
Analyzing Infrastructure Interdependencies Using
Network-Of-Networks Modeling

Evan Scherrer
evan.scherrer@drake.edu

Drake University
Des Moines, Iowa, USA

Melissa Allen-Dumas
allenmr@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Bharat Sharma
sharmabd@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Abstract
Infrastructure networks play a crucial role in our day-to-day lives,
and modeling these infrastructure networks can help decision-
makers prepare for and respond to disruptions such as natural
disasters or cyberattacks. Because these infrastructure networks
depend on each other, it is not sufficient to model a single net-
work in isolation. We build on previous single-network-modeling
techniques to develop a methodology for modeling infrastructure
interdependencies as a Network-of-Networks. Using distribution-
level data from a real U.S. city on the power grid, road geometry,
and hospital locations, we show how to apply this methodology to
modeling three of the U.S. Department of Homeland Security’s Crit-
ical Infrastructure Sectors: Healthcare, Transportation, and Energy.
We also analyze three primary metrics before and after a simu-
lated disaster: 1) impact on hospital access; 2) road network impact
with the change in betweenness centrality; 3) electric customer
outage. We simulate three different disruptions: 1) road flooding
from nearby rivers; 2) a malicious actor targeting the road networks;
3) a malicious actor targeting the electric grid. Finally, we discuss
how our methodology can be applied to additional infrastructure
networks and types of disruption, and how Artificial Intelligence
(AI) techniques may be incorporated into this methodology for
further research.

CCS Concepts
• Computing methodologies → Modeling methodologies.
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1 Introduction & Background
Network science can be used to describe a variety of complex rela-
tionships in both the natural world and the built environment. It
can represent anything from the complex web of social connections
to the ways that computers communicate with each other over
the internet. Prior work utilizes network science to analyze the
robustness and efficiency of modern urban infrastructure networks:
Yadav et al. [14] use network science with historic flood data to ana-
lyze the London Rail Network’s resiliency, and Rahimitouranposhti
et al.[7] perform a similar analysis on the US’s freight transporta-
tion network. Warner et al.[12] depict the cascade of infrastructure
systems through networks.

However, it is important to take into account that no infras-
tructure network operates independently of the others, so when
analyzing them, it is important to understand the complex interde-
pendencies that tie our infrastructure networks together. Rinaldi et
al. [9] describe four different types of interdependencies that should
be considered when analyzing complex infrastructure networks:
physical interdependencies, where one network’s functionality de-
pends on the material outputs of the other; cyber interdependencies,
where one network’s functionality depends on information trans-
mitted through information technology infrastructure; geographic
interdependencies, where two networks depend on each other if
they are geographically colocated; logical interdependencies, which
capture any type of interdependency that is not physical, cyber,
or geographic; examples include financial or social connections
between networks.

Lee et al. [5] describe amethod, including several different heuris-
tics, for estimating interdependencies between multiple infrastruc-
ture systems on a national scale, but their model lacks the detail
of a local model of those network interdependencies. We present a
network-science-based methodology for modeling interconnected
systems of city infrastructure. Specifically, we choose to apply this
methodology to subsets of three of the Department of Homeland
Security Critical Infrastructure Sectors [10] using data for a specific
city in the United States: we model the distribution-level power
grid (Energy Sector), the road network (Transportation Systems
Sector), and hospitals (Healthcare and Public Health Sector). Due to
publicity restrictions on the data used, the city used in this report
will remain anonymous.

2 Data & Methodology
This report is a case study of developing our methodology on a
subset of the city’s infrastructure networks. As Figure 1 shows,
we model each infrastructure network individually, connect them
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into a network-of-networks, apply disruptions to the network-of-
networks, and develop and measure metrics based on research
questions we would like to answer.

Figure 1: Our proposed methodology workflow for modeling
interconnected systems of city infrastructure

2.1 Data
2.1.1 Road Geometry. The road geometry used was the U.S. Geo-
logical Survey’s National Transportation Dataset[11]. The dataset
was provided as a collection of Environmental Systems Research
Institute (ESRI) shapefiles.

