

Effect of Particle size and moisture on flow performance of loblolly pine anatomical fractions: Experimental findings and model predictions

October 2025

Changing the World's Energy Future

Nepu Saha, Jordan Lee Klinger, Tiasha Bhattacharjee, Noah James Berglund, Wencheng Jin, Yidong Xia

INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Effect of Particle size and moisture on flow performance of loblolly pine anatomical fractions: Experimental findings and model predictions

**Nepu Saha, Jordan Lee Klinger, Tiasha Bhattacharjee, Noah James Berglund,
Wencheng Jin, Yidong Xia**

October 2025

**Idaho National Laboratory
Idaho Falls, Idaho 83415**

<http://www.inl.gov>

**Prepared for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517, DE-AC07-05ID14517, DE-AC07-05ID14517**

1 Effect of Particle size and moisture on flow performance of loblolly pine
2 anatomical fractions: Experimental findings and model predictions

3

4 Nepu Saha^{1*}, Jordan Klinger¹, Tiasha Bhattacharjee¹, Noah Berglund¹, Wencheng Jin^{1,2}, Yidong
5 Xia¹,

6 ¹Energy and Environment Science & Technology Directorate, Idaho National Laboratory, Idaho
7 Falls, ID 83415, USA

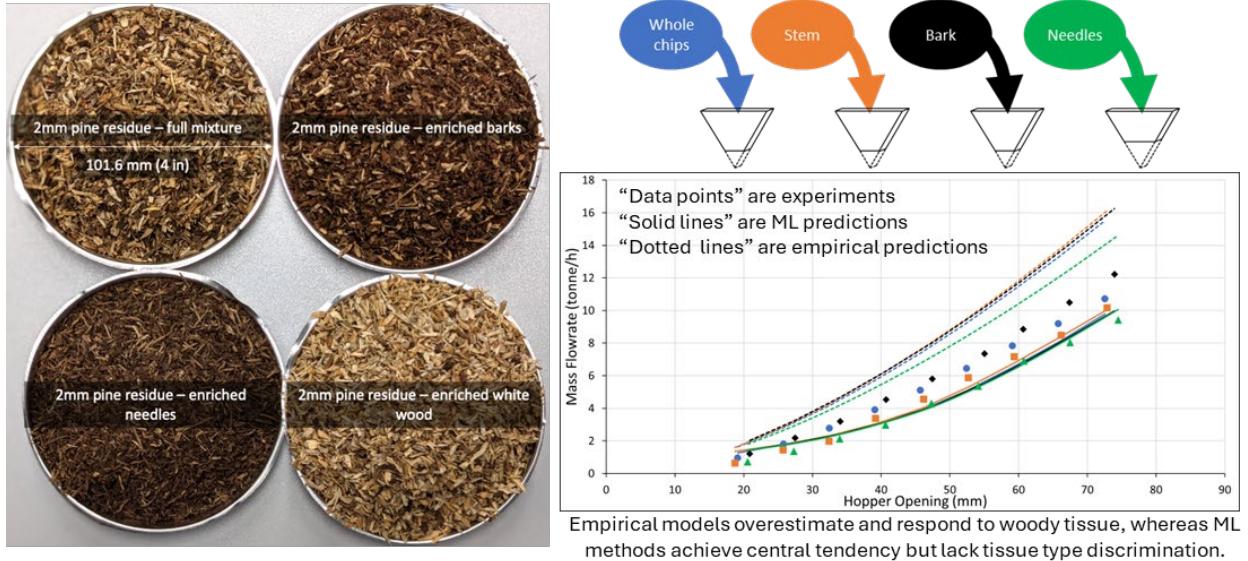
8 ²Harold Vance Department of Petroleum Engineering, Texas A&M University, College Station,
9 TX 77843, USA

10

11

12 * Corresponding Author: Email: nepu.saha@inl.gov, Tel: +1 208 526 4702

13


14

15

16

Graphical Abstract

17

18

19

20

Abstract

22 The rising energy demand has highlighted biomass as a promising next-generation energy source.
23 However, commercializing biomass-derived energy faces challenges, particularly in handling
24 biomass feedstock. Factors like particle size, shape, moisture content, and surface roughness
25 significantly impact biomass flowability. This study addresses a crucial knowledge gap by
26 examining the effects of particle size and moisture content on the flow behavior and shear
27 properties of different anatomical fractions of loblolly pine (*Pinus taeda*). The bulk shear behavior
28 was examined using a Schulze ring shear tester, while flow performance was tested through
29 gravity-driven flow experiments in a variable wedge-shape hopper. Results were incorporated into
30 empirical and machine learning-based flow prediction models to evaluate their accuracy and
31 limitations. The study found that samples with higher moisture content show higher unconfined
32 yield strength. The critical arching distance increased with particle size, *e.g.*, from approximately
33 13 and 33 mm for 2- and 6-mm whole chips, respectively at a 32-degree inclination angle.
34 Conversely, the flow rate decreased for a given hopper opening as particle size increased. For
35 instance, at a 60-mm hopper opening and a 32-degree inclination angle, the mass flow rates for 2-
36 and 6-mm whole chips were 7.83 and 6.42 tonne/h, respectively. The empirical model consistently
37 overpredicted the mass flow rate for all anatomical fractions, while the machine learning model
38 more accurately predicted the central tendency of flow rate but was insensitive to varying tissue
39 proportions. These novel findings provide comprehensive characterization of anatomical fractions,
40 reveal significant combined effects of particle size and moisture content on biomass flow behavior,
41 and demonstrate a better predictive accuracy of a machine learning model, all of which are useful
42 for optimizing material handling strategies and biomass utilization technologies in the industry.

43 **Keywords:** Biomass; anatomical fractions; material handling; flowability; flow model.

44 **Highlights:**

45 • Study examines particle size and moisture effects on loblolly pine residues flow.

46 • Arching distances were 13 and 33 mm for 2 and 6 mm chips, respectively at a 32° IA.

47 • Empirical model overpredicted flow rates, showing limitations for biomass fractions.

48 • ML model predicted flow rates with RMSE of 0.37-0.53 tonne/h.

49

50 **1 Introduction**

51 The escalating demand for alternative energy sources is driving efforts to achieve energy
52 independence in the United States. Owing to its abundance and accessibility, biomass exhibits
53 substantial potential to serve as a pivotal alternative energy source. However, the successful
54 commercialization of biomass as an energy source faces challenges, particularly in the handling of
55 biomass feedstock. Various factors, such as particle size, shape, moisture content, and surface
56 roughness, influence the flow properties of biomass materials [1-3]. Inadequate understanding of
57 biomass flowability during feedstock conversion process design can lead to process downtime
58 caused by issues like feed silo ratholing and screw feeder jamming [4-9].

59 Historically, bulk solid flow studies were focused mainly on isotropic solids such as
60 pharmaceutical ingredients and food powders with regular, uniform particle shapes and sizes at
61 minimal moisture content [10-14]. However, biomass particles exhibit unique characteristics,
62 including high moisture content, hygroscopic nature, low bulk density, heterogeneous shapes, and
63 fibrous nature, which make them distinct from the conventional bulk solids [15, 16]. These
64 characteristics pose challenges in experimentally measuring the flow properties of biomass
65 particles. A comprehensive understanding of biomass flow behavior based on intrinsic material
66 properties is essential to minimize downtime and improve the feasibility of feedstock conversion
67 processes.

