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1. Summary of scientific accomplishments

The AEOLUS Center is dedicated to developing a unified optimization-under-uncertainty framework
for: (1) learning predictive models from data; and (2) optimizing experiments, processes, and designs
governed by these models, all driven by complex, uncertain energy systems. AEOLUS addresses the
critical need for principled, rigorous, scalable, and structure-exploiting capabilities for exploring parameter
and decision spaces of complex forward simulation models. This report summarizes the key highlights
of our research during the period of performance. We have made significant progress on several thrusts,
including:

e a non-intrusive inference reduced order model for fluids using deep multistep neural networks [7];
e closure learning for nonlinear model reduction using deep residual neural networks [6];

e a data-driven learning framework for the analytic continuation of imaginary time using Adams
Bashforth residual neural networks [5];

e an asymptotically compatible meshfree method for solving nonlocal equations with random coef-
ficients [1];

e Gaussian smoothing gradient descent methods for minimizing high-dimensional functions [2];

e improved performance of stochastic gradients with Gaussian smoothing for neural network training
[3]; and

e anisotropic Gaussian smoothing for gradient-based optimization [4].

The highlights from these works are described in §2-§5.
2. Data-driven reduced order models for fluid dynamics

Reduced order models (ROMs) are essential for enabling rapid simulation of complex fluid systems, but
traditional projection-based approaches often suffer from instability when applied to nonlinear problems.
In this project, we developed data-driven approaches that leverage deep neural networks to construct
stable and accurate reduced order models without requiring intrusive modifications to existing simulation
codes.

2.1. Non-intrusive inference reduced order model using deep multistep neural networks

In [7], we introduced a non-intrusive framework for learning reduced order models directly from simulation
data. Unlike traditional Galerkin projection methods that require access to the governing equations and
can produce unstable reduced systems, our approach learns the optimal reduced dynamics from data
using deep neural networks based on linear multistep methods.

The key innovation is the use of linear multistep neural networks (LMNet) inspired by implicit Adams-
Moulton schemes from numerical analysis. Given snapshots of the full order solution projected onto a
reduced basis, LMNet learns to predict the evolution of the reduced coefficients over time. The implicit
formulation provides enhanced stability compared to explicit methods, which is critical for long-time
integration of chaotic fluid systems.

We demonstrated the approach on two-dimensional flow past a circular cylinder at Reynolds number
100. The results show that LMNet-ROM significantly outperforms standard projection-based ROMs in
terms of both accuracy and stability. The non-intrusive nature of the method makes it applicable to
complex legacy codes where modifying the solver is impractical or impossible.

2.2. Closure learning for nonlinear model reduction using deep residual neural networks

A fundamental challenge in reduced order modeling is the closure problem: when projecting nonlinear
dynamics onto a low-dimensional subspace, unresolved scales interact with resolved scales in ways that



standard projection cannot capture. In [6], we addressed this challenge by using deep residual neural
networks to learn closure terms that account for the effect of truncated modes.

Our approach augments the standard Galerkin ROM with a learned correction term. The residual
neural network takes the current reduced state as input and outputs a correction that compensates for
truncation errors. Training uses data from the full order model, with the network learning to minimize
the discrepancy between the corrected ROM prediction and the true dynamics.

The residual network architecture is particularly well-suited to this task because the correction term
represents a perturbation to the Galerkin dynamics rather than the full dynamics itself. This structure
allows the network to focus on learning the closure contribution while the underlying physics is captured
by the projection. Numerical experiments on fluid flow problems demonstrate that the closure-corrected
ROM achieves substantially improved accuracy compared to both standard Galerkin ROMs and purely
data-driven approaches, while maintaining computational efficiency suitable for many-query applications
such as optimization and uncertainty quantification.

3. Analytic continuation of noisy data using Adams Bashforth residual neural network

The analytic continuation problem in quantum many-body physics requires recovering spectral functions
from imaginary-time Green's function data. This inverse problem is fundamentally ill-posed, and standard
Maximum Entropy (MaxEnt) methods struggle when the input data is corrupted by noise. In [5],
we developed a data-driven learning framework using Adams Bashforth residual neural networks (AB-
ResNet) that achieves superior accuracy under noisy conditions.

