
multiple contact definitions are used, then the surfaces used in the contact definitions can
not overlap. If the same surfaces are used in multiple contact definitions duplicate and/or
incompatible constraints may be found between the contact definition blocks causing solver
difficulty.

» Contact constraints are ultimately enforced by translational MPCs. The MPCs generated by
contact tie only translational degrees of freedom.

 Self contact (contact constraints generated from a surface folding over on itself) are often
over-determined and cannot be enforced accurately. Though the contact definition can find
such self contact constraints, the use of self contact should be avoided.

* If contact constraints are defined at a significant gap those constraints will artificially
impede the rotation of the model. Gap removal can help with this issue, but it is
recommended to only use contact to tie objects that are in close physical proximity.
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* Use the ’outputs’ option [constraint_info] to visualize more information about the generated
contact constraints. The nodes of a node-face contact constraint will have a ’1’ for
[node_face_mpc_count] output. The [mpc_status] nodal field will be painted with *1° for
any node involved in a contact constraint on either the node or face side. If any nodes have
the [node_face_mpc_both_node_and_face] flag this could indicate an issue of
over-constraint.

10.2.6. Differences Between SM and SD Defaults

* By default, SD uses node-face constraints. SM uses face-face constraints by default.
Face-face constraints may be optionally used within SD. However, face-face constraints are
considered experimental for SD at this time and not recommended.

* By default, SD will try to remove the gap from contact constraints. SM does not have a gap
removal option at this time.

¢ In SD the friction model defaults to "TIED’. In SM the friction model defaults to
"FRICTIONLESS".

* The SD friction model is a linearization of the SM frictionless model. A key difference is
that in SD the frictionless constraint is free to slide on the face but can have no motion in the
normal direction of the face. In SM the sliding along the face is also unconstrained, the
node is prevented from penetrating the face, but differing from SD the frictionless constraint
can open gap and separate the surfaces. This different behavior for the positive and negative
normal directions is a fundamentally nonlinear behavior not applicable to linear structural
dynamic analysis.

10.3. Lofted Surfaces and Gap Removal

Lofted surfaces are important because analysts often build meshes with an initial gap between the
surfaces. If standard methods are used to tie the surfaces, but the separation (or lofting) is not
taken into account, then the constraints are no longer consistent with rigid body motion. Generally
this means that the rotational rigid body motion introduces strain into the system.

There is a gap removal 5.32 solution.

10.3.1. Example

This example illustrated in Figure 10-5 uses the coordinates listed in Table 10-2. In this figure, the
face (represented by nodes 1-4) constrains each of the 3 nodes (nodes 5, 6, and 7.) Node “6” is on
the face. It will be clear that standard methods apply the proper constraints. However, nodes “5”
and “7” are offset from the face. As a consequence, constraint equations written for a node
constrained to the face introduce errors when applied to the lofted node.
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Figure 10-5. — Lofted Constraint Example.

Node Coordinates
1 0 4 0
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Table 10-2. — Coordinates of Face (red) and Nodes (blue).

10.3.2. Projection Approach

The constraint equations from a conventional approach (meaning that the constraints are written
by projecting the node location to the plane of the face, but not adjusting for the lofting) are shown
in Table 10-3. These equations are not orthogonal to rigid body modes, and as a consequence,
there are only two zero energy modes for this system rather than the 3 we anticipate. !

ur(1) +ux(2) = 2ux(5) =
uy(1) +uy(2) = 2u,(5) =
Uy (2) + uy(3) = 2u, (6) =
uy(2) +uy(3) —2uy(6) =
Uy (3) +ur(4) = 2u,(7) =
uy(3) +uy(4) —2u,(7) =

o O O O o O

Table 10-3. — Conventional Constraint Equations.

! All motion out of the xy plane has been eliminated.
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These constraints are represented by the matrix C, where the x and y dofs are grouped together.

(101 00000-20 0 0 0 0]
01010000 0 -2 0 0 O0 O
C= 0o01o01ro000o0 0 -2 0 0 O
oo0o0101o00o0 0 0 -2 0 0
oo0o0o01010o0 0 0 O =220
00000101 0 0 0 0 0 -2]

The three rigid body vectors (in this 2D frame) are,

1 0 1 0 1010 1T O0O1O0T1DP0
R={ 0 1 0 1 0101 0 10T1O01
-3 -1 -1 -11113-100001
where the first two vectors represent translations, and the last is a rigid body rotation about point

“6”. The product of C = R’ can be computed.

=i e Moo
o O O oo
o

00 2 |

Each row of this matrix corresponds to a constraint equation from Table 10-3. Each column is
associated with one of the three rigid body vectors. The translational rigid body vectors are
orthogonal to the constraint matrix; the products are zero and no strain is induced. However,
rotation about node 6 induces strain. The constraints are not invariant to rotation.

In a transient dynamic analysis with modest rotations and small gaps the effects of these constraint
errors are often imperceptible. However, for large rotations or large gaps they may become
apparent. They are always observable in modal analysis where they manifest as nonzero rigid
body modes.

Mitigation Strategies As demonstrated in the previous section, constraint errors can introduce
resistance to either translational or rotational rigid body motion. There are several strategies to
mitigate these issues.

1. The analyst building the model ensures there are no projection errors.
2. Correct the initial geometry (using gap removal) so there are no projection errors.

3. Modify the constraints through algebraic means to ensure that they are orthogonal to rigid
body motion.

4. Use the constraints appropriate to the lofted geometry. The software to do this is currently
only available for spot welds.

