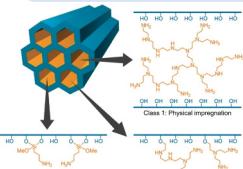


Solid Amine CO_2 Adsorbent Degradation:

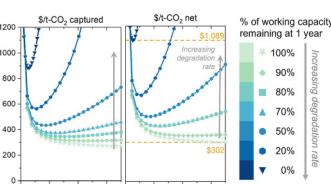

Insights from Experiments and Atomistic Simulations

Gabrielle Kliegle, Neha Mehra, Wilson McNeary, Wade Braunecker, Carrie Farberow

ACS Fall Meeting
August 18-22, 2024
Denver, Colorado
NREL/PO-5100-91102

National Renewable Energy Laboratory, Golden, Colorado

Supported-Amine CO_2 Adsorbents

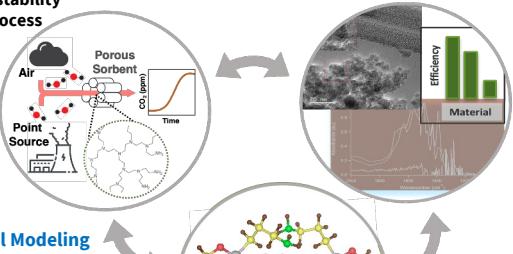

Supported-amine CO_2 Sorbents for CO_2 Capture

- Lower regeneration energy improves both cost and energy requirements
- Impregnated polyamines exhibit highest mass-based CO_2 uptakes, whereas grafted amines offer tractable system for evaluating composition-performance relationships

X. Shi, et al. *Angew. Chem. Int. Ed.* (2019) 59, 6984

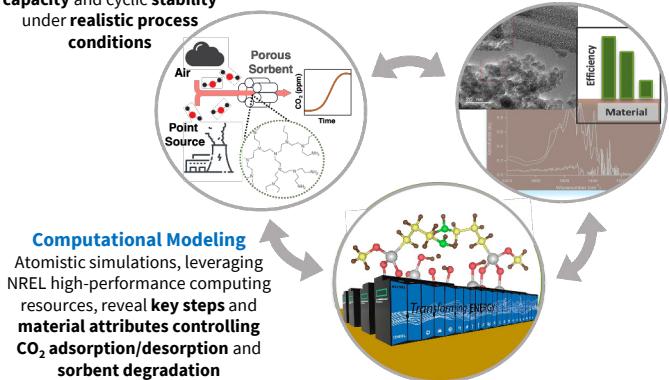
Challenges for conventional solid amine CO_2 capture processes

- Short sorbent lifetime increases cost (target $\sim \$100/\text{ton CO}_2$)
- Amine degradation forms products detrimental to the environment and human health (NH_3, CO_2)


H. Holmes, et al. *Energy Environ. Sci.* (2024) 17, 4550

Material R&D Approach

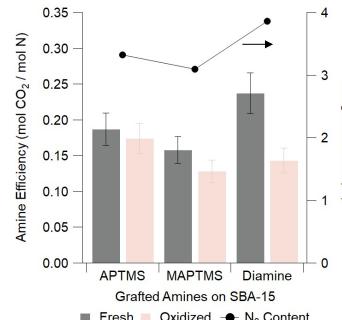
Goal: Develop efficient, robust, and scalable CO_2 capture materials for varying process applications through integrated evaluation of capture performance, sorbent stability, and determination of underlying mechanisms.


Characterization

Suite of material characterization techniques to establish composition-performance relationships and degradation mechanism

Performance Evaluation

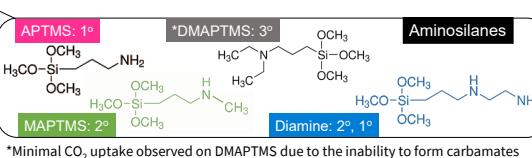
Quantification of CO_2 capture capacity and cyclic stability under realistic process conditions



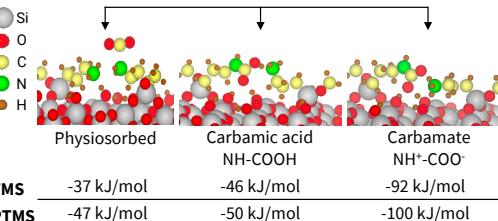
Computational Modeling

Atomistic simulations, leveraging NREL high-performance computing resources, reveal key steps and material attributes controlling CO_2 adsorption/desorption and sorbent degradation