Our approach is inspired by the connection between residual networks and numerical methods for
ordinary differential equations. We designed network architectures based on first, second, and third-order
Adams-Bashforth schemes (AB1, AB2, AB3), where higher-order methods provide improved stability
properties. The AB3-ResNet architecture is strongly stable, while AB1 and AB2 are only conditionally
stable. This stability hierarchy directly impacts performance on noisy data.
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Figure 1: Spectral density functions recovered by AB3-ResNet and MaxEnt. Left column: noise level 10~2. Right column:
noise level 1073, AB-ResNet correctly identifies spectral peaks even under high noise conditions where MaxEnt fails.



Figure 1 compares AB3-ResNet against MaxEnt across different noise levels. At low noise (1072),
both methods accurately recover the spectral density. However, at higher noise levels (10_2), MaxEnt
fails to resolve the spectral peaks while AB-ResNet maintains accurate predictions. The mean absolute
errors on the test dataset are 6.8 x 1074, 3.8 x 1074, and 2.6 x 10~ for AB1, AB2, and AB3, respectively,
confirming that higher-order methods yield higher accuracy.

Beyond accuracy improvements, AB-ResNet provides a direct mapping from Green's function to
spectral density, avoiding the iterative optimization required by MaxEnt. The computational cost is
reduced by an order of magnitude: AB-ResNet requires O(10) seconds compared to O(100) seconds for
MaxEnt. This combination of improved noise robustness and computational efficiency makes AB-ResNet
a practical tool for analytic continuation in quantum many-body calculations.

4. Meshfree method for solving nonlocal diffusion in heterogeneous media

Nonlocal diffusion models capture long-range interactions that classical local PDEs cannot represent,
making them valuable for modeling anomalous transport in heterogeneous media. However, when the
diffusion coefficient is uncertain, quantifying the resulting uncertainty in the solution requires solving
the nonlocal equation many times for different parameter realizations, which quickly becomes computa-
tionally prohibitive. In [1], we developed an asymptotically compatible meshfree method combined with
sparse grid stochastic collocation to efficiently solve nonlocal diffusion problems with random coefficients.
Our approach represents the random diffusivity using the Karhunen-Loéve decomposition, reducing
the infinite-dimensional stochastic input to a finite-dimensional parameter space. We then employ a
probabilistic collocation method (PCM) with sparse grids to sample this parameter space efficiently. For
each sample, we solve the deterministic nonlocal diffusion problem using an optimization-based meshfree
quadrature rule that does not require a mesh and naturally handles the nonlocal integral operators.
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Figure 2: Asymptotic compatibility study on a 2D spatial domain with 2D parametric space. (a) Convergence with 100
Monte Carlo samples. (b) Sparse grid convergence for Smolyak levels £ =1,...,6.

A key theoretical contribution is proving that our numerical scheme is asymptotically compatible:
as the nonlocal horizon parameter approaches zero, the discrete solution converges to the solution of
the corresponding local PDE. We also establish rigorous convergence rates in the random parameter
space, showing that the sparse grid collocation achieves algebraic or sub-exponential convergence as the
number of collocation points increases. Figure 2 confirms these theoretical predictions on benchmark
problems.

The sparse grid approach provides substantial computational savings compared to standard Monte
Carlo simulation. For problems with moderate parametric dimension, the PCM method achieves com-



parable accuracy with orders of magnitude fewer samples. This efficiency gain enables uncertainty
quantification for nonlocal models in applications where Monte Carlo would be impractical, including
materials science, subsurface flow, and biological transport phenomena.

5. Gaussian smoothing methods for gradient-based optimization

Gradient-based optimization is fundamental to machine learning and scientific computing, yet standard
methods often struggle with non-convex landscapes, noise, and high dimensionality. In this project,
we developed a family of Gaussian smoothing techniques that improve gradient-based optimization by
incorporating nonlocal information about the loss landscape, leading to more robust convergence and
better solutions.

