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Gauge Loop-String-Hadron Formulation on General Graphs and Applications to Fully
Gauge Fixed Hamiltonian Lattice Gauge Theory

Ivan M. Burbano 1, 2 and Christian W. Bauer 1, 2

1Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Department of Physics, University of California, Berkeley, CA 94720, USA

We develop a gauge invariant, Loop-String-Hadron (LSH) based representation of SU(2) Yang-
Mills theory defined on a general graph consisting of vertices and half-links. Inspired by weak
coupling studies, we apply this technique to maximal tree gauge fixing. This allows us to develop
a fully gauge fixed representation of the theory in terms of LSH quantum numbers. We explicitly
show how the quantum numbers in this formulation directly relate to the variables in the magnetic
description. In doing so, we will also explain in detail the way that the Kogut-Susskind formulation,
prepotentials, and point splitting, work for general graphs. In the appendix of this work we provide
a self-contained exposition of the mathematical details of Hamiltonian pure gauge theories defined
on general graphs.
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I. INTRODUCTION

While traditional lattice simulations [1] have been
tremendously successful at calculating a large variety of
important observables in non-perturbative field theories
such as QCD (for a review of the impact of lattice field
theory, see [2]), they rely on Monte-Carlo integration of
the path integral, and therefore inherently limited to ob-
servables that do not exhibit a sign problem [3]. This
puts some of the most interesting observables, most no-
tably most dynamical observables, out of reach of clas-
sical lattice calculations. Hamiltonian lattice gauge the-
ory (HLGT) [4] is a formulation of gauge theories on
spatial lattices, where time is kept continuous. Time-
dependent observables can be calculated directly by solv-
ing the Schrödinger equation, and since it does not rely
on Monte-Carlo integration, systems with complex pa-
rameters in the action are accessible as well. The Hilbert
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space of an HLGT grows exponentially with the num-
ber of lattice points, and most problems are inaccessible
to classical computers. On the other hand, it has been
shown that HLGTs can be simulated on quantum com-
puters with resources that scale only polynomially with
the number of lattice points [5], which has resulted in
many studies of HLGT formulations that are amenable
to simulation on quantum computers. The first quan-
tum field theory that was simulated on a quantum com-
puter [6–8] was the Schwinger model, a U(1) field theory
in (1+1) dimensions [9, 10]. Since then, there has been
much progress in the formulation of Abelian [11–39] and
non-Abelian [40–66] gauge theories. A broad overview
of quantum computing for High-Energy Physics can be
found in [67].

The lattice Hamiltonian of Yang-Mills theories con-
tains two terms [4]

H =
g2

2
HE +

1

2g2
HB , (1)

where the magnetic HamiltonianHB contains the plaque-
tte terms of the original action, restricted to spatial pla-
quettes, while the electric Hamiltonian HE contains the
contributions from the original plaquettes that extended
in the time direction. The parameter g denotes the bare
coupling constant. The Hamiltonian can be constructed
using the transfer matrix formalism from the Euclidean
action of the lattice gauge theory by taking the lattice
spacing of time to zero [1, 68]. The magnetic Hamilto-
nian is written in terms of the Wilson line operator U ,
while the electric Hamiltonian is given in terms of the
the conjugate electric operators E. The transfer matrix
formalism uses temporal gauge A0 = 0, and the remain-
ing spatial gauge transformations give rise to Gauss’ law,
which is generated by the so-called electric operators.

For any numerical simulation of the HLGT a basis of
the Hilbert space needs to be chosen. The operators U
and E are conjugate to one another. Consequently, the
electric and magnetic Hamiltonians do not commute and
can therefore not be diagonalized simultaneously. Two
general classes of bases for the Hilbert space are gener-
ally considered. Basis states that diagonalize the electric
Hamiltonian are called electric bases [44–47, 54, 56, 69–
75], while those that diagonalize the magnetic Hamilto-
nian are called magnetic bases [76–83]. Most formula-
tions of HLGTs are given in terms of electric bases, since
for them Gauss’ law is given in terms of local constraints.

Since the electric Hamiltonian dominates for strong
bare coupling, electric bases are best suited for simula-
tions in this regime. At weak bare couplings, the mag-
netic Hamiltonian dominates and magnetic bases should
be more suited. Stated more precisely, at strong bare
coupling the lowest lying energy states of the system
are dominated by the lowest lying states of the electric
Hamiltonian. This allows for a truncation of the nom-
inally infinite dimensional Hilbert space of the system
by keeping only a small number of electric basis states
with smallest electric energy. At weak bare coupling, the

lowest lying states are dominated by those of the mag-
netic Hamiltonian, while requiring higher energy states
of HE . In this region of parameter space, truncation is
therefore much more efficiently performed in a magnetic
basis. Given that asymptotic freedom requires simula-
tions at small lattice spacing to be performed at small
bare coupling values, it is important to understand the
formulation of HLGTs in this limit.

Several formulations suitable to simulations at weak
coupling have been proposed [23, 32, 42, 78, 79, 84, 85].
One of the issues with magnetic bases, which are advan-
tageous at weak coupling is ensuring gauge invariance
after truncating the gauge fields. The approach taken
in [78, 79, 85] is to perform the truncation using discrete
subgroups of the full gauge group. An alternative to deal
with the gauge invariance is to use gauge fixing, devel-
oped for Abelian U(1) in [23, 84] and non-Abelian gauge
groups in [42]. A gauge fixed formulation allowing for an
efficient truncation of the resulting Hilbert space at weak
coupling was developed for U(1) in [32]. In [52] a formu-
lation for SU(2) lattice gauge theory allowing for an effi-
cient truncation at weak coupling was developed in [52].
This work resulted in a mixed electric–magnetic basis, in
which each SU(2) rotation was parameterized by a rota-
tion axis (θ, ϕ) and rotation angle ω. The wave function
at weak coupling becomes localized at small values ω, but
can be represented by a small number of Fourier modes in
defined in a region of small |ω|, following a method orig-
inally introduced in [32] and implemented in [33, 34] for
U(1) gauge theories. The dependence on θ and ϕ has no
strong dependence on the value of g, and the wave func-
tions can be well represented in terms of a small number
of spherical harmonics [52].

In this work we apply a Schwinger boson representa-
tion [42, 54, 69, 86–90] to the above construction and use
the Loop-String-Hadron (LSH) formulation [44, 45, 72]
to obtain gauge invariant combinations of Schwinger bo-
son operators. Even though the words “String” and
“Hadron” refer to fermionic matter fields, which we do
not include in this work, we will still refer to our formula-
tion as LSH given the origin of the ideas. While LSH has
so far been utilized solely for electric bases, we will show
that it can also be used to obtain a better understanding
of magnetic bases defined in maximal tree gauge fixed
theories. There are two main contributions the work in
this paper will add to our theoretical understanding of
HLGTs. First, we introduce concepts from graph theory,
and show how the formulation of HLGTs on maximal
trees can be reformulated as a gauge theory formulated
on general graphs. In particular we show how to use the
technique of graph coarsening to morph one graph into
one another, and how to relate the theories defined on
the different graphs. Both point splitting and maximal
tree gauge fixing can be viewed as particular examples of
graph coarsening. In the main body we focus on these
particular examples, while the appendix exhibits the gen-
eral formalism and provides rigorous proofs. Second, we
develop a deeper understanding of the prepotential for-
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mulation of gauge theories, which will allow us to con-
struct gauge invariant operators and states formulated
on the general graphs that arose in the first part of this
work. This will give rise to a LSH formulation of the fully
gauge fixed Hamiltonian of [42, 52], with all operators re-
quired to construct both the states and the Hamiltonian
as gauge invariant operators constructed out of creation
and annihilation operators of Schwinger bosons. This
therefore uses the same philosophy as the Loop-String-
Hadron formulation of HLGTs, even though we work in
a pure gauge theory, which does not include string or
hadron operators.

This work is organized as follows: In Sec. II we review
the possible states in the Hilbert space of a HLGT on
a general graph, and discuss how gauge invariance acts
on these states. In Sec. III we develop the technique
of changing graphs into one another using maximal tree
graph coarsening and point splitting. This is done in
three steps.

We first discuss in Sec. IIIA how after fixing almost
all gauge redundancy, the theory is formulated in terms
of Wilson lines forming closed loops. Since all closed
loops originate from a single point, they can be drawn as
a flower, with each petal representing one of the closed
loops. This is the maximal tree coarsening. In Sec. III B
we then consider a single such closed loop and show how
one can use point splitting to localize the ω and (θ, ϕ) on
different locations of the graph. The resulting graph ma-
nipulations transform the petals of the flower into leaves.
In Sec. III C we show how to transform the graph of a
flower, which has vertices of high valency, into a branch,
which only has vertices of valency three. This is done
through point splitting as well and will be an important
step to be able to describe the theory using LSH opera-
tors.

In Sec. IV we develop a deeper understanding of pre-
potential formulation, showing how one constructs gauge
invariant loop operators on general graphs, making this
formalism applicable to the scenarios developed before.
In Sec. V we use the techniques developed to con-
struct the states and Hamiltonian of a fully gauge fixed
SU(2) gauge theory, and then give a few very simple ex-
plicit examples in Sec. VI. Our conclusions are presented
in Sec. VII. In the appendices, we provide many more de-
tails about our results, formulated in a rigorous mathe-
matical language, as well as a general description of graph
coarsening.

II. GRAPH THEORY FOR HAMILTONIAN
LATTICE GAUGE THEORY

The basic building blocks of a lattice are vertices and
half-links, where one end of each half-link is anchored
to a vertex, while the other end is attached to another
half-link. This implies that pairs of half-links combine to
form links, which connect vertices to one another. Each
link is comprised of two half-links. Since in mathematical

graph theory links are often referred to as edges, we use
the symbol e to denote a link, and h to denote half-links.
This is illustrated in Fig. 1a.
Spatial graphs have very particular arrangements of

half-links and vertices with the structure of a lattice. For
a spatial lattice in d dimensions each vertex not at the
boundary of the lattice has 2d half-links connected to
it. It also contains plaquettes, which are combinations
of four vertices and four links forming a closed loop in
the lattice. However, other graphs can be formed out of
half-links as well. One example is a closed loop as shown
in Fig. 1b, consisting of two half-links attached to each
other and a common vertex. Furthermore, each vertex
can have in principle an arbitrary number of half-links
anchored to it, as shown in Fig. 1c, and we will call the
number of anchored links the valency of a vertex. A final
structure we will highlight here is a corner, constructed
out of a single vertex and two anchored half-links. This is
shown in Fig. 1d. Such closed loops, high valency vertices
and corners will be an important ingredient in this work.
An oriented link defines one of the two half-links as

the start of the link and the other as the end of the link,
and defines the corresponding vertices as the starting and
target vertex s and t, respectively. Multiple links can
join to form a trajectory γ, where the target vertex of
one link has to be the same as the starting vertex of the
next link. A trajectory has again a starting vertex s and
target vertex t. Precise definitions for all of the graph-
theoretic notions we will use in this paper can be found
in App. B 1.
Classically, a field configuration of Yang-Mills theory is

determined by assigning to each oriented link e a Wilson
line. Let us now specify informally what these Wilson
lines are. For a more precise discussion, we refer the
reader to App. B 2. If the theory has a structure group
G, such a Wilson line is an element u ∈ G that transports
the color information from the starting vertex s of e to
its target vertex t. For consistency we must then assign
to e−1, the link obtained by reversing the orientation of
e, the Wilson line u−1. Furthermore, once we have a
prescription to transport along links, it is clear how to
transport over trajectories using the group law of G. For
example, given two links e1 and e2, respectively support-
ing Wilson lines u1 and u2, and such that e2 starts at the
endpoint of e1, we can assign to the trajectory e2e1 that
first goes through e1 and then to e2 a Wilson line given
by u = u2u1. This Wilson line then transports color in-
formation from the start of e1 to the endpoint of e2 along
the trajectory defined by these two links1. This general-
izes to trajectories formed out of multiple links, and each

1 In this paper we will adopt a somewhat unusual convention in
which the composition described above is described by u2u1 in-
stead of u1u2. This is under the interpretation that the color
degrees of freedom a Wilson line will transform sit on its right.
They thus follow the standard convention of operators acting on
the variables to their right.
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p1 p2
h1 h2

(a)

p

h1

h2
(b)

(c)

ph1 h2

(d)

FIG. 1. Possible combinations of vertices and half-links. Fig-
ure (a) on the top shows a typical ingredient of a hyper-cubic
lattice, with two vertices connected by one link made out of
two half-links. Below this in (b) there is a loop formed from a
single vertex and two half-links. Underneath in (c), we show
a single vertex, connected to many half-links. Finally, in (d)
we show a corner, consisting of two half-links anchored at the
same vertex. Note that the loop in (b) is both a link and a
corner.

trajectory from starting point s to endpoint t can be rep-
resented by an ordered set of links along this trajectory,
and a Wilson line along this trajectory is given by the
product of the Wilson lines on each of the links. This
Wilson line will transport the color information from s
to t. An example of a trajectory with three links is shown
in Fig. 2.

The Wilson lines however are themselves not observ-
able. They are subject to a gauge redundancy identifying
equivalent configurations of Wilson lines. Such a redun-
dancy is parameterized by the gauge group, which is ob-
tained by placing the structure group at every vertex of
the graph. Under a transformation which has gt ∈ G at

e1

e2

e3

t

s

FIG. 2. Single trajectory e3e2e1. If the links ei have Wilson
lines ui, we assign to this trajectory the Wilson line u3u2u1.

t and gs ∈ G at s, the Wilson line transforms as2

u 7→ gtug
−1
s . (2)

Only configurations which are invariant under these
transformations are physically observable.
Moving to a quantum theory (for a rigorous approach

to this subject, see App. B 3) one defines states |u⟩ char-
acterized by a complete knowledge of the Wilson line u at
e. A generic state is defined by a quantum superposition
of such states

|ψ⟩ =
∫
du |u⟩ψ(u) , (3)

and the wave function is described by

ψ(u) = ⟨u|ψ⟩ . (4)

Tensor products of the wave functions at each link span
the full Hilbert space. Therefore a general state will be
a wave function over the space of Wilson lines on all of
the oriented links of the graph, and the wave function is
given by

ψ(u1, u2, . . . ) = ⟨u1, u2, . . .|ψ⟩ . (5)

The gauge redundancy mentioned above means that
only those wave functions that are insensitive to gauge
transformations of the form (2) are physically meaning-
ful. This can be expressed by noting that these transfor-
mations naturally lift into the quantum theory through
a representation

⟨u|ψ⟩ 7→
〈
g−1t ugs

∣∣ψ〉 . (6)

Physical wave functions should be invariant whenever
such a transformation is applied to all the Wilson lines.
This defines the physical subspace of of the full Hilbert
space. The condition that wave functions are in this sub-
space will be called Gauss’ law.

2 Observe that the placement of gt on the left and gs on the right
on this formula is completely determined by the Wilson line com-
position convention above. The same goes for asking that one
of them is inverted while the other one is not. The fact that gs
is inverted comes from the convention that gs acts by left mul-
tiplication on the color degrees of freedom at its corresponding
vertex.
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The discussion so far has shown how one can define an
HLGT on a general graph by defining the Wilson lines
on links or trajectories containing multiple links of the
graph. One can transform graphs into one another by
taking trajectories containing multiple links and map-
ping them onto trajectories containing less links and vice
versa. Consider a graph G containing a set R of trajecto-
ries on G (where R is a subset of all possible trajectories).
Then one can define a new graph GR through a coarsen-
ing procedure: For each starting point s(γ) and endpoint
t(γ) of the trajectories in G we identify a vertex in GR.
In other words, the vertices in GR are given by

p ∈
⋃
γ∈R
{s(γ), t(γ)} . (7)

For each trajectory in R we now identify two half-links

h
(s)
γ and h

(t)
γ in GR, with h

(s)
γ attached to the vertex cor-

responding to the starting point s(γ), while h
(t)
γ attached

to the vertex corresponding to the end point g(γ). The
half-links in GR are therefore

h ∈
⋃
γ∈R
{h(s)γ , h(t)γ } . (8)

Now assume that a theory is defined by specifying Wil-
son lines on all trajectories γ ∈ R on the original graph
G. To obtain the equivalent theory on the new graph,
one needs to define the Wilson lines on the links formed
in the graph GR such that they agree with the Wilson
lines on the trajectories γ in the original graph G. As we
will see later, the theory also requires electric operators
defined on the half-links of the graph GR to be related in
a very particular way to the electric operators defined on
the original lattice. The precise conditions under which
we claim the equivalence of the theories on G and GR,
as well as its proof, are given in App. C 1 for the classi-
cal setting, and App. C 2 for the quantum one. In the
next section, we will apply this concept to our example of
choice, namely a theory defined on a hypercubic lattice,
gauge fixed using a maximal tree procedure.

III. MAXIMAL TREES FROM THE
PERSEPECTIVE OF GRAPH COARSENING

A. From Lattices to Flowers: formulation of HLGT
in maximal tree gauge fixing

We begin by reviewing the maximal tree construction
studied in [52]. In the main body of the text, we will
keep our review at an informal level which will suffice
to communicate our main results. A mathematically
rigorous treatment together with the proofs provided
by our general graph coarsening formalism is presented
in App. C 3 b.

Consider an HLGT with structure group SU(2). On
such a lattice we can define a maximal tree, defined by a

FIG. 3. A maximal tree on a 2 × 2 square latticehis shown.
The marked vertex on the bottom left denotes the origin of
the tree. The four physical links remaining are in the middle
left, middle right, top left, and top right.

maximal set of links that do not admit the construction
of a closed loop. A choice for such a maximal tree is show
in Fig. 3 in two spatial dimensions with open boundary
conditions, where all blue links are part of the maximal
tree. One can choose one vertex o on this maximal tree as
the origin of the tree, which we choose to be the lower left
vertex, denoted in orange. A maximal tree also defines
a unique path between any two vertices on the lattice,
which is obtained by only traversing links on the maximal
tree without backtracking.

Gauge invariance can be used to fix all Wilson lines
on the maximal tree to the identity. To see this, pick
a vertex q at the end of the maximal tree, such that it
only attaches to a single link in it and consider the path
going from o to q along the tree. Use the gauge freedom
at the first vertex along this path after o to gauge fix
the first link of the trajectory to the identity. This can of
course be done by applying a gauge transformation equal
to the inverse of the Wilson line at this first link. Due to
the uniqueness of the path between any two vertices, one
can see that this uses the gauge invariance of all vertices
except for the one at o.

Using the maximal tree, for each physical link one can
now construct a unique trajectory originating and end-
ing at the origin of the lattice o, and which traverses
only links on the maximal tree apart from the physical
link chosen3. An example of these trajectories is shown
on the top of Fig. 4. Given that each trajectory only
goes through a single physical link, and the links on the
maximal tree have been gauge-fixed to the identity, the
physical links support Wilson lines equal to the Wilson
line supported on the corresponding closed trajectory.
Furthermore, since they start and end at the vertex o,
each such Wilson line u transforms under a gauge trans-

3 At this stage we would like to remark that one could have re-
placed the trajectories we constructed out of the maximal tree
by trajectories that go through each plaquette and are other-
wise restrained to be along the maximal tree. Indeed, this is the
choice made in [42]. The techniques developed in this paper can
be applied to either of these (or any other) choices.
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(a)

(b)

FIG. 4. Loop construction the 2× 2 lattice ofFig. 3, contain-
ing 4 physical links. For each of these an orientation has been
chosen and a corresponding loop has been drawn through it.
These are the loops in R used for the maximal tree construc-
tion. On the bottom, the resulting flower GR is shown.

formation go at said vertex as

u 7→ goug
−1
o . (9)

One can now use the coarsening technique discussed
in the previous section to construct a new graph that
contains the same information as the original point split
lattice. Let R be the set of trajectories just discussed.
Since the vertices on the new graph GR are given by the
start and end points of the trajectories on the original
lattice, the graph GR contains only a single vertex. The
half-links forming the links in the new graph GR therefore
all connect to a single vertex, and are connected on the
other side to each other.

This can be summarized by replacing our lattice by
a “flower,” like the one shown on the bottom of Fig. 4.
The single vertex in the flower corresponds to the origin
of the tree. Each loop in the flower, which we will refer
to as “petals,” corresponds to one of the trajectories we
pointed out on the lattice. There is therefore one petal
for each physical link, and the Wilson line supported on
each petal will be equal to the Wilson line on each phys-
ical link. Such a flower is an example of more general
structures that can be formed out of vertices and half-
links, with a flower consisting of a single vertex and N
links connected as loops to this vertex. As long as one

u2

u1

FIG. 5. Generic leaf. The loop at the top will still be referred
to as the petal, while the straight line at the bottom, which
connects it to the rest of the graph will be called the stem.
Conventions for Wilson lines u1 and u2 used throughout the
text are set. In particular, for definiteness, the stem will be
oriented towards the petal.

equips the flower with an appropriate Hamiltonian, the
theories on the original lattice and on the flower are com-
pletely equivalent.
The maximal tree construction in this paper has there-

fore left us with a much simpler representation of the
theory, exemplified by the fact that the remaining gauge
group has been reduced to a single SU(2) at the remain-
ing vertex. The price we have to pay however is that the
dynamical information is now non-local, for each petal is
generically probing extended parts of the original lattice,
where they have non-trivial overlaps.