If these methods cannot be applied, then the analysis must absorb the errors due to the constraint
errors introduced by projection.
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10.4. Spot Welds

Spot Welds are a flexible alternative to contact in which each node-face interaction is given a
stiffness in the normal and tangential directions. Spot Welds can be used to represent discrete
attachment points such as rivets, or as a scalable alternative to tied joints. In either case,
Sierra/SD Spot Welds share syntax and functionality with Sierra/SM, with a slightly altered
implementation.

An individual Spot Weld is defined by a surface and a nodeset. It may represent a bolt/rivet/screw
or something similar. An individual Spot Weld stiffness has units of force/length.

An area-weld-mode Spot Weld is defined by a pair of surfaces. It may represent a cohesive zone
[47]. Its stiffness has units of force/area.

Spot Welds may be specified between two parts which are not touching. A gap at a Spot Weld
interface will not cause grounding of rotational rigid body modes.

10.4.1. Syntax

SPOT WELD
nodeset = <list(nodeset)>
node set = <list(nodeset)>
second surface = <list(sideset)>
remove node set = <list(nodeset)>
sideset = <list(sideset)>
side set = <list(sideset)>
surface = <list(sideset)>
remove surface = <list(sideset)>
normal displacement function = <function>
normal displacement scale factor = <real>
tangential displacement function = <function>
tangential displacement scale factor = <real>
ignore initial offset = <bool>
search tolerance = <real, gt 0>
END

This table is a little confusing at first glance, and a few words of explanation are helpful. The
allowable inputs are either ’sideset+nodeset’ or ’sideset+second_surface’.

The remove surface and remove node set options define the spot weld by boolean operations of
multiple nodesets/sidesets. Some (maybe all) SD developers are less confident that these remove
options are actually hooked up fully in SD.

The "ignore initial offset" option affects where the stiffness functions are evaluated if the spot
weld is defined with an initial gap.
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Spot welds are parallel scalable in a way that tied data is not scalable. Namely, while each Spot
Weld is stored on a unique subdomain, Tied Data is implemented by storing the multi-point
constraints on all processors.

Tangential inputs like stiffness are scalars representing a radial stiffness. In a cylindrical
coordinate system a Spot Weld has a axial stiffness, a radial stiffness, and zero 6 stiffness.

10.4.2. Outputs

Spot Welds support thirteen element variables, all of which are triggered by the spot_weld
keyword, as detailed in table 10-4.
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Table 10-4. — Available spot_weld outputs

Name Description

spot_weld_scale_factor Area scale factor if in second surface mode
spot_weld_normal_force Normal force on dependent node
spot_weld_tangential_force Tangential force on dependent node
spot_weld_norm_stiffness Normal stiffness of element
spot_weld_tang_stiffness Tangential stiffness of element
spot_weld_normal_displacement Normal displacement of dependent node
spot_weld_tangential_displacement | Tangential displacement of dependent node
spot_weld_initial_offsetx Initial gap vector, X component
spot_weld_initial_offsety Initial gap vector, y component
spot_weld_initial_offsetz Initial gap vector, z component
spot_weld_initial_normalx Initial normal vector, x component
spot_weld_initial_normaly Initial normal vector, y component
spot_weld_initial_normalz Initial normal vector, z component

10.4.3. Specifying Spot Weld Stiffnesses

Sierra/SD models Spot Welds as linear spring elements, but shares syntax with Sierra/SM.
Therefore, we assign stiffness to the elements by estimating the derivative of the normal and
tangential displacement XY functions at the initial state. If the option ignore initial offset
is set to yes, then the normal stiffness function tangent is evaluated at X = 0. If the option ignore
initial offset is off (the default) the normal stiffness function tangent is evaluated at

X = initial_gap. The tangential function is always evaluated about X = 0.

Both functions should have positive slope to have positive stiffness, following static pull test
conventions. The normal function should be defined for both positive (tensile) and negative
(compressive) values of X. For the tangential function radial displacement is always positive so
only the positive X portion of the function has meaning.

Analysts looking to specify the stiffness directly should use a linear function, for example: y = x
as the displacement function, then input their stiffness as a scale factor. For example:

FUNCTION y_equals_x

type analytic

evaluate expression ‘‘x’’
END

BEGIN SPOT WELD
node set = nodelist_1000
surface = surface_2000
search tolerance = 1.0e-4
normal displacement function = y_equals_x
normal displacement scale factor = 1.0e+6
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tangential displacement function = y_equals_x
tangential displacement scale factor = 1.0e+5
END

Best practices will evolve with time and usage, but perhaps consider the neighboring material
stiffness divided by the distance between parts E/L as an initial stiffness guess in second
surface mode. Try to avoid setting the stiffness too high (like 1¢!9), as it will impact the
conditioning of the linear system and the ability of the solver to converge. Contact is the proper
tool for infinite interface stiffness.

10.4.4. Usage at discrete points

This is the most basic use case, where we apply the same linear stiffness to each constrained node
within search tolerance. Ideally, each node in the provided nodeset would represent a different
attachment point in the model. One node per welded spot; a literal Spot Weld.

SPOT WELD
sideset = bulkhead
nodeset = rivet_nodes
normal displacement function = y_equals_x
normal displacement scale factor = le4
tangential displacement function = y_equals_x
tangential displacement scale factor = 2e3
search tolerance = 0.25

END

10.4.5. Usage as an alternative to Tied Joint or Surface Contact

Here we use second surface to define the dependent side of the interaction instead of using
nodeset. In this mode, the stiffness of each node-face interaction is scaled by the area of the
faces attached to the dependent node. The user is now defining the stiffness per unit area of the
joint. This mode is expected to provide a solution which converges with mesh refinement.