68 Loblolly pine (*Pinus taeda*) is one of the most widely planted and economically important pine
69 species in the southeastern United States [17, 18]. Its consistent growth and availability make it an
70 attractive candidate for various biofuel and biochemical applications. Research in the Feedstock-
71 Conversion Interface Consortium (FCIC) supported by the U.S. Department of Energy has focused
72 on loblolly pine to understand the critical material attributes on the operational reliability of

73 biorefineries. Loblolly pine consists of distinct anatomical fractions, including whole chips, stem
74 wood, bark, and needles, each exhibiting unique physical properties. The behavior of these
75 anatomical fractions under different flow conditions remains relatively unexplored, limiting the
76 optimization of handling processes and overall efficiency. Recently, Navar *et al.* [19] investigated
77 the influence of moisture content on the rheological properties of various anatomical fractions of
78 loblolly pine. Their findings revealed that certain anatomical fractions, such as bark and needle,
79 exhibited a direct correlation between moisture content and rheological properties. However, no
80 discernible influence of moisture content was observed for other fractions, including stem and
81 whole. Interestingly, the impact of moisture content on the rheological properties was only evident
82 for smaller particle sizes of bark and needle with a nominal size of 2 mm, while no significant
83 effects were observed for larger particle sizes with a nominal size of 4 mm across the four
84 anatomical fractions studied. The study examines the influence of moisture content on various
85 anatomical fractions; it largely confirms known trends such as increased moisture leading to higher
86 cohesion, without providing deeper mechanistic understandings of these relationships.
87 Unfortunately, no experimental investigation on the impact of moisture content and particle size
88 of various anatomical fractions was conducted. The efficient handling and utilization of biomass
89 feedstocks are critical for optimizing industrial processes and achieving long-term production
90 goals. In this context, the flow behavior and shear properties of particulate materials play a pivotal
91 role in ensuring smooth and reliable processing. Particle size distribution and moisture content are
92 key factors influencing the flow characteristics of bulk solids as Navar *et al.* [19] recently found
93 their effect on rheological properties. Understanding their combined effects on different
94 anatomical fractions of loblolly pine is essential for improving the design and operation of biomass
95 processing systems. In addition to the experimental investigation of flow performance, accurate

96 prediction and precise control of hopper throughput are crucial for trouble-free operation.
97 Numerous numerical flow models exist for conventional granular materials (e.g., pharmaceutical
98 particles, rocks, coal, and ores) [20-24]. However, biomass exhibits significantly different
99 behavior compared to those materials [25]. Lu *et al.* [26] examined the influence of critical material
100 attributes of biomass (e.g., loblolly pine, Douglas fir) on flow pattern, arching, and throughput
101 using both experimental method and numerical simulation. Their findings indicate that flow
102 throughput can be estimated using an empirical equation that incorporates inputs on hopper
103 geometry (e.g., hopper outlet size) and material attributes at particle and bulk scales. A recent
104 study by the same group, Ikbarieh *et al.* [27], introduced a machine learning (ML) based approach
105 to predict the flow performance of loblolly pine. Their results demonstrated promising predictive
106 accuracy, revealing that hopper opening width primarily dictates flow throughput, while relative
107 density, wall friction, inclination angle, and hopper opening width collectively influence flow
108 stability. It is worth noting that none of these studies attempted to predict the flow performance of
109 the anatomical fractions of biomass, leaving this an unexplored research area that warrants the
110 need for further investigation.

111 This present study aims to address the critical knowledge gap regarding the effect of particle size
112 and moisture content on the flow behavior and shear properties of different anatomical fractions
113 of loblolly pine. We conducted a comprehensive investigation into the physical properties,
114 including particle size distribution and bulk density, of different anatomical fractions of loblolly
115 pine. Furthermore, the bulk shear behavior, encompassing the determination of apparent internal
116 friction angle, bulk cohesion, and factors contributing to particle-particle friction, was explored
117 using a Schulze ring shear tester. Additionally, this study examined how material attributes
118 influenced flow performance through gravity-driven flow experiments using a variable wedge.

119 Subsequently, the obtained physical and shear properties were plugged into our recently developed
120 flow prediction models, i) the empirical model [26], ii) the ML model [27], to predict the flow
121 performance of the studied material. Finally, we discussed the applicability and limitations of the
122 existing flow models considering the experimental results. By providing comprehensive data and
123 analysis, this research will contribute significantly to advancing biomass utilization technologies.

124 **2 Material and Methods**

125 **2.1 Material**

126 Loblolly pine (*Pinus taeda*) was collected from a plantation in Jasper County of South Carolina
127 where a logging operation was used to harvest the bole of the trees. The trees were 18 years old
128 and averaged 61 feet in height. The tree limbs, tops, bark and needles were piled on the ground
129 and are considered as residues from the lumber harvest. These residues accumulated during the
130 harvest for about 2 weeks and then picked up in scoops by grapple front end loader and were
131 processed through a horizontal grinder (Peterson Horizontal grinder Model 4710B). The size
132 reduced samples were fed by a rubber conveyor into a covered truck for transport to Idaho National
133 Laboratory (INL) facility. After arriving at the facility, some of the residues were processed with
134 an air separator (Spudnik Air-Sep, Spudnik Equipment Co, Blackfoot, Idaho, USA) to obtain
135 fractions that were enriched in either bark, needles, or white wood compared to the whole residues
136 to examine their impact on flow performance. The samples were then size reduced using a low
137 RPM shredder (Crumbler® M24, Forest Concepts, Auburn, Washington, USA) with rotor heads
138 of nominally 2, 4, and 6mm sizes. This is a continuous milling device that passes material through
139 a set of 2 interlocked rotor heads that are sized to a nominal 2, 4, and 6mm respective cutting disc
140 thickness. During operations, the rotor rotational frequency is approximately 300/min. The overall

141 feed rate was 100-250 kg/h depending on size and sample. No vacuum assistance was used during
142 size reduction. Figure 1 shows the material of different sizes and anatomical fractions used in this
143 study.

144

145 *Figure 1: Different sizes and anatomical fractions of loblolly pine.*

146 2.2 Methods

147 2.2.1 Physical properties

148 Moisture content was measured following the American Society of Agricultural and Biological
149 Engineers (ASABE) standard S358.2 [28]. In summary, this involved placing a 50–100 g sample
150 in a horizontal convective oven at 105 °C for 24–30 hours. The mass loss of the samples, assumed
151 to be primarily moisture, was reported on a wet basis using the following equation:

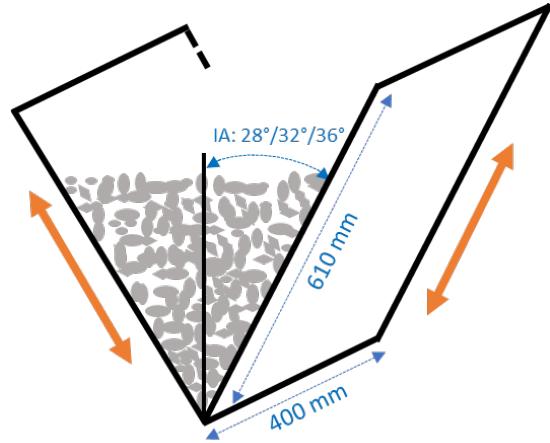
$$152 MC = \frac{m_{wet} - m_{dry}}{m_{wet}} \times 100\%$$

153 Where MC represents the percent moisture content of the sample (on a wet mass basis), m_{wet} is the
154 mass of the sample before drying, and m_{dry} is the mass of the sample after drying.

155 Particle size distribution (PSD) analysis was conducted using a standard Ro-Tap separator (Model
156 RX-29) by following the ASAE S319.3 standard [29]. The procedure involved loading the sample
157 into the top sieve, assembling the sieve stack in the Ro-Tap machine, and activating the separator

158 for a duration of ten minutes. During this process, the Ro-Tap separator tapped and rotated the
159 sieves, causing the particles to pass through the sieves until they reached a mesh smaller than their
160 characteristic size. After the ten-minute run, the sieve stack was disassembled, and each sieve was
161 weighed. By subtracting the tare weights for each sieve, the relative amount of each sample passing
162 through each successive sieve was determined. Cumulative particle passing distributions (CPDs)
163 were then calculated based on these measured weights. The 50% cumulative passing percentile
164 sieve size (D_{50}) was determined by linear interpolation to find the theoretical sieve size
165 corresponding to retaining 50% of the particles by mass. Likewise, the 10% and 90% cumulative
166 passing (D_{10} and D_{90} , respectively) were also calculated and reported based on the CPDs obtained
167 from the analysis.