5.1. Gaussian smoothing gradient descent for function minimization

In [2], we introduced Gaussian Smoothing Gradient Descent (GSmoothGD), a method that replaces
standard gradients with nonlocal gradients derived from Gaussian-smoothed versions of the objective
function. The smoothing operation averages function values over a neighborhood, which reduces high-
frequency noise and small local variations while preserving the overall landscape structure. This enables
the optimizer to escape shallow local minima and navigate toward better solutions.

Computing the smoothed gradient exactly requires high-dimensional integration, which becomes
intractable as dimension increases. We address this through Monte Carlo approximation (MC-
GSmoothGD), sampling random directions to estimate the smoothed gradient efficiently. A key
theoretical contribution is proving that MC-GSmoothGD converges regardless of the function’s smooth-
ness or the problem dimension, making it applicable to a broad class of optimization problems.

We also developed adaptive strategies for adjusting the smoothing radius during optimization. Large
radii provide global exploration early in optimization, while smaller radii enable fine-grained local refine-
ment as the algorithm approaches a solution. Numerical experiments on standard non-convex bench-
marks demonstrate that GSmoothGD outperforms momentum-based methods, classical gradient de-
scent, and other smoothing approaches.

5.2. Improved stochastic gradients with Gaussian smoothing for neural networks

Training deep neural networks involves optimizing highly non-convex loss functions with stochastic
gradients computed from mini-batches of data. In [3], we extended Gaussian smoothing to stochastic
optimization, developing GSmoothSGD and GSmoothAdam variants of standard optimizers.

A key contribution is deriving analytically efficient formulations for computing Gaussian-smoothed
loss functions in feedforward and convolutional neural networks. Rather than relying on expensive
zero-order approximations that require many function evaluations, our approach integrates directly with
automatic differentiation frameworks. This makes the smoothed optimizers practical for large-scale deep
learning applications.

Theoretical analysis shows that Gaussian smoothing simplifies the loss landscape by attenuating small
fluctuations that can trap standard optimizers in suboptimal local minima. The smoothed variants also
exhibit enhanced robustness to noise in gradient estimates and improved generalization performance.
Experiments on image classification tasks demonstrate consistent improvements over unsmoothed coun-
terparts, with the computational overhead remaining modest due to our efficient analytical formulations.

5.3. Anisotropic Gaussian smoothing for gradient-based optimization

Standard isotropic Gaussian smoothing applies uniform smoothing in all directions, but this may not
be optimal when the loss landscape has different characteristics along different directions. In [4], we
introduced anisotropic Gaussian smoothing that adapts the smoothing directionality to match the local
geometry of the objective function.



We developed a family of algorithms including AGS-GD, AGS-SGD, and AGS-Adam that replace
standard gradients with nonlocal gradients derived from anisotropic Gaussian smoothing. The anisotropy
is controlled by the covariance matrix of the Gaussian distribution, which can be adjusted to provide
stronger smoothing along directions with high curvature and weaker smoothing along directions that are
already well-behaved. This directional adaptation helps algorithms escape local minima more effectively
while maintaining fast convergence along favorable directions.

We provide convergence analyses for both convex and non-convex L-smooth functions, extending
theoretical results from the isotropic case. In stochastic settings, we show that the algorithms converge
to a neighborhood of the optimum, with the neighborhood size determined by the smoothing parameters.
The paper includes practical implementation guidance using Monte Carlo estimation techniques aligned
with zero-order optimization methods, making the approach accessible for practitioners working on
challenging optimization problems in machine learning and scientific computing.
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Invited presentations

2024: Keynote lecture on Advancing personalized recommendations with reinforcement learning
techniques, |EEE International Conference on Data Mining, 4th Workshop on Al for Nudging and
Personalization (WAIN), Abu Dhabi, United Arab Emirates.

. 2024: 2024 Conference on the Mathematical Theory of Deep Neural Networks, Philadelphia, PA.
. 2024: 2024 SIAM Conference on Mathematics of Data Science, Atlanta, GA.

. 2024: 2024 SIAM Conference on Uncertainty Quantification, Trieste, Italy.

. 2024: 18th Copper Mountain Conference on Iterative Methods, Copper Mountain, CO.

. 2024: 4th International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI),

Jeju Island, South Korea.