SPOT WELD
sideset = independent_faces
second surface = dependent_faces
normal displacement function = y_equals_x
normal displacement scale factor = 1le8
tangential displacement function = y_equals_x
tangential displacement scale factor = 1e8
search tolerance = 0.1

END

This method has several advantages over Tied Joints.
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» Each node-face interaction connects exactly one face to one node. This avoids the
connectivity problems of Tied Joints when mesh density is high.

* The connections between parts are distributed across the interface, which preserves the
bending and ovaling modes of the interfacing parts.

* Spot Welds create neither Type-1 nor Type-2 constraints; only stiffness.
Additionally, this method has potential advantages over Tied Data or Contact

* the spot welds surfaces can join separated surfaces in a way that does not impede global
model rotation and does not require gap removal.

* the spot weld surfaces can be given a finite stiffness which can be tuned to the stiffness of an
adhesive, or tuned based on experimental data.

10.5. Moving MPCs

Sierra/SD supports moving contact through the use of moving MPCs. This can be enabled using
the solution parameter nUpdateConstraints = 1 as shown in 4.4. There are several other
recommended parameters to be used with moving contact. These will be described in this
section.

The example input blocks below show how the moving MPCs may be enabled. The
predictorCorrector is set to O within the transient block. In the Parameters block, the
solver should be set to update constraints without updating the matrices by setting solverReset
= constraints. There is an inexpensive preconditioner for acoustic problems with moving
constraints. To select this preconditioner, set the preconditioner_type, krylov_method,
orthog, and max_numterm_C1 as shown in the example input deck below. The final two
parameters in the GDSW block enable the block diagonal preconditioner with block size defined by
the element condition number. To make a more powerful, but also more expensive, preconditioner
increase the max_element_condition.

SOLUTION
solver GDSW
transient
time_step l.e-4
nsteps 100
nUpdateConstraints =
predictorCorrector

|
S

END

PARAMETERS
solverReset = constraints
END

GDSW
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preconditioner_type DIAG
krylov_method PCG

orthog 0

max_numterm_C1 0

identify_low_quality_elements true

max_element_condition 5
END
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11. EXAMPLE INPUT DECKS

Example input decks are shown for several types of analyses. The input deck is case-insensitive
except for special cases such as file names,

11.1. Eigenvalue problem

The following input deck requests output to the Exodus file hexplate-out.exo of the mode shapes
corresponding to four lowest frequency modes.

No one knows that the following paragraph means: A results file, hexplate.rslt, will not be
created since no results have been selected for output in the echo section.

Solution
eigen
nmodes 4
title ’Mode Shapes of Lowest Frequency Modes’
end
FILE // finite element mesh
geometry_file hexplate.exo
end
Boundary
nodeset 77
fixed
end
Outputs
deform
end
Block 44 // The default is the Hex8b
material 3
hex8
end
Material 3
name "steel"
E 30e6 +/- 1%

nu .3
density 0.288
end
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Sensitivity
values all
end

11.2. Anisotropic Material

The following input deck is an example of a hexahedron mesh with anisotropic properties.

Solution
eigen
title ’Anisotropic Format’
end
file
geometry_file mesh.exo
end
Boundary
nodeset 4 y = 0
nodeset 5 x = 0
nodeset 6 z = 0
end
loads
// sum of forces on surface should be equal to area
// imposed forces are additive
nodeset 1 force = 0.0 0.083333 0.0
nodeset 2 force = 0.0 -0.041666 0.0
nodeset 3 force = 0.0 -0.020833 0.0
end
outputs
deform
end
block 1
hex8
material my_material
end

Material my_material

anisotropic
Cij
1.346 0.5769 0.5769 O 0 0
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1.346 0.5769 O 0 0
1.346 0 0 0
0.3846 O 0
0.3846 O
0.3846
density 1
end
11.3. Multiple materials

The next example shows the input for an Exodus model with many element blocks and materials.
Keyword lumped in the Solution section selects a lumped (nearly diagonal) mass matrix.

Solution
eigen
nmodes 1
title ’Dozen blocks and six materials’
lumped
end
file
geometry_file multi.exo
end
Boundary
nodeset 1
fixed
nodeset 3
x=0
y =20
z =20
RotY = 0
RotZ = 0
end
outputs
deform
end
// A block is required for each element block
block 1 //in the input Exodus (Genesis) mesh database.
material 2

Beam?2

end

block 101
integration full
wedgeb
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material 1

end
block 2
material 2
end
block 102
integration full
wedgeb
material 2
end
block 3
material 3
end
block 103
integration full
wedgeb
material 3
end
block 4
material 4
end
block 104
integration full
wedgeb
material 4
end

block 5 // Tip. Not capitalizing "material" here
material 5 // helps to distinguish it
end // from a Material section.
block 105
wedgeb
integration full
material 5
end
block 6
material 6
end
block 106
wedgeb
integration full
material 6
end // Each material referenced in a necessary block
Material 1 // must be defined here. Extra materials are ignored.
name "Phenolic"
E 10.5E5

520



nu .3
density 129.5e-6

end
Material 2

name ’Aluminum’

E 10.0E6

nu 0.33

density 253.82e-6
end
Material 3

name ’foam’

E 100.

nu 0.3

density 18.13e-6
end
Material 4

name ’'HE’

E S5E5

nu 0.45

density 129.5e-6
end // Tip. Capitializing material helps to

Material 5 // distinguish it from a material in a block.

name ’'Uranium’

E 30e6

nu 0.3

density 1768.97e-6
end
Material 6

name ’wood’

E 200.e3

nu .3

density 77.7e-6
end

11.4. Modaltransient

The next example shows the input for a modaltransient analysis. Accelerations are output to an
Exodus file bar-out.exo. This example has damping, polynomial and linear functions. Also,
sensitivities are calculated.