B. From Petals to Leaves: understanding the
Hilbert space of a single loop

Let us now focus on a single petal of the flower. By
pinching the base of the petal, we form a “leaf,” like the
one shown in Fig. 5. As discussed in the previous section,
the petal supported a single Wilson line u. The leaf on
the other hand supports a Wilson line u1 on its loop and
u2 on its stem. The theories are related by identifying

u = u−12 u1u2 . (10)

In other words, the petal can be recovered from the leaf
by graph coarsening through said leaf. The leaf also con-
tains an additional vertex joining the loop to the stem.
As we will explain below, the theories on petals and
leaves are equivalent as long as one is considering states
on the leaf that are gauge invariant with respect to this
new vertex. This is an example of the general concept
of point splitting, which is discussed more thoroughly
in App. C 3 a.
The gauge invariance on the new vertex acts by

u1 7→ gu1g
−1 and u2 7→ gu2 , (11)
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which of course keeps u fixed. Taking ga = u−12 , we see
that we can always gauge fix the leaf such that the loop
supports the same Wilson line as the original petal, while
the Wilson line on the stem is gauge-fixed to the identity

u1 7→ gau1g
−1
a = u and u2 7→ gau2 = 1 . (12)

Starting from a configuration satisfying this gauge-
fixing condition, however, we can obtain a more inter-
esting configuration. Indeed, let us start with a config-
uration that has been gauge fixed such that u1 = u and
u2 = 1. If we use an axis-angle representation for the
Wilson line

u1 = u = eiω·J , (13)

a gauge transformation then acts by

gu1g
−1 = eigω·J , (14)

where on the right hand side g is acting by the vector
representation. We can therefore choose a gauge trans-
formation gb such that gbω is running along the z-axis.
This gauge-fixing condition now leaves us with

u1 = eiωJz and u2 = gb , (15)

thereby localizing the ω = ∥ω∥ information, which char-
acterizes the angle of rotation, to the loop of the leaf,
while the n̂ (ω = ωn̂) information, which determines the
axis of rotation, is left on the stem. As shown in [52], the
former is localized around ω = 0 for low-energy states in
the low coupling limit, while the later is slowly varying.
The two gauge transformations ga and gb can of course
be combined into a single transformation g = gbga, so
that this gauge fixing condition can always be attained.

We now have a construction of each loop formed in the
maximal tree (corresponding to the petals of the flower)
in terms of a leaf, which supports a Wilson line u1 aligned
with the z direction, and only depending on a single vari-
able ω, and a stem, which encodes the angular depen-
dence of the axis of rotation. As we will show later, all
relevant information can be captured through simple in-
teger quantum numbers by employing a formulation in
terms of Schwinger bosons and prepotentials.

C. From Flowers to Branches: enforcing the final
gauge constraint

Having transformed our petals to leaves, our flower
now looks like the one shown in Fig. 6. The origin of
the original lattice, which contained the last remaining
gauge redundancy, has been mapped to the center of this
flower. This vertex however has a high valency of 2N .
This poses a difficulty for the implementation of the LSH
formalism due to the presence of Mandelstam constraints
(C25). Thus, in order to set the stage for the introduc-
tion of prepotentials, let us show how one can reduce the
valency of this vertex. This will be yet another example

FIG. 6. Flower on which the petals have been replaced by
leaves.

u v =⇒ w

p

ũ ṽ

FIG. 7. On the left we have a vertex of valency greater than
3 with Wilson lines u and v coming out of it. On the right
we show the same vertex after having point split along these
two links.

of the point splitting method developed more thoroughly
in App. C 3 a.
The procedure for point splitting is shown in Fig. 7.

The physical intuition behind this procedure is that we
have pinched the base of the links supporting the Wilson
lines u and v together, thereby creating a new link. This
new link supports the Wilson line w on the figure. The
remainder of the original links now supports ũ and ṽ. As
shown in App. C 3 a, the theory before and after point
splitting are physically equivalent. For now it will be
enough to note that this equivalence is obtained via the
identification

u = ũw and v = ṽw , (16)

as well as the gauge symmetry on the new trivalent vertex
p

ũ 7→ ũg−1p , ṽ 7→ ṽg−1p and w 7→ gpw , (17)

under which u and v are invariant. In other words, the
vertex on the left of Fig. 7 can be recovered from the
graph on the right by graph coarsening through the tra-
jectories supporting the Wilson lines ũw and ṽw. Choos-
ing gp = w−1 on the latter, we can obtain a gauge-fixing
condition on which

u = ũ, v = ṽ and w = 1 . (18)
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eiω1·J eiω2·J eiω3·J eiω4·J

(a)

g1

eiω1Jz

g2

eiω2Jz

g3

eiω3Jz

g4

eiω4Jz

(b)

eiω1Jz

g2g
−1
1

eiω2Jz

g3g
−1
1

eiω3Jz

g4g
−1
1

eiω4Jz

(c)

FIG. 8. Generic branch obtained through the point splitting
of a flower. The three figures show equivalent classical con-
figurations of Wilson lines which have the same amplitude on
physical states. Unlabeled undirected links support the triv-
ial Wilson line.

Using repeated applications of this point splitting, we
can transform the flower of leaves in Fig. 6 to a branch
like the one shown in Fig. 8. This was first considered
in [42] and gives a graph-theoretic interpretation for the
result found there. Although our main objective is to
study the physics of this branch in the LSH formalism, it
is interesting to mention the magnetic possibilities of this
formulation. We first note that gauge transformations of
the kind described in this section and in the discussion
of Sec. III B show that, as far as physical states are con-
cerned, we can always restrict to configurations like the
one shown at the top of Fig. 8. These have trivial Wil-
son lines in all of their links except for their petals, which
have general rotations. If we enumerate the petals with
indices i, these rotations can be labeled as eiωi·J.
In Sec. III B we also showed that we can go further and

consider configurations where each petal has rotations
eiωiJz around the z direction. The simplification on the
petals come at the cost of having to add group elements
gi to the i-th stem. These were defined to be the elements

of SU(2) which rotate ωi to the z direction. They are of
course only defined up to the U(1) group of rotations
around the z-axis. This is shown in the middle of Fig. 8.
This remaining redundancy sits at the vertex joining the
petals with their corresponding stem. This separation of
the axis-angle degrees of freedom throughout the branch
will be useful to us when we attempt to understand the
magnetic content of the LSH basis in Sec. VA.
But now that we have this branch structure, we can

further exploit the remaining degrees of freedom to re-
duce the configurations we consider even more. For ex-
ample, we can apply g1 on all of the bottom vertices
to obtain the configurations shown in the bottom of fig-
ure Fig. 8. These are configurations viewed “from the
perspective of ω1.” Indeed, they are of the form we
would have obtained using the previous gauge-fixing if
ω1 happened to lie on the z-axis. In this gauge, the stems
carry the Wilson lines gig

−1
1 . These correspond to rota-

tions mapping g1ωi, which is the vector ωi viewed from
the reference frame of ω1, to the z-axis. These are then
of course conjugate to the rotations g−11 gi = g−11 gig

−1
1 g1

mapping ωi to ω1. Indeed, we can perform an additional
gauge transformation of g−11 on all of the vertices to leave
such rotations on the stems. This however would rotate
the petals away from the z direction and is therefore un-
desirable from the point of view of the LSH formulation.
Let us turn to this now.

IV. LSH CONSTRUCTION ON GENERAL
GRAPHS

In this section we will use the construction discussed
in Sec. II, in which each link is comprised of two half-
links. The importance of half-links stems from the Peter-
Weyl theorem, which states that the Hilbert space of each
link can be written as a direct sum of the tensor product
of the irreducible representations Vr and its dual V ∗r

L2(G) ∼=
⊕
r∈Ĝ

(Vr ⊗ V ∗r ) , (19)

with Ĝ an exhaustive collection of the inequivalent irre-
ducible unitary representations of G. This localization
suggests an enlargement of the Hilbert space to

L2(G) ⊆ HSB ⊗H∗SB, HSB :=
⊕
r∈Ĝ

Vr , (20)

where each of the two HSB factors is thus supported on a
single half-link. In this extended Hilbert space, each half-
link can support a different representation of the gauge
group. However, only states in which every two half-links
forming a link have the same representation are physical.
The original Hilbert space is therefore recovered by the
introduction of new Abelian Gauss’ laws demanding that
physical vectors are spanned by tensor products of vec-
tors in the same irreducible representation.
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d

c

ab

FIG. 9. Generic leaf with named half-links.

On can now use the prepotential formulation, where
each half-link (like the ones labeled a, b, c and d in Fig. 9)

is equipped with a pair of Schwinger bosons a†A, A = 1, 2
satisfying the usual canonical commutation relations4.
The gauge structure of the theory is reflected in the
fact that these bosons form an SU(2) doublet. Such
Schwinger bosons can be used to create spin j states

|j,m⟩ := (a†1)
j+m(a†2)

j−m√
(j +m)!(j −m)!

|0⟩ (21)

on their associated half-link. In particular, 2j counts the
total number of bosons on the half-link.

As already discussed, each link is composed of two half-
links, and the resulting state on a link is a tensor product
of two such spin states

|j,m; j′,m′⟩ := |j,m⟩ ⊗ |j′,m′⟩ , (22)

with j ̸= j′ in general. One can use the Peter-Weyl
theorem to relate these states to the ones of Yang-Mills
theory. Indeed, if j = j′, such a state induces a wave
function which is defined by the matrix element

⟨u|j,m; j,m′⟩ := (−1)j+m
√
2j + 1 ⟨j,−m|rj(u)|j,m′⟩ ,

(23)
with rj(u) the spin j representation of u. The Peter-Weyl
theorem then guarantees that these wave functions form
a basis of all the wave functions of the theory.

A major advantage of the prepotential formulation is
that gauge invariance at a vertex is simply ensured by
contracting all of the indices of the Schwinger bosons on
the half-links originating from it. As already discussed,
one side of each half-link will be connected to a vertex,
while the other side will be joined with another half-link
to form a link. These half-links therefore transform under
the SU(2) gauge group on one side, and under the U(1)
Abelian gauge symmetry on the other. As discussed in

4 Some more details of this formulation can be found in App. B 4,
but we provide enough background to understand the claims of
the paper.

more detail in App. B 4 c these transformation properties
can be captured by defining a single operator

AA
a(h) :=

{
a†A(h) a = +

aA(h) a = −

=

(
a†1(h) a1(h)
a†2(h) a2(h)

)A

a

=

(
a†2(h) a1(h)

−a†1(h) a2(h)

)A

a

.

(24)

Here we have used that SU(2) indices A can be raised
and lowered using the totally antisymmetric symbol ϵAB .
We will define ϵAB = −ϵAB so that ϵABϵ

BC = δCA . By
convention we will take ϵ12 = 1. Note also that since
creation and annihilation operators are conjugates of one
another, one is naturally indexed using covariant indices,
while the other using contravariant ones. The metric
to raise the indices corresponding to the Abelian gauge
symmetry is given by

g =

(
0 −1
−1 0

)
. (25)

The alert reader will recognize this matrix as the met-
ric of SO(1, 1) written in terms of light-cone coordi-
nates. Since we are working with complex representa-
tions, this is equivalent to the vector representation of
SO(2) = U(1), which is the Abelian gauge symmetry
associated with the Abelian Gauss law. Note that this
operator satisfies

A(h)AaA
†(h)aB = δAB (N(h) + 1) , (26)

where N(h) denotes the usual number operator build out
of the Schwinger bosons

N(h) = a†(h)a(h) . (27)

We now proceed to construct gauge invariant opera-
tors out of the AA

a(h). The first is the number opera-
tor already defined in (27). Next, we construct a corner
operator, built out of two half-links, connected by a sin-
gle vertex. To make this operator invariant under gauge
transformations at this vertex, it should be constructed
out of two operators AA

a(h), with the SU(2) index con-
tracted. This leads to the so-called loop operators [45],
involving two half-links that are connected to the same
vertex

Lab(h1, h2) = AAa(h1)A
A
b(h2) . (28)

Choosing for the two indices a = b = +, one finds the
gauge invariant operator

L++(h1, h2) = a†A(h1)a
†A(h2) = −L++(h2, h1) , (29)

which generates units of chromoelectric flux along the
corner between half-links h1 and h2. In the same
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way, one can construct the operators L−−(h1, h2) and

L+−(h1, h2) = −L†−+(h1, h2). These operators agree (up
to a minus sign for the operator L−+) with the results
in [45]. With this formulation the commutation relations
between loop operators can be succintly described by the
expression

[Lab(h1, h2),Lcd(h3, h4)] =

gadδh1,h4Lcb(h3, h2)− gbcδh2,h3Lad(h1, h4)

+ gbdδh2,h4
Lac(h1, h3)− gacδh1,h3

Ldb(h4, h2) ,

(30)

which reproduces all of the results contained in Table I
of their work. This can also be viewed as a precursor of
the SO(4, 2) algebra found in [42].
Another important operator is the Wilson line operator

on a single link. Since each link is composed of two half-
links, the Wilson line operator depends again on two half-
links h1 and h2, which are however connected to each
other, rather than to a common vertex. Since links start
and end on vertices, this operator needs to transform
under SU(2) on both ends, making it a tensor with two
SU(2) indices UA

B (h1, h2). This operator needs to return
the Wilson line between the two endpoints of the link
when acting on the state |u⟩. This requires the operator
to be unitary, satisfying the condition

UA
B (h1, h2)U

†B
C (h1, h2) = δAC , (31)

as well as having unit determinant. One might attempt
to compose this operator by combining two of the half-
link operators AA

a(h) by contracting the Abelian index.
This standard contraction, however, does not give the
correct Abelian Gauss law. As discussed in App. B 4 d,
the Abelian Gauss law is instead recovered by contracting
the Abelian indices with a matrix

tab(h1, h2) =

(
0 1
−1 0

)a

b

(32)

for links ordered in the positive orientation, and the
transpose (negative) for negative orientations. As shown
in more detail in App. B 4 d, combining this with the
normalization of the of the single link operators given
in Eq. (26), one finds

UA
B (h1, h2) = UA

a (h1)t
a
b(h1, h2)U

†b
B (h2) , (33)

where we have defined the normalized single link operator
as

U(h)Aa =
1√

N(h) + 1
A(h)Aa . (34)

We can again compare these results to those of [45]. The
left-hand side of Eq. (33) is identical to the the operator

Û in (24) of their paper. Our operator UA
a (h1) is equal

to their operator ÛL, while their operator ÛR corresponds
to tab(h1, h2)U

b
B (h2).

The Wilson line operators of a single link can be com-
bined into Wilson line operators for trajectories over mul-
tiple links, using

UA
B (h1, h2)U

B
C (h3, h4) = UA

C (h1, . . . , h4) , (35)

where UA
C (h1, . . . , h4) denotes the Wilson line along a

trajectory going from h4 to h1. Using this, the Wilson
line operator for any trajectory between two vertices can
be written by stringing together Wilson operators for the
links γ1, . . . , γn traversed by the trajectory γ, contracting
all indices corresponding to the intermediate vertices

UA
B (γ) = UA

A1
(γn) . . . U

An−1

B (γ1) . (36)

Using Eqs. (24), (33) and (34) the Wilson line opera-
tor can be written in terms of Schwinger boson creation
and annihilation operators. This can be simplified by
rearranging and regrouping the relevant terms to write

UA
C (h1, . . . , h4) =U(h1)

A
at

a
b(h1, h2)U

b
c (h2, h3)

× tcd(h3, h4)U†dC (h4) , (37)

introducing the LSH Wilson line operator defined on a
corner

Ua
b (h2, h3) = U†aA (h2)U

A
b (h3) , (38)

depending on two half-links connected to a single vertex.
The LSH Wilson line operator can be written in term of
the loop operators as

Ua
b (h1, h2) ={

a 1√
N(h2)+1

La
b(h1, h2)

1√
N(h1)+1

h1 ̸= h2

δab h1 = h2 .

(39)

These operators are known as vertex factors in [45]. Just
as was the case for the Wilson line operators, one can
string together multiple LSH Wilson line operators by
contracting indices with tab to write, for example,

Ua
d (h2, . . . , h5) = Ua

b (h2, h3)t
b
c(h3, h4)U

c
d (h4, h5) .

(40)

Again, this can be extended to a larger corner trajectory
γc, traversing the corners γc,1, γc,2, . . . , up to γc,n, by

Ua
c (γc) = Ua

b1 (γc,n)t
b1

b2
(γn−1) . . . U

b2n−2
c (γc,1) . (41)

In here γn−1 is the link common to the corner γc,n and
γc,n−1.
Note that the LSH Wilson line operators no longer

carry any explicit SU(2) indices and are therefore invari-
ant under SU(2) gauge transformations. Any gauge in-
variant operator, in particular those present in the Hamil-
tonian of the theory, will be constructed out of these LSH
Wilson line operators. For example, one can construct
gauge invariant Wilson loop operators. Indeed, consider
a closed trajectory γ whose last link is γn. While this can
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γ

γ̃

FIG. 10. A trajectory γ that starts and ends at a marked
vertex. The last link γn that the trajectory goes through is
highlighted by a dashed line that separates its two half-links.
A corresponding corner trajectory γ̃ is shown on the outside.
It starts at a corner at the marked vertex. The first link that
it goes through is only traversed once by these trajectories.
This is in contrast to what would have happened if we had
chosen γ̃ to start at the corner in the upper most vertex.

ab

c

FIG. 11. We show a standard trivalent vertex with half-links
a, b, and c.

be thought of as a sequence of links, it can be equivalently
be thought of a sequence of corners. Let us denote the
corresponding corner trajectory by γ̃. The Wilson loop
on γ can be equivalently expressed in terms of the LSH
Wilson line on γ̃ as

trU(γ) = tab(γn)U
b
a (γ̃) , (42)

as long as the last half-link that γ goes though (which is
the first one γ̃ goes through) is only traversed once. This
is the situation depicted in Fig. 10. Such Wilson loop
operators will be used to construct the magnetic part of
the Hamiltonian of the system in Sec. VC.

What we have shown so far is that any gauge invariant
combination of Schwinger boson creation and annihila-
tion operators can be written in terms of the loop op-
erators Lab(h1, h2), depending on two half-links h1 and
h2 which are connected to the same vertex and therefore
form a corner. We have also seen in Sec. III that using
point splitting any graph can be transformed into a graph
constructed only out of trivalent vertices which do not
contain any Mandelstam constraints. The gauge invari-
ant Hilbert space of such a trivalent vertex is therefore

spanned by states that count the gauge invariant combi-
nation of Schwinger bosons for each of the three corners
of a trivalent vertex. Labeling the three half-links con-
nected to a trivalent vertex by a, b and c, as indicated
in Fig. 11, the trivalent vertex is therefore characterized
by three quantum numbers nab, nbc and nca, and the
Hilbert space of any graph constructed out of such triva-
lent vertices is given by the tensor product of such states

|ψ⟩ = |nab1 , nbc1 , nca1 ⟩ ⊗ |nab2 , nbc2 , nca2 ⟩ ⊗ · · · . (43)

Since the operators L++(h1, h2) create excitations on
the corner made out of half-links h1 and h2, the state
|nab, nbc, nca⟩ is proportional to

|nab, nbc, nca⟩ ∝L++(a, b)
nabL++(b, c)

nnc

× L++(c, a)
nca |0, 0, 0⟩ , (44)

where |0, 0, 0⟩ denotes the state with no excitations. To
simplify the calculation of the normalization factor we
introduce the normalized operators of [45] (see App. C 3 a
for details)

L++(a, b) =
√
(N(a, b, c) + 1)(N(a, b) + 1)Λ+(a, b) ,

(45)
with

N(a, b) =
1

2
(N(a) +N(b)−N(c)) (46)

N(a, b, c) = N(a, b) +N(b, c) +N(c, a) + 1 , (47)

and N(h) defined in Eq. (27). Note that the normal-
ization factor depends on the number of excitations at
all three half-links of the corner. These operators are
normalized raising operators

Λ+(h1, h2) |nh1h2⟩ = |nh1h2 + 1⟩ , (48)

allowing us to write

|nab, nbc, nca⟩ =Λ+(a, b)
nabΛ+(b, c)

nnc

× Λ+(c, a)
nca |0, 0, 0⟩ . (49)

Similarly, one can define the lowering operator

Λ−(h1, h2) |nh1h2⟩ = |nh1h2 − 1⟩ . (50)

The remaining loop operators can then be written as

L−−(a, b) =Λ−(a, b)
√
N(a, b)N(a, b, c) (51)

L−+(a, b) =Λ−(c, a)Λ+(b, c)
√
N(c, a)(N(b, c) + 1)

L+−(a, b) =− Λ−(b, c)Λ+(c, a)
√
N(b, c)(N(c, a) + 1) .

V. LSH FORMULATION ON BRANCHES

A. The Hilbert space on a single leaf

We begin by considering a single petal, point split into
a leaf and a stem, such as the one illustrated in Fig. 9.
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This leaf consists of one trivalent vertex where two of the
half-links a and b are connected to each other, and the
third half-link c is attached to another half-link d. From
the discussion of Sec. IV the Hilbert space on this leaf
is characterized by the excitations on the three corners,
supplemented by Schwinger boson excitations on the re-
maining half-link d.