. 2024: Department of Mathematics, Middle Tennessee State University, Murfreesboro, TN.
. 2024: Department of Mathematics, North Carolina State University, Raleigh, NC.

. 2024: Department of Mathematics, University of Nevada, Las Vegas, NV.

2024: Fields Institute, University of Toronto, Toronto, ON.

2023: Keynote lecture on Hyperpersonalization in healthcare, |EEE International Conference on
Data Mining, 3rd Workshop on Al for Nudging and Personalization (WAIN), Shanghai, China.

2023: 10th International Congress on Industrial and Applied Mathematics (ICIAM), Tokyo, Japan.
2023: Department of Scientific Computing, Florida State University, Tallahassee, FL.
2023: Department of Mathematics, Missouri S&T University, Rolla, MO.

2022: Keynote lecture on Improving entropy of reinforcement learning approaches for personalized
recommendation tasks, |EEE International Conference on Data Mining, 2nd Workshop on Al for
Nudging and Personalization (WAIN), Orlando, FL.

2022: Adaptivity, High Dimensionality and Randomness, The Erwin Schrodinger International
Institute for Mathematics and Physics (ESI), University of Vienna, Vienna, Austria.

2022: Approximation of high-dimensional parametric PDEs in forward UQ, The Erwin Schrodinger
International Institute for Mathematics and Physics (ESI), University of Vienna, Vienna, Austria.

2022: Applied Mathematics Seminar, Argonne National Laboratory, Lemont, IL.

2021: Babuska Forum Lecture on Sparsity-enforced regularizations for optimal learning of high-
dimensional systems from random sampling, Oden Institute for Engineering and Computational
Sciences, The University of Texas at Austin, Austin, TX.

2021: Department of Mathematics, International School for Advanced Studies, Trieste, Italy.

2021: Department of Mathematics, University of Pittsburgh, Pittsburgh, PA.
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2021: Oden Institute for Computational Science & Engineering, University of Texas at Austin,
Austin, TX.

2021: Department of Mathematics, Texas A&M University, College Station, TX.
2021: Department of Mathematics, Virginia Polytechnic and State University, Blacksburg, VA.
2021: Department of Mathematics, University of Nevada, Las Vegas, NV.

2021: RAMSES: Reduced order models; Approximation theory; Machine learning; Surrogates,
Emulators and Simulators, SISSA, International School for Advanced Studies, Trieste, ltaly.

2021: Safety and Security of Deep Learning, Institute for Computational and Experimental Re-
search in Mathematics (ICERM), Brown University, Providence, RI.

2021: 2021 SIAM Conference on Computational Science and Engineering, Virtual.
2021: Workshop on Scientific Computing and Applications, University of Nevada, Las Vegas, NV.
2021: SIAM/CAIMS Annual Meeting, Toronto, Canada.

. Workshops and conferences co-organized

1. 2023: 10th International Congress on Industrial and Applied Mathematics (ICIAM), Minisympo-

A.3.

sium on Black box methods for efficient learning in high-dimensional scientific computing (3 parts,
12 talks), Tokyo, Japan. Co-organized with Nick Dexter (FSU) and Guannan Zhang (ORNL).

. 2021: Safety and Security of Deep Learning, Institute for Computational and Experimental Re-

search in Mathematics (ICERM), Brown University, Providence, RI. Workshop website: https:
//icerm.brown.edu/events/htw-21-ssdl/

. 2021: 2021 SIAM Conference on Computational Science and Engineering, Minisymposium on In

quest of predictable and robust machine learning: theoretical and applied perspectives (2 parts, 8
talks), Virtual. Co-organized with Viktor Reshniak (ORNL).

Other notable professional activities

e EDITOR-IN-CHIEF

— 2020-present: Numerical Methods for Partial Differential Equations

e EDITORIAL BOARDS

2018—present: Numerische Mathematik

2018—present: Results in Applied Mathematics
2018-2021: SIAM Mathematics in Industry (Book Series)
2013—present: International Journal of Computer Mathematics (IJCM)

2011-present: International Journal for Uncertainty Quantification (1J4UQ)
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