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ABSTRACT

A number of important physics effects on the stability of relatively high-n (n is the toroidal mode number) peeling-ballooning modes (PBMs) are
investigated based on an equilibrium reconstructed from a NSTX discharge, utilizing extended magnetohydrodynamic (MHD) eigenvalue solvers.
For a given toroidal mode number n, multiple branches of instabilities are computed, with the total number of unstable branches roughly linearly
scaling with n. Most of the unstable branches are located in the plasma core region, but edge-localized branches, i.e., PBMs, are also identified at
higher n-numbers. For the single-fluid-wise most unstable PBM with n ¼ 19, stabilizing/destabilizing effects due to various physics beyond ideal
MHD are systematically investigated. Plasma toroidal flow is found to be weakly stabilizing. Local flow shear is generally stabilizing as well, with
the degree of stabilization depending on the initial growth rate (without flow shear) of the mode. The plasma resistivity can strongly destabilize
the PBM within the single-fluid framework. Anisotropic thermal transport, strong parallel sound wave damping, as well as two-fluid effects are all
stabilizing to the mode. In particular, diamagnetic stabilization (within the two-fluid model) is found to be very strong for this mode.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0305045

I. INTRODUCTION

Large bursts of edge-localized modes (ELMs) can induce severe
material damage, in particular to the divertor surfaces, in future
reactor-scale tokamak devices such as ITER.1 Understanding ELM
physics, as well as their control, is therefore of crucial importance.
Significant progress has been made in both areas during recent years.2

Overall, it is fair to state that (i) the onset physics of large, the so-called
Type-I ELMs, is now well understood as associated with ideal peeling-
ballooning modes (PBM).3 Theoretical models, in particular the EPED
model,4 have been developed and well validated against experiments,
especially for conventional tokamak devices.

On the other front, (ii) ELM control using the three-dimensional
resonant magnetic perturbation (RMP) produced by external magnetic
coils has reached a relatively mature level in both experiments5 and
with a reasonably good understanding of the associated edge-peeling
plasma response physics.6 This physics understanding has also recently
been employed to systematically optimize the RMP spectrum for type-
I ELM control in both conventional (ITER)7 and low-aspect ratio
(STEP)8 reactor-scale devices.

Although linear ideal magnetohydrodynamic (MHD) theory, in
combination with diamagnetic stabilization,9 has been shown to be suc-
cessful in predicting ELM onset in conventional aspect ratio tokamaks,
effects of the plasma resistivity on the ballooning mode stability have
been shown, both analytically10–12 and numerically,13–15 to play impor-
tant roles as well. In particular, recent work appears to indicate that the
plasma resistivity plays an important role in reconciling with the experi-
mental observations in spherical tokamaks (STs), such as NSTX16–18 and
MAST-U.19,20 Indeed, ideal MHD computations, including the diamag-
netic effect, predicted stable PBMs in ELMy discharges in these devices.
Resistive PBMs were thus identified as the instability responsible for type-
I ELMs in these experiments, in conjunction with the diamagnetic effect.
The latter was also shown to modify the stability of kink modes.21,22

This work aims to conduct a systematic investigation of the PBM
stability in an ST device, focusing on physics effects beyond ideal
MHD. We find that several interesting physics aspects can be clarified
based on an equilibrium reconstructed from an ELMy H-mode experi-
ment in NSTX. We emphasize that (i) physics understanding is our
primary goal here, despite the fact that a realistic plasma equilibrium is
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utilized. Hence, a direct comparison with experiments is of secondary
importance in the present study. (ii) The present work only considers
the linear stability of PBMs. Nonlinear modeling of (type-I) ELM
dynamics in ST, such as that recently performed for MAST-U,19 is
beyond the scope of this study and is indeed beyond the code capabil-
ity employed here.

The codes that we will use are the single-fluid, full MHD, linear
eigenvalue solver MARS-F,24 and its recent two-fluid extension
MARS-2F.25 The additional physics effects included in these codes are:
(1) the plasma resistivity (the Spitzer model), (2) the plasma toroidal
equilibrium flow and flow shear, (3) the plasma anisotropic thermal
transport effect, (4) the parallel sound wave damping effect, and (5)
the two-fluid effect.

The remainder of the work is organized as follows: Sec. II
presents the NSTX equilibrium for the PBM stability analysis. Section
III briefly introduces the modeling tools—the formulation behind the
MARS-F and MARS-2F codes, as well as the aforementioned physics
terms. Section IV reports multi-branch instabilities with or without
plasma flow, followed by numerical convergence tests for the selected
high-n instability reported in Sec. V. Sensitivity studies, against indi-
vidual variation of all the aforementioned plasma parameters (1)–(5),
will be reported in Sec. VI. Section VII summarizes the work.

II. EQUILIBRIUM

We consider an equilibrium reconstructed from the NSTX dis-
charge 132543, with the magnetic geometry including the plasma
boundary surface shown in Fig. 1(a). This is a type-I ELMy discharge,
where it is believed that the ELM is peeling-limited. The wall shape is
also shown here, where the ideal-wall boundary condition is applied in
MARS-F computations reported later. Note that for PBMs of high
mode frequency (due to fast plasma flow) studied here, the ideal-wall
assumption should be a reasonable approximation. The safety factor
profile has the on-axis value of about 0.95, and large edge values, as
being typical for highly elongated spherical tokamak equilibria.