Solution
modaltransient
nmodes 10
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time_step .000005

nsteps 100

nskip 1

title ’Test modal transient on prismatic bar’
end

file
geometry_file bar.exo
end

outputs
acceleration
end

Boundary
nodeset 1
fixed
end

damping
gamma 0.001
end

block 1
material 1
end

Material 1
name "aluminum"
E 10e6
nu .33
density 2.59e-4
end

loads
nodeset 3
force = 1. 1. 1.
function = 3
end

function 1
type linear
name "test_funcl”
data 0.0 0.0
data 0.0150 0.0
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data 0.0152 1.0
data 0.030 0.0
end

function 3
type linear
name "white noise'
data 0.0 1.0
data 0.0001 1.0
data 0.0001 0.0
data 1.0 0.0

end

11.5. ModalFrf

In this ModalFrf analysis, accelerations are output to an Exodus file bar-out.frq.

Solution
ModalFrf
nmodes 10
title ’Test ModalFrf on prismatic bar’
end

file
geometry_file bar.exo
end

frequency
freq_min O
freq_step=10
freq_max=3000
nodeset 3
disp

end

outputs
acceleration
end

Boundary

nodeset 1
fixed
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end

damping
gamma 0.001
end

block 1
material 1
end

Material 1
name "aluminum"
E 10e6
nu .33
density 2.59e-4
end

loads
nodeset 3
force = 1. 1. 1.
function = 3
end

function 2
// a smooth pulse of duration .05 sec
// peaking near t=.02 sec at 0.945
type polynomial
name "poly_fun"
data 0. 0.
data 2.0 -8.0e2
data 0.5 8.9443
end

function 3
type linear
name "white noise"
data 0.0 1.0
data 10000. 1.0
end
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11.6. Direct FRF

A Direct FRF is run with displacements written to to Frequency Exodus file bar-out.frq.

Solution
directfrf
end

frequency
freq_min = 1000.0
freq_step = 7000
freg_max = 5.0e4
disp
block 1

end

file
geometry_file bar.exo
end

outputs
disp
end

Boundary
nodeset 1
fixed
end

block 1
material 1
end

Material 1
name "aluminum"
G 0.8E+9
K 4.8E+9
density 2.59e-4
end

loads
sideset 1
pressure = -1.0
function=3
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end

function 3
type linear
name "white noise"
data 0.0 1.0
data 10000. 1.0
end

11.7. Statics

The following example is a statics analysis which will output stresses to the Exodus output file
quadt-out.exo.

Solution

statics

title ’10x1 beam of quadt’
end
file

geometry_file quadt.exo
end
Boundary

nodeset 1
fixed
end
loads
nodeset 2
force = 1000.0 1000.0 0.0
end
outputs
stress

end
block 1

material 1

QuadT
end

Material 1

name "steel"

E 30.0e6

nu 0.25e0

density 0.7324e-3
end
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INDEX

Abaqus, 23
acceleration, 488
acoustic

Hex8, 91

p0, 379

Pdot, 379

point source, 399

symmetrize_struc_acous, 92
acoustic see infinite element, 382
acoustic see Perfectly Matched Layer, 385
acoustic_accel, 398, 399, 401
acoustic_vel, 398, 399
AcousticFraction, 219
acousticHydrostatic, 455
acousticIncident, 455
acousticlighthill, 401
aeigen, 188, 189

anverbosity, 189

eig_tol, 189

shift, 189
AllowExodusDistFacts, 81
AllStructural, 71
analysis_direction, 176
Anasazi, 189, 203, 204, 212
angular_acceleration, 411
angular_velocity, 411
anisotropic, 251-253

example, 518
APartVel, 455
APressure, 455
ARPACK, 185
average, 369

Beam?2, 311, 313, 318
Coordinate frame, 312
begin-periodic, 387
bending_factor, 300
block, 80, 256, 273, 289, 341, 350, 358,
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488
blkalpha, 276, 279, 280, 282
blkbeta, 276, 279, 280, 282
coordinate, 276
density_scale_factor, 276
non-structural mass, 280
nonlinear, 276
omit, 361
parameters, 274
stiffness_scale_factor, 276
block_energies, 471
blockwise density scaling, 281
body, 410
boundary, 207, 374, 374, 385, 386
fixed, 374
infinite element, 382
FieldTime, 384
pressure, 384
P, 374
RotX, RotY, RotZ, 374
slosh, 382
V, 378
X,Y, Z, 374
buckling, 194, 194
nmodes, 194
shift, 194

CBModel, 165, 167, 168
file, 168
finite difference, 173
format, 168, 359
GlobalSolution, 168
inertia_matrix, 168
netcdf, 168
nodeset, 168
OTM, 170
OTME, 170
OutElemMap, 170



OutMap, 170 Craig-Bampton reduction, 164, 165, 165,

sensitivity_method, 173 357, 358

sideset, 168 correction=vectors, 166

spoint_offset, 169 inertia tensor, 167
CBR see Craig-Bampton reduction, 165 mass inertia matrix, 167
cbr, 355 null space correction, 165
ceigen, 203, 204, 213, 215, 217, 260, 448 RbmDof, 166
Cij, 253, 271 cutoff variable, 504
Cldamp, 161
CMS see component mode synthesis, 165 damper, 286, 325, 338, 358
command line cubic, 338