168 The bulk density (BD) and tapped density (TD) of the tested samples were determined using a
169 modified version of the ASAE standard method S269.4 [30]. In the BD measurement process, a
170 sample of the material was poured into a graduated cylindrical container with a diameter of 120
171 mm. The sample was poured from a height of 0.6 m above the container's top edge to ensure
172 uniform settling. The pouring continued until the height of the material in the container reached
173 approximately 90% of the container's diameter. To estimate the BD of the sample, the volume was
174 calculated based on the average sample height, determined by taking four measurements at
175 different locations within the container. Finally, the mass of the sample was divided by the average
176 volume to obtain the BD value. After measuring the BD, the container containing the sample was
177 subjected to five drops from a height of 0.15 m onto a hard surface, as per the standard tapping
178 procedure. This tapping process aimed to settle the particles and achieve a more compact
179 arrangement in the container. Following the tapping process, the TD was estimated using the same
180 methodology used for the BD measurement described earlier.


181 The envelope density, referred to as particle density (PD) in this study, was measured using a
182 Geopyc 1365 (Micromeritics, Norcross, GA). Detailed experimental procedures are available
183 elsewhere [31]. Briefly, a known volume of DryFlo® granular medium was added to a cylindrical
184 chamber with a biomass sample of known mass. The DryFlo® granular medium was consolidated
185 around the sample by rotating and vibrating the cylindrical chamber while a piston gradually
186 compressed the chamber until the desired force was achieved. This was followed by retraction and
187 recompression. Pores open to the particle exterior but smaller than the DryFlo® particles were
188 included within the volume. The sample volume was determined by subtracting the volume of the
189 DryFlo®. The PD was then calculated by dividing the sample mass by the sample volume.

190 2.2.2 Shear properties

191 A Schulze rotary shear tester was used to perform shear tests (ASTM standard methods) and
192 generate yield loci of the various anatomical fractions at different sizes. In the test setup, an annular
193 shear cell is loaded with the sample and a veined lid (veins provide no-slip boundaries at top and
194 bottom surfaces) is placed on top of the cell. The lid is then connected to an adjustable
195 counterweight system with the help of two tie rods. A normal compressive stress (pre-shear stress)
196 is applied to the lid, with a weighted counter lever. The bottom ring rotates relative to the fixed lid
197 at approximately 0.01 rad/s and the shear forces generated in the bulk material are obtained from
198 the measured rotational torque in the tie rods. After reaching target pre-shear stress (1kPa), the
199 material is sheared at 3 different stress (100, 250, 700 Pa), with unloading and relaxation before
200 each pre-shear step, to generate the yield loci. The yield locus of the material is developed as a
201 function of the shear and compressive stresses. Mechanical properties of the bulk material
202 including bulk cohesion, unconfined yield strength, major principal stress and internal angle of
203 friction are obtained from the yield loci.

204 2.2.3 Flow performance

205 To investigate and elucidate the impact of variable material attributes on flow performance in real
206 flow systems, a comprehensive analysis was conducted utilizing the wedge hopper. Specifically
207 designed for these tests, a custom hopper with adjustable outlet and sidewalls was employed to
208 measure the critical arching distance and flow rate of the studied feedstocks. The custom hopper
209 comprised two sidewalls and two vertical end walls. For the critical arching distance and flow
210 tests, approximately 15 kg of each sample was loaded into the adjustable hopper for each batch
211 test. The inclination angle of the sidewalls systematically varied between 28 to 36° at 4° intervals,
212 while the end walls remained fixed at a distance of 400 mm throughout all tests. The hopper
213 opening was incrementally increased using 2-step motors attached to the sidewalls. Figure 2 shows
214 the adjustable hopper outlets and sidewalls used for flow testing, along with schematic and
215 dimensions. The minimum opening required for all the loaded material to smoothly flow out from
216 the hopper was defined as the critical arching distance of the material. This critical arching distance
217 was determined for each sample at each inclination angle. Subsequently, the flow test was
218 conducted at nine random openings beyond the critical arching distance of the hopper. The time
219 taken for all the material to pass through the hopper opening was recorded, serving as the basis for
220 flow rate calculation.

221

222

Figure 2: Lab scale adjustable hopper (left) and it's schematic (right).

223 Two different models were employed in this study to predict the mass flow rate of the hopper: (i)
 224 the empirical model [26] modified from the British Material Handling Board [32, 33] and (ii) a ML
 225 model [27]. The empirical model was calibrated based on experimental flow data and FEM (finite
 226 element method) numerical simulation flow data of whole loblolly pine samples and validated
 227 against experimental flow data of Douglas Fir. The model predicts mass flow rate (q_m) from the
 228 length (L), width (W), and wall friction (μ) of wedge-shaped hopper and material particle density
 229 (ρ_p), mean particle size (d_{50}), and bulk internal friction angle (ϕ_c) [26], as shown below:

$$230 \quad q_m = a \rho_p \sqrt{g} (L - kd_{50})(W - kd_{50})^{1.5} \tan^b \mu \tan^c \phi_c,$$

231 where a, b, c are fitting coefficients for different materials, g stands for gravity, while $k = 2.5$ is a
 232 constant and the kd_{50} term is used to account for effective outlet size width and length.

233 The ML model with a multilayer perceptron was trained using SPH (smoothed particle
 234 hydrodynamics) simulation data and validated against experimental flow data of whole loblolly
 235 pine with different moisture contents and mean particle sizes. The ML model consists of an input
 236 layer incorporating particles and bulk-scale attributes (*i. e.*, moisture content, mean particle size,
 237 relative density) and unit operation parameters (*i.e.*, inclination angle, wall friction, hopper

238 opening width), as well as an output layer predicting mass flow rate (q_m) and flow pattern (*i.e.*,
239 normalized average flow velocity at the middle of hopper). The input and output layers are
240 connected by three hidden layers, which contain 1000, 750, and 300 neurons respectively and all
241 used Leaky Relu activation functions. The number of hidden layers and neurons was chosen to
242 promote model generalization and prevent the risk of both overfitting and underfitting.

243 The constitutive law of FEM simulations adopts a G–B hypoplastic model incorporating the
244 critical state theory, and its three groups of material parameters, including shear properties (*e.g.*,
245 internal friction angle), compression properties (*e.g.*, granulate hardness), and the range of void
246 ratios, were calibrated against the experimental characterization (*e.g.*, Schulze ring shear, uniaxial
247 compression) [34]. For the SPH simulations, the G-B constitutive law was enhanced to capture the
248 significant interlock effects of biomass materials and adopted for the simulation. The empirical
249 equation was formulated using both FEM simulation and experimental datasets, whereas the ML
250 model was trained and tested exclusively on the SPH simulation dataset (*i.e.*, 2025 combinations
251 of input variables). Notably, the SPH code and associated material parameters were calibrated
252 against experimental flow data obtained from nine whole pine samples with varying moisture
253 contents and mean particle sizes. Detailed information on the enhancement and the ML model can
254 also be found elsewhere [27].

255 **3 Results and Discussions**

256 **3.1 Physical properties**

257 Table 1 presents data pertaining to the PSD and density of whole pine, alongside its anatomical
258 fractions. Note that PSD of each sample was measured at least in triplicate to ensure the statistical
259 significance. The observations indicate that both whole chips and stem wood exhibit comparable

260 trends in PSD, which could be due to the predominant component in the whole chips begin the
 261 stem wood. Specifically, the D_{10} , D_{50} , and D_{90} parameters increase with an increase in nominal
 262 particle size. For instance, the D_{50} value for whole chips with a nominal size of 2 mm measures
 263 1.51 mm, whereas it increases to 2.65 mm and 5.21 mm for nominal sizes of 4 mm and 6 mm,
 264 respectively. A similar trend was also observed for the stem and bark, but the needles demonstrate
 265 a distinct pattern. For instance, the D_{50} of 2 mm needles was 1.11 mm, whereas it was 1.76 mm
 266 and 1.73 mm for 4 mm and 6 mm needles, respectively. This discrepancy can be attributed to the
 267 distinctive shape (e.g., lower, and limited effective diameter which allows to pass through the
 268 smaller sieve) of the needles in comparison to the other anatomical fractions.