Figure 2 reports key equilibrium kinetic profiles, reconstructed
over a small time-window during the inter-ELM period (covering the
last 20% of the inter-ELM period at around 700ms of the discharge).17

The edge pedestal structures appear in all reconstructed kinetic pro-
files. In what follows, we will use the electron density profile [Fig. 2(b)]

to calculate the plasma resistivity profile according to the Spitzer
model.23 We will also scan the on-axis value of the plasma toroidal
rotation frequency [Fig. 2(d)] while keeping the overall shape of the
radial profile fixed. We remark that the experimental flow is fast, in
particular, in the plasma core. The flow correction to the plasma equi-
librium, therefore, may not be negligible for the case considered. In the
linear stability calculations reported in the present work, the flow cor-
rection to the plasma equilibrium is neglected.

III. MODELING TOOLS

The modeling tools that we employ in the present work are
the MARS-F24 and MARS-2F25 codes. In what follows, we present the
model equations in a rather complete form, encompassing both the
single- and two-fluid terms, as well as those key additional physics
effects beyond ideal MHD, that we will individually consider in this
study in the context of the PBM stability. The linear stability is formu-
lated as an eigenvalue problem

p~q þr � ðq0~vÞ þ r � ð~qV0Þ ¼ 0; (1)

q0

"
ðpþ in�XÞ~vþðV�i;rÞ~v?|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

FLR

#
¼~j�B0þ j0� ~B�r~P

�q0 2�XrZ�~vþR2ð~v �r�XÞr/
� �

�~qR2 �X
2rZ�r/

�jjjjkjjjvth;iq0~vLjj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
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; (2)

ðpþin�XÞ~B¼r�ð~v�B0ÞþR2ð~B �r�XÞr/�r� g~j
� �

þr� 1
en0B2

0
ðB0 �r~PeÞB0

� �
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en0B2
0
ð~B �rPe0ÞB0
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hallþrpe

;

(3)

ðpþ in�XÞ~Pi þ ð~v � rPi0Þ þ CPi0r � ~v
¼ rjj � ðvjjrjj~PiÞ þ r? � ðv?r?~PiÞ�2CVDi � r~Pi|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

reactive�closure

; (4)

ðpþ in�XÞ~Pe þ ð~v � rPe0Þ þ CPe0r � ~v
¼ rjj � ðvjjrjj~PeÞ þ r? � ðv?r?~PeÞ; (5)

~P ¼ ~Pi þ ~Pe; ~j ¼ r� ~B; (6)

where p ¼ cþ ix denotes the (complex) mode eigenvalue. n is the
toroidal mode number. Symbols with subscript “0” indicate the equi-
librium quantities, and those with a tilde denote the corresponding
perturbed quantities. Conventional notations are adopted for the
plasma mass density (q), the fluid velocity (v), the plasma current den-
sity (j) and the magnetic field (B), the thermal ion (Pi) and electron
(Pe), as well as the total (P) pressure. V0 ¼ VE�B þ V�i ¼ R2Xr/ is
the equilibrium toroidal fluid flow velocity, with VE�B ¼ R2XE�Br/
being the equilibrium toroidal E � B flow velocity and V�i
� B0 �rP0i=ðZen0B2

pÞ being the equilibrium diamagnetic flow veloc-

ity of thermal ions (the poloidal flow contribution is ignored). VDi

� ðT0i=eÞr� ðB0=B2
0Þ is the (averaged) equilibrium toroidal preces-

sion drift velocity of thermal ions. C ¼ 5=3 is the ratio of specific
heats. The equations are written here in cylindrical coordinates

FIG. 1. Equilibrium reconstructed from the NSTX ELMy H-mode discharge 132543,
showing (a) the plasma boundary shape (thick red line) together with representative
flux surfaces (thin black lines) and the wall shape (blue), where the ideal-wall
boundary condition is applied and (b) the safety factor profile. wN is the normalized
equilibrium poloidal magnetic flux.
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ðR;/;ZÞ, although the MARS-F and MARS-2F implementations are
eventually carried out in toroidal flux coordinates based on the equilib-
riummagnetic flux surfaces.

Detailed derivations of the above equations were reported in
the Appendices of Ref. 26 (for inclusion of the toroidal fluid rotation
with the MARS-F single-fluid formulation) and Ref. 25 (for the two-
fluid formulation starting from the Braginskii model27). We start by
discussing those underlined terms from the above equations. The
last left-hand side (LHS) term from the momentum Eq. (2) is
obtained after gyro-viscous cancelation and essentially represents
the finite Larmor-radius (FLR) effect associated with the thermal
ion diamagnetic flow. The last two terms from the right-hand side
(RHS) of the induction Eq. (3) originate from the MHD Hall term
combined (after certain partial cancelation) with the electron dia-
magnetic term due to rPe in the extended Ohm’s law. These two
terms, together with the FLR term from Eq. (2), represent the key
two-fluid physics.