Aprepro, 34 viscous, 325

beta, 34 damping, 207, 283
complex eigen, 215 block, 279
complex load, 416 Cldamp, 161, 271
component mode synthesis, 165 CletaFunction, 162, 271
compute global, 438, 439 Conor Johnson, 161
compute nodal, 439 frequency band, 288
con_tolerance, 44 mass proportional, 283, 285
condition_limit, 67 ratiofun, 284

ElemQualChecks, 67 stiffness proportional, 285
ConMassA, 321 dashpot, 325, 338
consistent loads, 396 database name, 427, 433
constrain_rbms, 416, 417 dd_solver_output_file, 100
constraint formulation, 503 DDAM, 175, 175
constraint_info, 249 analysis_direction, 175
ConstraintCorrectionFrequency, 237 athwartship, 175
ConstraintErrorDiagnostics, 237 fore_and_aft, 175
constraintmethod vertical, 175

Lagrange, 92 ddamout, 467, 469
contact preddam, 174, 186

normal, 494 load, 174
contact definition, 248, 498 DDAM see ModalFilter, 174

Dash, 498 dead, 360, 361

element quality, 504 defaultSpecificHeat, 69

friction model, 503 density, 261

gap removal, 504 blockwise scaling, 281

gap_removal, 248 density_scale_factor, 281

initial overlap removal, 248 diagnostics, 40

interaction, 501 adiag, 484

interaction defaults, 501 beams, 483

side, 503 cubit, 41

surfaces, 503 epu, 42
coordinate, 80, 115, 273, 280, 301, 303, 307, explore, 40

411, 430 kdiag, 43, 483
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stk_balance, 41
dielectric, 272
Direct FRF, 384

example, 525
Direct Frf, 177
displacement, 452, 471

prescribed, 377
displacement(x), 58
DMIG, 355, 357, 360

echo, 58, 207, 211, 249, 358, 486, 517
block energies, 471
coordinate, 430
Elmat, 491
GEnergies, 470
input off, 486
kdiag, 483
mass

by block, 488
material, 491
memusage, 490
modal amplitude, 489
MPC, 249, 489
NLresiduals, 222, 487
stress, 304
subdomains, 58
used, 488

eforce, 341, 449, 452, 486

eig_tol, 41, 66, 183, 214, 215

eigen, 66, 159, 182, 183, 186, 188, 189, 195,

196, 201, 205, 206, 211, 449
example, 517
fluidloading, 186
nmodes all, 183
untilfreq, 185

eigen_norm, 183

eigenvalue problem
bailout, 72
comparison, 212
eig_tol, 41, 66
eigen_norm, 69
element checks, 478
help, 41
Largest_Ev, 190
normalization, 69

Prony series, 260
quadratic, 216, 219
structural acoustics, 216
structural acoustics (modal basis), 219
elastic-plastic see eplas element, 337
elastic_strain, 456
ElemEigChecks, 478
element
attributes, 64
Beam?2, 311
ConMass, 320
dashpot, 325
dead, 360, 361
eigenvalue checks, 478
eplas, 337
force, 449
Ftruss, 319
Gap, 343
Joint2G, 336
Gap2D, 346
GasDmp, 347
Hex20, 292
Hex8, 291
Hexshell, 307
Hys, 327
dmax, 327
fmax, 327
kmax, 327
kmin, 327
Hysteresis element, 327
Joint2G, 328
element block, 367
Iwan, 328
output, 449
physics, 339
property, 330, 337, 338
RBE3, 353
relative_disp, 452
result, 372
rigid, 328
RlIwan, 335
line_weld, 339, 341
gap removal, 339
line_weld_force_rst, 341
line_weld_moment_rst, 341



Nbeam, 315
Nmount, 347
Nquad, 297
Ntria, 297
offset shell, 305
omit, 361
orientation, 481
parameters, 273
Pyramid13, 294
Pyramids, 293
Quad8T, 294
QuadM, 296
QuadT, 294
RBE3
attributes, 352
Rigid
Rbar, 350
RBE2, 351
RBE3, 352
Rrod, 350
rigid see rigid, 363
RSpring, 323
Spring, 322
Spring3, 324
SpringDashpot, 326
Stress/Strain, 463
Superelement, 354
Tet10, 293
Tet4, 292
TiBeam, 318
Tria3, 300
Tria6, 294
TriaShell, 299
Truss, 319
Truth Table, 463
Wedgels, 293
Wedge6, 293
element orientation, 481
ElemQualChecks
condition_limit, 478
limitations, 42
energy_exo_var, 68, 403, 405
energy_load, 396, 405
energy_time_step, 68, 405
enforced acceleration
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random vibration, 419
engineering units, 65
eorient, 307, 457, 464, 481
evaluate expression

in Function

examples of, 132

rules and options for composing,

132
exo2mat, 434
Exodus

assemblies, 56
creation, 56
entity types, 56
naming
limitations, 57
Exodus Read Functions, 415
ExodusRead, 410