While for a general trivalent vertex there are three
independent corner operators, the fact that two of the
half-links are joined together gives rise to an additional
Abelian Gauss law constraint. This constraint ensures
that the flux flowing between half-links a and c and that
between half-links b and c has to be equal, for otherwise
there would be more bosons on a than on b. The two cor-
responding operators can therefore be bundled into the
loop operator

L++ = a†A(a)a
†A(c) a†B(b)a

†B(c)

ℓ++ = a†A(a) a†A(b) . (52)

One can see that ℓ++ creates chromoelectric flux within
the loop, while L++ creates chromoelectric flux that goes
in and out of the loop. Appending the most general
Schwinger boson configuration supported on the half-link
d, subject to the Abelian Gauss law constraint between
half-links c and d, we then obtain a basis of states of the
form

|n, l,m⟩ ∝ ℓn++L l
++(a

†
1(d))

l+m(a†2(d))
l−m |0⟩ , (53)

where n counts the internal chromoelectric flux while l
the external. The possible values for m must satisfy

−l ≤ m ≤ l . (54)

These are similar to the Hydrogen atom or tadpole states
discussed in [42]. They however do not correspond to
each other exactly. For example, the SU(2) representa-
tion on the leaf corresponding to our states has Casimir

n+ l

2

(
n+ l

2
+ 1

)
. (55)

The tadpole states there instead have Casimir

n2 − 1

4
. (56)

Due to the geometry of the petal, L l
++ always has 2l

bosons on c. Accordingly, the state on the stem always
has integer spin j = l, i.e. is in a representation of the
rotation group SO(3). Therefore l and m can be thought
of as orbital angular momentum quantum numbers. As
shown in App. D, using the gauge-fixing condition dis-
cussed in Sec. III B which aligns the Wilson line u1 along
the z-direction, one can write

⟨u|n, l,m⟩ = ϕn,l(ω)Y
l
m(n̂) , (57)

with

ϕn,l(ω) =i
n
√
n+ l + 1

n+l
2∑

m=−n+l
2

ei(ω−π)m

×
〈
n+ l

2
,m;

n+ l

2
,−m

∣∣∣∣l, 0〉 . (58)

Using the results of [42, 52] and Sec. VIB these wave
functions satisfy the differential equations(

− d2

dω2
− cot

(ω
2

) d

dω
+

l(l + 1)

4 sin
(
ω
2

)2
)
ϕn,l

=
n+ l

2

(
n+ l

2
+ 1

)
ϕn,l .

(59)

There are several interesting properties of this function
which are showcased in Fig. 12. The more obvious one
is that, being a function on SU(2), it is 4π periodic. In
fact, when n+ l is an even integer, m only takes integer
values, which makes it 2π periodic. In other words, it
descends to a function on SO(3). Along the same vein,
the shift ω 7→ ω+2π, produces an overall factor of ei2πm,
which is always 1 for n + l even and −1 for n + l odd.
Therefore, the function is completely determined by its
behaviour in ω ∈ [0, 2π), to which we will restrict from
now on.
According to the results of [32], its behaviour around

ω = 0 is of high importance for small coupling investiga-
tions, where low energy wave functions are expected to be
highly localized around these points. Quite interestingly,
we have

dkϕn,l
dωk

∣∣∣∣
ω=0

= 0 (60)

for all k < l. In other words ϕn,l = O
(
ωl
)
. For k = 0

this is easy to see, for e−iπm is proportional to the CG
coefficient of |0, 0⟩ in the tensor product. One then sees
that the function is proportional to ⟨0, 0|l, 0⟩ = δl,0. We
have further checked this numerically for 0 ≤ n, l ≤ 10.
This result is shown in Fig. 12 by the fact that the higher
l is, the flatter the function is around ω ∈ {0, 2π}, which
in turn squishes the function at ω ∈ {π, 3π}.
Turning this result around, one finds that wave func-

tions receiving most of of their support from small ω
can be described by low l values. It was shown in [52]
that low energy states at small coupling are dominated
by small values of ω. Our result therefore proves one of
the results of that paper, namely that low lying states
at small coupling can be described with a small cutoff in
the l quantum numbers. In fact, the results of this paper
show that this small cutoff is directly compatible with
the localization at ω = 0 in this basis.
A final interesting property of this function is that n

controls the number of nodes of the function. For l = 0
it is 2n. For l > 0 it is 2(n+ 1).
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FIG. 12. The functions ϕn,l for different values of the quan-
tum numbers.

B. The Hilbert space of the fully gauge-fixed
theory

The construction of the gauge invariant states at each
of the leaves has not yet enforced the gauge invariance
at the origin of the lattice, where all stems are connected

R1

n1

L2 R2

B2

n2

L3 R3

B3

n3

L4 R4

B4

n4

L5

n5

FIG. 13. We show a generic branch with a spatial indicator
of its associated quantum numbers. Each quantum number
corresponds to the number of times the loop operator on its
corresponding highlighted corner has been excited. The rest
of the loop operators corresponding to corners that weren’t
highlighted are obtained uniquely through Gauss’ law. Of
the Bs, only the leftmost is independent in our basis, and its
minimum value is determined by the differences amongst the
Ls and the Rs.

to one another. In this section we will use the graphs
of Sec. III C, where the stem of each leaf is attached to a
branch using only trivalent vertices, to construct a fully
gauge invariant theory described by gauge LSH opera-
tors.

The configuration of stems we consider is shown
in Fig. 13. The number of loops ni internal to each leaf
remains just as for the single leaf discussed in the previ-
ous section, but now we need to construct gauge invariant
combination of the Schwinger boson operators at each of
the stems. Each stem connects to the branch at a triva-
lent vertex, and at each trivalent vertex in the branch, we
can now build three LSH operators corresponding to the
three corners at that vertex. The number of excitations
at each of them is labeled by Li, Ri and Bi in Fig. 13.
Note that the first and last vertex are only bivalent, such
that only a single corner exists5. We take this into ac-
count by the convention

L1 = RN = B1 = BN = 0 . (61)

The corner operators on the left and right corners will
create Schwinger bosons on the stem of the leaf. One
immediately finds the relation

Li +Ri = 2li . (62)

This implies that Li and Ri need to have the same parity.

The Abelian gauss law on the links connecting the
leaves imposes

Ri +Bi = Li+1 +Bi+1 , (63)

5 In practice, these corners can be flattened out removing the asso-
ciated vertex. We retain the corners here for conceptual clarity.
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where one needs to remember the convention B1 = BN =
0. This allows to solve for the Bi quantum numbers

B2 = R1 − L2,

B3 = R1 − L2 +R2 − L3,

B4 = R1 − L2 +R2 − L3 +R3 − L4,

...

(64)

and obtain an overall constraint on the Li and Ri values

N−1∑
i=1

(Ri − Li+1) = 0 . (65)

Each relationship is simply counting the total number of
chromoelectric flux pushed to the right by the R’s minus
the one pushed up by the L’s.
Another constraint comes from the fact that all loop

quantum numbers Li, Ri and Bi have to be positive.
This can be ensured by requiring that R1 is big enough

R1 ≥ evensup{L2, L2 + L3 −R2, . . . , L2 + . . .

+ LN−1 −R2 − · · · −RN−1} , (66)

where evensup is the smallest even number greater or
equal to the set.

Combining all the above information gives us a com-
pletely gauge-fixed basis of orthogonal gauge invariant
states

|n1, . . . , nN ;R1;L2, R2; . . . ;LN−1, RN−1⟩ = (67)(
Λ
(n,1)
+

)n1
(
Λ
(R,1)
+

)R1
(
Λ
(n,N)
+

)nN
(
Λ
(L,N)
+

)LN

N−1∏
i=2

(
Λ
(n,i)
+

)ni
(
Λ
(L,i)
+

)Li
(
Λ
(R,i)
+

)Ri
(
Λ
(B,i)
+

)Bi

|0⟩ ,

where Λ
(n,i)
+ denoted the normalized raising operator

adding one internal flux to the i’th leaf, while Λ
(L,i)
+ ,

Λ
(R,i)
+ and Λ

(B,i)
+ denotes the normalized raising oper-

ator adding flux on the L, R or B corner of the i’th
stem. These operators are only well-defined up to a sign
depending on the ordering of the corners. Thus, for ex-
plicit computations, setting up the Hilbert space requires
choosing an ordering of the corners in the branch.

The resulting states depend on a set of integer quan-
tum numbers greater or equal to zero. First, there are
N integer quantum numbers ni counting the number of
internal loops of each leaf. Second, for each of the N − 2
leaves 2, . . . , N − 1, we require two quantum numbers Li

and Ri, corresponding to the the number of left and right
corner excitations of the stems (by the Abelian Gauss
law, the parity of both of these numbers has to be equal).
Finally, we need to give R1, which satisfies the constraint
given in Eq. (66). Observe that this basis can easily be
written in terms of unrestricted positive integers or enu-
merated in base 2 using some simple classical precompu-
tations.

2l1···i−1

2li

Li Ri

Bi

2l1···i

FIG. 14. We show a generic trivalent vertex. The relationship
between the orbital angular momentum and the LSH quan-
tum numbers is depicted.

We can furthermore relate this gauge invariant basis
to the one discussed in [52] based on angular momentum
quantum numbers. This is done by defining

l12···i = (Ri +Bi)/2 . (68)

Indeed, focusing on a trivalent vertex, like the one shown
in Fig. 14, we have three relations

2li = Li +Ri,

2l1···i−1 = Li +Bi,

2l1···i = Ri +Bi .

(69)

We can use these relations to solve for the LSH quantum
numbers Li, Ri and Bi. The fact that the LSH quantum
numbers must be positive then implies the three inequal-
ities

|l1···i−1 − li| ≤ l1···i ≤ l1···i−1 + li . (70)

These are precisely the constraints arising from the ad-
dition of angular momentum quantum numbers. As al-
ready discussed, the li quantum numbers denote the total
orbital angular momentum of the leaf i. The inequalities
just proven suggest that the quantum numbers l1···i de-
termine the sum of the angular momentum of the leaves
1 through i. The fact that the system can be charac-
terized through the quantum numbers l1, l2, l12, l3, l123,
l1...(N−1), lN represents the well known fact that this set
of total angular momentum operators form a complete
set of commuting obserbables (CSCO).

C. The Dynamics of Branches: obtaining the
Hamiltonian of fully gauge fixed SU(2) HLGT

Having obtained the states of the fully gauge fixed
Hamiltonian, we now proceed to discuss how to construct
the Hamiltonian of this theory. We will begin by con-
structing the magnetic Hamiltonian, and then move on
to the electric Hamiltonian. Both constructions however
have the same two steps. First, the Hamiltonian has to
be translated from the spatial graph to the flower. This
has already been done in [42, 52], but we will briefly
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recall the construction in here for the sake of complete-
ness. Second, it has to be translated from the flower
to the branch. These are of course specific examples of
translating a Hamiltonian through the graph coarsening
procedure. Indeed, we provide a more general perspective
towards this matter in App. C 4, where we also provide
rigorous proofs. In here we restrict to citing the results
as they apply to the specific case of the branches we have
been discussing so far. It may be useful for the reader to
refer to Sec. VI for explicit examples of these construc-
tions as well.

The magnetic Hamiltonian of a spatial lattice is given
by

HB =
∑
γ

trU(γ) , (71)

where the sum is taken over all plaquettes of the lat-
tice. In practice, since the the Wilson loop operators of
γ and γ−1 are related to one another, it is often useful
for computations to choose a fixed orientation for each
plaquette. In theories based on unitary structure groups
they are conjugates of one another, so that one can write

HB = 2
∑
γ

Re trU(γ) , (72)

where the sum is now taken only over plaquettes with a
chosen orientation. In fact, in SU(2) the Wilson loops are
real so we can skip the Re in this formula. Let us then
focus on a single plaquette γ with a definite orientation
and study the Wilson loop trU(γ) supported on it.
Let us recall that in the maximal tree construction

each physical link e is associated to a trajectory γe as
shown in Fig. 4a. Let us in particular focus on those
physical links that touch our plaquette of interest γ. As
it turns out, one can find a unique composition of the
trajectories γe associated to these physical links, which
supports the same Wilson loop as γ. For example, the
plaquette oriented clockwise on the top right of Fig. 4a
supports the same Wilson loop as the trajectory that first
goes through the trajectory associated to the physical
link in the top right, and then goes through the inverse
of the trajectory associated to the physical link in the
middle right. More generally, if we set σe = 1 when the
plaquette goes through e in the positive orientation or
σe = −1 when it traverses it in the opposite direction,
we will have

trU(γ) = trU

(∏
e

γσe
e

)
, (73)

where the product is over all the physical links which are
part of the plaquette.

So far, our discussion has been restricted to the spatial
lattice. The translation to the flower is simply obtained
by identifying the trajectory γe with its associated tra-

jectory (h
(t)
γe , h

(s)
γe ) on the flower. So, in our ongoing ex-

ample, the trajectory
∏

e γ
σe
e would go first through the

(a)

(b)

FIG. 15. We show a trajectory on the branch that corre-
sponds to the upper right plaquette of Fig. 4a. In here we
have assumed the leaves, when studying them from left to
right, correspond to the middle left, top left, top right, and
middle right physical links. We are further assuming that the
orientation of the leaves corresponding to the orientation of
the trajectories in Fig. 4a is from left to right. This is a con-
vention.

top right petal in the flower Fig. 4b, and then through
the lower right petal. The precise orientation in which
these are traversed depends on the user’s choice of which

half-links are of the type h
(t)
· and which are of the type

h
(s)
· .

Finally, we note that the trajectory γe, which starts
and ends on the marked vertex of the flower, gets identi-
fied by the point splitting procedure to a stretched tra-
jectory on the branch. Said trajectory starts from the
marked vertex of the branch, traverses the leaf corre-
sponding to the petal, and then comes back to the marked
vertex. After this identification

∏
e γ

σe
e becomes a tra-

jectory on the branch. In the case of our example, this
trajectory is shown in Fig. 15a. Note however, that at
this stage, the Wilson lines on several sections of this
trajectory cancel. Thus, one can in general replace this
trajectory by a simpler trajectory γbranch, such as the one
shown in Fig. 15b. Such a trajectory loops through all
the leaves associated to physical links traversed by our
original plaquette γ. The precise orientation with which
it does so depends on the user. In d = 2, there can at
most be two physical links traversed by each plaquette.
In d = 3, some plaquettes can also traverse four physical
links.

In this way we have completed our program of trans-
forming the Wilson loop on the original lattice to one on
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the branch

trU(γ) 7→ trU(γbranch) . (74)

At this stage this plaquette operator can be written in
terms of LSH operators using Eqs. (39), (41) and (42),
and further in terms of normalized raising and lowering
operators using Eqs. (45) and (51).

Let us now consider the electric Hamiltonian. On a
spatial lattice it is given by

HE =
∑

h∈Hdyn

E(h)2 . (75)

In here the sum is taken over a single half-link of each
of the links of the lattice. For notebooking purposes, we
will call these “dynamical” links. At this stage which of
the two half-links of a given link is chosen is immaterial
for both will give the same result. However, as we will
explain shortly, the maximal tree construction restricts
the choice for the links on the maximal tree. The opera-
tor E(h), known as the electric operator, is the generator
of gauge transformations on the half-link h. More details
on this operator are given in App. B 3.

The operators E(h) do not have a simple interpretation
in terms of the trajectories supplied by the maximal tree
construction Fig. 4a. However, there are closely related
operators that do. Indeed, consider the trajectory that
goes along the maximal tree from the marked vertex to
the vertex at which h is anchored. If said trajectory does
not touch h, it can be used to parallel transport E(h)
back to the marked vertex. Every half-link not in our
maximal tree satisfies this condition. For the links in the
maximal tree, one of its two constituent half-links satifies
it. This assumption thus restricts Hdyn.
The resulting operator has the same square as E(h)

and has a simple interpretation in terms of the trajec-
tories supplied by the maximal tree. Whenever such a
trajectory γ traverses h in the negative direction (mean-
ing when it passes through the link associated with h, it
does so in a way that h is the starting half-link), it gen-
erates on it a gauge transformation equivalent to the one

h
(s)
γ would generate on the flower. We will denote the set

of such γ by Rh,←. Conversely, whenever γ traverses h
in the negative direction, the gauge transformation gen-

erated on it is equivalent to the one generated by h
(t)
γ on

the flower. Let us denote the set of such trajectories by
Rh,→. With this we conclude that the translation of the
electric Hamiltonian on the spatial lattice to the flower
is obtained by

E(h)2 7→

 ∑
h∈Rγ,←

E(h(s)γ ) +
∑

h∈Rγ,→

E(h(t)γ )

2

. (76)

Now, we need to translate the electric operators on the
flower to electric operators on the branch. After point
splitting, every half-link of the flower, whether it is of the

form h
(s)
γ or h

(t)
γ will correspond to a half-link h on a loop

γ1 γ2

Γc

h1 h2

FIG. 16. Two half-links h1 and h2 are shown with trajectories
γ1 and γ2 which start at a marked vertex and end at the vertex
where they are anchored. A corner trajectory Γc joining h1

and h2 is also shown.

of the branch. The corresponding electric operator E(h)
will be equivalent to its corresponding electric operator
on the flower once it has been parallel transported back to
the marked vertex. For terms in (76) which are squares of
electric operators, such a parallel transport is immaterial.
For such terms we simply have

E(h)2 =
N(h)

2

(
N(h)

2
+ 1

)
, (77)

which is the casimir of the SU(2) representation living at
the half-link h of the branch.
The mixed inner products coming from (76) are less

trivial. Indeed, consider

E(γ1, h1) ·E(γ2, h2) , (78)

where γi denotes the path connecting the marked ver-
tex to the half-link hi, and E(γi, hi) denotes the paral-
lel transport of the electric operator at hi back to the
marked vertex. As shown in App. C 4 b, the overlapping
contributions of γ1 and γ2 cancel, so that only the trajec-
tory joining the anchors of h1 and h2 is needed. In fact,
one can extend said trajectory to a corner trajectory Γc

joining these two half-links. This situation is depicted
in Fig. 16. As shown in App. C 4 b, putting these consid-
erations together one can show that the product of two
electric operators in terms of LHS Wilson line operators
can then be written as

E(γ1, h1) ·E(γ2, h2)i =

U−− (Γ
−1
c )U−− (Γc)

N(h1)

2
(N(h2) + 1)

− N(h1)

2

(
N(h2)

2
+ 1

)
.

(79)

As was the case for the plaquette operator, this operator
can be written in terms of LSH operators using Eqs. (39),
(41) and (42), and further in terms of normalized raising
and lowering operators using Eqs. (45) and (51).
At this stage we have succeeded in developing an al-

gorithm which produces a fully gauge-fixed Hamiltonian
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on the branch in terms of LSH operators. In fact, said
Hamiltonian is now a product of ladder operators and
functions of number operators. Operating with such ex-
pressions is simple, for one has

f(N(h1, h2))Λq(h1, h2) = Λq(h1, h2)f(N(h1, h2) + q) .
(80)

Thus, these expressions can be manipulated algebraically
into a normal ordering in which all ladder operators are
at the left of the expression and all functions of number
operators are on the right. When this is done, the ladder
operators have simple geometric interpretations in terms
of creation and annihilation of loops of flux across the
branch. Fortunately, this is the kind of operations that
symbolic computer algebra programs are good at doing.
Results of this are shown in the examples in Sec. VI.

VI. EXAMPLES

A. One plaquette universe

Let us now start with the simplest system consisting
of a single plaquette, like the one shown in Fig. 17. This
system has already been explored in a mixed basis [52]
as well as in the prepotential formulation in [42, 91], but
it will be useful to review it to set the stage for a second,
more complicated example. The maximal tree construc-
tion can be used to gauge fix all but one of the links in
this system to the identity. Accordingly, in this gauge
the Wilson line on said link would be equivalently repre-
sented as the Wilson line on the loop γ. Thus, we can
equivalently think of this system as comprised of a single
petal.

The kinematics of this problem are completely fixed by
noting that there is a single LSH creation operator up to
orientation

L++(i, j) ≡ L++ . (81)

Therefore, all of the states are of the form

|n⟩ = Λn
+ |n⟩ =

1√
n!(n+ 1)!

(L++)
n |0⟩ . (82)

This vectors have unit norm when supplemented by this
normalization, as explained in Sec. IV, which agrees
with [45].

Now, let us construct the electric Hamiltonian follow-
ing VC. We note that Fig. 17 has eight half-links. Of
these, a, c, d, f , and h are potential candidates for dy-
namical in our formulation (in Sec. VC and App. C 4 we
explain that b, e and g are not good candidates because
the path along the maximal tree connecting them to the
marked vertex goes through them). We can then choose

Hdyn = {a, c, f, h} . (83)

We then have

Ra,← = Rc,← = Rf,→ = Rh,→ = {γ} , (84)

a

b

f

e

c d

h g

(a) (b)

γ

(c)

i j

(d)

FIG. 17. A one plaquette universe. The top left corner shows
the associated spatial graph and labels its eight half-links. On
the top right, we make a choice of a maximal tree, which is
shown in brown dashed lines, and a marked vertex, depicted
in orange. On the bottom left we show the Wilson line γ =
(a, b)(c, d)(e, f)(g, h) associated to the link (c, d) left unfixed
by the maximal tree. On the bottom right we show the graph
obtained by coarsening the original graph through γ. In this
petal the link (i, j) now corresponds to γ. We will orient this
graph so that (i, j) is positively oriented.

with the rest of the sets empty. We conclude that all
of the squares of the electric operators on the original
half-edges can be replaced by E(i)2 = E(j)2 and

HE = 4E(i)2 = 2N

(
N

2
+ 1

)
, (85)

with

N = N(j) = N(i) (86)

the number operator.
For the magnetic Hamiltonian, we have

HB = 2Re trU(γ) , (87)

with (42)

trU(γ) = tab(i, j)U
b
a (j, i) . (88)

A quick computation then shows that

trU(γ) = −Λ+ − Λ− . (89)

The LSH states are then clearly eigenstates of the elec-
tric part

HE =

∞∑
n=0

2n
(n
2
+ 1
)
|n⟩⟨n| , (90)
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FIG. 18. Energy levels for the one plaquette system.

while for the magnetic Hamiltonian we have

HB = −2
∞∑

n=0

(|n⟩⟨n+ 1|+ |n+ 1⟩⟨n|) . (91)

The energy levels can then be recovered by cutting off
the sums at some nmax. The results from this are shown
in Fig. 18.