Further extension is obtained by including the parallel sound
wave damping (PSWD) model as the last RHS term in Eq. (2). This is
a viscous force that damps the particle motion (i.e., the perturbed par-
allel velocity in the Lagrangian form ~vL) along the magnetic field line
in a rotating plasma. The PSWD model mimics the thermal ion
Landau damping physics as described by Hammett and Perkins.28

Here, vth;i is the averaged thermal ion velocity (corresponding to the
equilibrium thermal ion temperature Ti0), kjj is the parallel wave num-
ber, and jjj a numerical coefficient specifying the damping strength.
jjj � 1 corresponds to strong PSWD.

The next unconventional term in the above model is the reactive
closure term (the last RHS term) from the thermal ion energy Eq. (4).
This closure term, which originated from the gyroviscous (or diamag-
netic) heat flux to close the ion energy equation and is employed
within the Weiland model,29 is typically important for solving drift-

wave problems. We include this closure here in order to examine its
importance when applied to MHD problems.

The remaining terms from the above equations follow the con-
ventional single-fluid formulation. The plasma resistivity (g) follows
the Spitzer model. The anisotropic thermal transport is specified by
the two diffusion coefficients v? and vjj whose values vastly differ.
Note that the parallel thermal conduction acts along the field lines in
the presence of the perturbed magnetic field.30

In the MARS-2F code implementation, the terms associated with
the FLR effect, the Hall and electron diamagnetic terms, as well as the
reactive closure term, are all multiplied by a numerical coefficient a2F.
The same parameter is also applied to define

�X ¼ X� a2FX�i; (7)

where X�i ¼ V�i � r/ ¼ �ðdP0i=dwpÞ=ðZen0Þ is for the toroidal
component of the ion diamagnetic flow. At a2F ¼ 0, we recover the
single-fluid formulation from the above equations. The full two-fluid
formulation is recovered in the limit of a2F ¼ 1, where �X ¼ XE�B.
Equilibrium radial profiles for these various rotation frequencies are
shown in Fig. 3, assuming the experimental toroidal fluid flow
X ¼ Xexpt:. We remark that, unlike in other work,9,17 we define X�i, in
this study, without multiplication by the toroidal mode number n.

We also note that both the parallel and poloidal equilibrium flows
are ignored in the above formulation. These flow options have also
been implemented in MARS-F,31,32 but are not activated in the present
study. For the PBM stability analysis, we will consider the aforemen-
tioned physics effects individually, by scanning certain parameters
(e.g., X; g; jjj; v?; vjj; a2F) starting from a reference case.

IV. MULTI-BRANCH INSTABILITIES

The eigenvalue solver allows identification of multiple unstable
branches for the same toroidal mode number n. This is useful for

FIG. 2. Equilibrium kinetic profiles recon-
structed for the NSTX discharge 132543,
for (a) the plasma density, (b) the thermal
ion (Ti ) and electron (Te) temperatures,
(c) the plasma pressure, and (d) the fluid
toroidal rotation frequency.
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(i) understanding the full (unstable) spectrum associated with an equi-
librium, and perhaps more importantly (ii) finding out how various
physics effects can lead to different dominant instability (one such
example will be shown later). Figure 4(a) reports the MARS-F com-
puted growth rates for different branches of unstable modes assuming
vanishing equilibrium flow (thus vanishing mode frequency), while
scanning the toroidal mode number n from 1 to 20. As we will also
show, these different branches have different radial locations inside the
plasma.

It is interesting that the number of unstable roots, for a given
mode number n, scales roughly linearly with n [Fig. 4(b)]. This appears
to indicate that the equilibrium safety factor plays an important role in
dictating multiple unstable branches (the poloidal mode spectrum
m � nq). We emphasize that not all branches are of the PBM nature.
In fact, all 5 unstable branches with n ¼ 1 are core-localized internal-
kink-like modes (since q0 < 1) satisfying the Sturmian property,33 i.e.,
with subsequently increasing number of zero-crossings (the so-called
node number) of the radial displacement as the mode growth rate
decreases. Multiple branches at higher-n can be located either in the
plasma core or edge (examples to be shown later).

Note that we truncate the unstable spectrum at c=xA < 10�3

here. There are typically several additional branches with very small
growth rates, but we are generally not interested in these weakly unsta-
ble modes. This truncation is also the reason for the slightly non-
monotonic behavior of the curve (at n ¼ 4 and 19) shown in Fig. 4(b):
the next unstable branch happens to have the growth rate just below
the cutoff value of c=xA ¼ 10�3 for n ¼ 4 and 19, in contrast to their
neighboring harmonics.

The above unstable spectrum is computed assuming vanishing
plasma flow. Next, we trace these multiple unstable branches for a
given n-number while scanning the toroidal flow speed. Figure 5 shows
one example for n ¼ 19. Although all the initially unstable branches
(at vanishing flow) have been traced, we show a few most unstable
ones for clarity of the presentation here. It is evident that the flow sta-
bilization/destabilization effect varies for different branches [Fig. 5(a)].
Complete stabilization, at the experimental rotation, is computed for
several of the less-unstable branches.

The computed mode frequency generally increases in proportion
to the assumed rotation frequency, due to the fact that the mode fre-
quency is largely caused by the Doppler shift effect. The amount of the
Doppler shift, however, depends on the mode location along the radial
coordinate (and is obviously proportional to n). The core-localized
branch experiences a larger Doppler shift since the flow is faster there
[Fig. 2(d)]. Consequently, the computed mode frequency is larger for
the core-localized branches as compared to the edge-localized counter-
part. Therefore, examining the final mode frequency (at the experi-
mental rotation) from Fig. 5(b) reveals the mode radial location. In
particular, the branch indicated by arrows in the figure has the lowest
mode frequency and is located near the plasma edge. This branch is
thus most relevant to the ELMy behavior observed in the experiment.
Later studies (Sec. VI) will therefore focus on this branch, while scan-
ning various plasma/model parameters beyond ideal MHD.