269 *Table 1: Physical properties of whole loblolly pine along with the anatomical fractions*

Sample	Size (mm)	PSD (mm)			BD (kg/m ³)	TD (kg/m ³)	PD (kg/m ³)
		D_{10}	D_{50}	D_{90}			
Whole	2	0.91 ± 0.07	1.51 ± 0.07	2.49 ± 0.03	128.9 ± 3.9	144.6 ± 2.3	DNM*
	4	1.77 ± 0.03	2.65 ± 0.07	3.96 ± 0.16	125.0 ± 2.5	135.7 ± 6.0	463.0
	6	3.33 ± 0.01	5.21 ± 0.06	8.15 ± 0.22	120.0 ± 4.8	127.5 ± 7.0	DNM*
Stem	2	1.05 ± 0.05	1.58 ± 0.04	2.38 ± 0.02	131.1 ± 1.4	150.1 ± 4.9	DNM*
	4	2.58 ± 0.12	3.95 ± 0.04	6.06 ± 0.20	130.7 ± 2.3	139.4 ± 2.6	470.7
	6	3.59 ± 0.63	5.66 ± 0.58	8.91 ± 0.29	125.3 ± 2.5	136.0 ± 2.9	DNM*
Bark	2	0.70 ± 0.08	1.29 ± 0.09	2.36 ± 0.05	134.4 ± 9.3	150.9 ± 10.3	DNM*
	4	2.01 ± 0.05	3.25 ± 0.06	5.25 ± 0.05	132.2 ± 5.3	142.9 ± 4.8	452.0
	6	2.06 ± 0.23	3.84 ± 0.38	7.16 ± 0.63	99.3 ± 8.2	106.3 ± 13.8	DNM*
Needles	2	0.67 ± 0.08	1.11 ± 0.15	1.84 ± 0.28	127.0 ± 3.0	144.8 ± 7.3	DNM*
	4	0.90 ± 0.25	1.76 ± 0.28	3.42 ± 0.28	78.8 ± 16.6	92.3 ± 19.1	380.7
	6	0.85 ± 0.15	1.73 ± 0.24	3.55 ± 0.39	69.1 ± 8.6	79.0 ± 11.2	DNM*

270 * did not measure

271 Both bulk and tapped densities exhibit decreasing trends with increasing particle size. This
 272 observation aligns with existing literature, specifically Zamora-Cristales *et al.* [35], who reported
 273 a decrease in the bulk density of forest residues with larger nominal particle sizes resulting from
 274 two distinct comminution methods (*i.e.*, hammer mill and knife mill). Additionally, Zhu *et al.* [36]

275 demonstrated that plantation density significantly affects wood density and anatomical properties,
276 which could influence the PSD and density trends observed in this study. Furthermore, Fernandes
277 *et al.* [37] highlighted the variability in wood density and its dependence on anatomical and
278 environmental factors, supporting the observed trends in this study.

279 Notably, the density of 2 mm needles was within the same order of magnitude as other anatomical
280 fractions. However, 4 mm and 6 mm needles exhibited significantly lower densities. This
281 phenomenon can be attributed to the high aspect ratio of the 4 mm and 6 mm needles, which do
282 not pack efficiently, thereby leaving substantial void spaces and resulting in significantly reduced
283 densities. Conversely, the aspect ratio of the 2 mm needles was sufficiently small to allow for more
284 efficient packing, thus exhibiting higher density.

285 Furthermore, Table 1 indicates that the stem exhibits the highest PD, whereas the needles have the
286 lowest PD. On the other hand, the PD of the whole material and bark was measured to be between
287 that of the stem and needles, as expected. It is important to note that this study measured the PD
288 of all anatomical fractions at a single particle size and assumed that PD remains constant across
289 different size variations. This assumption is supported by Zhu *et al.* [36] and Fernandes *et al.* [37],
290 who highlighted the variability in wood density and its dependence on anatomical and
291 environmental factors.

292 **3.2 Shear properties**

293 Shear tests on biomass are important for determining its mechanical properties, such as shear
294 strength, internal friction, and bulk cohesion. These properties are critical for optimizing
295 processing and handling procedures, ensuring efficient operation of biomass handling, storage, and
296 processing equipment [38, 39].

297 A design of experiments (DOE) was conducted using JMP statistical software to investigate the
298 main effects of tissue type, particle size and moisture content. The primary properties of interest
299 from these tests are unconfined yield strength (UYS), internal friction and bulk cohesion. UYS is
300 a descriptive property of granular materials, representing the major principal stress required to
301 cause shear failure in an unsupported bulk material based on its stress history [40]. The results
302 shown in Table 2 indicates that the whole unfractionated residues and the bark fractions have
303 slightly higher UYS than the other materials. Additionally, samples with higher moisture content
304 show increased UYS. This is hypothesized to be attributed to the fact that bark and whole residues
305 have more angular particles along with high surface roughness which promote interlocking and
306 require more stress to yield under confinement [41]. Furthermore, wet particles exhibit increased
307 adhesion due to capillary forces, contributing to higher UYS in the samples with higher moisture
308 content [42].

309 Internal friction, influenced by material surface roughness and particle morphology, was found to
310 be higher in the bark and whole fractions. This is thought to be due to their greater surface
311 roughness. Generally, the internal friction increased with particle size, while moisture content had
312 a modest, mostly decreasing effect. For the samples studied, bulk cohesion decreased with
313 increasing particle size and increased with increasing moisture content. Bark samples exhibited
314 the highest cohesion, followed by whole material, with stem showing the lowest values. Needles
315 displayed inconsistent results for bulk cohesion, with the smallest size having low values and the
316 largest size showing high values, likely due to the long aspect ratio of 6 mm particles [38]. These
317 findings generally align with more exhaustive studies of the impact of particle size and shape
318 present in the literature [44]. While initial tests identified the main effects, DOE augmentations
319 suggested that additional testing with 2mm needles and 6mm stem samples at varying moisture

320 level would be valuable for further exploring the implications of biomass tissue mixtures on shear
321 properties.

322 *Table 2: Effect of tissue type, particle size, and moisture content on the shear properties under 1kPa pre-shear
323 condition.*

Material	Size (mm)	Moisture content (%)	Major Principal Stress (kPa)	Unconfined Yield Strength (kPa)	Effective angle of friction (°)	Angle of internal friction (°)	Bulk cohesion (kPa)
Whole	2	5	2.40 ± 0.02	0.41 ± 0.05	46.97 ± 0.85	43.27 ± 0.89	0.09 ± 0.01
	2	40	2.31 ± 0.06	0.42 ± 0.06	45.20 ± 0.51	41.17 ± 0.81	0.09 ± 0.01
	6	40	2.17 ± 0.14	0.25 ± 0.13	46.86 ± 2.15	44.46 ± 3.40	0.05 ± 0.03
Stem	2	5	2.37 ± 0.16	0.28 ± 0.07	43.91 ± 0.66	41.30 ± 0.39	0.06 ± 0.02
	2	40	2.54 ± 0.03	0.56 ± 0.05	46.65 ± 0.28	41.80 ± 0.65	0.12 ± 0.01
Bark	2	5	2.39 ± 0.05	0.45 ± 0.07	46.00 ± 0.66	41.89 ± 0.69	0.10 ± 0.02
	2	40	2.44 ± 0.08	0.68 ± 0.02	46.84 ± 0.48	40.49 ± 0.51	0.16 ± 0.00
	4	20	2.51 ± 0.13	0.37 ± 0.06	48.07 ± 0.50	45.03 ± 0.18	0.08 ± 0.01
	6	5	1.95 ± 0.05	0.10 ± 0.03	44.32 ± 1.40	43.29 ± 1.77	0.02 ± 0.01
Needles	2	5	2.29 ± 0.03	0.27 ± 0.02	42.84 ± 0.77	40.21 ± 1.02	0.06 ± 0.01
	6	5	2.33 ± 0.05	0.56 ± 0.05	47.93 ± 1.57	42.74 ± 1.93	0.12 ± 0.02
	6	40	2.41 ± 0.04	0.55 ± 0.04	46.45 ± 0.80	41.41 ± 0.52	0.12 ± 0.01