It is quite interesting to note that this Hamiltonian
has an interpretation in terms of a quantum random
walk. Indeed, consider a particle on a one dimensional
half-infinite lattice indexed by n. Thus, in this interpre-
tation, N is the position operator in lattice units. As
shown in [92], the kinetic Hamiltonian for such a particle
is given by HB/(2g

2) up to an additive constant. In this

interpretation g/
√
2 is the lattice spacing on this walk.

g2HE/2, being diagonal in position space, is the potential

Hamiltonian. Defining the position variable x = gn/
√
2,

it corresponds to a potential

V (x) =
√
2x

(
x√
2
+ g

)
=

(
x+

g√
2

)2

− g2

2
, x ≥ 0 .

(92)
In particular, this leads to an interesting way of un-

derstanding the g → 0 limit. In this limit the lattice
becomes continuous and we are left with the theory of a
quantum particle moving on a continuous line in a dis-
placed harmonic oscillator potential for x ≥ 0

H =
P 2

2
+X2 , (93)

and an infinite wall at x = 0. The eigenstates of this sys-
tem are the antisymmetric states of this oscillator which
has frequency

√
2. Therefore we recover the result that

the energy levels of this system, when measured with re-
spect to the ground state are

√
2

(
k +

1

2

)
−
√
2
3

2
=
√
2(k − 1), k = 1, 3, 5, . . . .

(94)

Let us end by noting that the magnetic expression for
the electric Hamiltonian obtained in [52] and the fact
that our states are eigenstates of said Hamiltonian by
construction, implies that the special function (57) satis-
fies (59) for l = 0.

B. Two plaquette system

a

b

f

e

c d

h g m n

i j

l

k

(a)

(b)

γr γl

(c)

q

p

s

r

(d)

q

p

w v
s

r

(e)

FIG. 19. A two plaquette universe. The top figure (a) shows
the associated spatial graph and labels its fourteen half-links.
Below this, we show in (b) a selection of a maximal tree along
with a marked vertex. Below this in (c), we show trajectories
γr and γl corresponding to the physical links (c, d) and (i, j),
respectively. Below this in (d), we show on the left the asso-
ciated flower. In it the links (p, q) and (r, s) correspond to γl
and γr respectively. Finally in (d), on the right we consider
the point split version of this flower leading to our branch.
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Now let us consider the two plaquette system shown
in figure Fig. 19. The three creation operators satisfying
the Abelian Gauss law are

ℓ++(l) := L++(p, q),

ℓ++(r) := L++(r, s) and

L++ := L++(p, w)L++(q, w)L++(r, v)L++(s, v) .
(95)

Associated to these are their normalized versions λ+(l),
λ+(r), and Λ+, respectively, and the Hilbert space of the
system is given by

|nl, nr, l⟩ = λ+(l)
nlλ+(r)

nrΛl
+ |0⟩ . (96)

Therefore nl and nr counts the number of fluxes on their
respective loops, while l counts the number of fluxes flow-
ing across the whole branch. We will denote the corre-
sponding number operators by Nl, Nr and L .
For the magnetic operator, we note that one of the

plaquettes is γr while the other has a Wilson loop equiv-
alent to that of γl. Furthermore, when translated to
the branch, the (w, v) contributions of the latter vanish.
With these in mind, we conclude that

HB = 2Re (trU(l) + trU(r)) , (97)

where

U(l) = U(p, q) and U(r) = U(r, s) . (98)

Explicitly, we have

trU(l) = −λ−(l)
√

Nl(2L+Nl + 1)

(L+Nl + 1)(L+Nl)

− λ+(l)
√

(Nl + 1)(2L+Nl + 2)

(L+Nl + 2)(L+Nl + 1)
.

(99)

The formula for trU(r) is the same under the exchange
u 7→ d.

We can verify this result by comparing to the ones
found in [42, 52]. Indeed, we can use the wave func-
tions (58) to show that

⟨ωl, n̂l|trU(l)|nl, l,m⟩ = 2 cos(ω/2) ⟨ωl, n̂l|nl, l,m⟩ ,
(100)

numerically. In this computation the degrees of freedom
on the right petal are irrelevant and m acts as a place
holder for them.

For the electric part of the Hamiltonian, we need an ad-
missible half-link from each link in the graph. We choose

Hdyn = {a, c, i, h,m, f, l} . (101)

The non-empty sets associated to each of these are

Ra,→ = {γr}, Rc,→ = {γr}, Ri,→ = {γl} ,
Rl,← = {γl}, Rm,← = {γl}, Rf,← = {γr} , (102)

Rf,→ = {γl}, Rh,→ = {γl}, Rh,← = {γl, γr} .

We also identify the links on the flower as

h(t)γr
= r , h(s)γr

= s , h(t)γl
= p , h(s)γl

= q . (103)

Therefore, the electric Hamiltonian is given by

HE =
∑

h∈Hdyn

E(h)2 , (104)

with

E(a)2 = E(c)2 = E(r)2 ,

E(i)2 = E(p)2 ,

E(l)2 = E(m)2 = E(q)2 ,

E(f)2 = (E(s) +E(p))
2
,

E(h)2 = (E(q) +E(s) +E(p))
2
.

(105)

In these formulae we have suppressed the parallel trans-
port on the left-hand side for simplicity of reading. We
can therefore write

HE =2
(
E(r)2 +E(s)2

)
+ 3

(
E(p)2 +E(q)2

)
(106)

+ 2 (2E(p) ·E(s) +E(q) ·E(s) +E(p) ·E(q)) .

The terms corresponding to the square of single electric
operators are given by

E(r)2 = E(s)2 =
Nr + L

2

(
Nr + L

2
+ 1

)
, (107)

E(p)2 = E(q)2 =
Nl + L

2

(
Nl + L

2
+ 1

)
. (108)

Note that there is an asymmetry in the coefficients of the
terms involving the petal involving half-links p and q and
the petal involving half-links r and s. However, including
the inner product of electric operators on a single petal

E(p) ·E(q) =
L

2
(L+1)− Nl + L

2

(
Nl + L

2
+ 1

)
, (109)

there is a manifest u ↔ d symmetry. Furthermore, all
electric contributions for which we have given explicit
LSH formulae thus far are functions of number operators,
and are therefore diagonal on the LSH basis.

This is in contrast with combination of electric field
operators on the two different petals. These terms in-
clude a parallel transport to ensure gauge invariance. We
will suppress this dependence again for notational con-
venience. But once it has been taken into account, one
obtains
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E(p) ·E(s) = −L
4
(L+ 1) + λ−(l)λ−(r)Λ+

L+ 1

4

√
NlNr(Nl + 2L+ 2)(Nr + 2L+ 2)

4(L+ 1)2 − 1
(110)

+ λ+(l)λ+(r)Λ−
L

4

√
(Nl + 1)(Nr + 1)(Nl + 2L+ 1)(Nr + 2L+ 1)

4L2 − 1

E(q) ·E(s) = −L
4
(L+ 1)− λ−(l)λ−(r)Λ+

L+ 1

4

√
NlNr(Nl + 2L+ 2)(Nr + 2L+ 2)

4(L+ 1)2 − 1
(111)

− λ+(l)λ+(r)Λ−
L

4

√
(Nl + 1)(Nr + 1)(Nl + 2L+ 1)(Nr + 2L+ 1)

4L2 − 1
.

Our LSH basis is no longer comprised eigenstates of for
these terms in the Hamiltonian. While they conserve
the overall loops running through each leaf, such that
n + l is preserved, they can move internal loops to the

external loop and vice versa. Putting all this informa-
tion together, one finds the electric Hamiltonian of the 2
plaquette system

HE = 2(Nr + L)

(
Nr + L

2
+ 1

)
+ 2(Nl + L)

(
Nl + L

2
+ 1

)
− L

2
(L+ 1)

+ λ−(l)λ−(r)Λ+
L+ 1

2

√
NlNr(Nl + 2L+ 2)(Nr + 2L+ 2)

4(L+ 1)2 − 1

+ λ+(l)λ+(r)Λ−
L

2

√
(Nl + 1)(Nr + 1)(Nl + 2L+ 1)(Nr + 2L+ 1)

4L2 − 1
.

(112)

Let us finish by interpreting the first two terms of
this Hamiltonian as the electric Hamiltonian of the two
plaquette system in a universe where they are non-
interacting. This can be used to study the system with
one plaquette away from the physical states with L = 0.
In particular, when considered in conjunction with the
results of [52], this shows (59).

VII. CONCLUSIONS AND OUTLOOK

In this work we developed a formulation of gauge the-
ories on general graphs composed of half-links, which
can be assembled into a general arrangement of vertices
connected by links. We developed the general theory of
graph coarsening, of which point splitting and the max-
imal tree construction are examples of, and showed how
this can be used to relate theories on different graphs.
This was used in the main text to understand a formu-
lation of maximal tree gauge fixing in terms of a flower
shaped graph, as well as the point splitting of said graph
into a branch shaped graph. The latter consisted only of
trivalent vertices, which made it amenable to treatment
using gauge LSH operators. It further contained a single
loop for every physical link after the gauge fixing.

We further extended the gauge LSH formulation to

general graphs, inspired by a detailed understanding of
its group-theoretic properties. This allowed us to ob-
tain a fully gauge fixed formulation of the theory on the
branch providing a basis that is digitized by nature. The
relationship between the resulting basis of the Hilbert
space, which is already digitized by nature, with the mag-
netic basis explored in [52] was made explicit. The re-
sults found in the magnetic basis then show that in the
small coupling limit the degrees of freedom on the loops
of the branch are the relevant ones. This suggests a de-
coupling of the loops from the rest of the branch which
would give a systematic method of performing numeri-
cal explorations of the low coupling regime on quantum
computers. Future work will be done along these lines.

This work further made explicit the description of the
dynamics of SU(2) Yang-Mills theory in the maximal tree
gauge using LSH operators. A new ingredient was an
LSH expression for inner products of electric operators
probing different sectors of a graph. We showed that
terms of this form, along with all of the other terms in the
Hamiltonian of the theory can be expressed in terms of
LSH Wilson line operators defined on corner trajectories.

Finally, the algorithm to construct fully gauge fixed
Hamiltonians in this formulation was described. This
algorithm was put in place in the explicit examples of
one and two plaquette systems.
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Note: A paper on a related topic appeared recently
in [93].
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The following appendices are meant to complement the main body of the paper in two ways. On
one hand, a complete understanding of our results requires a treatment of HLGTs on general lattices.
Furthermore, such treatment is made easier by introducing notation and conventions which are not
standard in the HLGT community at the moment. These appendices therefore provide a general
introduction to this field that takes advantage of this. On the other, we have relegated some of the
more involved calculations performed in the main body of the paper to the appendices, so as to not
deviate the reader’s attention from the main conceptual results.

Appendix A: Notation and Conventions

Let us start with a reference guide for the reader on the notation and conventions we will use in
this appendix.
Given a set A, we say an element a is in A with the notation a ∈ A. If we introduce another set

B, we can then construct the cartesian product A×B which is the set of all (ordered) tuples (a, b)
where a ∈ A and b ∈ B. On the other hand, the union of two sets is the set A ∪ B containing all
of the elements from both A and B. If we want to emphasize that A and B have no elements in
common, we usually write the union as A ⊔B.
A function f : A→ B is a relation that assigns to every a ∈ A a unique element f(a) ∈ B. When

we want to make the rule of the function explicit, we will use the notation

f : A→ B

a 7→ f(a) .
(A1)

We denote the set of all such functions by AB. This notation is inspired by the following remark.
The reader might be familiar with the set R3 = R × R × R of all triples x = (x1, x2, x3) of real
numbers. But a slight switch of notation to (x(1), x(2), x(3)) makes it clear that the triple x can
equivalently be thought of as a map x : {1, 2, 3} → R, i.e. an element x ∈ R3 is equivalent to an
element x ∈ R{1,2,3}. This notation is therefore an efficient way of determining a set of functions. Its
usefulness in LGT stems from the fact that the notion often we are dealing with spaces of functions
on which no continuity criterion has to be imposed given the discreteness of graphs (these functions
are of course the fields). Any continuity properties are instead achieved dynamically (or not) in the
continuum limit.
A function f : A → B is said to be injective if every two a, b ∈ A that are different a ̸= b, get

mapped to two different elements f(a), f(b) ∈ B. Sometimes this is called one-to-one, although a
better option is probably two-to-two. A function is said to be surjective if every element b ∈ B has
at least one element a ∈ A which gets mapped into it f(a) = b.
Given two vector spaces V and W , a linear map is a function T : V → W which respects the

addition and scalar multiplication of these spaces. When dealing with such maps, we will often
denote T (v) simply by Tv. We define the subspace

kerT := { v ∈ V | Tv = 0 } (A2)

of V which corresponds to the set of vectors annihilated by T . For linear maps, being injective is
equivalent to having kerT = {0}. We will also require the direct sum V ⊕W , which is the vector
space of vectors uniquely determined by expressions of the form v + w with v ∈ V and w ∈ W .
Loosely speaking, this is the vector space containing both V andW directions. More formally, this is
the space V ×W equipped with the appropriate vector space operations suggested by the notation.
In fact, for our purposes we will mainly be interested in inner product spaces. For these V ⊕W is
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the space in which V and W sit orthogonally with respect to one another. Finally, we also define
the dual space V ∗ to V to be the set of all linear maps V → C.
Another notion we will sometimes use is that of a quotient. Whenever there is a relation ∼ on

a set A, we can construct the quotient set A⧸∼. Informally, this set can be thought of as a set
with “the same elements as A,” with the modification that whenever a, b ∈ A are such that a ∼ b,

when considered as elements of A⧸∼, then a = b. The primary example where we use this is in
the definition of the set of links introduced in App. B 1. The set of half-links H has a relation
implemented by a function σ : H → H, which assigns to every half-link h ∈ H the other half-link
σ(h) ∈ H to which it is attached. In this relation then h ∼ σ(h). An undirected link e is of course
determined completely either by h or σ(h), once the function σ is known. Therefore an undirected

link can be thought of as an element of H⧸∼, which we more commonly denote as H⧸σ to remember
that the relation is equivalent to the determination of σ.
Given functions f : X → Z and g : Y → Z, we can define the set-theoretic pull back

X ×f,Z,g Y = { (x, y) ∈ X × Y | f(x) = g(y) } . (A3)

The graph of f is an example of such a pullback obtained when Z = Y and g is the identity function
on Y

g : Y → Y, y 7→ y . (A4)

In this case we simply denote the pullback by X ×f Y . A particular example will be the set of
oriented links, for which this concept gives the convenient notation H ×σ H.
Given a group G and a set X, an action of the group on the set is a map

▷ : G×X → X, (g, x) 7→ g ▷ x , (A5)

which respects the group multiplication

g1 ▷ (g2 ▷ x) = g1g2 ▷ x . (A6)

Many group actions will appear throughout these appendices, which we will distinguish by adorning
the ▷ symbol.

Appendix B: Hamiltonian Lattice Gauge Theory on General Graphs

Let us now delve into the extension of the framework of lattice Hamiltonian Yang-Mills theory, as
developed by Kogut and Susskind (KS) [4], to general graphs.

1. Graph theory

We define a graph G through [94] a finite set of vertices Γ and a set of half-links (also known
as half-edges in the mathematical literature) H, equipped with an anchoring map π : H → Γ and
an attaching map σ : H → H. Fig. 20 shows a few examples that illustrate the definitions used.
The anchoring map anchors each half-link to its corresponding vertex. We will demand that it be
surjective, meaning that there are no vertices without half-links attached to it. The attachment map
attaches each half-link to its partner, with which it will form a full link. Accordingly, we will ask
that for each h ∈ H we have σ(σ(h)) = h, i.e. σ is an involution. Also, in the theory of Feynman
diagrams one is often interested in graphs with external links. Such links can be characterized by
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G Graph.

H Set of half-links.

h Generic half-link. For explicit examples other latin letters are sometimes used.

Γ Set of vertices.

p Generic vertex. For explicit examples other latin letters are sometimes used.

π Map that anchors every half-link to its associated vertex.

σ Map that attaches every half-link to its associated vertex.

H⧸σ Set of undirected links.

H ×σ H Set of directed links.

e = (h1, h2) Generic link going from h2 to h1.

γ Generic trajectory. Links can be thought of as special trajectories.

γ2γ1 Trajectory that goes first through γ1 and then γ2. We maintain the convention of reading orientation
of objects from right to left throughout this paper.

s(γ) Starting point of γ.

t(γ) Target point of γ.

E Oriented set of links.

C Set of corners of the graph.

C Oriented set of corners.

G Structure group. For this paper, mostly G = SU(2).

u Classical configuration of Wilson lines.

GΓ Group of gauge transformations at all vertices of the graph - the gauge group.

g Generic element of the structure or gauge groups.

▷h Action of the structure group at a single half-link h.

Rh Lift to the quantum setting of the action of the structure group at a single half-link h. Its generator
is the electric operator E(h).

a, b, c, . . . Used both for U(1) indices associated to the Abelian Gauss law, as well as sometimes to denote half-
links in explicit graphs.

A,B,C, . . . SU(2) indices

UA
B (h1, h2) Wilson line operator on the link (h1, h2).

Ua
b (h1, h2) LSH Wilson line operator on the corner (h1, h2).

R Set of trajectories used when coarsening a graph. Also used as subscript to denote objects after
coarsening.

h
(s)
γ , h

(t)
γ Pair of half-links corresponding to γ ↔ (h

(t)
γ , h

(s)
γ ) in the coarsened graph GR.

S Surjection associating a field configuration on the coarsened graph GR to each field configuration on
the original graph G

TABLE I. Some notation commonly used throughout the appendix.

half-links h ∈ H which are their own partner σ(h) = h. For our purposes we will not allow this
possibility.

We will define an undirected link to be a set of the form {h, σ(h)} ⊆ H. We will denote the

set of all undirected links by H⧸σ. By a directed link, we will refer to an ordering of such an orbit
e = (h, σ(h)) ∈ H×H, representing the link going from σ(h) to h. Throughout this paper, whenever
we refer to a link without any additional qualification, the reader should assume we are referring to
a directed link. The set of all links will be denoted H ×σ H, where the notation used highlights the
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FIG. 20. On the left there is the graph determined by Γ = {p1, p2}, H = {h1, h2}, π(h1) = p1, π(h2) = p2, and σ(h1) = h2.
On the middle we have a graph determined by taking p1 = p2 = p. These are the only two graphs with a single undirected
link. On the right we have the graph Γ = {p, q, r}, H = {a, b, c, d, e, f, g, h}, π(a) = π(b) = π(d) = π(f) = p, π(c) = π(g) = q,

π(h) = π(e) = r, σ(a) = b, σ(c) = d, σ(e) = f , and σ(g) = h. The set of undirected links of the latter is H⧸σ =
{{a, b}, {c, d}, {e, f}, {g, h}}. The set of links on the other hand isH×σH = {(a, b), (b, a), (c, d), (d, c), (e, f), (f, e), (g, h), (h, g)}.
At the vertex q the set of corners is {(g, g), (c, c), (g, c), (c, g)}. At the vertex p there are 4 + (3!!× 2) = 10 corners.

fact that the set of links is simply the graph of σ. This set is equipped with maps that invert the
direction of the link

H ×σ H → H ×σ H , e = (h1, h2) 7→ e−1 := (h2, h1) , (B1)

determine its source

s : H ×σ H → Γ , e = (h1, h2) 7→ s(e) = π(h2) , (B2)

and determine its target

t : H ×σ H → Γ , e = (h1, h2) 7→ t(e) = π(h1) . (B3)

Finally, a corner is a pair of half-links (h1, h2) ∈ H that are anchored at the same vertex π(h1) =
π(h2). Let us denote the set of corners by C.
The set of links naturally extends to the set of trajectories H ×σ H ⊆ T (see Fig. 21 for an

example). The set Tn of trajectories of length n is the set of maps γ : {1, . . . , n} → H ×σ H such
that for all i ∈ {1, . . . , n − 1} we have t(γ(i)) = s(γ(i + 1)). Each link can be identified with a
trajectory of length 1, and we can therefore identify H ×σ H = T1. The union of all possible paths
will be called T

T =
∞⊔
n=1

Tn . (B4)

Indeed, the inversion, source and target maps extend to all of T

Tn → Tn , γ 7→ γ−1 : i 7→ γ−1(i) := γ(n− i+ 1)−1, (B5)

s, t : Tn → Γ , γ 7→ s(γ) := s(γ(1)) and t(γ) := t(γ(n)) . (B6)

Whenever we have two trajectories γ1 ∈ Tn and γ2 ∈ Tm satisfying t(γ1) = s(γ2), i. e. the starting
point of the second path is equal to the end point of the first path, they can be concatenated to a
new trajectory γ2γ1 ∈ Tn+m that first goes through γ1 and then through γ2

γ2γ1(i) =

{
γ1(i) i ∈ {1, . . . , n}
γ2(i− n) i ∈ {n+ 1, . . . , n+m} , (B7)
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FIG. 21. On the left we show the trajectory γ ∈ T3 of length 3 given by γ(1) = (j, i), γ(2) = (h, g), and γ(3) = (f, e). We have
s(γ) = s and t(γ) = p. The inverse trajectory would then be given by γ−1(1) = (e, f), γ−1(2) = (g, h), and γ−1(3) = (i, j). We
also have a corner trajectory γc on the right given by γc(1) = (g, j), γc(2) = (e, h). It follows the same path as γ except that
it doesn’t go through i or f .