We make two more comments before showing examples of the
computed eigenmode structures for multiple branches. First, as evident
from Fig. 5(a), the plasma flow changes the dominant unstable
spectrum. At the experimental rotation, all the core-localized branches

FIG. 3. Various toroidal rotation frequen-
cies (the fluid rotation X, E � B rotation
XE�B, and the thermal ion diamagnetic
rotation X�i ) for the NSTX discharge
132543, normalized by the toroidal Alfv�en
frequency xA and plotted in (a) the whole
plasma region and (b) near the plasma
edge. The vertical dashed line indicates
the location of an n ¼ 19 edge-localized
instability.

FIG. 4. The MARS-F computed (a) growth
rates and (b) number of unstable roots, of
multiple eigenmodes while scanning the
toroidal mode number n. Assumed is the
Spitzer model for the plasma resistivity and
vanishing plasma equilibrium flow. Counted
are only the unstable roots with the normal-
ized growth rate c=xA > 10�3.
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are subject to stronger flow damping, leaving the edge-localized
branch the most unstable. This branch is the sixth unstable one at van-
ishing flow. Second, mode conversion-merge occurs for certain
branches while we increase the flow speed. This often happens in linear
stability systems.34 In the case shown here, the two most unstable
branches (at vanishing flow) merge into one at a certain finite rotation
frequency.

Figure 6 presents four examples of the computed n ¼ 19 eigenm-
odes at the experimental rotation. It is evident that all branches are
localized along the radial coordinate, but peak at different places. In
particular, the edge-localized branch peaks at s ¼ ffiffiffiffiffiffiffi

wN

p ¼ s0 ¼ 0:886.
Note that, as part of the eigenfunction, the overall amplitude of the
pressure perturbation shown in the figure has no physics significance.
The presence of a hole in the contour plots is due to the fact that the
MARS-F computations were performed in an annular computational
domain that excludes the plasma core region near the magnetic axis.
This truncation is often helpful in reducing the computational chal-
lenge for high-n modes located near the plasma edge. Numerical

convergence with respect to the aforementioned truncation will be
reported later on.

Figure 6(a) shows that the n ¼ 19 edge instability, although
being generally of a ballooning nature, still maintains certain peeling
characteristics. Specifically, the perturbation is still significant near the
top and bottom regions of the torus, and even extends toward the
high-field side. Since this is the most unstable perturbation [cf.
Fig. 5(a)], we may assume that this branch is responsible for the onset
of the type-I ELMs observed in the NSTX experiment considered.
Results reported later with the two-fluid model, however, show stabil-
ity of the n ¼ 19 edge branch. Nevertheless, a detailed investigation of
this branch is carried out for physics understanding, to be reported in
Secs. V andVI.

Figure 7 shows another example of the toroidal flow effect on the
multi-branch instabilities, this time for a lower-n (n ¼ 8) spectrum.
We again find both stabilizing and destabilizing effects of flow depend-
ing on the branch and the range of flow speed. As a consequence, flow
changes the dominant unstable spectrum for the same toroidal mode

FIG. 5. The computed mode growth rate c vs (a) the on-axis value of the toroidal fluid rotation frequency X0 and (b) the computed mode frequency x, while scanning X0 from
zero to the experimental value of Xexpt

0 =xA ¼ 0:179. The radial profile shape of rotation is fixed, as shown in Fig. 2(d), while scanning the on-axis value. Shown is a portion of
the unstable spectrum for the n ¼ 19 modes with c=xA > 0:03 for better clarity of presentation. Similarly, the mode frequency is plotted up to x=xA ¼ 1:5 in (b). Indicated
by arrows is also a branch localized near the plasma edge, with a relatively small mode frequency at the experimental rotation (the right-hand side end point of the curves).

FIG. 6. The eigenmode structure in terms of the perturbed plasma pressure, plotted in the poloidal plane and compared among multiple unstable n ¼ 19 modes located at (a)
the plasma edge, (b) and (c) the middle of the plasma column, and (d) the plasma core region.
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number. For the case considered, most of the branches are core-
localized. The one closest to the plasma edge, with the lowest mode fre-
quency at the experimental flow, as indicated by arrows in the figure,
peaks at s0 ’ 0:6, i.e., being less edge-localized than the n ¼ 19 edge
branch reported in Fig. 6(a). Given the additional fact that this branch
is only moderately unstable, we will not perform a systematic calcula-
tion of various physics effects on the mode stability. Instead, we will
focus more on the n ¼ 19 edge-mode branch shown earlier, which is
of the PBM nature and remains substantially unstable even at the
experimental flow according to the single-fluid model.

In view of these flow-scan results, we again comment on the
toroidal flow in NSTX. Although the toroidal flow is included in the
perturbed MHD equations, the flow correction to the plasma equilib-
rium is ignored, as pointed out earlier. This is a significant

approximation for the NSTX plasma considered, since the flow is fast.
On the other hand, we are mostly interested in modes that are local-
ized near the plasma edge, where the flow is relatively slow. At any
rate, caution is needed when interpreting the experiment with the
numerical results reported here.