324 **3.3 Flow performance**

325 The fundamental design parameters crucial for a feed bin or hopper are the hopper orientation (e.g.
326 inclination angle, which is the angle between the sloping side of the hopper and the vertical plane)
327 and discharge opening. These parameters significantly influence the discharge rate through the
328 cross-sectional opening and play a vital role in ensuring consistent material flow while preventing
329 stress bridge formation (arching) that might hinder the gravitational flow of bulk solids [6, 25].
330 The data obtained from a wedge hopper for all the samples listed in Table S1 at various inclination
331 angles is presented in Figure 3 and Table S2.

332 The results indicate that the critical arching distance, which refers to the minimum distance
333 required for preventing arch formation, increases with the nominal particle size. For example, the
334 critical arching distance for the 2 mm nominal particle size was approximately 13 mm, while it

335 increased to 33 mm for the 6 mm nominal particle size at a 32° inclination angle. This suggests a
336 greater propensity for particle interlock with larger particles [3]. The impact of inclination angle
337 on the critical arching distance was generally minimal for most particle fractions, except for the
338 needle-shaped particles. For instance, the critical arching distance measured 20.73 ± 2.12 mm and
339 25.03 ± 1.55 mm for the 2 mm size and 40% moisture content stem wood, respectively, at
340 inclination angles of 28° and 36°. In contrast, the 2 mm size and 40% moisture content needles
341 exhibited much higher critical arching distances of 38.70 ± 2.17 mm and 75.18 ± 6.62 mm at the
342 same inclination angles.

343 Additionally, higher moisture content led to a slightly increased critical arching distance for
344 smaller particle sizes, primarily due to the enhanced cohesion facilitated by moisture. However,
345 this contribution of cohesion from moisture content became negligible for larger grind-sized
346 materials. While the presence of a liquid bridge enhances cohesion in both particle sizes, this effect
347 is amplified for smaller particles. When a limited amount of moisture is available, it tends to
348 accumulate at the contact points between particles. The surface tension of the liquid induces the
349 formation of a meniscus, resulting in negative capillary pressure within the liquid bridge. This
350 pressure differential exerts an attractive force, drawing the particles closer together [45-47].
351 Biomass particles are typically irregular and porous, that facilitate the formation of liquid bridges
352 and enhance the capillary effect. The surface area-to-volume ratio is greater for smaller particles,
353 meaning that the surface-driven capillary forces have a greater influence relative to particle mass
354 [48]. In contrast, larger particles are more significantly influenced by gravitational and inertial
355 forces, the cohesive force from a liquid bridge is less significant; consequently, the effect of
356 moisture on larger particles is negligible.

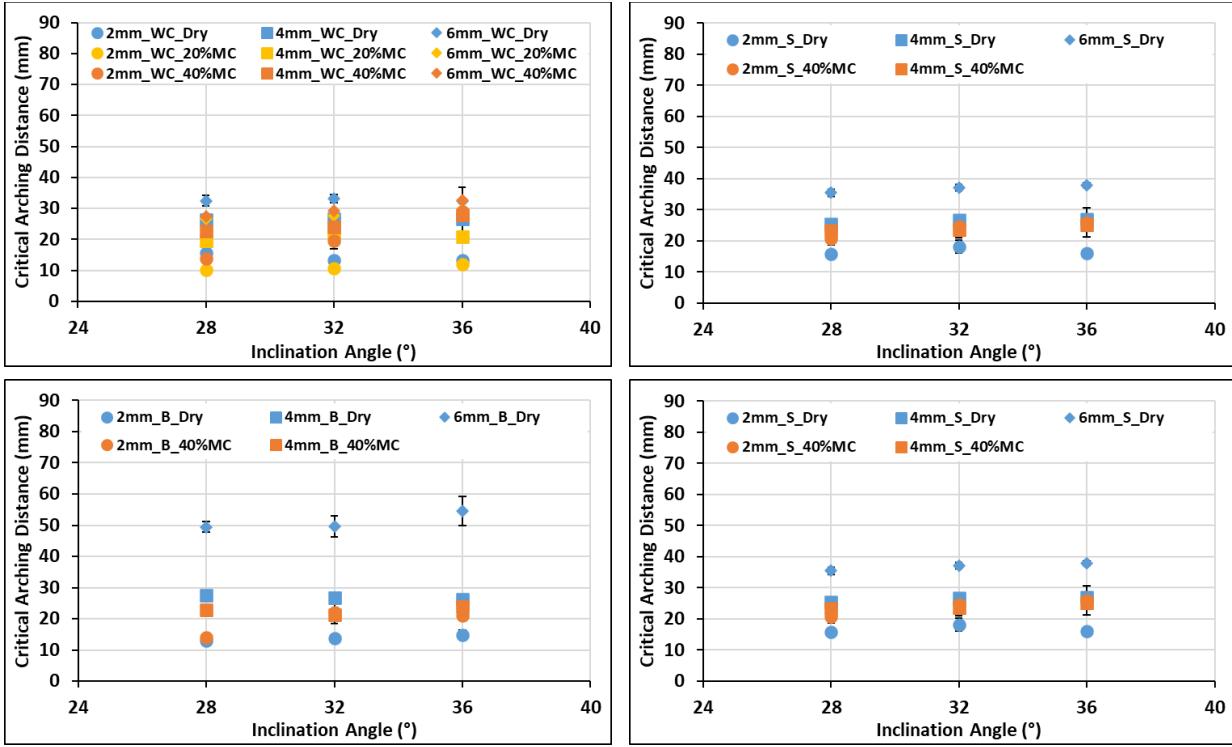
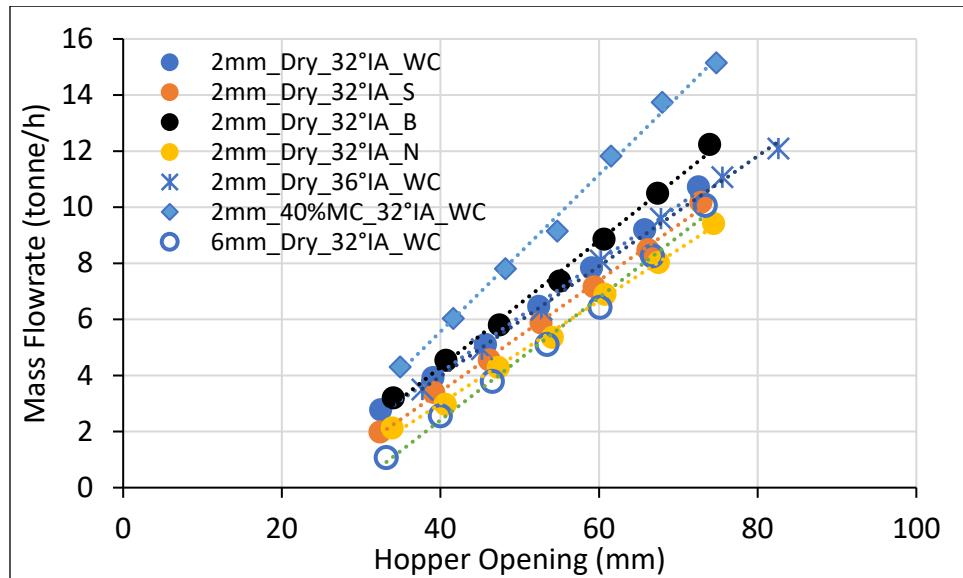



Figure 3: Critical arching distances of anatomical fractions, such as whole chips (top left), stem (top right), bark (bottom left), and needles (bottom right) in a wedge hopper.