Farhat, Charbel, 21
Fatigue, 190, 193, 206
material, 261
S-N curve, 262

Felippa, Carlos, 22
fiber_orientation, 301
FILE, 361
FilterRbm, 284

FilterRbmLoad, 71, 95, 238, 243, 416, 417

flush, 82, 85

flush=N, 82

force, 247, 405
centrifugal, 410
centripetal, 410
constraint force, 449

dashpot, 326

Coriolis, 410
Euler force, 410
imaginary force, 416
output, 483
reaction force, 449

force see Output, 410

free_surface_point, 455

frequency, 434, 439, 448, 449, 452, 453

FREF, 449, 452
friction model, 503
from, 84, 87



Ftruss, 319, 320
function, 123, 154, 178, 207, 246, 378, 391,
399, 418
blended, 147
exo_var, 391, 393
Exodus Read, 400
ExodusRead, 391
interp, 393
velX, 391
velY, 391
velZ, 391
exodusread, 393
linear, 125
loglog, 128
offset, 124
Piecewise Linear, 126
planar step wave, 143
plane wave, 140
KO, 140, 142
tied data, 140
plane_wave_freq, 141
polynomial, 128
random, 129, 391, 393
interp, 130
ReadSurface, 391
SamplingRandom, 128
shift, 124
Spatial BC, 390
spherical_wave, 143
table, 127, 152
datafile, 153
dataline, 153
delta, 153, 414
dimension, 153
origin, 153, 414
size, 153
tablename, 127
undex loads, 145
wet surface pressure, 146
function = myFunc, 81

gamma, 289
Gap, 337
ellipsoidal, 346
Gap element, 336, 343, 346

537

Gap Removal, 248
elementInversionFlag, 249
elementQuality, 249

Gap2D, 346, 346

GasDmp, 347

GDSW, 92, 100, 417
bailout, 72, 105
constrain_rbms, 95

p, 95

rotx,roty,rotz, 95

X,Y,Z, 95
options, 90
Parameters, 92
prt_debug, 67, 105, 106
solver_options, 99
solver_tol, 42,43
SuperLUDist, 99, 103

Generalized Alpha, 238
rho, 238

geom_stiff, 225
receive_sierra_data, 282

GeometricRigidBodyModes, 242

geometry_file, 54, 54, 232

global variables, 453

globalHist, 431

gravity, 410

GREPOS, 354

grepos, 246

hand-off, 254, 389, 394, 498

Heartbeat file, 100

Hex20, 292

hex20, 294

Hex8, 291, 293

hex8, 293

Hex8b, 291

Hex8F, 292

Hex8u, 291

Hexshell, 307
autolayers, 307
Mass, 311

high frequency, 289

history, 429

hydrostatic balance, 245

hydrostatic_gravity, 455



I1, 313
12,313
iforce, 416
ignore_gap_inversion, 72
igravity, 416
ImagRelDispGxx, 453
ImagRelDispGyy, 453
ImagRelDispGzz, 453
imoment, 416
impedance_pressure, 381
impedance_shear, 381
include see Input Deck, 53
info, 67
initial overlap, 248
initial-conditions, 419, 420
time, 420
velX, 419
velY, 419
velZ, 419
initialize variable, 61
input
acceleration, 379
Aprepro, 34, 53
comment
entire section, 52
comments, 51
scripts, 44
cleanupSyntaxConversionNotes, 49
commentDeprecatedMaterialNames,
48
convertCoordinateSystems, 47
convertlncludes, 46
extractSection, 44
renameMaterials, 48
sortSections, 45
unigSections, 46
Input Deck, 51
block, 51, 519

end, 51
function, 123
include, 53

material, 251

solution, 51, 157, 519
Input Deck see Section Commands, 51
ipressure, 416
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isotropic, 251, 252
isotropic_viscoelastic, 251
isotropic_viscoelastic_complex, 261
itraction, 416

Iwan, 286, 332, 358

Joint2G see element Joing2G, 328

keepmodes, 206
krylov_solver_output_file, 100

Largest_Ev, 190
layer, 303
left_stretch, 254
Ifcutoff, 206
Lighthill, 400
line sample, 484
linesample, 240, 384
LineWeld see Element, 339
load, 79, 80, 80, 81, 140, 206, 237, 415,
418
body, 80
complex, 416
consistent, 396
electrostatic, 410
follower, 396
follower stiffness, 397
function, 415
randompressure, 406
scale, 415
spatially-dependent, 137, 390, 391,
393
statics, 415
transient, 415
loads, 79,79, 80, 81, 141, 160, 194, 207,
378,379, 413, 418
low frequency, 289
Lumped see mass matrix lumping, 91

mass
properties, 488
mass see echo, 488
mass matrix lumping, 91, 299, 305, 519
material, 251, 254
Lamé, 254
begin-lame-material, 254



end-lame-material, 254
lame_state_hyperfoam, 254
acoustic, 256
anisotropic, 253
block
example, 519
complex Viscoelastic, 260
Gim, 260
Greal, 260
Kim, 260
Kreal, 260
density, 261
E, 252
exodus mesh properties, 268
G, 252
isotropic, 252
K, 252
layered, 299
nu, 252
orthotropic, 252
specific heat, 270
temperature dependent, 266
temperature function, 266
viscoelastic, 256
material_direction, 486
MATLAB
output, 435
matrix, 418
file names, 473
output in MFile format, 473
RanLoads parameter, 418
matrix-function, 205, 207, 418
nominalt, 150
table, 150
MatrixFloor, 69
max_newton_iterations, 223
MaxmpcEntries, 69
maxRatioFlexibleRbm, 285
membrane_factor, 300
memory diagnostics, 42
Memusage, 490
mesh discretization error, 471
mesh_error, 471
MFile, 472
MinimumNodalSpacing, 409
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Mksuper, 354, 356, 357
modal acceleration, 202
modal effective mass, 198, 200
meff, 198
MPF, 198
Modal Participation Factor, 198
modal_amp, 473
ModalFilter, 186, 195
write_files, 195
modalfiltercase, 186
ModalFraction, 218
ModalFrf, 178, 201, 202, 283, 523
example, 523
nrbms, 203
usemodalaccel, 203
modalranvib, 205, 205, 206, 207, 283, 439,
449, 452, 453
acceleration, 205
noSVD, 205
RMS von Mises stress, 205
modalshock, 209
modaltransient, 159, 160, 210, 211, 279, 283,
414, 521
example, 521
write_files, 210
modalvars, 211, 414, 489
mode, 359
Model_Check, 179
moment, 406
mortar method, 496
dual, 496
standard, 496
MPC see multipoint constraint, 70
MPE, 198, 199
mpmd_transfer_sidesets, 69
mpmd_transfer_type, 68
multipoint constraint, 67, 154
constraint force, 449
constraint_correction, 70, 237
constraint_info, 477
nUpdateConstraints, 237
orthogonalization, 70
problematic, 44