V. NUMERICAL CONVERGENCE

Before showing more physics results, we demonstrate numerical
convergence of the results obtained. Since MARS-F utilizes spectral rep-
resentation of the solution variables along the poloidal angle, a large
number of poloidal Fourier harmonics is required for high-n perturba-
tions in order to achieve the converged eigenvalue (and eigenfunction).
Figure 8 reports two examples (n ¼ 19 and n ¼ 20) where the eigenm-
odes peak near the plasma edge. The computed eigenvalues—both

FIG. 7. The computed mode growth rate c
vs (a) the on-axis value of the toroidal fluid
rotation frequency X0 and (b) the com-
puted mode frequency x, while scanning
X0 from zero to the experimental value of
Xexpt:

0 =xA ¼ 0:179. The radial profile
shape of rotation is fixed, as shown in
Fig. 2(d), while scanning the on-axis
value. Shown is the unstable spectrum for
the n ¼ 8 modes, with arrows indicating a
branch with the smallest mode frequency
(at the experimental rotation) and local-
ized near the plasma edge.

FIG. 8. Numerical convergence of the com-
puted mode growth rate (top panels) and
frequency (bottom panels) vs the total num-
ber (M) of poloidal Fourier harmonics
included in MARS-F computations, for the
(a) and (b) n ¼ 19 and (c) and (d) n ¼ 20
modes located near the plasma edge. The
closed circle indicates the M-number
adopted in default MARS-F runs.
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growth rate and mode frequency—converge well with sufficiently large
numbers (M) of the poloidal harmonics. The largest M-numbers here
are used as the nominal values in further MARS-F computations.

On the poloidal convergence, we remark that a lower number of
harmonics is needed for (i) lower-n perturbations and (ii) modes local-
ized in the plasma core region, where the safety factor q is lower. This
is because the required poloidal harmonics should roughly cover a
range set bym � nq.

Figure 9 shows the numerical convergence of the MARS-F com-
puted eigenvalue for the n ¼ 19 edge branch, as we gradually increase
the hole (indicated by the parameter sLEFT) of the computational
domain in the plasma core. The left-hand value here, sLEFT ¼ 0:2, cor-
responds to the nominal case shown in Fig. 6(a). It is evident that the
numerical convergence is only lost when the computational domain
inside the plasma no longer covers the region occupied by the mode

eigenfunction. This region is shaded in Fig. 9. We should mention that
while varying sLEFT, the total number of radial mesh points inside the
computational domain is kept the same. Figure 9, thus, to a certain
degree, also illustrates the numerical convergence with respect to the
radial resolution.

VI. PHYSICS EFFECTS BEYOND IDEAL MHD

In what follows, we will scan various model parameters described
in Sec. III, to understand physics effects beyond the ideal MHD
assumption on the PBM instability. For the purpose of systematic
investigations, we define a reference case as the MARS-F single-fluid
model, the Spitzer resistivity, the experimental toroidal fluid rotation
profile, vanishing parallel sound wave damping in the perturbed
momentum equation, and vanishing thermal transport in the per-
turbed pressure equations. Sensitivity study against variation of each of

FIG. 9. Numerical convergence of the
computed mode (a) growth rate and (b)
frequency vs the truncation point of the
computational domain from the left-hand
side (sLEFT) of the radial coordinate, for
the n ¼ 19 unstable branch located near
the plasma edge. The shaded region indi-
cates the region covered by the mode
eigenfunction, as shown in Fig. 6(d). The
closed circle indicates the sLEFT-value
adopted in default MARS-F runs.

FIG. 10. Local variation of the (a) toroidal
fluid flow profile and (b) the corresponding
flow shear near the plasma edge, resulting
in the change of the computed mode (c)
growth rate, and (d) frequency for the
n ¼ 19 edge-localized unstable branch.
The vertical dashed lines in (a) and (b)
indicate the radial location where the
mode eigenfunction peaks [cf. Fig. 6(a)].
The thick black lines in (a) and (b) and the
closed circles in (c) and (d) indicate the
experimental rotation profile.
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the aforementioned physics will then be performed (mainly) for the
n ¼ 19 PBM branch, starting from the reference case. The n ¼ 19
PBM branch is also found to be the most unstable among other n’s
when the experimental flow is included in the MARS-F computation.

The effect of the toroidal flow was already reported in Sec. IV,
which is stabilizing for the n ¼ 19 PBM, albeit at a moderate level.
Next, we consider the effect of flow shear on the computed mode sta-
bility (Fig. 10). We locally vary the flow shear at the radial location of
the n ¼ 19 eigenmode, without modifying the flow amplitude at the
mode peak location s0 ¼ 0:886 [Fig. 10(a)], by introducing the follow-
ing analytic function:

XnewðsÞ ¼ XexptðsÞ þ dSðs� s0Þ exp �ðs� s0Þ2
d20

" #
; (8)

where Xexpt is the experimental rotation profile as reported in
Fig. 2(d). Xnew is the modified profile. The Gaussian width d0 ¼ 0:05
is chosen to approximately cover the radial extension of the n ¼ 19
PBM eigenfunction. The parameter dS is then scanned to modify the
local flow shear, defined as sðdX=dsÞ=X.