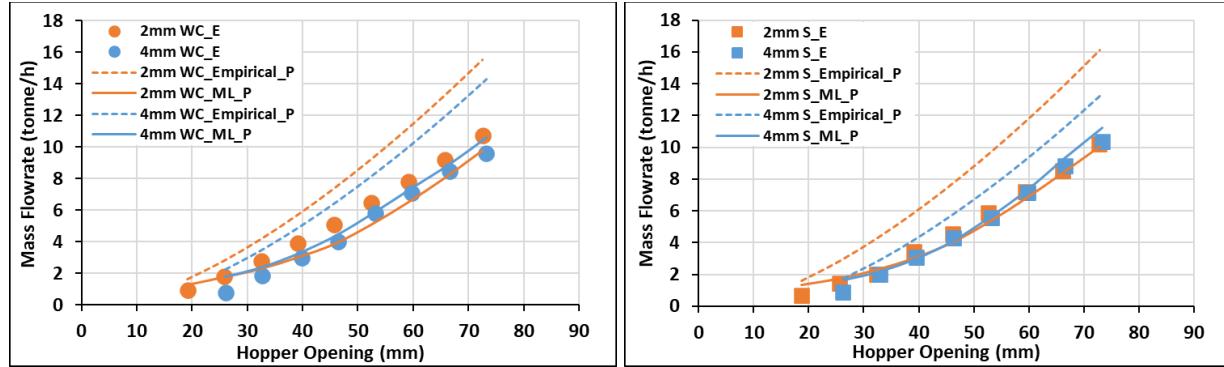
357 When the hopper opening surpasses the critical arching distance, the loaded material can smoothly
 358 flow through the opening. However, if the opening is only slightly larger than the critical arching
 359 distance, the mass flow rate does not follow a linear relationship, as depicted in Figure S1, as well
 360 as past work [3]. To assess the discharge rate for each material and inclination angle accurately,
 361 the hopper was deliberately opened well beyond the critical arching distance to establish a
 362 continuous mass flow. Figure 4 and Figures S2-S5 present illustrative examples of flow behavior
 363 for various grind sizes, moisture contents, and anatomical fractions. Figure S2 demonstrates that
 364 the inclination angle has a minimal effect on the flow rate, whereas grind size exerts the most
 365 significant impact (see Figure S3). As particle size increases, the flowrate decreases at a given
 366 hopper opening. This observation may be attributed to lower packing density at the hopper
 367 discharge, resulting in reduced flow rates. The mass flowrate (considering a wet basis) shows an
 368 increase with a higher moisture content. However, when the flowrates are adjusted to a dry basis,

369 a decreasing trend is observed (see Figure S4). This phenomenon was expected since moisture
 370 (water) possesses a higher mass per unit volume (density) compared to the studied materials,
 371 thereby influencing the mass flowrate calculations. The effect of moisture content on the mass
 372 flowrate followed a similar trend regardless of the particle size. The flow behavior of individual
 373 fractions, as depicted in Figure S5, indicates that whole chips and stems exhibit similar flow rates,
 374 while the needles exhibit the poorest flow rate among the fractions. This discrepancy in flow
 375 behavior can be attributed to the distinctive shape and characteristics of needle-shaped particles in
 376 comparison to the other anatomical fractions [50].

377
 378 *Figure 4: Flow performance of various anatomical fractions of loblolly pine at different moisture contents and*
 379 *hopper's inclination angles.*
 380 In comparison to the measured shear properties, there are a few key observations that can be made.
 381 Smaller particle sizes and higher moisture content generally increase cohesion and UYS, leading
 382 to higher critical arching distances and reduced flow rates. Conversely, larger particle sizes, which
 383 decrease cohesion, tend to have lower critical arching distances and higher flow rates. UYS
 384 represents the stress required to cause the material to fail in shear without confinement. Materials
 385 with higher UYS, such as bark and whole residues, are more resistant to flow initiation. This is

386 particularly evident in the hopper experiments where materials with higher UYS exhibited greater
387 critical arching distances and lower flow rates [43]. Cohesion, which can be influenced by particle
388 size and moisture content as described above, plays a significant role in determining the critical
389 arching distance and flow rates. Higher cohesion, due to either smaller particle sizes or higher
390 moisture content, can increase the critical arching distance, thereby affecting the flowability of the
391 material through the hopper. Finally, it is likely that the internal friction angle impacts the stability
392 of the flow within the hopper. Higher internal friction angles, which are typically observed in
393 materials with higher surface roughness and larger particle sizes, can lead to increased resistance
394 to flow [40, 44]. This may result in reduced flow rates and higher critical arching distances.

395 **3.4 Validate the design equations of wedge-shaped hopper**


396 Figure 5, Figure S6, and Figure S7 present a comparison between the experimentally measured
397 and model-predicted mass flow rates of different anatomical fractions. The results indicate that the
398 ML model can predict the mass flow rate with relatively higher accuracy compared to the empirical
399 model. However, the ML model does not exhibit as diverse predictions between materials or
400 conditions as the previously established empirical model [6, 25]. It is important to note that the
401 ML model was developed based on the physical characterization of whole pine materials. Given
402 that different anatomical fractions, even from the same source, may exhibit significant differences
403 in compressibility, shear resistance, particle density, and void ratios, variations in prediction
404 accuracy for the anatomical fractions were anticipated.

405 The ML model predicted the flow rate of stem wood with reasonable accuracy, achieving a root
406 mean square error (RMSE) of 0.37-0.53 tonne/h. This may be attributed to the stem wood being
407 the most similar to the whole chips. Interestingly, the needles, which are physically and
408 mechanically distinct from the whole chips, also showed good agreement with the predictions.

409 Due to the limitations of the hopper, experimental flow rates were only available for the 2 mm
410 needles, which were then compared with the predicted flow rates. The physical and mechanical
411 properties of the 2 mm needles were similar to those of the whole chips, whereas the larger sizes
412 (4 mm and 6 mm) exhibited different properties. Therefore, it would be valuable to generate
413 experimental flow rates for the 4 mm and 6 mm needles and compare them with the model
414 predictions.

415 Conversely, the empirical model consistently overpredicted the mass flow rate for all anatomical
416 fractions, regardless of the hopper operating conditions. There are several factors that explain this
417 overestimation. Firstly, hammer-milled whole loblolly pine samples, which were used to calibrate
418 the G-B model for FEM simulation, have a wider PSD than the samples produced by the shredder
419 used in this study and the nominal particle size (*i.e.*, 2mm, 4mm, 6mm screen size) is larger than
420 its true D_{50} . Secondly, FEM is a mesh-based method, and its numerical accuracy for large
421 deformation is not as good as the meshless Lagrangian SPH model. Lastly, the empirical model
422 was only fitted based on around 100 data points, while the ML model was trained and validated
423 over 2000 data points. The empirical equation based on multiplication of exponent functions is not
424 able to capture all the nonlinear relationship between inputs and output, while the multilayer
425 perception can capture those subtle patterns with enough data.

426 With the above reasoning, we conclude that the empirical model as formulated only works for a
427 narrow range of materials with properties similar to the hammer-milled loblolly pine it was
428 calibrated with, while the ML model is more accurate for predicting general woody biomass
429 materials. However, with the advancement of ML and physics-based simulation, improvement on
430 the ML model should be carried out for robustness by training on an enriched data set
431 distinguishing anatomical fractions (*e.g.*, adding PSD and particle aspect ratio to the input layer).