NASTRAN, 23



auto spc, 67
output4 in CBR, 168
Nbeam, 311, 315, 316-318
NegEigen, 65, 183
neglect_mass, 383
netcdf, 173, 357-359
Newmark beta, 238, 239
Ng, Esmond, 22
NiStatics, 220, 221, 223
NlTransient, 222, 223, 285
damping, 285
Newton residual norms, 487
nonlinear_default, 66, 222
TangentMethod, 66
nltransient, 359
NlTransient:tolerance, 223
nmodes, 165, 185, 196, 206, 283
Nmount
stability, 348
no_geom_stiff, 282
nodal, 439
nodal_charge, 469
NodeListFile, 376, 429
nodeset, 80, 168
nodesets_with_disp, 72, 238
nonlinear, 277, 280
nonlinear_default, 66, 277
normal tolerance, 502
normal tolerance behavior, 503
npressure, 247, 455
Nquad, 297
Nquad_eps_max, 298
nskip see transient, 237
NSM see block, 280
Ntria, 297
num filters, 289
num_newton_load_steps, 221, 223
num_procs, 88
num_rigid_mode, 71, 232
nUpdateConstraints, 72, 237
nUpdateDynamicMatrices, 268, 404
nUpdateTemperature, 268, 403, 404

offset shell, 305, 305
omit block, 361, 361
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Options
Table, 160
orthog, 93, 95
orthotropic, 251, 252, 299
orthotropic_layer, 253
orthotropic_piezoelectric, 271
orthotropic_prop, 251, 252
output
MATLAB, 435
output_sideset_data, 66
outputs, 67, 169, 178, 193, 203, 207, 211,
249, 341, 358, 401, 425, 426, 427,
429, 439, 449, 452-455, 470, 471,
481, 483, 484
acceleration, 448
constraint_force, 449
constraint_info, 477
coordinate, 452
disp, 447
element force, 449
energy, 469
error metrics, 471
faa, 474
force, 483
GEnergies, 470
work, 470
Globals, 471
history, 169, 429
coordinate, 452
nodes, 429
relative_disp, 452
Internal Variables, 446
Kaa, 474
line_weld, 452
Maa, 474
material, 485
MATLAB, 37, 171, 173, 199, 241, 384,
426, 485, 490
exo2mat, 434
MFile_Format, 70
MLumped, 476
MPhi, 475
reaction_force, 449
relative_disp, 452
RHS, 483



RMS, 448
rotational_acceleration, 448
rotational _displacement, 448
spatial statistics, 435, 436
element, 435
nodal, 436
strain, 456
stress, 457
temporal statistics, 441
user output, 435
Analytic Functions, 444
closest distance, 438
max over time, 441
spatial statistics, 435, 436
temporal statistics, 441
velocity, 448
von Mises stress, 459
overlap removal see gap removal, 248

Padé, 179
parallel computing, 38
epu, 37, 38
exodus_file, 37
PARAMETERS, 232
parameters, 63, 64, 94, 95, 240, 350, 403,
404, 478, 480, 481, 496
info, 67
negeigen, 65
reserved_keywords, 74
syntax_checking, 72
wtmass, 64
Perfectly Matched Layer, 385
performance, 35, 39, 92, 154
periodic boundary conditions, 387
permittivity_ij, 272
piezoelectric, 249
e_ij, 272
plane_wave, 142
PML see Perfectly Matched Layer, 385
point_volume_accel, 399, 400
point_volume_vel, 399, 400
power spectral density, 208, 419
acceleration, 208
coordinate, 208
displacement, 208
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scaling, 419
preddam, 174
PredictorCorrector, 237
prescribed acceleration, 379
accelX, 379
accelY, 379
accelZ, 379
disp0, 379
RotaccelX, 379
RotaccelY, 379
RotaccelZ, 379
vel0, 379
prescribed displacement, 379
prescribed frequency, 380
DispX, 380
DispY, 380
DispZ, 380
FreqP, 380
FreqV, 380
RotDispX, 380
RotDispY, 380
RotDispZ, 380
pressure, 81, 396, 398, 454
depth dependent, 406
nodal, 455
prescribed, 377
pressure_z, 406
Problematic Elements, 42
Problematic Subdomains, 42
projection_eigen, 213, 219
property, 330, 337, 338, 359, 427
PSD see power spectral density, 208
Pyramid13, 294
Pyramid5, 293, 293

