

MOOSE ProbML: Parallelized Probabilistic Machine Learning and Uncertainty Quantification for Computational Energy Applications

December 2025

Changing the World's Energy Future

Som LakshmiNarasimha Dhulipala, Peter German, Yifeng Che, Zachary M Prince, Xianjian Xie, Pierre-Clement A Simon, Hao Yan

INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

MOOSE ProbML: Parallelized Probabilistic Machine Learning and Uncertainty Quantification for Computational Energy Applications

**Som LakshmiNarasimha Dhulipala, Peter German, Yifeng Che, Zachary M Prince,
Xianjian Xie, Pierre-Clement A Simon, Hao Yan**

December 2025

**Idaho National Laboratory
Idaho Falls, Idaho 83415**

<http://www.inl.gov>

Prepared for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517, DE-AC07-05ID14517, DE-AC07-05ID14517, DE-
AC07-05ID14517, DE-AC07-05ID14517, DE-AC07-05ID14517

MOOSE ProbML: Parallelized Probabilistic Machine Learning and Uncertainty Quantification for Computational Energy Applications

Somayajulu L. N. Dhulipala^{a,*}, Peter German^b, Yifeng Che^c, Zachary M. Prince^b, Xianjian Xie^d, Pierre-Clément A. Simon^a, Vincent M. Labouré^e, Hao Yan^d

^a*Computational Mechanics and Materials Department, Idaho National Laboratory, Idaho Falls, 83415, ID, USA*

^b*Computational Frameworks Department, Idaho National Laboratory, Idaho Falls, 83415, ID, USA*

^c*Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA*

^d*School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, 85287, USA*

^e*Reactor Physics Methods and Analysis Department, Idaho National Laboratory, Idaho Falls, 83415, ID, USA*

Abstract

This paper presents the development and demonstration of massively parallel probabilistic machine learning (ML) and uncertainty quantification (UQ) capabilities within the Multiphysics Object-Oriented Simulation Environment (MOOSE), an open-source computational platform for parallel finite element and finite volume analyses. In addressing the computational expense and uncertainties inherent in complex multiphysics simulations, this paper integrates Gaussian process (GP) variants, active learning, Bayesian inverse UQ, adaptive forward UQ, Bayesian optimization, evolutionary optimization, and Markov chain Monte Carlo (MCMC) within MOOSE. It also elaborates on the interaction among key MOOSE systems—Sampler, MultiApp, Reporter, and Surrogate—in enabling these capabilities. The modularity offered by these systems enables development of a multitude of probabilistic ML and UQ algorithms in MOOSE. Example code demonstrations include parallel active learning and parallel Bayesian inference via active learning. The impact of these developments is illustrated through five applications relevant to computational energy applications: UQ of nuclear fuel fission product release, using parallel active learning Bayesian inference; very rare events analysis in nuclear microreactors using active learning; advanced manufacturing process modeling using multi-output GPs (MOGPs) and dimensionality reduction; fluid flow using deep GPs (DGPs); and tritium transport model parameter optimization for fusion energy, using batch Bayesian optimization. **These capabilities are part of the MOOSE framework.**

Keywords: Active learning, Gaussian processes, Bayesian inference, Bayesian optimization, Finite element models, Nuclear fission and fusion energy

1. Introduction

The Multiphysics Object-Oriented Simulation Environment (MOOSE), an open-source computational platform for parallel finite element and finite volume analyses, is being developed and maintained primarily at Idaho National Laboratory, and has a wide user and developer base spanning academia, industry, and national laboratories [1]. It is easy to install, offers extensive tutorials, comes with built-in physics modules, and naturally lends itself to multiscale and multiphysics simulations. MOOSE supports a vibrant community of computational scientists and engineers via a highly active discussions forum, and its code base receives tens of pull requests each month (<https://github.com/idaholab/moose>). MOOSE has traditionally supported computational simulations intended to advance energy solutions such as nuclear fission energy, geothermal energy, and, more recently, nuclear fusion energy. Several applications were built by

*Corresponding author

Email address: Som.Dhulipala@inl.gov (Somayajulu L. N. Dhulipala)