432

433

434 *Figure 5: Experimental and predicted mass flowrate of various anatomical fractions at 32° inclination angle. The*
 435 *scattered points are the experimental (E) measurement where the dotted and solid lines represent the empirical and*
 436 *ML prediction (P), respectively.*

437 The original formulation of the empirical flow equation was based on the particle density, critical
 438 state internal friction angle, dimensions of the hopper opening, and a term accounting for the mean
 439 particle size with a shape factor. To further develop this original formulation, there are several
 440 improvements that could be made to improve the mass flow rate prediction. As seen in the
 441 comparisons for both the flow results and shear properties, material shape and texture (surface
 442 roughness, particle angularity, etc.) are critical to differentiating results. It is likely that, because
 443 cohesion is predictable with information based on size and shape descriptors [44], reformulation
 444 of the shape factor could directly represent the apparent cohesion as well. Further to model
 445 additions, there was a strong dependance on feedstock moisture and both the shear properties as
 446 well as the hopper flow results, as documented in literature [51]. Finally, it is possible that the
 447 model would need to be parametrized to incorporate specific coefficients or factors for the different

448 anatomical fractions (*i.e.*, whole chips, stem wood, bark, and needles) rather than be formulated
449 with average parameter values. These coefficients should be based on experimental data that
450 capture the unique flow behaviors of each fraction. Future work with controlled binary mixtures
451 of biomasses/tissue fractions, followed by ternary mixtures, is needed to determine if these
452 component interactions are linear and if a simple average is sufficient, or if more complex
453 relationships are needed.

454 **4 Conclusions**

455 In conclusion, the comprehensive investigation into the flow behavior and shear properties of
456 different anatomical fractions of loblolly pine including whole tree chips, and separated bark, clean
457 white wood, and needs, reveals significant insights pertinent to optimizing biomass handling and
458 processing systems. The study underscores the critical influence of particle size distribution,
459 moisture content, and anatomical fraction on the physical and flow properties of biomass materials.
460 The findings indicate that smaller particle sizes and higher moisture content generally lead to
461 higher unconfined yield stress, and increased cohesion as measured in a Schulze ring shear tester,
462 greater predicted and measured critical arching distances in wedge hoppers, resulting in negatively
463 impacted flow rates. Conversely, larger particle sizes, which exhibit lower cohesion, tend to have
464 lower critical arching distances, thereby facilitating improved flow rates. Regression equations
465 developed previously to predict the flow of loblolly pine chips were compared to machine learning
466 (ML) approaches using the collected ring shear test data and measured flow rates collected in this
467 study. The experimental results, when compared with the previous empirical flow models,
468 highlight the limitations of prior work that have not been developed for complex biomass mixtures
469 such as forestry residues, and tend to overpredict mass flow rates for varied anatomical fractions.
470 In contrast, the implemented ML approaches demonstrated higher predictive accuracy, although

471 the method cannot directly account for specific material attributes, differences in anatomical
472 fraction properties or portions of the various tissues, or process configuration.

473 Future research should focus on enhancing the ML approaches or the empirically developed
474 regression equations by incorporating detailed descriptors of particle shape, texture, and specific
475 coefficients for different anatomical fractions. Additionally, exploring the interactions in
476 controlled mixtures of biomass fractions could provide deeper insights into the non-linear
477 relationships affecting flow behaviors. Advancing the understanding and predictive capabilities in
478 this area can significantly contribute to the efficient commercialization of biomass as a sustainable
479 energy source.

480 **Acknowledgements**

481 The research was supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency
482 and Renewable Energy (EERE), Bioenergy Technologies Office (BETO), the Feedstock-
483 Conversion Interface Consortium (FCIC), under DOE Idaho Operations Office with Contract No.
484 DE-AC07-05ID14517.

485

486 **References:**

487 [1] Y. Liu, H. Lu, X. Guo, X. Gong, X. Sun, W. Zhao, An investigation of the effect of particle
488 size on discharge behavior of pulverized coal, *Powder Technology*, 284 (2015) 47–56.

489 [2] N. Saha, C. Goates, S. Hernandez, W. Jin, T. Westover, J. Klinger, Characterization of particle
490 size and moisture content effects on mechanical and feeding behavior of milled corn (*Zea mays*
491 L.) stover, *Powder Technology*, 405 (2022) 117535.

492 [3] J. Klinger, N. Saha, T. Bhattacharjee, S. Carilli, W. Jin, Y. Xia, R. Daniel, C. Burns, O. Ajayi,
493 Z. Cheng, Multiscale shear properties and flow performance of milled woody biomass, *Frontiers*
494 in *Energy Research*, 10 (2022) 855289.

495 [4] Z. Cheng, J.H. Leal, C.E. Hartford, J.W. Carson, B.S. Donohoe, D.A. Craig, Y. Xia, R.C.
496 Daniel, O.O. Ajayi, T.A. Semelsberger, Flow behavior characterization of biomass Feedstocks,
497 *Powder Technology*, 387 (2021) 156–180.

498 [5] D. Ilic, K. Williams, R. Farnish, E. Webb, G. Liu, On the challenges facing the handling of
499 solid biomass feedstocks, *Biofuels, Bioproducts and Biorefining*, 12 (2018) 187–202.

500 [6] T. Westover, D.S. Hartley, Biomass handling and feeding, *Advances in biofuels and bioenergy*,
501 86 (2018).

502 [7] N. Deak, H. Sitaraman, Y. Lu, N. Saha, J. Klinger, Y. Xia, A high-performance discrete-
503 element framework for simulating flow and jamming of moisture bearing biomass feedstocks,
504 *Powder Technology*, 452 (2025) 120548.

505 [8] R.M. Emerson, N. Saha, P.H. Burli, J.L. Klinger, T. Bhattacharjee, L. Vega-Montoto,
506 Analyzing Potential Failures and Effects in a Pilot-Scale Biomass Preprocessing Facility for
507 Improved Reliability, *Energies*, 17 (2024) 2516.

508 [9] N. Saha, J. Klinger, S.M. Rowland, T. Dunning, D. Carpenter, Z. Mills, J. Parks, Influence of
509 feedstock variability on thermal decomposition of forest residue in a screw feeder for high
510 temperature conversion, *Fuel Processing Technology*, 245 (2023) 107725.

511 [10] R.B. Shah, M.A. Tawakkul, M.A. Khan, Comparative evaluation of flow for pharmaceutical
512 powders and granules, *Aaps Pharmscitech*, 9 (2008) 250–258.

513 [11] A. Vasilenko, B.J. Glasser, F.J. Muzzio, Shear and flow behavior of pharmaceutical blends—
514 Method comparison study, *Powder Technology*, 208 (2011) 628–636.

515 [12] M. Benković, S. Srećec, I. Špoljarić, G. Mršić, I. Bauman, Flow properties of commonly used
516 food powders and their mixtures, *Food and bioprocess technology*, 6 (2013) 2525–2537.

517 [13] V. Garg, S. Mallick, P. García-Trinanes, R.J. Berry, An investigation into the flowability of
518 fine powders used in pharmaceutical industries, *Powder technology*, 336 (2018) 375–382.

519 [14] P. Juliano, B. Muhunthan, G.V. Barbosa-Cánovas, Flow and shear descriptors of
520 preconsolidated food powders, *Journal of food engineering*, 72 (2006) 157–166.

521 [15] M.R. Wu, D.L. Schott, G. Lodewijks, Physical properties of solid biomass, *Biomass and*
522 *Bioenergy*, 35 (2011) 2093–2105.

523 [16] A. Hamed, Y. Xia, N. Saha, J. Klinger, D.N. Lanning, J.H. Dooley, Particle size and shape
524 effect of Crumbler® rotary shear-milled granular woody biomass on the performance of Acrison®
525 screw feeder: A computational and experimental investigation, *Powder Technology*, 427 (2023)
526 118707.

527 [17] L.P. Matallana-Ramirez, R.W. Whetten, G.M. Sanchez, K.G. Payn, Breeding for climate
528 change resilience: a case study of loblolly pine (*Pinus taeda* L.) in North America, *Frontiers in*
529 *plant science*, 12 (2021) 606908.