We will further call a trajectory γ ∈ Tn closed if it starts and ends at the same point s(γ(1)) = t(γ(n)).
Much like trajectories are continuous sequences of links, we can also define corner trajectories

γ : {1, . . . , n} → C which are continuous sequences of corners. An example of this is also shown
in Fig. 21. Much like trajectories, corner trajectories can also be inverted, composed, and have
source and target maps. The first two are defined by the same equations as for trajectories. The
source and target are instead defined by the equations

γ(1) = (σ(s(γ)), s(γ)) and γ(n) = (t(γ), σ(t(γ))) . (B8)

In particular, they are half-links instead of vertices.
Let us wrap up our graph-theoretic definitions by introducing the notion of an orientation. This

is obtained by choosing a unique orientation for each undirected link. It is thus given by a set of
links E ⊆ H×σH such that, for all links e ∈ H×σH, either e ∈ E or e−1 ∈ E, but not both. In the
literature most of the theory is usually explained by heavily emphasizing the role of E. However,
while choosing an E is useful for computations, the orientation does not have any real physical
meaning – physical observables should be independent of E. Accordingly, in order to have more
conceptual clarity, throughout our discussion we will do our best to deemphasize the role of E.

2. Classical Yang-Mills theory

In order to specify a Yang-Mills theory we need to choose a structure group G (note the difference
between this G and the G we use to denote a graph). We will restrict to compact semisimple Lie
groups in this work. The kinematical information of the theory is encoded in Wilson lines defined on
the links of the lattice. The classical field configurations E(G) consist of all maps u : H ×σ H → G
assigning to each link the corresponding Wilson line supported on it. Then, for every link e ∈ H×σH,
the group element u(e) ∈ G tells us how to perform parallel transport of the matter degrees of
freedom from s(e) to t(e). Of course, the transport from t(e) to s(e) can be implemented by doing
the opposite operation. Thus, we will further restrict the maps in E(G) to satisfy

u(e−1) = u(e)−1 . (B9)

Note that a field configuration is completely specified by the configuration at each undirected
link. In other words, the space of field configurations is the Cartesian product of the space of
field configurations on each undirected link. Furthermore, the configuration of a field on such an
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undirected link is completely determined by the configuration of a field on one of its orientations.
We then conclude that

E(G) ∼= GE , (B10)

for any orientation E. We remark againt that, although the choice of such an orientation is useful
for computations, it is unphysical and thus we will try to not put emphasis on it for the time being.
Finally, let us also note that classical field configurations naturally assign Wilson lines to trajectories
γ ∈ T as well

u(γ) :=
←−−∏
{e∈γ}

u(e) := u(γ(n)) · · ·u(γ(1)) . (B11)

Observe that the order chosen here reflects the physical interpretation of u as implementing parallel
transport. First u(γ(1)) acts on degrees of freedom at s(γ(1)) and maps them to degrees of freedom
at t(γ(1)). Then u(γ(2)) acts on degrees of freedom at t(γ(1)) = s(γ(2)) and maps them to degrees
of freedom at t(γ(2)).
The fields in E(G) are however not all physically distinguishable from one another. In order to

describe Yang-Mills theory locally, as we will explain more below, the space of fields has an inherent
redundancy. This redundancy is parametrized by a group element at each vertex of the graph. The
set GΓ of such assignments is called the gauge group. This group acts on the field configurations in
a way that we define two fields to be physically equivalent if one can be transformed into the other
by a gauge transformation.
In order to describe this action, it is useful to, as an intermediate step, define an action of the

structure group that is supported on the half-link h ∈ H. It will be non-trivial only on the two Wilson
lines with support at the half-link, acting differently depending on whether the line is coming into
or out of the half-link. Said group action can be succinctly summarized as6

(g ▷h u)(e) :=


gu(e) e = (h, σ(h)),

u(e)g−1 e = (σ(h), h)

u(e) otherwise .

(B12)

A graphical interpretation of this action can be found in the left of Fig. 22. The idea here is that,
if h is at the end of the link e, then the transformation g acts after the parallel transport has been
implemented. If instead h is at the beginning, the transformation acts before the parallel transport
takes place. The appearance of g−1 in this case ensures that the transformed field configuration
still satisfies the consistency condition u(e)−1 = u(e−1). The action of a full gauge transformation
g ∈ GΓ is obtained by letting the transformation g(p) at each vertex p ∈ Γ act on each of the
half-links h ∈ π−1({p}) attached to it. In particular, since every link is attached to two vertices, we
simply have

(g ▷ u)(h1, h2) :=(g(π(h1)) ▷h1 g(π(h2)) ▷h2 u)(h1, h2)

=g(π(h1))u(h1, h2)g(π(h2))
−1 . (B13)

This action is depicted at the right of Fig. 22.

6 Note how the middle line in this expression is completely determined by the first line (gu(e−1))−1 = u(e)g−1. From now on we will
omit these redundancies from our expressions. The reader should however remain alert of these detail when reading “otherwise” from
now on.
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u(e)

h2 h1

g▷h1

g▷h2

gu(e)

u(e)g−1

(a)

r

p

u(f, e) 7→ g(p)u(f, e)g(r)−1

e
f

(b)

FIG. 22. On the left it is shown how gauge transformations act locally on every half-link of a graph. On the right it is shown
how full gauge transformations act on the Wilson line supported on (f, e). All of the other Wilson lines are similarly affected
by the gauge transformation simulaneously.

3. Quantum Yang-Mills theory

The Haar measure provides a natural way of integrating over the structure group. This in turn
induces a natural integration measure on the space of field configurations E(G). Explicitly, given an
orientation E, one can use the isomorphism (B10) and set

du =
∏
e∈E

du(e) . (B14)

The resulting measure is independent of E due to the consistency condition (B9) and the invariance
of the Haar measure under the inversion operation. In particular we can use this measure to define
densities of such field configurations.
In the quantum theory, the states of the theory are described by wave functions that specify the

probability amplitude density for each classical field configuration. The Hilbert space of the theory
will therefore be

H(G) := L2(E(G)) . (B15)

Given that one can specify the field configuration independenty at each undirected link, this space
factorizes as the tensor product of the Hilbert spaces on each of the undirected links. Indeed, through
a choice of orientation E, (B10) induces

H(G) ∼=
⊗
e∈E

L2(G) . (B16)

The Hilbert space is spanned by states |u⟩ in which the field is in a definite configuration u ∈ E(G).
More general wave functions are then given by linear combinations

|ψ⟩ =
∫
E(G)

du |u⟩ψ(u), ψ(u) = ⟨u|ψ⟩ . (B17)
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The state space H(G) is equipped with a field operator U that measures the field configuration.
Each trajectory γ ∈ T supports a G-valued Wilson line operator

U(γ) |u⟩ = u(γ) |u⟩ . (B18)

Given that they are all simultaneously diagonalizable, the matrix elements of this operator all com-
mute with each other (although the full operators in general don’t commute unless G is Abelian).
On the other hand, every half-link h ∈ H supports a (chromo)electric operator7. They are defined
through a representation of the group on the Hilbert space, induced naturally from the action of the
group on the classical field configurations

Rh(g) |u⟩ := |g ▷h u⟩ . (B19)

The electric operators EX(h) are then the generators of this representation8

Rh(e
ωX) = e−iωEX(h), X ∈ g := Lie(G) . (B20)

In particular the electric operators bundle into a g∗-valued operator. Explicitly, if X1, . . . , XdimG is
a basis of g and X1, . . . , XdimG is a basis of the dual, we have

E(h) = XaEXa(h) ≡ XaEa(h) . (B21)

Since the electric operators −iE(h) furnish a representation of the Lie algebra g of G, they satisfy
its commutation relations

[EX(h), EY (h
′)] = iE[X,Y ](h)δh,h′ . (B22)

The Wilson line operators transform like

Rh(g)
−1U(γ)Rh(g) = (g ▷h U)(γ) , (B23)

where we have extended the group action on the classical field configurations to their quantum
counterparts

(g ▷h U)(γ) |u⟩ := (g ▷h u)(γ) |u⟩ . (B24)

This induces an antirepresentation of the Lie algebra9

[−iEX(h), U(h1, h2)] = −XU(h1, h2)δh1,h + U(h1, h2)Xδh2,h . (B25)

At the quantum level, gauge transformations act by a representation R of the gauge group GΓ on
H(G)

R(g) |u⟩ = |g ▷ u⟩ . (B26)

The generator of these is given by the Gauss operator at each vertex p ∈ Γ

G(p) =
∑

h∈π−1({p})

E(h) . (B27)

7 These are sometimes called electric field operators in the literature given that their role in the Hamiltonian will be very similar to the
role of the electric field in its continuum counterpart. However, this identification can also lead to confusion. For example, while in our
case the electric operator will generate gauge transformations on its support, in the continuum the integral of the covariant derivative
of the electric field plays this role.

8 In this paper we will follow the mathematicians convention that Lie algebras of unitary groups are anti-hermitian. We however follow
the physicists convention of including factors of i to obtain Hermitian operators from the representation of such Lie algebras.

9 Since the action on the Wilson line is from the right, it reverses the order of the product of elements in G. This is why we obtain an
anti-representation, with the crucial minus sign in (B25)
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(a) (b)

FIG. 23. Examples of admissible spacetime lattices. They are distinguished by the fact that they have elementary plaquettes.
On the left we have a square lattice, whose elementary plaquettes are the smallest squares. On the right picture we have a
honeycomb lattice, whose elementary plaquettes are given by the smallest hexagons.

The physical Hilbert space is then identified as the space of states h(G) that are gauge invariant,
i.e. annihilated by the Gauss operators

h(G) =
⋂
p∈Γ

kerG(p) . (B28)

These correspond to wave functions that are invariant under gauge transformations

⟨g ▷ u|ψ⟩ = ⟨u|R(g−1)|ψ⟩ = ⟨u|ψ⟩ . (B29)

The Hamiltonian of the system depends on the choice of a coupling constant g2, an invariant inner
product ⟨·, ·⟩ on g, and the interpretation of the graph G. For the groups that we are interested in,
we can take as the inner product

⟨X, Y ⟩ = −2 tr(XY ) , (B30)

with the trace computed in the fundamental representation10. On the other hand, for now, let us
think of Γ as a graph superimposed in space. Such spatial graphs are distinguished for having a
set of closed loops P ⊆ T known as plaquettes, such as the ones in Fig. 23. Whenever there is a
plaquette γ ∈ P , the loop with the reversed orientation is also a plaquette γ−1 ∈ P . The magnetic
part of the Hamiltonian is given by the sum of Wilson loops

HB :=
∑
γ∈P

W (γ), W (γ) := tr(U(γ)) . (B31)

In particular it gives standard operator on H(G) not a G-valued one. On the other hand, the electric
Hamiltonian is given by

HE :=
∑

{h1,h2}∈H⧸σ

E2(h) . (B32)

10 A different choice of inner product ammounts to a redefinition in the coupling constant.
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In here E2(h) is the Casimir operator with respect to our inner product of the representation at
either of the two half links h ∈ {h1, h2}. It is conveniently described in any basis as

E2(h) := Ea(h)E
a(h) . (B33)

Ea denotes the components of an operator EaX
a in g∗, and we can use the inner product to raise its

indices and make it an operator in g. We will explain in the next section why the choice of half-link
h ∈ {h1, h2} does not matter in the Hamiltonian.
The full Hamiltonian of the theory is given by (1)

H =
g2

2
HE +

1

2g2
HB . (B34)

This is controlled by a dimensionless coupling constant g2. For strong coupling g2 ≫ 1, the theory
is in the electric regime, where the behaviour is dominated by the electric Hamiltonian. At weak
coupling g2 ≪ 1, the theory is in the magnetic regime. Performing computations in a magnetic
basis [52] is better suited in this regime.

4. SU(2) prepotentials on general graphs

a. Peter-Weyl theorem

We are now ready to introduce the localization of the degrees of freedom from links to half-links.
This is most easily done by first focusing on a single link in light of (B16). We will thus restrict to
the graph shown on Fig. 1a. Let us for the moment further orient the link e = (h1, h2). Then the
field configurations can be identified with Wilson lines along said link and the Hilbert space L2(G) is
given by wave functions describing the probability amplitude densities for such a line. In particular,
this Hilbert space is a birepresentation of G according to its action on each of the half-links

Rh1(g1)Rh2(g2) |u⟩ = |g1ug−12 ⟩ ⇔ ⟨u|Rh1(g1)Rh2(g2)|ψ⟩ =
〈
g−11 ug2

∣∣ψ〉 . (B35)

The technique we will use stems from the Peter-Weyl theorem

L2(G) ∼=
⊕
r∈Ĝ

(Vr ⊗ V ∗r ) , (B36)

with Ĝ an exhaustive collection of the inequivalent irreducible unitary representations of G, Vr the
r representation and V ∗r its dual. Let us understand this isomorphism in detail. The isomorphism
is given by interpreting an elementary operator |ψ⟩⟨ϕ| ∈ Vr ⊗ V ∗r in the r representation as a wave
function given by11

⟨u| (|ψ⟩⟨ϕ|) :=
√
dimVr ⟨ϕ|r(u)|ψ⟩ . (B37)

The localization to half-links is obtained because this is an equality of birepresentations

⟨u|
(
r(g2) |ψ⟩⟨ϕ| r(g−11 )

)
=
√

dimVr ⟨ϕ|r(g−11 )r(u)r(g2)|ψ⟩
= ⟨g−11 ug2| (|ψ⟩⟨ϕ|)
= ⟨u|Rh2(g2)Rh1(g1)(|ψ⟩⟨ϕ|) . (B38)

11 We remark that on a finite dimensional Hilbert space, such as Vr, every operator can be written in terms of its matrix elements, so
that the space of operators is equal to Vr ⊗ V ∗r . However, a tensor product of two Hilbert spaces is, in itself, a Hilbert space. Thus, the
space of operators on Vr is, in itself, a Hilbert space. In here we will be using that that Hilbert space can be identified as “the Hilbert
space of chromoelectric flux r” in the Yang-Mills theory.
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In particular, the first factor Vr contains the gauge redundancy of the starting point h2 while the
second factor V ∗r contains the gauge redundancy of endpoint h1. This localization suggests an
enlargement of the Hilbert space to

L2(G) ⊆ HSB ⊗H∗SB, HSB :=
⊕
r∈Ĝ

Vr . (B39)

Each of the two HSB factors is thus supported on a single half-link. The original Hilbert space is
then obtained by the introduction of new Abelian Gauss’ laws demanding that physical vectors are
spanned by tensor products of vectors in the same irreducible representation.

b. Schwinger bosons and SU(2) duality

The next step in the prepotential formulation is the introduction of Schwinger bosons. We will
reduce our discussion at this stage to G = SU(2), but the approach can be generalized to different
gauge groups (see, e.g., [54, 72, 95] for discussions of the prepotential formulation with G = SU(3)).
The space HSB can be thought of as the Hilbert space of two bosonic species, the Schwinger bosons
described by a doublet of operators aA, A = 1, 2 satisfying two copies of the canonical commutation
relations (CCR) algebra

[aA, a†B] = δAB . (B40)

At this point we will adopt the conventions that upper indices correspond to the fundamental
SU(2) representation, lower indices correspond to the antifundamental, and the Einstein summation
convention contracting upper and lower indices. Indeed, the space of Schwinger bosons carries a
representation of the Lie algebra su(2) given by

X 7→ a†Xa(= a†AX
A
Ba

B) . (B41)

The isomorphism is then implemented through the identification

|j,m⟩ ≡ |n1, n2⟩ :=

(
a†1

)n1
(
a†2

)n2

√
n1!n2!

|0⟩ , n1 = j +m, n2 = j −m, (B42)

with |0⟩ the bosonic vacuum of the theory. On the left hand side of the ≡ sign, we are expressing
states in a “spin” convention, where the first entry determines the total spin of the representation
and the second its z-component. On the right hand side, we instead represent the state in using an
“occupation” number convention, where the first entry determines the total number of a†1 bosons

and the second the total number of a†2 bosons. Although ambiguous, we hope that the reader can
identify which convention is being used through the context and the variable names inside of the
kets.
One of the fundamental simplifying features of SU(2) is that all representations are self-dual Vj ∼=

V ∗j . This can be made manifest by noting that we can raise indices using the totally antisymmetric

symbol ϵAB. We will define ϵAB = −ϵAB so that ϵABϵ
BC = δCA . By convention we will take ϵ12 = 1

and the contraction of SU(2) doublets to be12

ψϕ := ψAϕ
A = ψAϵ

ABϕB . (B43)

12 The reader more familiar with index manipulation in general relativity might find this odd. In our case, since we are raising and lowering
indices with an antisymmetric symbol, we have ψAϕ

A = −ψAϕA.
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We can then write the explicit formula of the isomorphism of every representation and its dual by

V ∗j → Vj

⟨0| (a1)
j+m

(a2)
j−m√

(j +m)!(j −m)!
7→

(
a†1
)j+m(

a†2
)j−m√

(j +m)!(j −m)!
|0⟩

⇔
⟨j,m| 7→ (−1)j−m |j,−m⟩

⇔
⟨n1, n2| 7→ (−1)n2 |n2, n1⟩ .

(B44)

This will allow us to implement the prepotential formulation without the choice of an orientation.
Indeed, now we have an isomorphism

L2(E(G)) ∼=
⊕
r∈Ĝ

Vr ⊗ Vr ⊆ HSB ⊗HSB , (B45)

where the first factor is supported in h1 and the second in h2, given by

⟨u| (|j,m1⟩ ⊗ |j,m2⟩) = (−1)j+m1 ⟨j,−m1|rj(u(h1, h2))|j,m2⟩ . (B46)

Putting these ingredients together we obtain the prepotential formulation of the Hilbert space

H(G) = H⊗HSB ⊇ H(G) , (B47)

obtained by tensoring the Schwinger boson Hilbert space on each half-link. The action of su(2)
on each half-link (B41) extends the definition of the electric operators to the Hilbert space of this
formulation

−iEX(h) := a†(h)Xa(h) . (B48)

The index structure of the Schwinger bosons reflects the commutator with these[
−iEX(h1), aA(h2)

]
= −XA

Ba
B(h2)δh1h2 and[

−iEX(h1), a†A(h2)
]
= a†B(h2)X

B
Aδh1h2 .

(B49)

The commutation relations with other operators can be read from the placement of its physical
indices and their support.
While we have technically enlarged the Hilbert space, it is now very simple to characterize the

gauge invariant states. Indeed, states in this Hilbert space are spanned by monomials in the creation
operators13

a†A1
(h1) · · · a†An

(hn) |0⟩ . (B50)

The transformation properties of such monomials are easily read from their index structure. Fur-
thermore, the gauge invariant linear combinations can be immediately constructed by demanding
that the resulting state satisfies the property that, at each vertex, all of the half-links attached to it
have indices that are fully contracted.

13 We note that not all of the half-links in this notation have to be different. The same can be said for the indices.
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c. Loop-String-Hadron operators

A particularly convenient way of describing these gauge invariant states is obtained by collecting
the creation and annihilation operators into a single operator

AAa(h) :=

{
a†A(h) a = +

aA(h) a = − =

 a†2(h) a1(h)

−a†1(h) a2(h)

A

a

. (B51)

In terms of these, the commutation relations become

[AAa(h1), A
B
b(h2)] = ϵABgabδh1,h2 , g =

 0 −1
−1 0

 . (B52)

This g is the metric of 1+1 Minkowski space in lightcone coordinates, indicating that the a index is in
the vector representation of this Poincaré group. Since we are working with complex representations,
this is equivalent to the vector representation of SO(2) = U(1), which is the Abelian gauge symmetry
associated with the Abelian Gauss law. In this representation we can choose the convention a = +
objects transform like z = x+ iy while a = − objects transform like z = x− iy, so that it acts by

AAa(h) 7→ eiaϕAAa(h) . (B53)

Thus the associated charge counts the number of Schwinger bosons created by the operator.
With this we can form the loop operators

Lab(h1, h2) := AAa(h1)A
A
b(h2) , (B54)

obtained by contraction of the physical indices. Therefore, as long as π(h1) = π(h2), i.e. that (h1, h2)
is a corner, this loop operator is gauge invariant. On the other hand, the U(1) charge of such an
operator is a on h1 and b on h2 (and they add up if h1 = h2). These behave simply under change of
order of the edges

Lab(h1, h2) = −Lba(h2, h1) + 2gabδh1,h2 , (B55)

and conjugation

Lab(h1, h2)† = −abLba(h2, h1) , (B56)

and form a closed Lie algebra14

[Lab(h1, h2),Lcd(h3, h4)] = gadδh1,h4Lcb(h3, h2)− gbcδh2,h3Lad(h1, h4)
+ gbdδh2,h4Lac(h1, h3)− gacδh1,h3Ldb(h4, h2) .

