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Supported-Amine CO, Adsorbents
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Supported-amine CO, Sorbents for CO, Capture

* Lower regeneration energy improves both cost
wd ek 0T and energy requirements
SR« Impregnated polyamines exhibit highest
e, mass-based CO, uptakes, whereas grafted
- LE P o amines offer tractable system for evaluating
R composition-performance relationships
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Challenges for conventional solid
amine CO, capture processes
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X Short sorbent lifetime increases
cost (target ~$100/ton CO,)

X Amine degradation forms products T3 s
detrimental to the environment
and human health (NH;, CO,)
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Material R&D Approach

Goal: Develop efficient, robust, and scalable CO, capture materials for
varying process applications through integrated evaluation of capture
performance, sorbent stability, and determination of underlying mechanisms.

Characterization
Suite of material characterization techniques
to establish composition-performance
relationships and degradation mechanism

Performance Evaluation
Quantification of CO, capture
capacity and cyclic stability
under realistic processfw”’"—"“*«\

conditions /
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Computational Modeling
Atomistic simulations, leveraging
NREL high-performance computing
resources, reveal key steps and
material attributes controlling
CO, adsorption/desorption and
sorbent degradation
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Well-controlled Dry Grafting of )
Aminosilanes onto Mesoporous SBA-15

@3‘ CO, Capture Efficiency and Stability
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Grafted Amines on SBA-15 NH-COOH NH*-COO
W Fresh  Oxidized -@ N, Content APTMS -37 kJ/mol -46 kJ/mol -92 kJ/mol
€O, Uptake: 400 ppm CO,, 25 °C MAPTMS -47 kJ/mol -50 kJ/mol -100 kJ/mol

Accelerated oxidative degradation: 18 hr zero air, 120 °C
N content determined via CHN combustion analysis

* Initial amine efficiency: Diamine > 1°~ 2°
* Decrease in CO, uptake after exposure to O, at
120°C under zero-air : 1° <2° < Diamine

Radical-initiated MAPTMS Oxidative
Degradation Pathways

,CH,CH,CH_(L)

Two amines adsorbed to B-Cristobalite (111); VASP (PBE-D3)

* CO,bindsto grafted 1° and 2° amines as carbamate
* Maximum amine efficiency as carbamate is 0.5 CO,/N
* Relatively weak binding allows for ease of regeneration

Oxidative Degradation Mechanism
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Effects of Degradation Condition,
Humidity, and Support Composition
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Thermal Degradation Conditions

 Degradation conditions: 18hrs, 120°C, zero air or
pure nitrogen

* Humidity slightly accelerates oxidative degradation
on grafted amines, and improves stability for PEI

« Diamine is most resistant to thermal degradation,
particularly in the presence of humidity

MAPTMS Oxidative Degradation: Free Energy Diagram
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« Facile (AG* = 34 kJ/mol) radical initiation,
followed by formation of the peroxy radical

* Lowest energy subsequent steps proceed via
H-shift and/or peroxy radical propagation steps
to form imine (C=N) or peroxy imine products

* The highest barrier, and likely rate-controlling,
steps during the initiation phase of degradation
are the radical propagation steps

« Consistent with spectroscopically observed*
degradation products, which contain C=0
and C=N bonds

*M. J. Lashaki, S. Khiavi, A. Sayari, Chem. Soc. Rev. (2019) 48, 3320
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