2.1.2 Electric Meter Locations and Power Line Geometry. The distri-
bution-scale electric grid dataset was provided by a local utility
company as a .mdb file containing layers for power line geometry,
electric transformers, and additional information not used for the
study. We used ArcGIS’s [8] FeatureClassToShapefile function to
open the .mdb file, aggregate three different types of primary con-
ductors (power lines), extract the power line geometry, and export
it as an ESRI shapefile.

2.1.3 Hospital and Substation Locations. Hospital and power sub-
station locations were obtained from the U.S. Department of Home-
land Security’s Homeland Infrastructure Foundation-Level Data
(HIFLD) dataset. The datasets were provided as ESRI shapefiles.

2.2 Methods
We first represented each infrastructure system as a separate net-
work. Next, we identified neighboring nodes across the graphs and
connected them using an adjacency list. To construct the model, we
used a) GeoPandas [4] library, which is built on the popular Pan-
das data analysis library, to read ESRI shapefiles into tables called
GeoDataFrames and to manipulate and export the GeoDataFrames
into a variety of formats; b) NetworkX [3] library for creating and
manipulating graphs and networks. One algorithm included in
NetworkX was Brandes’ edge betweenness centrality algorithm,
which we used as a proxy for representing traffic; and c) Momepy

(Morphological Measuring in Python) library to convert between
GeoDataFrames and NetworkX graphs.

2.2.1 Road Network. To model the road network, we first read the
shapefile containing road geometry data into a GeoPandas Geo-
DataFrame and used Momepy to convert the GeoDataFrame into
a NetworkX MultiGraph while preserving intersection locations
as node attributes. Once the graph was constructed, we used Net-
workX’s built-in measure of edge betweenness centrality as a crude
model for traffic flow. Betweenness centrality answers the question:
"of the shortest paths between all pairs of nodes, how many pass
through this edge?"

The betweenness centrality of an edge is defined as:

𝑐𝐵 (𝑒) =
∑︁
𝑠,𝑡 ∈𝑉

𝜎 (𝑠, 𝑡 |𝑒)
𝜎 (𝑠, 𝑡)

where 𝑉 is the set of nodes, 𝜎 (𝑠, 𝑡) is the number of shortest (𝑠, 𝑡)-
paths, and 𝜎 (𝑠, 𝑡 |𝑒) is the number of those paths passing through
edge 𝑒 [2].

We used the edge betweenness centrality as a crude traffic model
because as edges are removed, the paths that passed through those
edges must use other edges instead, increasing those other edges’
centrality. This process is analogous to road closures causing traf-
fic to be redirected and increasing traffic on other roads near the
closure. However, this method assumes that all destinations are
equally weighted, which is not the case in the real world. This
method also misses the impacts of speed limits, road capacity, etc.

2.2.2 Electric Grid. To represent the electric grid, we used a com-
bination of three different datasets: the power line geometry; the
substation locations; and the electric meter locations. As with road
networks, we read the power line shapefile into a GeoDataFrame
and used Momepy to convert the GeoDataFrame into an undirected
graph whose nodes represent transformers and whose edges repre-
sent power lines. Since the power lines dataset had no information
about the amount or direction of electricity flow, we made a few
assumptions: a) the electric grid will be represented as a collection
of directed, rooted trees; the root of each tree is a substation, and
there is at most one path from the root to any given node in that
tree; b) power only flows away from the substation (root); thus,
these trees have no reciprocal edges; c) there is no power limit for
substations; each substation can power all nodes connected to it
simultaneously.

To convert the undirected graph of the power line geometry into
a directed graph, we first made a copy of all the nodes and their
locations (but not the edges between them) from the undirected
graph. Then, beginning at the locations of the substations, we added
edges to the directed graph in a method similar to breadth-first-
search. Finally, we added a node to our directed graph for each
electric meter, and an edge into each electric meter from the nearest
power line.