530 [18] S.E. McKeand, K.G. Payn, A.J. Heine, R.C. Abt, Economic significance of continued
531 improvement of loblolly pine genetics and its efficient deployment to landowners in the southern
532 United States, *Journal of Forestry*, 119 (2021) 62–72.

533 [19] R. Navar, J.H. Leal, B.L. Davis, T.A. Semelsberger, Rheological effects of moisture content
534 on the anatomical fractions of loblolly pine (*Pinus taeda*), *Powder Technology*, 412 (2022) 118031.

535 [20] K. Pardikar, C. Wassgren, Predicting the critical outlet width of a hopper using a continuum
536 finite element method model, *Powder Technology*, 356 (2019) 649–660.

537 [21] A. Drescher, A. Waters, C. Rhoades, Arching in hoppers: II. Arching theories and critical
538 outlet size, *Powder Technology*, 84 (1995) 177–183.

539 [22] J. Xue, S. Schiano, W. Zhong, L. Chen, C.-Y. Wu, Determination of the flow/no-flow
540 transition from a flat bottom hopper, *Powder Technology*, 358 (2019) 55–61.

541 [23] J. Guo, A.W. Roberts, J.-D. Prigge, Experimental investigation of wall pressure and arching
542 behavior under surcharge pressure in mass-flow hoppers, *Powder technology*, 258 (2014) 272–
543 284.

544 [24] S.V. Søgaard, N.E. Olesen, C. Hirschberg, M.H. Madsen, M. Allesø, J. Garnaes, J. Rantanen,
545 An experimental evaluation of powder flow predictions in small-scale process equipment based
546 on Jenike's hopper design methodology, *Powder technology*, 321 (2017) 523–532.

547 [25] Y. Lu, W. Jin, J. Klinger, S. Dai, Flow and arching of biomass particles in wedge-shaped
548 hoppers, *ACS Sustainable Chemistry & Engineering*, 9 (2021) 15303–15314.

549 [26] Y. Lu, W. Jin, N. Saha, J.L. Klinger, Y. Xia, S. Dai, Wedge-Shaped Hopper Design for Milled
550 Woody Biomass Flow, *ACS Sustainable Chemistry & Engineering*, 10 (2022) 16803–16813.

551 [27] A. Ikbarieh, W. Jin, Y. Zhao, N. Saha, J.L. Klinger, Y. Xia, S. Dai, Machine Learning Assisted
552 Cross-Scale Hopper Design for Flowing Biomass Granular Materials, *ACS Sustainable Chemistry
553 & Engineering*, (2025).

554 [28] A.S.S. 2, *Moisture Measurement–Forages*, American Society of Agricultural and Biological
555 Engineers St. Joseph, MI, 2006.

556 [29] A.S. ANSI, *ASAE S319. 3 FEB03*, Method of determining and expressing fineness of feed
557 materials by sieving.

558 [30] S. ASAE, *S269. 4-Cubes, Pellets, and Crumbles–Definitions and Methods for Determining
559 Density, Durability, and Moisture Content* ASAE DEC, 96.

560 [31] C.E. Brewer, V.J. Chuang, C.A. Masiello, H. Gonnermann, X. Gao, B. Dugan, L.E. Driver,
561 P. Panzacchi, K. Zygourakis, C.A. Davies, New approaches to measuring biochar density and
562 porosity, *Biomass and Bioenergy*, 66 (2014) 176–185.

563 [32] R.M. Nedderman, *Statics and kinematics of granular materials*, (No Title), (1992).

564 [33] D. Schulze, *Powders and bulk solids*, Springer2021.

565 [34] Y. Lu, W. Jin, J. Klinger, T.L. Westover, S. Dai, Flow characterization of compressible
566 biomass particles using multiscale experiments and a hypoplastic model, *Powder Technology*, 383
567 (2021) 396–409.

568 [35] R. Zamora-Cristales, J. Sessions, D. Smith, G. Marrs, Effect of grinder configuration on forest
569 biomass bulk density, particle size distribution and fuel consumption, *Biomass and Bioenergy*, 81
570 (2015) 44–54.

571 [36] J. Zhu, C.T. Scott, K.L. Scallon, G.C. Myers, Effects of plantation density on wood density
572 and anatomical properties of red pine (*Pinus resinosa* Ait.), *Wood and fiber science*. Vol. 39, no.
573 3 (2007): pages 502-512., (2007).

574 [37] C. Fernandes, M.J. Gaspar, J. Pires, A. Alves, R. Simões, J.C. Rodrigues, M.E. Silva, A.
575 Carvalho, J.E. Brito, J.L. Lousada, Physical, chemical and mechanical properties of *Pinus*
576 *sylvestris* wood at five sites in Portugal, *IForest*, (2017).

577 [38] M. Stasiak, M. Molenda, M. Gancarz, J. Wiącek, P. Parafiniuk, A. Lisowski, Characterization
578 of shear behaviour in consolidated granular biomass, *Powder Technology*, 327 (2018) 120–127.

579 [39] M. Stasiak, M. Molenda, M. Bańda, J. Horabik, J. Wiącek, P. Parafiniuk, J. Wajs, M. Gancarz,
580 E. Gondek, A. Lisowski, Friction and shear properties of pine biomass and pellets, *Materials*, 13
581 (2020) 3567.

582 [40] S. Hernandez, T.L. Westover, A.C. Matthews, J.C.B. Ryan, C.L. Williams, Feeding properties
583 and behavior of hammer-and knife-milled pine, *Powder technology*, 320 (2017) 191–201.

584 [41] N. Saha, J. Klinger, T. Bhattacharjee, N. Berglund, W. Jin, Y. Xia, Effect of Particle Size,
585 Moisture Content, and Tissue Fraction on Mechanical and Feeding Behavior of Milled Corn Stover
586 and Loblolly Pine Residues, 2023 AIChE Annual Meeting, 2023.

587 [42] L. Krátký, Mechanical size reduction of lignocellulosic biomass: a mini-review, *Chemical
588 Engineering Transactions*, 94 (2022) 229–234.

589 [43] M. Przywara, R. Lech-Przywara, W. Zapała, I. Opaliński, Mechanical properties of solid
590 biomass as affected by moisture content, *AgriEngineering*, 5 (2023).

591 [44] T. Bhattacharjee, J. Klinger, E. Fillerup, S. Carilli, M.S. Casajus, W. Jin, Y. Xia, Effects of
592 particle size, distribution, and morphology on bulk shear behavior of milled loblolly pine, *Powder
593 Technology*, 457 (2025) 120911.

594 [45] K. Johanson, Y. Rabinovich, B. Moudgil, K. Breece, H. Taylor, Relationship between particle
595 scale capillary forces and bulk unconfined yield strength, *Powder Technology*, 138 (2003) 13–17.

596 [46] N. Harnby, Chapter 5 - The mixing of cohesive powders, in: N. Harnby, M.F. Edwards, A.W.
597 Nienow (Eds.) *Mixing in the Process Industries*, Butterworth-Heinemann, Oxford, 1992, pp. 79–
598 98.

599 [47] H.N.G. Nguyen, C.-F. Zhao, O. Millet, A.P.S. Selvadurai, Effects of surface roughness on
600 liquid bridge capillarity and droplet wetting, *Powder Technology*, 378 (2021) 487–496.

601 [48] E. Koos, Capillary suspensions: Particle networks formed through the capillary force, *Current
602 Opinion in Colloid & Interface Science*, 19 (2014) 575–584.

603 [49] BE&E, Understanding Moisture's Impact on Biomass Handling.

604 [50] Q. Gou, X. Wang, G. Chen, S. Liu, Effect of particle shape on particle flow and heat transfer
605 behavior based on computational fluid dynamics-discrete element modeling, *Physics of Fluids*, 37
606 (2025).

607 [51] Y. Lu, W. Jin, J.L. Klinger, S. Dai, Effects of the Moisture Content on the Flow Behavior of
608 Milled Woody Biomass, *ACS Sustainable Chemistry & Engineering*, (2023).

609