11 using MOOSE to tackle specific problems such as nuclear fuel performance (BISON [2]), structural mate-
12 rials aging (Grizzly [3]), medium-fidelity thermal hydraulics (Pronghorn [4]), radiation transport (Griffin
13 [5]), seismic analysis (Mastodon [6]), mesoscale materials simulations (Marmot [7]), high-fidelity thermal-
14 hydraulics and/or radiation transport (Cardinal [8]), tritium transport for fusion energy (TMAP8 [9]),
15 thermal-hydraulic-mechanical-chemical processes in geothermal systems (Falcon [10]), etc. MOOSE also
16 provides a stochastic tools module to support uncertainty quantification (UQ) and propagation, as well as
17 surrogate model development for multiphysics simulations [11]. **This paper presents the development and**
18 **demonstration of massively parallel probabilistic machine learning (ML) and UQ in the MOOSE stochastic**
19 **tools module to support capabilities such as Gaussian process (GP) ML, active learning, Bayesian inference,**
20 **rare events analysis, Bayesian optimization, and evolutionary optimization. These capabilities in the native**
21 **MOOSE framework are motivated by the following: (1) complex multiphysics simulations, when validated**
22 **with experimental data, are subject to different sources of uncertainties (i.e., model parameters, model in-**
23 **adequacy, and experimental noise) that must be quantified and propagated to the outputs; (2) complex**
24 **multiphysics models are computationally expensive to run, especially in a UQ setting, and surrogate models**
25 **that quantify their prediction uncertainties (i.e., probabilistic ML models such as GPs) will support their**
26 **efficient and accurate execution by leveraging active learning principles; and (3) probabilistic ML and UQ**
27 **capabilities could be leveraged by MOOSE's extensive user base.**

28 Probabilistic ML deals with the development of surrogate models that can quantify complex multiphysics
29 model prediction uncertainties. UQ deals with all aspects of identifying and inversely quantifying different
30 sources of uncertainties, then forward propagating them to the model predictions. Probabilistic ML and
31 UQ go hand-in-hand, leading to efficient approaches for active learning, Bayesian inference, Bayesian opti-
32 mization, etc. Among the existing software for performing various aspects of probabilistic ML and UQ are
33 UQPy [12], CUQIPy [13], MUQ [14], and PyApprox [15], as discussed in Seelinger et al. [16]. Most of these
34 software programs were written in Python. The development and demonstration of probabilistic ML and UQ
35 capabilities presented herein is oriented toward the extensive user/developer community of MOOSE,
36 which is written in C++. Moreover, MOOSE inherently supports massive parallelism, meaning that the
37 probabilistic ML and UQ approaches can be scaled to use thousands of processors, thus leading to high
38 levels of efficiency when dealing with complex multiphysics models. Ultimately, the right software tools
39 can significantly enhance various stages of the research, development, and deployment processes for energy
40 solutions, with different tools being better suited to specific scenarios.

41 Massively parallel probabilistic ML and UQ in MOOSE is achieved through its `Sampler`, `MultiApp`,
42 `Reporter`, and `Surrogate` systems. `Sampler` proposes new input parameter samples from the underlying
43 probability distributions, `MultiApp` facilitates evaluation of the MOOSE computational model while han-
44 dling massive parallelism, `Reporter` facilitates post-model-evaluation decision making, and `Surrogate`
45 handles the training, evaluation, and retraining of probabilistic surrogates. These systems and their interac-
46 tion are key to the development of GP variants, active learning, Bayesian inverse UQ, adaptive forward UQ,
47 Bayesian optimization, evolutionary optimization, and Markov chain Monte Carlo (MCMC) in MOOSE.
48 The modularity offered by these systems enables development of a multitude of probabilistic ML and UQ
49 algorithms. These aspects will be discussed in detail later in this paper. Besides discussing the software im-
50 plementation, this paper also demonstrates its application to five different types of computational problems:
51 (1) Bayesian inverse UQ of fission product release from nuclear fuel, using parallel active learning; (2) very
52 rare events analysis of a heat pipe (HP) nuclear microreactor, using active learning; (3) acceleration of ad-
53 vanced manufacturing process simulations, using multi-output GPs (MOGPs) and dimensionality reduction;
54 (4) prediction of lid-driven cavity flow, using with deep GPs (DGPs); and (5) model parameter optimization
55 of tritium diffusion for nuclear fusion, using batch Bayesian optimization. **Figure 1 presents an overview**
56 **of the probabilistic ML, forward/inverse UQ, active learning, optimization, and dimensionality reduction**
57 **capabilities in MOOSE and the core MOOSE systems that are utilized for achieving these capabilities.**

58 This paper is organized as follows. Section 2 provides a theoretical review of the active learning, Bayesian
59 inverse UQ, adaptive forward UQ, Bayesian optimization, evolutionary optimization, and MCMC methods
60 relevant to MOOSE. Section 3 details the MOOSE code implementations. Section 4 discusses the impact
61 to the five aforementioned energy applications. Lastly, Section 6 summarizes the paper and presents the
62 conclusions.