MARS-F finds that, for the case considered, local flow shear
[Fig. 10(b)] stabilizes the mode [Fig. 10(c)] with minor influence on
the mode frequency [Fig. 10(d)]. Note that (i) the flow shear stabiliza-
tion effect is generally weak here, and (ii) the sign of the flow shear
does not matter. An early analytic calculation35 showed that the
pressure associated with the toroidal flow—essentially due to the cen-
trifugal force—effectively enhances the plasma pressure toward the
low-field side of the torus. The resulting flow shear, together with the

equilibrium pressure gradient, acts against magnetic curvature for the
ballooning drive. Consequently, a positive flow shear would compen-
sate for the (generally negative) pressure gradient, resulting in a
reduced interchange/ballooning drive in the bad curvature region. This
leads to the (positive) flow shear stabilization of the ballooning mode.
In our case, surprisingly, we also find flow shear stabilization, albeit
weak, with negative shear. This may be due to the fact that the n ¼ 19
perturbation computed here is not of a true ballooning nature. The
eigenmode indeed extends out to the good-curvature region, as shown
in Fig. 6(a).

The stabilizing effect of flow shear on the n¼ 19 PBM appears
weak because the mode is already highly unstable. The effect becomes
stronger for less unstable modes. One example is reported by Fig. 11
for the n ¼ 18 PBM branch. In this case, a local negative flow shear of
�5 (at the mode-peak location) reduces the mode growth rate by a fac-
tor of 3, compared to the vanishing flow shear case. The flow shear sta-
bilization is, however, less symmetric with respect to the vanishing
shear case between the positive and negative values.

Next, we consider the role of the plasma resistivity, which has
been shown to be a critical factor in interpreting the ELMy H-mode
experiments for NSTX.17 Similar to the finding reported in the quoted
work here, MARS-F single-fluid computations find that the plasma
resistivity can strongly destabilize PBMs by assuming large plasma
resistivity values (Fig. 12). Assuming the Spitzer value (indicated by
the closed circle in Fig. 12), the enhancement of the mode growth rate
is, however, moderate for the n ¼ 19 edge branch. This is largely due
to the fact that the mode considered here is unstable, even assuming
an ideal plasma. This is different from a situation where the mode is

FIG. 11. The computed (a) growth rate
and (b) mode frequency for the n ¼ 18
edge-localized unstable branch, while
scanning the local flow shear around the
experimental value indicated by the closed
circle.

FIG. 12. The computed (a) growth rate and
(b) mode frequency of the n ¼ 19 edge-
localized branch while varying the plasma
resistivity (measured by the on-axis inverse
Lundquist number 1=S). The closed circle
indicates the Spitzer value for the NSTX
plasma considered. The shape of the radial
profile of the plasma resistivity is fixed, fol-
lowing the T�3=2

e -dependence while varying
the on-axis value. Assumed is the experi-
mental toroidal rotation.
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ideally stable but driven unstable by the plasma resistivity. On the
other hand, we note that diamagnetic stabilization is not taken into
account here (within the single fluid model). As a consequence of the
resistive instability, magnetic islands are present near mode rational
surfaces. However, the eigenvalue solution does not determine the
island size (which is proportional to the square root of the resonant
radial magnetic field) since the overall amplitude of the eigenfunction
is arbitrary.

We now investigate the role of the plasma thermal transport in
the mode stability. Figure 13 reports the computed mode eigenvalues
while scanning both the (normalized) perpendicular (v?) and parallel
(vjj) thermal diffusion coefficients, while keeping the ratio vjj=v? fixed
at three different values (vjj=v? ¼ 106; 107; 108). This range of scans
covers the thermal transport regimes in typical tokamak plasmas. Note
again that the reference case corresponds to vanishing thermal trans-
port. It is evident from Fig. 13(a) that (i) enhancing thermal transport
in general strongly stabilizes the mode considered and (ii) larger aniso-
tropies of the thermal diffusion also yield stronger stabilization. The
effect of the anisotropic thermal transport on the mode frequency is
found to be limited [Fig. 13(b)].

It appears that the effect of the anisotropic thermal transport,
though ultimately modifying the sound wave propagation, can be
either stabilizing, e.g., for the high-n resistive PBM as shown here, or
destabilizing, e.g., for the (resistive) tearing mode.36,37 The latter is
largely due to the fact that thermal transport is effective in compensat-
ing the average favorable curvature stabilization in a toroidal plasma.38

Figure 14 reports the effect of the PSWD on the PBM, where we
scan the damping strength coefficient jjj. This effect has been shown

to be generally stabilizing for low-frequency MHD modes such as the
resistive wall mode.39 For the plasma response to the RMP, the strong
PSWDmodel (with jjj � 1) yields a better agreement with the internal
plasma perturbation measurement in the experiment.40 Here, we also
find the stabilizing, albeit weak, role of the strong PSWD in the n ¼ 19
PBM. A peculiar feature, however, is the destabilizing effect near jjj ¼
0 (i.e., the reference case). We interpret this as a consequence of the
PSWD, while interacting with sound waves, effectively reducing the
plasma inertial enhancement (the Pfirsch–Schl€uter factor41). The latter
is known to reduce the MHD mode growth rate. More precisely, this
inertial enhancement factor introduces a jump in the mode growth
rate when the plasma equilibrium pressure changes from zero to a
small finite value.42 This reduction of the inertia enhancement likely
becomes prominent only for high-n perturbations. We emphasize that,
for our case, the PSWD effect is weak on both the mode growth rate
and frequency.