2.2.3 Modeling Network Interdependencies. Because NetworkX has
no built-in way of modeling a network-of-networks, we must im-
plement that functionality on our own. First, we represent the road
network’s dependencies on the electric grid as an adjacency list 𝐿,
where each road segment depends on the power line nearest to it,
by Euclidian distance. These dependencies represent the reliance
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of a road’s stoplights and emergency/night lighting on the electric
grid. While this is likely an oversimplification, we do not have data
on actual network dependencies; we will discuss this data limita-
tion further in section 3. When a given node in the electric grid
is disrupted, the child nodes in both the electric grid and the road
network (via 𝐿) are also disrupted. Likewise, we implemented the
same technique for modeling the hospitals’ dependence on both
the nearby roads and the electric grid. The same technique could be
used to model the electric grid’s dependencies on the road network
(such as for maintenance access), although we did not do so.

2.2.4 Research Questions & Metrics. To test the efficacy of the
modeling framework, we develop three research questions that a
model such as ours could answer. For each research question, we
develop a metric that can be used to quantify an answer to each of
those questions.

Question I: How does a disruption to the Network-of-Networks
infrastructure model impact the road network? To answer this ques-
tion, we want to look specifically at how traffic flow is impacted.
Since we already use edge betweenness centrality as a model for
traffic flow, we can use that as a metric for how the network is
impacted. In general, we expect to see the betweenness centrality
of edges in the graph rise as roads close. The traffic that would have
passed through them now must be redirected to other roads; thus,
the betweenness centrality of those roads will rise.

Question II: How does a disruption to the Network-of-Networks in-
frastructure model impact the electric grid? To answer this question,
we examine the number of customers without power. We express
this metric as a ratio of 𝑛

𝑚 , where 𝑛 is the number of customers
who lost power because of the outage, and𝑚 is the total number of
customers with power before the outage.

Question III: How does a disruption to the Network-of-Networks
infrastructure model impact households’ hospital access? To answer
this question, we use electric meter locations as a proxy for house-
holds and develop two metrics: a) the number of electric meters
with unobstructed road access to any hospital; and b) the average
minimum distance from each household to the nearest hospital. We
calculate b) by first generating a minimum-cost tree 𝑇ℎ for each
hospitalℎ using Djikstra’s algorithm that maps electric meter nodes
to their minimum-cost distance from ℎ. Then, we compute:∑

𝑚∈𝑀 𝑚𝑖𝑛[𝑇ℎ1 (𝑚) · · ·𝑇ℎ𝑛 (𝑚)]
|𝑀 |

where 𝑀 is the set of all electric meters with a valid path to a
hospital, |𝑀 | is the number of electric meters in 𝑀 , and 𝑇ℎ (𝑚) is
the distance from electric meter𝑚 ∈ 𝑀 to hospital ℎ provided by
minimum-cost tree 𝑇ℎ .

2.2.5 Disruption&Analysis. Finally, we use theNetwork-of-Networks
model and the metrics developed to answer the sample research
questions posed in section 2.2.4. We apply a variety of different
disruptions1 to the model and measure the three metrics for each
disruption. First, we use a river map of the city to draw a polygon
around the most likely areas to flood. We also model a malicious
1on separate instances of the model - these disruptions do not compound with each
other

actor attempting to cause the most damage to the road network by
disrupting the 25 most influential edges2, and to the electric grid by
disrupting the most influential node3. The results of modeling each
of those disruptions can be seen in Table 1. To help illustrate this
operation conceptually, a sample disruption to a smaller section of
the electric grid can be seen in Figure 2.