(B57)

Let us look at some particular examples of such operators that will be relevant for us. For h1 ̸= h2,
the operator

L++(h1, h2) = a†(h1)a
†(h2) = −L++(h2, h1) , (B58)

precisely provides the gauge invariant linear combinations of creation operators. It is thus useful to
define a set of oriented corners C ⊆ C which is a subset of the set of all corners such that for each

14 The table of commutation relations found in [45] can be summarized in a similar fashion if one creates a Z2-graded version of the field
A that takes fermionic values on vertices and bosonic on half-links.
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corner (h1, h2) at a vertex p ∈ Γ either (h1, h2) ∈ C, (h2, h1) ∈ C but not both. In other words, this
is an orientation of the corners of the graph. We then have

span

{∏
c∈C

Ln(c)++ (c) |0⟩
∣∣∣∣∣n : C → N

}
=

⋂
p∈Γ,X∈g

kerGX(p) . (B59)

If h1 = h2 = h, the only non-trivial operator we obtain is the number operator

N(h) := L+−(h, h) = a†(h)a(h) . (B60)

In terms of the identification (B42), this operator measures 2j = n1 + n2. Accordingly, the Casimir
of this representation is

E2(h) :=
N(h)

2

(
N(h)

2
+ 1

)
. (B61)

In this equation we have chosen the vector of Pauli matrices iσ/2 as a basis of su(2). This is
orthonormal and yields the electric operators

E(h) = Eiσ/2(h) = −
1

2
a†(h)σa(h) . (B62)

In light of the Abelian enlargement (B39), the physical Hilbert space must be further constrained to

satisfy N(h1) = N(h2) for every undirected link {h1, h2} ∈ H⧸σ. In other words, we must introduce
the Abelian constraints

G({h1, h2}) := |N(h1)−N(h2)| , (B63)

in terms of which the physical Hilbert space is now given by the set of all quantum numbers N(h)
subject to the constraint N(h1)−N(h2) = 0

h(Γ) =

(⋂
p∈Γ

kerG(p)

)
∩

 ⋂
{h1,h2}∈H⧸σ

kerG({h1, h2})

 . (B64)

The first intersection, corresponding to the invariant states under the non-Abelian Gauss’ law, is
resolved by creating states through the loop operators. The second, corresponding to the invariant

states under the Abelian one, by cycling through every undirected link {h1, h2} ∈ H⧸σ and ensuring
the numbers of loop creation operators with support on h1 and h2 coincides.
With these operators in mind, it is instructive to look at particular examples of the commutation

relations. Let us start looking at the relations on a single corner (h1, h2) with h1 ̸= h2. First, we
note that

[N(h1),Lab(h1, h2)] = δa+L+b(h1, h2)− δa−L−b(h1, h2) , (B65)

so that the number operator as expected measures the number of creations or annihilations at the
half-link. Furthermore, unlike a harmonic oscillator, the commutator of creation and annihilation
operators is not proportional to the identity

[L−−(h1, h2),L++(h1, h2)] = N(h1) +N(h2) + 2 . (B66)

This is of course a consequence of the fact that our loop operators are bilinears in the Schwinger
boson operators. Finally, let us remark that the mixed operators commute with the creation and
annihilation operators

[L+−(h1, h2),L++(h1, h2)] = 0

[L+−(h1, h2),L−−(h1, h2)] = 0
(B67)
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It is also interesting to study the commutation relations obtained when one introduces another
corner (h3, h1) with h3 ̸= h1 and h3 ̸= h2. In that case we have

[Lab(h1, h2),Lcd(h3, h1)] = −gadLbc(h2, h3) . (B68)

In particular, if the indices at the overlapping half-link match, the operators commute. Otherwise,
we obtain commutators like

[L−−(h1, h2),L++(h3, h1)] = L−+(h2, h3) . (B69)

This show that switching flux from h3 to h2 can be achieved by anlihilation of flux on (h3, h1) and
creation of flux on (h1, h2).

d. Wilson line operators

Let us finish by discussing the construction of the Wilson line operators UA
B (h1, h2) in terms of

prepotentials. For this, let us take advantage of the fact that the U(1) and the SU(2) representations
appearing in A have the same dimension to define

A†aA(h) := (AAa(h))
† =

a2(h) −a1(h)
a†1(h) a†2(h)

a

A

. (B70)

with the index placement reflecting the transformation behavior of this operator. Explicitly, one can
check that

A†aA(h) = aA a
A (h) , (B71)

raising and lowering indices using gab. With this one can then prove that

(A(h)A†(h))AB := A(h)AaA
†(h)aB = δAB(N(h) + 1) . (B72)

This suggests the introduction of a new Wilson line operator on each half-link given by

U(h)Aa :=
1√

N(h) + 1
A(h)Aa , (B73)

which then satisfies

U(h)AaU
†(h)aB = δAB . (B74)

In fact, this operator is “unitary,” for

U †(h)aAU(h)
A
b = δab . (B75)

This can be checked by noticing that

A†(h)aAA(h)
A
b = (N(h) + 1 + a)δab , (B76)

and that

Of(N(h)) = f(N(h)− o)O (B77)

with o the U(1) charge of the operator O at h.
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Now consider an edge (h1, h2). We wish to obtain a unitary operator UA
B (h1, h2) out of the

operators UA
a (h1) and U

†b
A (h2). This can then be done by multiplying the two operators together

and contracting the a and b indices (note that these operators commute since they are localized in
different half-links). This naive approach would however be invariant under the U(1) action acting
simultaneously on h1 and h2 because there are no more U(1) indices. In other words, the operator
would commute with N(h1) + N(h2). This is because of the placement of the indices - whenever
one of the operators creates a boson on a half-link, the other destroys one on the other half-link.
Instead, the Abelian Gauss law demands that physical operators commute with N(h1)−N(h2), so
that whenever a boson is created in a half-link, another boson should be created on the other. Thus,
instead of contracting the a and b indices with one on top and one below, we should contract them
with the same placement. In order to keep consistency with the Einstein summation convention, we
can then introduce a matrix t that does that

UA
B (h1, h2) = UA

a (h1)t
a
bU
†b
B (h2) . (B78)

Any off-diagonal matrix would do to obtain something that satisfies the Abelian Gauss law. If we
further want a unitary result, we should choose a unitary t, which would then guarantee

UA
B (h1, h2)U

†B
C (h1, h2) = U †AB (h1, h2)U

C
D (h1, h2) = δAC . (B79)

A final restriction, which fixes the form of this matrix is that the result should have unit determi-
nant. At this stage, the meaning of this statement is not clear, for the elements of UA

B (h1, h2) are
themselves operators. The meaning is acquired by the fact that the components commute, so that
the requirement that

1 = U1
1 (h1, h2)U

2
2 (h1, h2)− U1

2 (h1, h2)U
2
1 (h1, h2) , (B80)

becomes independent of the operator ordering. This is proven in App. B 4 e. Using the techniques
developed there, one can show that the determinant condition is equivalent to taking t to have unit
determinant. This therefore reduces the possible choice of t down to

tab =

 0 eiθ

−e−iθ 0

a

b

. (B81)

In general, one can choose a different θ for every link, so that tab = tab(h1, h2). One however would
like to impose the condition that U(h1, h2)

−1(= U(h1, h2)
†) = U(h2, h1). We must then have

t(h1, h2)
† = t(h2, h1). (B82)

Given our specific form for t, we conclude that t(h2, h1) = −t(h1, h2).
In practice, for definiteness one can orient the graph. Along the positive oriented links one can

absorb the θ dependence in the U(1) gauge invariance. This amounts to chosing

tab =

 0 1

−1 0

a

b

. (B83)

for those edges and its conjugate for the negatively oriented ones. For this choice we have T ab = δab.
Thus, on the positively oriented links we can take

UA
B (h1, h2) =

1√
N(h1) + 1

AAa(h1)ABa(h2)
1√

N(h2) + 1
, (B84)
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and its negative for the negatively oriented links. Even though the a’s are not one on top and one
below, a summation is implied in this formula. This is done to minimize the factors of δab appearing
in our formulae.
Not being gauge invariants, it is not surprising that generic Wilson line operators themselves are

not immediately expressible in terms of LSH operators. Nevertheless, gauge invariant combinations
built out of them can. In order to do this, it is useful to define LSH Wilson lines. Unlike, the usual
Wilson lines, these are supported on corners instead of links. Accordingly, instead of transforming
under the SU(2) copies at the source and target of a link, the transform under the U(1) copies at
the source and target of the corner. They are obtained by contracting in a SU(2) invariant way the
indices of the Wilson line operators on the half-links of the corner. Thus, given a corner (h1, h2) we
define

Ua
b (h1, h2) = U †aA (h1)U

A
b (h2) =

{
a 1√

N(h2)+1
Lab(h1, h2) 1√

N(h1)+1
h1 ̸= h2

δab h1 = h2 .
(B85)

These are known as vertex factors in [45].
As an example of their use, consider a pair of corners (h1, h2) and (h3, h4) with π(h3) = π(h2).

Then we have

UA
B (h1, h2)U

B
C (h3, h4) = UA

a (h1)t
a
b(h1, h2)U

b
c (h2, h3)t

c
d(h3, h4)U

†d
C (h4) . (B86)

More generally, let γ be a trajectory. Let us define the trajectory γc as follows. Denote γ(i) =
(a(i), b(i)). If the length of γ is n, γc is the corner trajectory of length n− 1 defined by

γc(i) = (b(i+ 1), a(i)) . (B87)

An example of this is given in Fig. 21. We can then define

Ua
b (γc) =Ua

b1
(γc(n− 1))tb1a2(γ(n− 1))Ua2

b2
(γc(n− 2))tb2a3(γ(n− 2))× . . .

× Uan−2

bn−2
(γc(2))t

bn−2
an−1

(γ(2))U
an−1

b (γc(1)) .
(B88)

With this we then have

UA
B (γ) = UA

a (a(n))t
a
b(γ(n))U

b
c (γc)t

c
d(γ(1))U

†d
B (b(1)) . (B89)

If γ is closed, we can then consider the gauge invariant trU(γ). This amounts to setting B = A in
the equation above. Furthermore, if γ only goes through a(n) once, we can push the first factor all
the way to the end and recover yet another corner Wilson line operator. We then have

trU(γ) =tab(γ(n))U
b
c (γc)t

c
d(γ(1))U

d
a (b(1), a(n))

=tab(γ(n))U
b
a (γ̃) ,

(B90)

where γ̃ is the corner trajectory that first goes through (b(1), a(n)) and then through γc. This is
now fully expressed in the context of LSH operators.
Let us finish this section with a few comments on the application of this formulation. First of all,

the condition that γ only goes through a(n) once might seem rather restrictive at first. In reality,
since trU(γ) is invariant under shifts of the starting (which is also the finishing) point of γ, this is
not the case. Thus, in order to use this formula, we just need there to exist at least a single half-link
that γ goes through once. Second, let us remark that

tab(h1, h2)U
b
c (h2, h3) = ±δab

1√
N(h3) + 1

Lbc(h2, h3)
1√

N(h2) + 1
, (B91)
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where the sign is determined by whether (h1, h2) is positively oriented or not. Therefore, in practical
applications the t matrices are there only to keep track of the sign, and one can immediately write
everything in terms of loop operators with lower indices.

e. Proof of commutative property of Wilson line operator components

In this section we show that the components of the Wilson line operator commute. To streamline
this computation, let us introduce some notation that we will use taking advantage of the fact that
for this the half-links h1 and h2 will be fixed. First, we will suppress the labels associated to these.
In order to avoid confusion due to this, we will set

AAa(h1) = AAa and AAa(h2) = BA
a . (B92)

We will also restrict to the subspace satisfying the Abelian Gauss law, so that

L+−(h1, h1) = L+−(h2, h2) = L+− = −L+− − 2 = N . (B93)

Finally, we will introduce the notation

Φ(a) :=
1√

N + a+ 1
. (B94)

With this notation in place, let us define a rescaled commutator that will be more comfortable to
work with

CA C
B D := Φ(0)−1[UA

B , U
C
D ]Φ(0)−1 . (B95)

Our main goal will be to show that this vanishes on the subspace satisfying the Abelian Gauss law.
Let us write

UA
B = T aeΦ(0)AAaBBeΦ(0), T ae :=

∑
b=±

btabg
be , (B96)

using (B73) and (B71). The only property we will need of the matrix T ab is that it is diagonal since
both tae and g

be are off-diagonal. With this we have that

Φ(0)−1UA
BU

C
DΦ(0)−1 = T aeT cfAAaBBeΦ(0)

2ACcBDf

=
∑
a

Φ(−a)2T aeT cfAAaACcBBeBDf .
(B97)

In the last line we used the fact that the A’s and B’s commute since their support does not overlap,
(B77), and made the sum over a explicit since we broke the summation convention. Then the
commutator is equal to

CA C
B D =

∑
a

Φ(−a)2T aeT cf
(
AAaA

C
cBBeBDf − ACaAAcBDeBBf

)
. (B98)

Next, we note that the term in parenthesis, which is quartic in Schwinger bosons, can be reduced
to a bilinear with functions of N as coefficients. For this one adds and subtracts ACaA

A
cBBeBDf ,

so that the term in parenthesis reduces to the sum

(AAaA
C
c − ACaAAc)BBeBDf + ACaA

A
c(BBeBDf −BDeBBf ) . (B99)



43

We claim that the terms in parenthesis are functions of N . Focusing on the one in the first row, the
A↔ C antisymmetry guarantees that

AAaA
C
c − ACaAAc = ϵAC(A1

aA
2
c − A2

aA
1
c) = ϵAC(A2aA

2
c + A1aA

1
c) = ϵACLac . (B100)

Including the analogous result for the second row and using the diagonality of the T ae matrices, the
commutator takes the form

CA C
B D = ϵACMBD(B) + ϵDBM

CA(A) , (B101)

where

MCA(A) =
∑
a

Φ(−a)2T aeT cfLefACaAAc . (B102)

We further claim that MCA is itself a function of the number operator. For this one can start by
noting that the a = c terms vanish identically because Lef would vanish. Therefore, there are only
two terms in the contractions of MCA. Furthermore, both are proportional to T++T−−. Dividing
this common factor out, the a = + term is

Φ(−1)2L+−A
C
+A

A
− = AC+A

A
− . (B103)

In the last equal sign we used (B93). Similarly, the a = − term is

Φ(+1)2L−+AC−AA+ = −AC−AA+ . (B104)

Therefore

MCA(A)

T++T−−
= AC+A

A
− − AC−AA+

= AC+A
A
− − AA+AC− + ϵCA

= ϵCA(N + 1) .

(B105)

Inserting these relations we conclude that

CA C
B D = ϵACϵDB(N + 1) + ϵDBϵ

CA(N + 1) = 0 , (B106)

concluding our proof.
The same technique employed in this proof can be used to show that

Φ(0)−1 detUΦ(0)−1 = T++T−−(N + 1) . (B107)

Thus, the unit determinant condition demands that

T++T−− = 1. (B108)

This is equivalent to demanding that t has unit determinant.

Appendix C: Relating Theories on Different Graphs

In this section we will attempt to formalize the graph manipulations required in the main body
of the paper. In App. C 1 and App. C 2, we give a general description of graph manipulations and
whether they yield kinematically equivalent physical representations. The equivalences are made
explicit in these sections as well. The former deals with the classical setting. The latter with
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the quantum mechanical one. In App. C 3 these general theorems are put in practice for the two
manipulations required in the main body of the paper. In App. C 3 a, virtual point splitting is
discussed. This is fundamental in transforming petals into leaves and flowers into branches. We
show that graphs can always be manipulated to become fully trivalent. We then give proofs for the
normalization of the states and LSH operators given in [45]. In App. C 3 b, we discuss the flower
construction in the context of maximal tree gauge fixing. Finally, App. C 4 lifts the kinematical
equivalences to dynamical ones by showing how the ingredients for the engineering of Hamiltonians
are translated through these manipulations. This is first done in the context of the original Kogut-
Susskind formulation App. C 4 a. In the context of maximal tree gauge fixing, we simply restate
and give proofs for the results found in [52] in our context. We also provide analogous results for
the case of point splitting. We then show how to rewrite the ingredients in the language of LSH
in App. C 4 b.

1. Classical aspects

In this paper we will find ourselves multiple times with the following situation. Consider a set of
trajectories R ⊆ T on G. Then one can define a new graph GR as follows. The vertices of GR will
be given by the start and endpoints of the trajectories in R

ΓR := { p ∈ Γ | ∃γ ∈ R : s(γ) = p or t(γ) = p }
= { s(γ) | γ ∈ R } ∪ { t(γ) | γ ∈ R } . (C1)

The half-links of GR will be given by two copies of R. This means that we will define two half-links

h
(s)
γ and h

(t)
γ ∈ HR to each trajectory γ ∈ R. If one wants to, it is useful to have the picture in mind

that h
(s)
γ corresponds to the first half of γ while h

(t)
γ to the second half, so that the link (h

(t)
γ , h

(s)
γ ) in

GR is simply the trajectory γ. The attachment map is defined by the declaring that each of these
pairs is attached to one another, i.e.

σR(h
(s)
γ ) = h(t)γ and σR(h

(t)
γ ) = h(s)γ . (C2)

Finally, the anchoring map πR is given by

πR(h
(s)
γ ) = s(γ) and πR(h

(t)
γ ) = t(γ) . (C3)

It is useful to note that GR is actually independent of the orientation of the trajectories in R.
However, in order to make the notation as simple as possible, we have decided to not make this
independence manifest.
Whenever we find ourselves in this situation, every field configuration on G naturally induces a

field configuration on GR, according to the intution presented above when defining the half-links.
This defines a map

S : E(G)→ E(GR) , (C4)

given by identifying the Wilson line on the link (h
(t)
γ , h

(s)
γ ) with that on γ

S(u)(h(t)γ , h
(s)
γ ) := u(γ) , (C5)

for all γ ∈ R. Let us spell out some of the properties of this map.
First of all, we may wonder whether S is surjective. This need not be the case if the trajectories

in R are not different enough. For example, if there is a γ ∈ R such that γ−1 ∈ R as well, then
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the field configurations in the image of S have Wilson lines on (h
(t)
γ , h

(s)
γ ) and (h

(t)

γ−1 , h
(s)

γ−1) that are
inversely related to one another. However, in all of the examples that we will be interested in, the
set of trajectories R satisfies a property that will guarantee the surjectivity of S: for each trajectory
γ ∈ R, there is a link γ(i) that is not traversed, in any direction, by any other trajectory in R15. Of
course, there may be several links that satisfy this property for each trajectory in R. Let us however
choose one of them, defining a map

f : R→ E . (C6)

Explicitly, this map has the properties:

1. for each γ ∈ R of length n, there is an i ∈ {1, . . . , n}, such that γ(i) = f(γ),

2. for each γ ∈ R, there is no γ′ ∈ R for which there is an i ∈ {1, . . . , n}, with n the length of γ′,
for which f(γ) = γ′(i) or f(γ) = γ′(i)−1.

We will show that a choice of such an f guarantees the surjectivity of S by constructing from it a
right inverse

ι : E(GR)→ E(G) , (C7)

to S. The choice of notation chosen for it is meant to remind the reader that, given that ι has a left
inverse, namely S, it must be injective. Physically, one should thing of ι as a choice of interpretation
of each field configuration on GR as a field configuration on G. Note that, while S is canonically
defined from the choice of trajectories R, the embedding ι is not.
The definition of ι relies on utilizing each f(γ) to store the value of the Wilson line on γ. Given

that f(γ) is not traversed by any other trajectories, there are no conflicts in this procedure. The
rest of the Wilson lines can then be set to the identity. Explicitly, consider a u ∈ GR. Define

ι(u)(e) :=

{
u(h

(t)
γ , h

(s)
γ ) e = f(γ), γ ∈ R,

1 otherwise .
(C8)

The conditions that f satisfy guarantee that ι(u) is well-defined and that S(ι(u)) = u.
Both G and GR are acted on by their own gauge groups GΓ and GΓR , respectively. Given that

ΓR ⊆ Γ, there is a surjective map S : GΓ → GΓR between these gauge groups simply given by
restricting the gauge transformations on G, so that

S(g)(p) := g(p) , (C9)

for all p ∈ ΓR. We have used the same name for it as for the map S : E(G)→ E(GR), given that they
play similar roles. Any confusion should be dispelled by looking at the argument of the function.
The map S is equivariant with respect to these group actions

S(g ▷ u) = S(g) ▷ S(u) . (C10)

In order to see this, one simply notes that

S(g ▷ u)(h(t)γ , h
(s)
γ ) = (g ▷ u)(γ) = g(t(γ))u(γ)g(s(γ))−1

= g(πR(h
(t)
γ ))S(u)(h(t)γ , h

(s)
γ )g(πR(h

(s)
γ ))−1

=(S(g) ▷ S(u))(h(t)γ , h
(s)
γ ) ,

(C11)

15 This assumption is not true in the R one would choose to recover the results of [42]. Still, one can show that in that case S is surjective
and the rest of our proofs carry through.
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for all γ ∈ R. This property is a reflection of the naturalness of S. On the other hand, ι, being
non-canonical, does not satisfy an analogous property in general. It is curious to note that in both
of the cases that we will consider in this paper, it turns out that ι is indeed equivariant. We will
however not use this fact and therefore will not dwell on this.
It will be useful from now on to go to a slightly more abstract scenario and consider the generic

case where we have two classical systems with configuration spaces given by X and Y , on which the
groups G and H act respectively. Suppose we have a surjective map S : X → Y , which is equivariant
with respect to a surjective map S : G → H. Let ι : Y → X be a right inverse for S : X → Y .