We emphasize also that the ultimate physics of both the PSWD
effect discussed above and the anisotropic thermal transport effect
reported in Fig. 13 relies on the change of the parallel sound wave
propagation inside the plasma.43 The change thus can only occur at a
finite equilibrium pressure, which allows sound wave propagation.

Finally, we consider the two-fluid effects on the n ¼ 19 PBM.
Figure 15 shows the MARS-2F computed mode eigenvalue, where we
scan the numerical parameter a2F introduced in Sec. III. Note that the
limit of a2F ¼ 0 corresponds to the single-fluid model (the reference
case). The mode becomes stable before reaching the two-fluid limit of
a2F ¼ 1. In other words, the n ¼ 19 PBM is found to be stable with
our two-fluid model. The computed mode frequency decreases with

FIG. 13. The computed (a) growth rate
and (b) mode frequency of the n ¼ 19
edge-localized branch while varying the
anisotropic thermal transport coefficients.
The ratio of the parallel (vjj) to perpendic-
ular (v?) thermal diffusion coefficients
are fixed (at three different values
106; 107; 108) while scanning v?. Both vjj
and v? are assumed to be constants
along the radial coordinate and normal-
ized by v0 ¼ R2

0=sA. The reference case
corresponds to v? ¼ 0.

FIG. 14. The computed (a) growth rate
and (b) mode frequency of the n ¼ 19
edge-localized branch while scanning the
numerical coefficient jjj for the parallel
sound wave damping (PSWD) model. The
closed circle (i.e., with vanishing PSWD)
corresponds to the reference case.
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a2F, but remains positive (i.e., following the ion diamagnetic direction)
as long as the mode is unstable [Fig. 15(b)].

This two-fluid stabilization, essentially due to the diamagnetic
effect (often referred to as the FLR effect), appears to be robust against
the variation of the plasma resistivity. Considered here are three differ-
ent (on-axis) Lundquist numbers S ¼ 106; 108, and 8:05� 106, with
the latter corresponding to the Spitzer resistivity evaluated for the
NSTX plasma considered. A variant of the two-fluid model, where we
remove the reactor closure term from Eq. (4), produces similar results
as indicated by dashed-line curves in the figure. We emphasize that the
ion gyroviscous term, which was found to be destabilizing to the inter-
change mode for a certain class of plasma equilibria,44,45 is effectively
included in the MARS-2F formulation (but partially canceled by the
parallel component of the Reynolds stress tensor terms associated with
the ion diamagnetic flow).25

It is interesting to compare with the approximate rule for diamag-
netic stabilization of the ballooning mode: nx�i=2 > c0,

9 where c0 is
the ballooning mode growth rate according to the single-fluid (ideal
MHD) calculation. In our case, c0 ¼ 0:093xA (at vanishing flow and

assuming Spitzer resistivity), x�i ¼ 0:021xA at the mode location
(s ¼ 0:886, indicated by the vertical dashed line in Fig. 3). This leads
to nx�i=2 � 0:2xA > c0. The numerical result here is thus consistent
with the analytic rule for the diamagnetic stabilization.

Two-fluid stabilization of the (relatively) high-n modes begs the
question of interpreting the experimental data, where the discharge
was observed in the ELMy H-mode regime. It turns out that the lower-
nmodes can remain unstable even with the two-fluid model. We show
this again for the n ¼ 8 instability (cf. Fig. 7), but this time, only con-
sidering the branch that is located nearest to the plasma edge. The cor-
responding mode eigenvalues and (examples of) eigenfunctions are
reported in Fig. 16. For the branch that is unstable at the single-fluid
limit (a2F ¼ 0), the two-fluid effect is initially stabilizing at a certain
range of a2F (¼0.12–0.36), as shown by the red curve (Root-1) in
Fig. 16(a). This trend is, however, terminated by the appearance of
another unstable root (Root-2), which is stable in the single-fluid limit
(a2F ¼ 0) but unstable in the two-fluid limit (a2F ¼ 1). Interestingly,
the eigenvalues of both roots merge at a2F ¼ 0:36. We, thus, postulate
that the second unstable root here (in the physical limit of a2F ¼ 1),

FIG. 15. The MARS-2F computed (a) growth rate and (b) mode frequency of the n ¼ 19 edge-localized branch while scanning the numerical parameter a2F. a2F ¼ 0 corre-
sponds to the single-fluid limit while a2F ¼ 1 being the two-fluid limit. Varied here is also the plasma resistivity, with the corresponding on-axis Lundquist number S ¼ 106

(black), 8:05� 106 (red, the Spitzer value), and 108 (blue), respectively. Compared are also the two-fluid models with (solid lines) and without (dashed lines) the reactive clo-
sure term in the thermal ion energy equation. The closed circle indicates the reference case with the single-fluid model.