QEVP, 201, 203, 212-216, 218
Quad8T, 294

QuadM, 296, 296

QuadT, 294

Random Number Generator, 71

Random Vibration, 223, 223

Random Vibration see Modal Random
Vibration, 205

RandomPressure, 407



RanLoads, 206, 418, 418
acceleration, 418
dimension, 418

rational function, 179

Rbar, 350, 351, 352
reorder_Rbar, 67

RBE2, 351, 351

RBE3, 352, 353
refc, 352

RbmTolerance, 69, 106, 416

receive_sierra_data, 159, 224, 230, 261, 282,

420
geom_stiff, 282
include_internal_force, 225
no_geom_stiff, 225
Reduced Iwan, 336
relative_disp, 452, 453
remove, 361
reorder_Rbar, 67
reorthogonalization, 204
RequireMatchedBlocks, 31
reserved_keywords, 57, 74
residual, 453
global var, 453
residual norms, 487
vector, 453, 487
residual work, 453
restart, 82
read, 82
from, 82
num_procs, 82
restart_consistency_checking, 74
restart_input_checking, 75
solution support, 89
write, 82
to, 82
restart_consistency_checking, 74
restart_file_checking, 75, 83, 89
restart_input_checking, 74
rigid, 369
Rigidset, 363, 365
block, 363
Joint2G, 363
limitations, 364
nodeset, 363
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sideset, 363
tied joint, 363
voltage, 364
Rrodset, 365
rigid body filter, 416
riwan, 358
RMS, 205, 462
Rod see Truss, 319
rotational frames, 410
rotational_acceleration, 207, 208
rotational_displacement, 207, 208
rotational_type, 278
Rrod, 350, 369
Rrodset, 365
RSpring, 322, 323, 323

sa_eigen, 203, 204, 213, 216, 217
ErrorNorm, 219
limitations, 218

Salinas, 33

scale, 81

scattering, 92

sd_factor, 291, 296, 297

Section Commands, 51
block, 273
block parameters, 273
boundary, 388
coordinate, 115
damping, 283
echo, 486
file, 54, 425
frequency, 141, 433
function, 123
history, 429
Load, 79

Rigid Body Filter, 416
material, 251
matrix-function, 150
outputs, 425
parameters, 63
periodic boundary conditions, 387
Ranloads, 418
Rrodset, 365
sensitivity, 110
Solution, 157



solver_options, 99 Rotational, 323

table, 152 Spring3, 324
tied surfaces, 493 SpringDashpot, 326, 326
user output, 435 statics, 231, 401, 449, 488
Analytic Functions, 444 example, 526
closest distance, 438 statistics, 446
element variable spatial statistics, min/max, 446
435 standard deviation, 446
nodal variable statistics, 436 stiffness_scale_factor, 281
temporal variable statistics, 441 strain, 456
Section Commands see Input Deck, 51 Gauss point, 457
self contact, 502 strain recovery, 462
sensitivity, 110, 113, 173, 521 stress, 207, 254, 466
+/-, 113 Gauss point, 459
Attune, 111 Nodes, 462
iterations, 111 stress recovery, 462
tolerance, 111 stress recovery point, 466
values, 110 Structural Acoustics
vectors, 110 eigen, 216, 219
sensitivity_param, 358 StructuralFraction, 218
shear_axis, 330 subdomain
shells output, 490
offset, 305 Superelement, 171
shift, 185, 195 SuperLU, 22
SIDE A, 503 superposition, 232
sideset, 80, 168, 307, 391 suppression of warnings, 72
SkipmpcTouch, 67 surface
smoothing parameters, 498 description of, 56
Solution see Solution Options, 82 surface_charge, 410
Solution Cases, 157 surfaces, 503
Solution Options, 82 symmetrize_struc_acous, 92
constraint method, 92 syntax_checking, 72
GDSW, 90
mass matrix lumping, 91 tangent, 159, 160, 233, 412
restart, 82 tangential tolerance, 30
scattering, 92 TangentMethod, 66
symmetrize_struc_acous, 92 tcoord, 307, 308
solver Temperature, 469
parameters, 92 Tet10, 292, 293, 293
solver_options, 99 tet10, 294
spherical_wave, 143 Tetd, 292, 292
Spring, 322, 322, 323 tet4, 293
cubic, 324 thermal_exo_var, 68, 403, 405
Linear, 322 thermal_load, 68, 268, 396, 401-403, 405
Parameter Values, 323 thermal_strain, 456
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thermal_time_step, 68, 268, 403—405
TiBeam, 318
tied data, 248, 493
gap_removal, 44, 248
initial overlap removal, 248
transverse, 493
tied joint
normal, 367
shear_axis, 368
side, 368
slip, 367
surface, 366
tied surface, 493
gap removal, 494
TIndex, 454
tolerance, 220-223
traction, 397
transfer, 60, 392
Fuego, copy, 68
SPARGC, interpolation, 68
transhock, 234, 235
history, 235
nskip, 235
srs_damp, 235
transient, 160, 235, 236, 401, 449
multitime, 101, 237
nskip, 235-237, 433
nsteps, start_time, time_step, 236
Tria3, 300, 300
Tria6, 294
TriaShell, 299, 300, 464
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troubleshooting, 40
cubit, 41
explore, 40
TruncationMethod, 206
Truss, 319, 319
TSR_preload, 240

units of measure, 65
update_tangent, 221, 223, 343
used, 488

user subroutine file, 54, 348

viscofreq, 215, 216
viscous damper, 325
voltage, 469

accelV, 379

transV, 378
Volume, 469
volume_acceleration, 393
vrms, 462

warning suppression, 72
waterline, 244, 245
point_a, 245
point_b, 245
point_c, 245
Wedgel5, 293
Wedge6, 293, 293
write, 86
write_files, 196, 211
wtmass, 64, 170, 355, 419, 488

XML, 34
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