Let us show that [S] : X⧸G → Y⧸H is an isomorphism if and only if every x ∈ X is G-equivalent
to ι(S(x)). Note that the surjectivity of S already guarantees that [S] is surjective. Therefore [S]
being an isomorphism is equivalent to [S] being injective.
On the one hand, assume that [S] is injective. Take x ∈ X. Then we have that S(x) = S(ι(S(x))).

Thus, given that [S] is injective, we must have that x ∼ ι(S(x)). On the other hand, now assume
that every x ∈ X is G-equivalent to ι(S(x)). Further, assume that we have x1, x2 ∈ X such that
S(x1) and S(x2) are H-equivalent. To show injectivity of [S], we need to show that x1 and x2 are
G-equivalent. The key to see this is to note that, the equivalence of S(x1) and S(x2), as well as the
surjectiveness of S : G→ H, guarantees there is a g ∈ G such that

S(x2) = S(g) ▷ S(x1) = S(g ▷ x1) , (C12)

so that, without loss of generality, we can assume that S(x2) = S(x1). In that case, the equivalence
of x1 and x2 is clear since

x1 ∼ ι(S(x1)) = ι(S(x2)) ∼ x2 . (C13)

Going back to our specific case of interest, this means that the theories on G and GR are kinemat-
ically equivalent as long as every field u ∈ E(G) is gauge equivalent to ι(S(u)).

2. Quantum aspects

Thinking back to our general scenario, the map S : X → Y induces a linear map S∗ : L2(Y ) →
L2(X) which assigns to every wave function |ψ⟩ ∈ L2(Y ) a wave function S∗ |ψ⟩ ∈ L2(X). As
mentioned above, in the cases that we will be interested in, S will always be surjective. This
guarantees that S∗ is injective. Indeed, the only |ψ⟩ ∈ L2(Y ) such that S∗ |ψ⟩ = 0, is |ψ⟩ = 0. To
see this, consider y ∈ Y . Then, since S is surjective, there is an x ∈ X such that S(x) = y. We
conclude that

⟨y|ψ⟩ = ⟨S(x)|ψ⟩ = ⟨x|S∗|ψ⟩ = 0 . (C14)

Another face of the above is to note that the map ι∗ : L2(X) → L2(Y ) is now a left inverse to S∗,
for

⟨y|ι∗S∗|ψ⟩ = ⟨S(ι(y))|ψ⟩ = ⟨y|ψ⟩ . (C15)

The equivariance of S further guarantees that S∗ restricts to a map between gauge invariant wave
functions S∗ : L2(Y )H → L2(X)G, where

L2(X)G := { |ψ⟩ ∈ L2(X)| ⟨g ▷ x|ψ⟩ = ⟨x|ψ⟩ for all x ∈ X and g ∈ G} . (C16)

This is because if |ψ⟩ ∈ L2(Y )H , then for all x ∈ X and g ∈ G, we have

⟨g ▷ x|S∗|ψ⟩ = ⟨S(g ▷ x)|ψ⟩ = ⟨S(g) ▷ S(x)|ψ⟩
= ⟨S(x)|ψ⟩ = ⟨x|S∗|ψ⟩ , (C17)
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so that indeed S∗ |ψ⟩ ∈ L2(X)G.
In fact, whenever the induced map

[S] : X⧸G→ Y⧸H (C18)

is an isomorphism, we will have that S∗ : L2(Y )H → L2(X)G is an isomorphism as well. Of course,
the restriction is injective because the full S∗ was. We thus only need to show that it is surjective.
For this, let us assume we have a gauge invariant |ψ⟩ ∈ L2(X)G. Then we will argue that ι∗ |ψ⟩ is
gauge invariant and satisfies S∗ι∗ |ψ⟩ = |ψ⟩.
Tackling gauge invariance first, let y ∈ Y and h ∈ H. Consider

⟨h ▷ y|ι∗|ψ⟩ = ⟨ι(h ▷ y)|ψ⟩ . (C19)

By surjectivity of S, we have x ∈ X and g ∈ G such that S(x) = y and S(g) = h. Then, equivariance
of S guarantees that

ι(h ▷ y) = ι(S(g) ▷ S(x)) = ι(S(g ▷ x)) . (C20)

Furthermore, since [S] is an isomorphism, we have

ι(h ▷ y) = ι(S(g ▷ x)) ∼ g ▷ x ∼ ι(S(x)) = ι(y) . (C21)

Therefore, by gauge invariance of |ψ⟩, we have

⟨h ▷ y|ι∗|ψ⟩ = ⟨ι(y)|ψ⟩ = ⟨y|ι∗|ψ⟩ , (C22)

proving that ι∗ |ψ⟩ is gauge invariant.
Now, we need to show that we indeed have S∗ι∗ |ψ⟩ = |ψ⟩. For this, let x ∈ X. Then

⟨x|S∗ι∗|ψ⟩ = ⟨ι(S(x))|ψ⟩ . (C23)

Then, the bijectivity of [S] guarantees that ι(S(x)) ∼ x, while the gauge invariance of |ψ⟩ then gives

⟨x|S∗ι∗|ψ⟩ = ⟨x|ψ⟩ . (C24)

In other words, the classical equivalence described in the previous section lifts to a quantum
mechanical one.

3. Examples

a. Virtual point splitting

A general difficulty associated to applying the LSH formulation in more than one dimension is
that the gauge invariant states constructed with the loop operators (B58) are not orthogonal to
one another, even after choosing a preferred orientation for each corner. So, while they span the
whole gauge invariant Hilbert space, they satisfy linear relations known as Mandelstam constraints.
Indeed, consider a graph G with a vertex p ∈ Γ of valency 4, such as the one shown in Fig. 24. Due
to the identity [91]

ϵABϵCD(= δACδBD − δADδBC

= δACδBD − δABδCD + δABδCD − δADδBC)
= ϵADϵCB + ϵACϵBD ,

(C25)
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phl
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hd
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L++(hu, hl)L++(hr, hd)

phl hr
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L++(hu, hd)L++(hr, hl)

p
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L++(hu, hr)L++(hl, hd)

FIG. 24. Mandelstam constraint between gauge invariant states obtained from the loop operators (B58).
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FIG. 25. On the left we have a vertex p of valency greater than 3 with half-links a and b attached to it. We further have the
half-links c = σ(a) and d = σ(b), attached respectively to vertices q and r. On the right we show a point splitting of said

vertex. A new virtual vertex s̃ has been produced, as well as the half-links e, f , ã and b̃.

we have the linear relation of Fig. 24. It is clear what the issue is: the configuration with a unit
of gauge flux on every half-link of this vertex has three distinct interpretations in terms of the 6
non-trivial corners in a four-valent vertex.
This problem of course extends to higher valency vertices. If, on the other hand, we had a graph

whose vertices had valency less than or equal to three, Mandelstam constraints would not be present,
since no analog of Eq. (C25) can be written. In this case, the loop operators would truly furnish
a basis of the gauge invariant Hilbert space. Fortunately, there is a generic method that one can
employ to lower the valency of a vertex p ∈ G while not changing the theory [96]. The idea is to
take two half-links a and b emerging from p and collapse their bases, leaving us with a new virtual
unoriented link {e, f} and vertex s. From this new vertex stems two further half-links ã and b̃, which
are the remainders of the original half-links a and b. Let us denote the resulting graph by G̃. This
construction is shown in Fig. 25. It is known in the literature as virtual point splitting due to the
intuition that the construction corresponds to splitting the point p into p and s, which is different
from the interpretation we presented above. In any case, the two graphs G and G̃ differ in two ways.
On the one hand, the latter has the extra vertex s. On the other, the half-links a and b of the former
get replaced by the half-links ã, b̃, f , and e in the latter. The vertices and half-links in common
between the two graphs will be identified along with the structures supported in them.
We can prove that the physics on the graphs G and G̃ are equivalent using the techniques we

developed in the previous sections. Namely, consider the paths

R = {((c, ã), (f, e)), ((d, b̃), (f, e))} . (C26)

Then G = G̃R. The corresponding map S is surjective, for each trajectory in R has a corresponding
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1

s

u(c, ã)u(f, e) u(d, b̃)u(f, e)

=⇒

g(s) = u(f, e)

u(f, e)

s

u(c, ã) u(d, b̃)

FIG. 26. On the right we have a field configuration u ∈ E(G̃). On the left we have ι(S(u)). The two are equivalent by applying
a gauge transformation u(f, e) at s.

link (either (c, ã) or (d, b̃)) for which the other trajectory doesn’t go through. This gives us the map
ι obtained by setting

ι(u)(f, e) = 1, ι(u)(c, ã) = u((c, ã), (f, e)), ι(u)(d, b̃) = u((d, b̃), (f, e)) , (C27)

for all u ∈ E(G̃). Thus, all that we are left with checking is that u ∼ ι(S(u)), for all u ∈ E(G̃). This
is obtained by noting that u = g ▷ ι(S(u)), where g is equal to the identity for every vertex different
than s and is equal to u(f, e) at s. This is shown in Fig. 26.
When applying point splitting we are usually in a setting where we understand the dynamics on

G = G̃R. Accordingly, the Wilson line operators can be immediately translated to operators on G̃.
Similarly, the electric operators E(c) and E(d) can be immediately replaced by their counterparts
in G̃. The counterparts to the operators E(a) and E(b) are however more delicate. This issue is not
usually addressed in the literature since E(a)2 = E(c)2 on G and thus either can be used to build the
Hamiltonian on G̃. But in our applications we will need to have explicit control over the operator
E(a) in order to build the Hamiltonian. The way this is done will be discussed in App. C 4 a.
Repeated application of this procedure yields graphs that only have trivalent vertices. With this

we can now normalize the states appearing in (B59) to recover the basis discussed in [45]. Given
that these states are tensor products of states localized at each site, we need only normalize each of
these. Let us the consider a vertex to which three half-edges a, b, and c are attached. This situation
is shown in Fig. 11. Let us pick as a set of oriented corners C = {(a, b), (b, c), (c, a)}. We then need
to compute the vacuum expectation value

C(n(a, b), n(b, c), n(c, a))

:= ⟨0| Ln(a,b)−− (a, b)Ln(b,c)−− (b, c)Ln(c,a)−− (c, a)Ln(a,b)++ (a, b)Ln(b,c)++ (b, c)Ln(c,a)++ (c, a) |0⟩ .
(C28)

In order to compute this expectation value, let us first study the state

L−−(a, b)Ln(a,b)++ (a, b)Ln(b,c)++ (b, c)Ln(c,a)++ (c, a) |0⟩ . (C29)

Since the LSH vacuum is annihilated by all annihilation operators, we can replace the operator above
by a commutator. Then applying the Leibniz rule of derivations, we see that said commutator is the
sum of two commutators. Accordingly, our state of interest is the sum of the states

[L−−(a, b),Ln(a,b)++ (a, b)]Ln(b,c)++ (b, c)Ln(c,a)++ (c, a) |0⟩ , (C30)

and

Ln(a,b)++ (a, b)[L−−(a, b),Ln(b,c)++ (b, c)Ln(c,a)++ (c, a)] |0⟩ . (C31)
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We will now show that the latter of these two vanishes.
Let us recall the commutator (B69). With this and the Leibniz rule we conclude that

[L−−(a, b),Ln++(b, c)] =
n∑
k=1

Lk−1++ (b, c)L−+(a, c)Ln−k++ (b, c) . (C32)

But in light of (B68), all of these terms are actually the same and we obtain the simpler result

[L−−(a, b),Ln++(b, c)] = nLn−1++ (b, c)L−+(a, c) . (C33)

This operator in particular annihilates the vacuum. Along with further applications of the Leibniz
rule and (B67), one concludes that (C31) vanishes.
Let us now study the contribution from (C30). The Leibniz rule in conjunction with (B69) and

(B77) shows that

[
L−−(a, b),Ln++(a, b)

]
=

n∑
k=1

Lk−1++ (a, b)(N(a) +N(b) + 2)Ln−k++ (a, b)

=
n∑
k=1

Ln−1++ (a, b)(N(a) +N(b) + 2 + 2(n− k))

=nLn−1++ (a, b)(N(a) +N(b) + 2 + n− 1) .

(C34)

Therefore

[L−−(a, b),Ln(a,b)++ (a, b)]Ln(b,c)++ (b, c)Ln(c,a)++ (c, a)

= n(a, b)Ln(a,b)−1++ (a, b)Ln(b,c)++ (b, c)Ln(c,a)++ (c, a)(N(a) +N(b) + 2 + n(a, b)− 1 + n(b, c) + n(c, a)) .
(C35)

With this result we can now conclude that

C(n(a, b), n(b, c), n(c, a)) = n(a, b) (n(a, b) + n(b, c) + n(c, a) + 1)C(n(a, b)− 1, n(b, c), n(c, a)) .
(C36)

This is the fundamental recursion relation from which C can be recovered. Repeated applications
of it yield

C(n(a, b), n(b, c), n(c, a)) = n(a, b)!
(n(a, b) + n(b, c) + n(c, a) + 1)!

(n(b, c) + n(c, a) + 1)!
C(0, n(b, c), n(c, a)) . (C37)

Given that C is symmetric under permutations of its entries, and C(0, 0, 0) = 1, we conclude that

C(n(a, b), n(b, c), n(c, a)) =

n(a, b)!
(n(a, b) + n(b, c) + n(c, a) + 1)!

(n(b, c) + n(c, a) + 1)!
n(b, c)!

(n(b, c) + n(c, a) + 1)!

(n(c, a) + 1)!
n(c, a)!(n(c, a) + 1)!

= n(a, b)!n(b, c)!n(c, a)!(n(a, b) + n(b, c) + n(c, a) + 1)! .

(C38)

Therefore the states

|n⟩ := L
n(a,b)
++ (a, b)Ln(b,c)++ (b, c)Ln(c,a)++ (c, a)√

C(n(a, b), n(b, c), n(c, a))
|0⟩ , (C39)

give an orthonormal basis.
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As in [45], we note that the action of the LSH operators on these states is rather simple. Indeed,
they always amount to a change in n and a change in normalization. Observe that

C(n(a, b) + 1, n(b, c), n(c, a))

C(n(a, b), n(b, c), n(c, a))
= (n(a, b) + 1)(n(a, b) + n(b, c) + n(c, a) + 2) . (C40)

Therefore, the introduction of the operators

N(a, b) =
1

2
(N(a) +N(b)−N(c)), N(a, b, c) = N(a, b) +N(b, c) +N(c, a) + 1 , (C41)

allows us to express

L++(a, b) = Λ+(a, b)
√
(N(a, b, c) + 1)(N(a, b) + 1) (C42)

In here Λ+(a, b) is the operator that raises and lowers the corresponding quantum number without
changing the normalization of the state. We can further use (C34) in conjunction with the fact that

C(n(a, b)− 1, n(b, c), n(c, a))

C(n(a, b), n(b, c), n(c, a))
=

1

n(a, b)(n(a, b) + n(b, c) + n(c, a) + 1)
, (C43)

to show that

L−−(a, b) = Λ−(a, b)
√
N(a, b)N(a, b, c). (C44)

Finally, we can use (B69) to show that

L−+(a, b) = Λ−(c, a)Λ+(b, c)
√
N(c, a)(N(b, c) + 1) . (C45)

and therefore

L+−(a, b) = −Λ−(b, c)Λ+(c, a)
√
N(b, c)(N(c, a) + 1) . (C46)

b. Maximal tree gauge fixing

In this section we discuss the idea of maximal tree gauge fixing, which identifies a set trajectories
in a general graph whose Wilson lines can be set to the identity by choosing appropriate gauge
transformations at the vertices.
A tree is a connected graph which has no loops. Now, consider a graph G that is connected and

for which every pair of vertices is connected by a single link at most, i.e. for all e1, e2 ∈ H ×σ H if
s(e1) = s(e2) and t(e1) = t(e2), we then have that e1 = e2. We will further demand that there are
no closed trajectories of length 1. A maximal tree on such a graph G is a tree that is a subgraph of
G and is maximal, in the sense that the inclusion of any additional link of G would produce a loop.
In the mathematical literature these are more often called spanning trees, for they are equivalently
described as trees that have all of the vertices G. Let us denote the set of half-links of the maximal
tree by M ⊆ H. An example is shown in Fig. 3.
Now, let us choose a vertex o ∈ G and an orientation EM for all the links that are not in the

maximal tree. For each e ∈ EM define a path γe that starts and ends at o as follows. Let γ→ be
the only path that goes from o to s(e) along the maximal tree without backtracking (if it wasn’t
unique then composing it with the inverse of another one would give a loop along the maximal tree).
Similarly, let γ← be the corresponding path going from t(e) to o. Then define γe = γ← · e · γ→. Let
R denote the set of these trajectories. The resulting GR looks like a flower of loops starting and
ending at o. As we will now show, the physics on G and GR are equivalent.
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The map S is clearly surjective, for γe is the only trajectory in R going through e. Given a field
configuration u ∈ E(G), we have

ι(S(u))(e) =

{
1 e ∈M ×σ M
u(γe) e ∈ H ×σ H \M ×σ M .

(C47)

We are left with showing that u ∼ ι(S(u)). This is the result of the maximal tree gauge-fixing
construction we will describe next.
First let q be a vertex in G which is only attached to one link in the maximal tree. Next, go

along the path γ defined by the maximal tree from o to q. At each step i, perform the gauge
transformation u(γ(i))−1 at t(γ(i)). The resulting gauge transformation leaves the identity at γ(i)
and doesn’t disrupt this gauge fixing condition for the previous γ(j). Furthermore, note that after
this step the Wilson line at γ(i+ 1) is equal to

u(γ(i+ 1))u(γ(i))u(γ(i− 1)) · · ·u(γ(1)) . (C48)

Repeating this procedure for all the possible q’s shows this gauge fixing procedure. Every link e will
pick up a factor of u(γ→) on the right for the path that goes through s(e) and a factor of u(γ←) on
the left for the one going through t(e).

4. Dynamics

a. Kogut-Susskind degrees of freedom

So far we have concluded that, as long as every trajectory in R has a link that is not traversed by
any other trajectory in any direction and every field configuration u ∈ E(G) is gauge equivalent to
ι(S(u)), then the theories on G and GR are equivalent at the kinematic level. In order to make this
equivalence useful however, we need to explain how to translate the Hamiltonian of one graph into
a Hamiltonian for the other

HS∗ = S∗HR . (C49)

In the case of point splitting we will need to translate the dynamical information in GR to a Hamil-
tonian on G. In the case of the maximal tree construction we will need to do the opposite. To the
best of our knowledge, there is not a unique construction that works for any coarsening. We will
therefore only answer it in these two cases. Some general lessons will however be explained as we go
along.
Due to the way we have set up the equivalence, it is simplest to understand the relationship

between the Wilson line operators on G and on GR. Namely, we have

⟨u|S∗U(h(t)γ , h(s)γ )|ψ⟩ = ⟨S(u)|U(h(t)γ , h(s)γ )|ψ⟩
= S(u)(h(t)γ , h

(s)
γ ) ⟨S(u)|ψ⟩

= u(γ) ⟨u|S∗|ψ⟩ = ⟨u|U(γ)S∗|ψ⟩ ,
(C50)

i.e.