Figure 2: A graph representation of a small section of the
electric grid after a disruption in the upper-right corner: blue
arrows represent edges in the graph, blue nodes represent
power poles and electricmeters, green nodes represent power
from a substation, and dark gray nodes and edges represent
those impacted by the disruption

As expected, the Meters Without Hospital Access metric in-
creased significantly for each type of disruption. However, the
Average Hospital Distance did not increase as much as we expected
(and in the case of a flood, it even decreased). We suspect this is
because as large sections of the city - potentially far away from a
hospital - are completely cut off from hospitals, they are no longer
included in the average calculation, meaning that the customers
remaining are on average closer to the hospital than prior to the
disruption. As expected, the average road betweenness centrality in-
creased, but the flood caused a much higher increase than expected.
Finally, because in our model the electric grid was not dependent on
the roads, road disruptions (flooding and a malicious actor) did not
impact the number of electric meters without power. Due to model-
ing assumptions and data limitations, the conclusions presented in
this paper should be taken with caution. Further, while the city we
were examining has had floods and power outages in the past, we
were unable to find data about specific power grid outages or road
closures. As such, we were unable to perform external validation on
this model; however, the example simulated is based on scenarios
known to occur in the geographic area.

3 Conclusion & Future Work
We demonstrated a methodology for modeling interconnected net-
works within a city’s infrastructure that can be expanded upon
in the future. We used that methodology to model infrastructure
2via betweenness centrality
3the node with the greatest number of electric meters downstream
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Table 1: Key metrics for measuring the impact of a disruption to our infrastructure networks

Metric Before Disruption Flood Max Road Centrality Max Electric Grid Impact

Meters w/o Hospital Access 19 6557 422 3746
Avg. Hospital Distance 0.0172 0.0112 0.0281 0.0187
Road Btwn. Centrality 0.0140 0.6078 0.0250 0.0458
Meters w/o Power 0

11131
0

11131
0

11131
3619
11131

networks from three of the Department of Homeland Security’s
Critical Infrastructure Sectors: the road network, electric grid, and
hospitals. We further developed some potential research questions
and used the model and several potential disruption scenarios to
answer those questions. As the primary focus of this paper is on
the methodology, conclusions from our analysis should be taken
cautiously. In the future, there are two main areas for improvement
that we would like to briefly discuss: 3.1) Data & Modeling, and 3.2)
Metrics & Analysis. We would also like to discuss how different AI
techniques may be incorporated to enhance the work already done.

3.1 Data & Modeling
One big limitation we faced is the lack of detailed data about the
traffic and electricity flow throughout their respective networks.
While this doesn’t change the development of the methodology, it
does have a large impact on the conclusions we can justify drawing
from the models we create. For a longer-term study, we would want
to gathermore sophisticated data aboutmore types of infrastructure
networks; this would allow for more accurate modeling.

Future modeling of these networks could take an agent-based ap-
proach instead. Agent-based modeling is an approach to modeling
complex systems that involves simulating the actions and behavior
of individual entities (agents) within those systems [1]. Agent-based
modeling is already used to create sophisticated traffic models with
software like SUMO [6], and similar work could be done with a
more sophisticated electric grid model - substations and transform-
ers are individual agents, each deciding how to route power through
the rest of the grid. Neural networks and deep learning can be used
for either type of agent (cars or substations/transformers) to model
more sophisticated and realistic decision making.

3.2 Metrics & Analysis
Another potential avenue this project can expand is in the type
of analysis we do on the model. More accurate information about
the kinds of disruptions our infrastructure can face as well as the
metrics we use to measure the impacts of those disruptions can
enable us to answer more sophisticated research questions - which
can, in turn, be used to better inform emergency responders and
policymakers in the event of a real-world disruption.

Recent research involving Graph Neural Networks (GNNs) has
also shown promise [13]. GNNs are a specific type of neural network
that use information about a graph’s nodes and edges (often in the
form of an adjacency list) to make a prediction about some property
(or properties) of that graph. This aligns very closely with our goals
in this project - we want to predict the impact of a disruption on our
interconnected networks, and the complexity of GNNs may allow
us to evaluate more complex impact metrics. It should be noted

that to train the GNN we would still need real-world data about
disruptions and their impacts; for instance, we could use real data
about flooded roads and crashes to predict crashes as a result of our
simulated disruption - even if our simulation doesn’t incorporate
crashes directly.
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