CO_2 Capture Efficiency and Stability

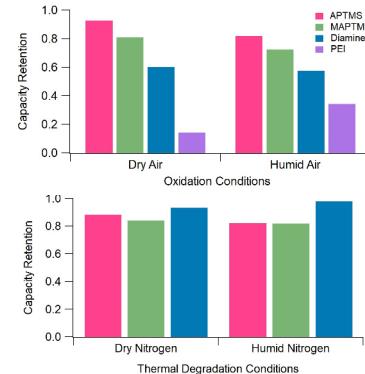

Well-controlled Dry Grafting of Aminosilanes onto Mesoporous SBA-15

CO_2 Uptake: 400 ppm CO_2 , 25 $^\circ\text{C}$
Accelerated oxidative degradation: 18 hr zero air, 120 $^\circ\text{C}$


- Initial amine efficiency: Diamine $> 1^\circ > 2^\circ$
- Decrease in CO_2 uptake after exposure to O_2 at 120 $^\circ\text{C}$ under zero-air: $1^\circ < 2^\circ < \text{Diamine}$

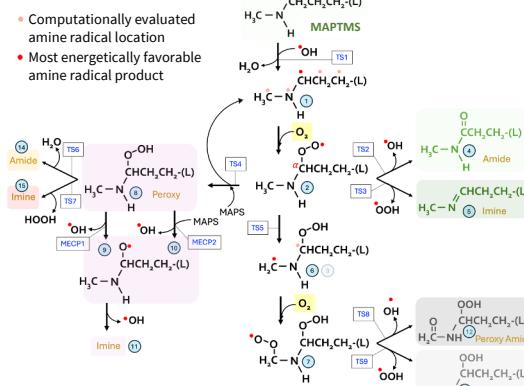
CO_2 Capture Efficiency and Stability

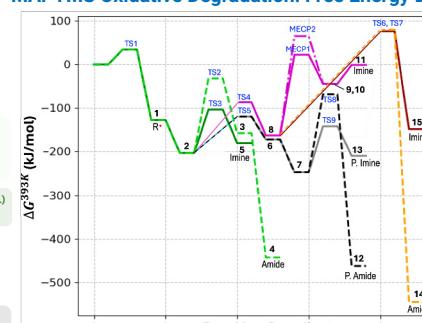
*Minimal CO_2 uptake observed on DMAPTMS due to the inability to form carbamates


Adsorption: $\text{CO}_2(g) + \text{Amine/SiO}_2 \rightarrow \text{CO}_2\text{-bound structures}$

Two amines adsorbed to β -Cristobalite (111); VASP (PBE-D3)

- CO_2 binds to grafted 1° and 2° amines as carbamate
- Maximum amine efficiency as carbamate is 0.5 CO_2/N
- Relatively weak binding allows for ease of regeneration


Effects of Degradation Condition, Humidity, and Support Composition


- Degradation conditions: 18hrs, 120 $^\circ\text{C}$, zero air or pure nitrogen
- Humidity slightly accelerates oxidative degradation on grafted amines, and improves stability for PEI
- Diamine is most resistant to thermal degradation, particularly in the presence of humidity

Oxidative Degradation Mechanism

Radical-initiated MAPTMS Oxidative Degradation Pathways

MAPTMS Oxidative Degradation: Free Energy Diagram

Gaussian 16 (m062x, 6-311+g(d,p))

TS = transition state

MECP = minimum energy cross point, approximate TS for spin-crossover reactions

- Facile ($\Delta G^\ddagger = 34 \text{ kJ/mol}$) radical initiation, followed by formation of the peroxy radical
- Lowest energy subsequent steps proceed via H-shift and/or peroxy radical propagation steps to form imine ($\text{C}=\text{N}$) or peroxy imine products
- The highest barrier, and likely rate-controlling, steps during the initiation phase of degradation are the radical propagation steps
- Consistent with spectroscopically observed* degradation products, which contain $\text{C}=\text{O}$ and $\text{C}=\text{N}$ bonds

*M. J. Lashaki, S. Khiavi, A. Sayari, *Chem. Soc. Rev.* (2019) 48, 3320

gabrielle.kliegle@nrel.gov

carrie.farberow@nrel.gov

The authors acknowledge support from the U.S. Department of Energy, Laboratory Directed Research Directive (DE-AC36-08GO28308). A portion of the research was performed using computational resources sponsored by the Department of Energy's Office of Energy Efficiency and Renewable Energy located at NREL.