FIG. 16. The MARS-2F computed n ¼ 8
mode (a) growth rate, (b) frequency, and
(c) and (d) eigenfunctions (in terms of the
perturbed pressure) for the branch located
nearest to the plasma edge, while scan-
ning the numerical parameter a2F. Shown
in (c) is the eigenmode corresponding to
the single-fluid limit (a2F ¼ 0) while in (d),
the two-fluid limit with reactive closure is
also included (a2F ¼ 1). Assumed are the
Spitzer resistivity model and the experi-
mental plasma rotation.
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“triggered” by the two-fluid effect, can be responsible for the experi-
mentally observed ELMs in the NSTX discharge considered. The
MHD Hall term is likely the driver for the instability, although this is
not easy to verify within our formulation, since the former is not sepa-
rated from the diamagnetic term in Eq. (3) due to the partial cancel-
ation effect mentioned earlier. We also remark that the second
unstable branch (in blue) is triggered at vanishing frequency
[Fig. 16(b)]. In other words, the mode would rotate in the electron dia-
magnetic direction were it stable.

The mode is not located right at the plasma edge, though
[Fig. 16(d)]. Compared to the single-fluid counterpart [Fig. 16(c)],
some perturbations also occur in the plasma core for the two-fluid trig-
gered instability. A detailed examination of the evolution of the eigen-
mode structure, while scanning a2F, reveals that the mode is largely
core-localized (near the radial coordinate of s ¼ 0:3) when triggered,
i.e., at a2F � 0:2. This core mode then gradually shifts outwards with
increasing a2F. The physically relevant eigenmode shown in Fig. 16(d)
still partly couples to certain core activity. Such a “mixed”mode struc-
ture is, however, robust—a very similar result is obtained, e.g., also at
a2F ¼ 0:8. Experimentally, such a core activity may be observable by
measuring the plasma core flow damping.

The above “triggering” nature is further confirmed by considering
the analytic diamagnetic stabilization rule mentioned earlier. The dia-
magnetic frequency at the peak location of the n ¼ 8 instability is
x�;i=xA ¼ 3:26� 10�2, leading to a much larger value of nx�i=2
(n ¼ 8 here), as compared to the single-fluid growth rate of c=xA

¼ 1:67� 10�2 with experimental flow or c=xA ¼ 2:86� 10�2

without flow. In other words, the analytic rule would predict full two-
fluid stabilization of the n ¼ 8 mode here, thus cannot explain the
experimental observation. We nevertheless remark again that direct
comparison/interpretation of experiment is not the focus of the present
investigation, which aims to understand physics effects beyond ideal
MHD on relatively high-n PBMs.

VII. CONCLUSION AND DISCUSSION

Based on an equilibrium reconstructed from the NSTX ELMy
H-mode discharge, we investigate a number of important physics
effects on the stability of relatively high-n PBMs, utilizing the MARS-F
and MARS-2F eigenvalue codes. For a given toroidal mode number n,
multiple branches of instabilities are computed for this NSTX plasma.
The total number of unstable branches (at vanishing plasma flow) is
found to scale roughly linearly with n. Most of the unstable branches
are located in the plasma core region, but edge-localized branches,
i.e., PBMs, are also identified at higher n-numbers.

For the purpose of physics understanding, we focus on a rep-
resentative PBM mode with n ¼ 19, which is also the most unsta-
ble mode, among different n’s according to the single-fluid model,
that is localized in the plasma edge region. Stabilizing/destabilizing
effects on this branch, due to various physics beyond ideal MHD,
are systematically investigated with results summarized in Table I.
Plasma toroidal flow is found to be stabilizing for this PBM branch,
although it can also be destabilizing for other branches. As a conse-
quence, we find that the plasma flow modifies the dominant unsta-
ble spectrum of the equilibrium considered. Local flow shear is
found to be generally stabilizing for the PBM, with the degree of
stabilization depending on the initial growth rate (without flow
shear) of the mode. The plasma resistivity can strongly destabilize
the PBM within the single-fluid framework. Anisotropic thermal

transport, strong parallel sound wave damping, as well as two-fluid
effects are all stabilizing to the mode. In particular, diamagnetic
stabilization (within the two-fluid model) is found to be very
strong for the plasma considered—the n ¼ 19 PBM is predicted to
be fully stable by MARS-2F.

Although direct comparison with experiment is of secondary
consideration in the present work, we nevertheless discuss this aspect
here. As mentioned earlier, the two-fluid model predicts complete sta-
bility of the higher-n PBMs for this ELMy H-mode plasma. On the
other hand, two-fluid effects can destabilize/trigger lower-n modes,
which may explain the ELMy behvaior in the discharge studied. It is,
however, important to bear in mind that the flow correction to the
plasma equilibrium is neglected in the present study. Despite being a
less severe issue for modes localized near the plasma edge (where the
flow is much slower), this is still a significant approximation for the
NSTX plasma. The effect of the exact X-point geometry is not studied
here due to limitations of the numerical implementation. The X-point
geometry has been shown to be stabilizing on the kink-peeling
mode.46 Furthermore, other physics effects beyond two-fluid, e.g., non-
linear MHD, or perhaps two-fluid but combined with a flowing equi-
librium, are needed to more consistently describe the ELMy H-mode
experiment in NSTX. Kinetic effects may offer another possibility,
which will be studied in the future, utilizing the MARS-K code.47
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