S∗U(h(t)γ , h
(s)
γ ) = U(γ)S∗ . (C51)

This allows us to translate a magnetic Hamiltonian from GR to G immediately. One simply replaces
the Wilson line operators on a link in GR by the Wilson line operator supported on its corresponding
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path in G. We have thus solved the problem of the magnetic Hamiltonian under point splitting.
It is however not yet obvious that this solves the problem of the magnetic Hamiltonian under the
maximal tree construction. In order to do this we need to show that in that case the Hamiltonian
can be built solely from Wilson lines supported on the trajectories in the corresponding R.
In order to do this, we note that every plaquette γ ∈ P in G, a cubic lattice, has a non-empty set

Eγ ⊆ EM of links that it goes through that are outside of the maximal tree. For every e ∈ Eγ let
σe be 1 if γ goes along it with the orientation chosen when constructing the flower or −1 if it goes
against it. We then have

trU(γ) = trU

∏
e∈Eγ

γσee

 , (C52)

where the product is oriented using the ordering in which γ travels through the links. The operators
on the right hand side are all supported on paths in R. They can therefore be replaced by operators
on the corresponding links of GR. This recovers the solution found in [52] to the problem of relating
the magnetic Hamiltonian of a cubic lattice to that of its corresponding flower.
Let us go back to the general case once more. Relating the electric operators between G and GR

requires us to relate the group actions on the half-links of G with those of GR. Here the concept of
parallel transport arises naturally as follows. Fix a half-link h ∈ H and a trajectory γ ∈ Tn (which
could potentially be in R). We can then wonder how ▷h behaves on γ. Of course (g ▷h u)(γ) = u(γ)
if γ does not go through h. On the other hand, if γ passes once through (h, σ(h)) we have

(g ▷h u)(γ) = u(γ2)gu(h, σ(h))u(γ1) = u(γ2)gu(γ2)
−1u(γ) , (C53)

where we have written γ = γ2 · (h, σ(h)) · γ1. This immediately implies that

(u(γ2)
−1gu(γ2) ▷h u)(γ) = gu(γ) . (C54)

This prompts us to the following definition.
Let h ∈ H and γ ∈ Tn be such that π(h) = t(γ). We then define ◦γ,h : G× E(G)→ E(G) by

g ◦γ,h u = u(γ)gu(γ)−1 ▷h u . (C55)

With this definition we have

(g ◦γ−1
2 ,h u)(γ) = gu(γ) (C56)

in our previous setting. In other words, if γ ∈ R,
S(g ◦γ−1

2 ,h u)(h
(t)
γ , h

(s)
γ ) = g ▷

h
(t)
γ
S(u)(h(t)γ , h

(s)
γ ) . (C57)

Now, assume that the path γ2 is common to all trajectories in R which go through (h, σ(h)) Then
the generators of ◦γ−1

2 ,h and ▷
h
(t)
γ

are related in the quantum theory. So, let us take some time to

explore the general properties of ◦γ,h.
First of all, the choice of notation reflects that ◦γ,h need not be a left group action. Of particular

importance to virtual point splitting and the maximal tree construction, is the case in which γ and
h are disjoint. In this case we are guaranteed that ◦γ,h is, indeed, a left group action. We can
then associate to it an Electric operator. This mimics the construction of the Electric operators on
half-links. Namely, one first lifts the group action to the quantum level

Rγ,h(g) |u⟩ := |g ◦γ,h u⟩ = |u(γ)gu(γ)−1 ▷h u⟩
=Rh(u(γ)gu(γ)

−1) |u⟩ , (C58)
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and then defines the electric operator to be its generator

e−iωEX(γ,h) := Rγ,h(e
ωX), X ∈ g . (C59)

The relationship between the parallel transported operators E(γ, h) and the operators E(h) is
clear by noting that

e−iωEX(γ,h) |u⟩ = Rh(u(γ)e
ωXu(γ)−1) |u⟩

= Rh(e
ωAdu(γ)X) |u⟩

= e
−iωEAdu(γ)(X)(h) |u⟩ ,

(C60)

where Ad denotes the adjoint representation of the structure group G on its Lie algebra. In other
words

EX(γ, h) |u⟩ = EAdu(γ)(X)(h) |u⟩ . (C61)

On a basis of g, this becomes

Ea(γ, h) |u⟩ = Ad b
u(γ) aEb(X)(h) |u⟩ . (C62)

Multiplying by Xa, the dual basis of g under the Killing form, we can further rewrite this in matrix
form

E(γ, h) |u⟩ = u(γ)−1E(h)u(γ) |u⟩ . (C63)

In here we used the fact that

XaAd b
u(γ) a = Xa

〈
Xb,Adu(γ)(Xa)

〉
= Xa

〈
Adu(γ)−1 Xb, Xa

〉
= Adu(γ)−1(Xb)

= u(γ)−1Xbu(γ) ,

(C64)

due to the Ad-invariance of the Killing form. Finally, this can be lifted to an operator equation since
γ and h do not overlap

E(γ, h) = U(γ)−1E(h)U(γ) . (C65)

It is simple to remember the placement of the U ’s, which guarantee that E(γ, h) transform under
the adjoint representation of the structure group at s(γ).
Not only does this expression provide an explicit construction of the parallel transport in terms of

other operators that are simpler to implement, but it also guarantees that E(γ, h)2 = E(h)2 due to
the Ad-invariance of the Killing form

Kab = KcdAd
c
g aAd

d
g b . (C66)

This is also a good place to comment that, another case of general interest is when γ touches h only
once at the very end γ(n)2 = h. This is precisely the case of interest when trying to relate E(h)
and E(σ(h)). As it turns out, in that case instead of a left group action, we will have a right group
action. Thus, these two operators will be related to each other by parallel transport up to a sign. In
this case, since we do have an overlap, we do not have an analogue of (C65). Interestingly however,
it is still true that parallel transport preserves the quadratic Casimir.
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Now, we are ready to consider our specific examples. First, let us treat the simpler example of
virtual point splitting. We have that

S(g ▷h u) = g ▷h S(u) (C67)

for the half-links h in Fig. 25 which retained their name after point splitting (meaning c, d and the
ones that are outside of the scope of the picture). This implies that

S∗E(e) = E(e)S∗ , (C68)

for those links. This leaves us with the operator E(a) (and, of course, the operator E(b) to which
the same procedure can be applied) in order to translate the electric information from the original
graph G̃R to the one after point splitting G̃. So, we start by computing

g ▷a S(u) = S(g ◦(f,e),ã u) . (C69)

This is checked by evaluating both sides on every link of G̃R. In particular, the group action on both
sides is trivial on all links except for (c, a), where the equality can be checked explicitely. We then
have

S∗E(a) = E((f, e), ã)S∗ , (C70)

establishing the equivalence of the electric content in the case of point splitting.
Second, let us focus on the maximal tree construction. For every vertex p ∈ Γ, let γp ∈ T be the

path starting at the marked vertex o ∈ V and finishing at p along the maximal tree. Using this path
we will be able to understand E(h)2 for all of the half-edges h ∈ π−1(p) anchored at p except for the
ones that γ goes through. Fortunately, for every link there is at least one half-link h for which γπ(h)
does not go through h (namely, for each link on the maximal tree there is exactly one, and for each
link outside of the maximal tree, both suffice). Let us then choose such a half-link for every link and
define the set of these to be Hdyn. We will refer to these as the set of “dynamical” half-links. The
sum in (B32) can be performed over this set.
Now, given h ∈ Hdyn, we can consider E(γπ(h), h), which satisfies

E(h)2 = E(γπ(h), h)
2. (C71)

The latter however satisfies much simpler properties on GR. Indeed, given γ ∈ R, there are only
four possibilities:

1. γ and h do not overlap.

2. γ goes along (h, σ(h)) once and doesn’t go through (σ(h), h).

3. γ goes along (σ(h), h) once and doesn’t go through (h, σ(h)), and

4. γ goes both along (h, σ(h)) and (σ(h), h), each once.

Even more specially, because of the uniqueness of paths along maximal trees, all γ ∈ R that go
through (σ(h), h) share the same trajectory γπ(h) leading up to it. Let us denote the set of such
paths by Rh,←. Similarly, all γ ∈ R that go through (h, σ(h)) share the same trajectory after going
through it, namely, γ−1π(h). Let us denote the set of such paths by Rh,→. These remarks lead us to

consider

S(g ◦γπ(h),h u)(h
(t)
γ h

(s)
γ ) =


S(u)(h

(s)
γ h

(t)
γ ) case 1.

(g ▷
h
(t)
γ
S(u))(h

(t)
γ h

(s)
γ ) case 2.

(g ▷
h
(s)
γ
S(u))(h

(t)
γ h

(s)
γ ) case 3.

(g ▷
h
(t)
γ
▷g ▷

h
(s)
γ
S(u))(h

(t)
γ h

(s)
γ ) case 4. ,

(C72)
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by comparison with (C57). In other words, the composition of S after acting with ◦γh,γ is the same
as the composition of g▷

h
(t)
γ

for all γ ∈ Rh,→ and g▷
h
(s)
γ

for all γ ∈ Rh,←. Therefore, we have

E(γh, h)S
∗ = S∗

 ∑
γ∈Rh,←

E(h(s)γ ) +
∑

γ∈Rh,←

E(h(t)γ )

 . (C73)

In particular, in the case of the maximal tree construction, this gives us a way of translating the
quadratic Casimir appearing in the Hamiltonian of a cubic lattice

E(h)2S∗ = E(γh, h)
2S∗

= S∗

 ∑
γ∈Rh,←

E(h(s)γ ) +
∑

γ∈Rh,→

E(h(t)γ )

2

.
(C74)

This shows how to translate the electric Hamiltonian from that lattice to the flower. In this way we
then recover the result shown in [42, 52].

b. LSH degrees of freedom

In light of equation (C52), which allows for the transition of the magnetic Hamiltonian from the
spatial lattice to the flower, and equation (C51), which allows for the transition of the magnetic
Hamiltonian from flowers to branches, the magnetic Hamiltonian in our formulation will correspond
to Wilson loops on branches. The description of these in the LSH formalism has already been
discussed in (B90).
Let us then focus on the electric part. The transition from the spatial lattice to flower, requires

(C74). Therefore, we need to understand the inner product between two electric operators. Fur-
thermore, the point splitting process required to transition from flowers to branches, requires us to
understand this inner product for electric operators that have been parallel transported back to a
common vertex (C70).
Consider then the inner product

E(γ1, h1) · E(γ2, h2) (C75)

with γ1 and γ2 two trajectories that start at the same vertex s(γ1) = s(γ2) and end at t(γ1) = π(h1)
and t(γ2) = π(h2). We will further assume that the two trajectories do not go throught h1 or h2, so
that, as operators, the Wilson line and electric operators appearing in this quantity commute. This
geometry is depicted in Fig. 27. We can therefore manipulate this quantity as one would any other
Lie algebra manipulation. In particular, the invariance of the inner product chosen guarantees that
one can shift the parallel transport on h1 all the way to h2. Thus, defining γ = γ2γ

−1
1 , this inner

product can be rewritten as

E(h1) · E(γ, h2). (C76)

Observe that γ then implements the parallel transport of h2 to h1. In applications it is useful to note
that this operator only depends on U(γ). Therefore, if the trajectory γ backtracks the corresponding
Wilson operators will cancel each other. By eliminating these we can replace the trajectory γ by a
simpler one. This is the trajectory mentioned in the caption of Fig. 27.
On SU(2) with our choice of inner product, we have the orthonormal basis iσi/2 constructed out

of Pauli matrices. In this basis, we can extract the coefficients of X = Xiiσi/2 ∈ su(2) by

Xi = − tr(iσiX) . (C77)
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γ1

γ2

γc

Γc

hi

h1

hf h2

FIG. 27. Trajectories γ1 and γ2 are depicted in red and blue respectively. They have a common source at the orange vertex
s(γ1) = s(γ2). A corner trajectory γc is also shown in purple. The Wilson line operator on the trajectory γ2γ

−1
1 is equivalent

to a the Wilson line operator on a trajectory γ that first goes through hi, then through γc, and finally through hf . Another
corner trajectory Γc is shown in brown. This trajectory is obtained by first going through (h1, hi), then through γc, and finally
through (h2, hf ). This can equivalently be described as first going through h1, then through γ, and finally through h2.

Then

E(h1)i = Eiσi/2(h1) = −
1

2
a†(h1)σia(h1) = −

1

2
AA+(h1)A

B
−(h1)σ

A
i B , (C78)

and

E(γ, h2)i = −
1

2
AA+(h2)A

B
−(h2)σ

A
j B

(
− tr

(
iσiU(γ)

−1iσj/2U(γ)
))
. (C79)

The trace can explicitly be written in components as

UB
C (γ

−1)UD
A (γ)σ

A
i Bσ

C
j D . (C80)

Thus the inner product is the contraction of the tensor

AA+(h1)A
B
−(h1)AC+(h2)A

D
−(h2)U

E
F (γ

−1)UG
H (γ) , (C81)

with

1

8
σ A
i Bσ

C
j Dσ

H
i Eσ

F
j G =

1

2
δAEδ

H
B δ

C
Gδ

F
D −

1

4
δABδ

H
E δ

C
Gδ

F
D −

1

4
δAEδ

H
B δ

C
Dδ

F
G +

1

8
δABδ

H
E δ

C
Dδ

F
G , (C82)

where the expression in terms of Kronecker deltas can be obtained from the Fierz identity of the
Pauli matrices.
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For example, the fact that t(γ) = s(γ−1) = π(h2) implies that the index G can only be contracted
with the C or the F index. This suggests a reordering of the product of operators into

AA+(h1)U
E
F (γ

−1)AD−(h2)AC+(h2)U
G
H (γ)AB−(h1) . (C83)

In doing so we however switched the order of the h2 factors, so that we have to include the additional
operator

−δDCAA+(h1)UE
F (γ

−1)UG
H (γ)AB−(h1) . (C84)

This additional operator is however simpler to study, since gauge invariance demands that G and
F be contracted. But then the Wilson lines are multiplied and lead to a δEF . Therefore the four
possible contractions must be proportional to −N(h1).
Let us now make these contractions explicit. The term coming from (C84) is

−
(
1

2
− 2

4
− 2

4
+

4

8

)
N(h1) = 0 , (C85)

where the 4 terms in the bracket correspond to the 4 possible combinations of Kronecker deltas
in Eq. (C82), such that this term vanishes. Now we can perform the contractions of the non-zero
contribution (C83). The last three combinations of Kronecker deltas include contractions of the
Wilson lines. Thus, they are γ independent. Therefore gauge invariance demands that they are
functions of N(h1) and N(h2). In fact, because of the order that we wrote the operators in, these
contractions are proportional to N(h1)(N(h2)+2). Performing these contractions explicitly, we have(

−1

4
− 1

4
+

2

8

)
N(h1)(N(h2) + 2) = −1

4
N(h1)(N(h2) + 2) . (C86)

We are then left with the first combination of Kronecker deltas, which gives

1

2
AA+(h1)U

A
D (γ−1)AD−(h2)AC+(h2)U

C
B (γ)A

B
−(h1) . (C87)

This is a product of two terms that can be written in the LSH formulation. To see this, note that

AA+(h2)U
A
B (γ)A

B
−(h1) = AA+(h2)U

A
a (hf )t

a
b(γ(n))U

b
c (γc)t

c
d(γ(1))U

†d
B (hi)A

B
−(h1) . (C88)

Using (B77) one can write

UB
− (h) =

1√
N(h) + 1

AB−(h) = AB−(h)
1√
N(h)

. (C89)

Thus, we can set

AA+(h2)U
A
a (hf ) =

√
N(h2)U

−
a (h2, hf )

U †dB (hi)A
B
−(h1) = Ud

− (hi, h1)
√
N(h1) . (C90)

We therefore find

AA+(h2)U
A
B (γ)A

B
−(h1) =

√
N(h2)U

−
a (h2, hf )t

a
b(γ(n))U

b
c (γc)t

c
d(γ(1))U

d
− (hi, h1)

√
N(h1)

=
√
N(h2)U

−
− (Γc)

√
N(h1) ,

(C91)

where Γc is the corner trajectory defined by first going through h1, then through γ, and finally
through h2, as shown in Fig. 27. Putting these results together, we conclude that

E(γ1, h1) · E(γ2, h2) =
1

2

√
N(h1)U

−
− (Γ

−1
c )N(h2)U

−
− (Γc)

√
N(h1)−

N(h1)

2

(
N(h2)

2
+ 1

)
. (C92)
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One can further see that while U(Γc) creates a Schwinger boson on h2 and annihilates one on h1,
U(Γc) annihilates one on h2 and creates one on h1. Therefore, this can be simplified to (79)

E(γ1, h1) · E(γ2, h2) = U−− (Γ
−1
c )U−− (Γc)

N(h1)

2
(N(h2) + 1)− N(h1)

2

(
N(h2)

2
+ 1

)
. (C93)

In this way we have succeeded at describing the electric Hamiltonian solely in terms of LSH operators
as well.

Appendix D: Derivation of the Wave Function

As shown in Eq. (53), the basis states of a leaf (or a loop in maximal tree gauge fixing) are given
by

|n, l,m⟩ := ℓn++L l
++(a

†
1(d))

l+m(a†2(d))
l−m |0⟩ , (D1)

where n counts the internal chromoelectric flux while l the external.

To derive the corresponding wave functions, we first note that we can use the binomial theorem
in order to expand the product of the loop operators in terms of Schwinger Bosons

ℓn++L l
++ =

n∑
k=0

l∑
p,q=0

(−1)n+l+k+p+q
(
n

k

)(
l

p

)(
l

q

)
a†1(a)

k+pa†2(a)
n+l−k−pa†1(b)

n+l−k−qa†2(b)
k+q

× a†1(c)l+q−pa†2(c)l+p−q .
(D2)

Next, we note that, other than the combinatorial factors, the dependence on p and q is only through
the combinations k+p and k+q. We can thus shift these variables so as to isolate the k-dependence

ℓn++L l
++ =

∑
p,q

[∑
k

(−1)k
(
n

k

)(
l

p− k

)(
l

q − k

)]
(−1)

n+l+p+q

×

a†1(a)
pa†2(a)

n+l−pa†1(b)
n+l−qa†2(b)

qa†1(c)
l+q−pa†2(c)

l+p−q .

(D3)

When switching the order of summation, the limits become complicated and we have therefore left
them implicit in this formula. They are however completely determined by the requirement that no
factorials of negative numbers are taken within the combinatorial factors.

At this stage we recognize that the term in parenthesis looks extremely similar to a Clebsch-Gordan
coefficient (e.g. section 8.2.4 in [97]). Introducing these coefficients then allows us to eliminate the
sum over k

ℓn++L l
++ =

∑
p,q

(−1)n+l+p+q
(
n+ l

n

)−1√(
n+ 2l + 1

n

)(
n+ l

p

)(
n+ l

n+ l − q

)(
2l

2l + p− q

)
×
〈
n+ l

2
,
n+ l

2
− p; n+ l

2
, q − n+ l

2

∣∣∣∣l, q − p〉 a†1(a)pa†2(a)n+l−pa†1(b)n+l−qa†2(b)q
× a†1(c)l+q−pa†2(c)l+p−q .

(D4)

The remaining binomial coefficients that appear when doing this greatly simplify against the nor-
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malization factors in (21), so that when acting on the vacuum state, this operator creates

ℓn++L l
++ |0⟩ =

∑
p,q

(−1)n+l+p+qn!l!
√(

n+ 2l + 1

n

)(
2l

2l + p− q

)
×
〈
n+ l

2
,
n+ l

2
− p; n+ l

2
, q − n+ l

2

∣∣∣∣l, q − p〉
×
∣∣∣∣n+ l

2
, p− n+ l

2

〉
a

∣∣∣∣n+ l

2
,
n+ l

2
− q
〉
b

a†1(c)
l+q−pa†2(c)

l+p−q .

(D5)

With this expression in hand, we are now in a position to calculate the wave functions. With
our gauge fixing condition, the Wilson line u1 on the (a, b) link is oriented along the z-axis. When
evaluating the state above on such a Wilson line via (23), each term in the sum will be proportional
to the matrix element 〈

n+ l

2
,
n+ l

2
− p
∣∣∣∣rn+l

2
(u1)

∣∣∣∣n+ l

2
,
n+ l

2
− q
〉
, (D6)

which vanishes unless p = q in this gauge. Let us thus focus on this subsector of the sum. In
it the binomial coefficients can be factored out of the sum, which in turn becomes a resolution of
the identity on the space obtained by coupling two spin (n + l)/2 representations. Thus, up to
proportionality constants, we obtain that

ℓn++L l
++ |0⟩ ∝ |l, 0⟩n a†1(c)l+q−pa†2(c)l+p−q + · · · . (D7)

The state |l, 0⟩n is the total spin l state with 0 component in the z direction in this coupled space

|l, 0⟩n =
∑
p

∣∣∣∣n+ l

2
, p− n+ l

2

〉
a

∣∣∣∣n+ l

2
,
n+ l

2
− p
〉
b

〈
n+ l

2
,
n+ l

2
− p; n+ l

2
, p− n+ l

2

∣∣∣∣l, 0〉 .

(D8)
This evaluates to

〈
eiωJz

∣∣l, 0〉
n
∝
√
n+ l + 1

n+l
2∑

m=−n+l
2

ei(ω−π)m
〈
n+ l

2
,m;

n+ l

2
,−m

∣∣∣∣l, 0〉 , (D9)

up to an overall sign. Due to the symmetry properties of the Clebsch-Gordan coefficients, we can
study this function through the purely real function defined by

ϕn,l(ω) := in
√
n+ l + 1

n+l
2∑

m=−n+l
2

ei(ω−π)m
〈
n+ l

2
,m;

n+ l

2
,−m

∣∣∣∣l, 0〉 , (D10)

to which it is proportional.
For this we need need to now compute the remaining wave function on the stem

⟨u2|(a†1(c)a†2(c))la†1(d)l+ma†2(d)l−m|0⟩ ∝ ⟨u2|l, 0; l,m⟩ ∝ ⟨l,−m|rl(u2)|l, 0⟩ , (D11)

Fortunately, this is simple to express in terms of the Euler angles16 (α, θ, ϕ) of u2 (see e.g. (37)
in [97])

⟨l, 0|rl(u2)|l,m⟩ ∝ Y l
m(θ, ϕ) . (D12)

16 We will use the zyz convention for Euler angles.
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However, recall that u2 was any rotation that mapped the axis n̂ of u to the z-axis. If the spherical
coordinates of n̂ are (θ, ϕ), then the rotations that do this are those that have Euler angles (α, θ, ϕ),
with α parametrizing this U(1) worth of such rotations. This then finishes the proof of (57).
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