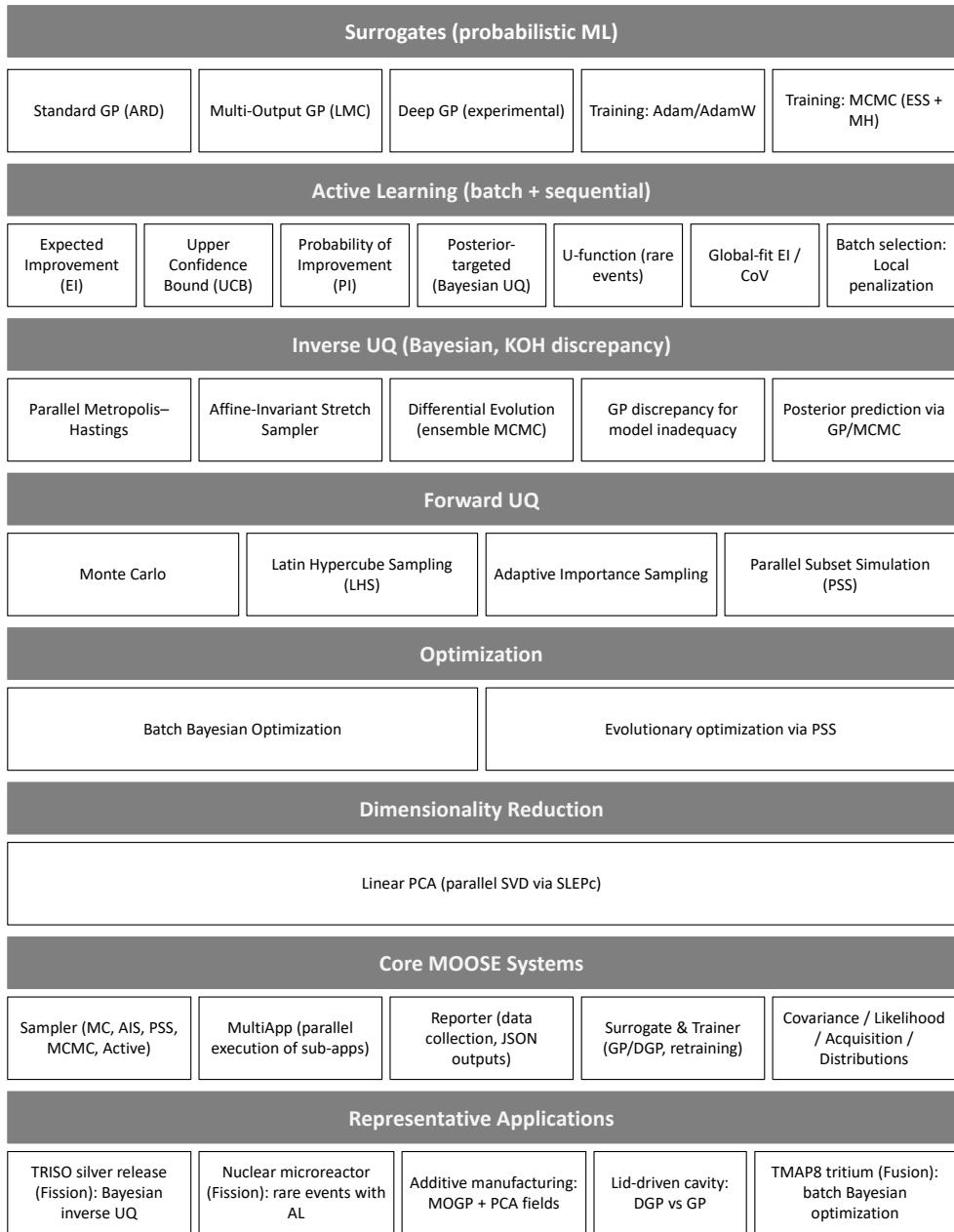


Figure 1: An overview of the probabilistic ML, forward/inverse UQ, active learning, optimization, and dimensionality reduction capabilities in MOOSE and the core MOOSE systems that are utilized for achieving these capabilities. These capabilities are part of the MOOSE framework.

63 **2. Methodology Overview**

64 This section provides a theoretical overview of the probabilistic ML and UQ methods relevant to the
65 MOOSE implementation.

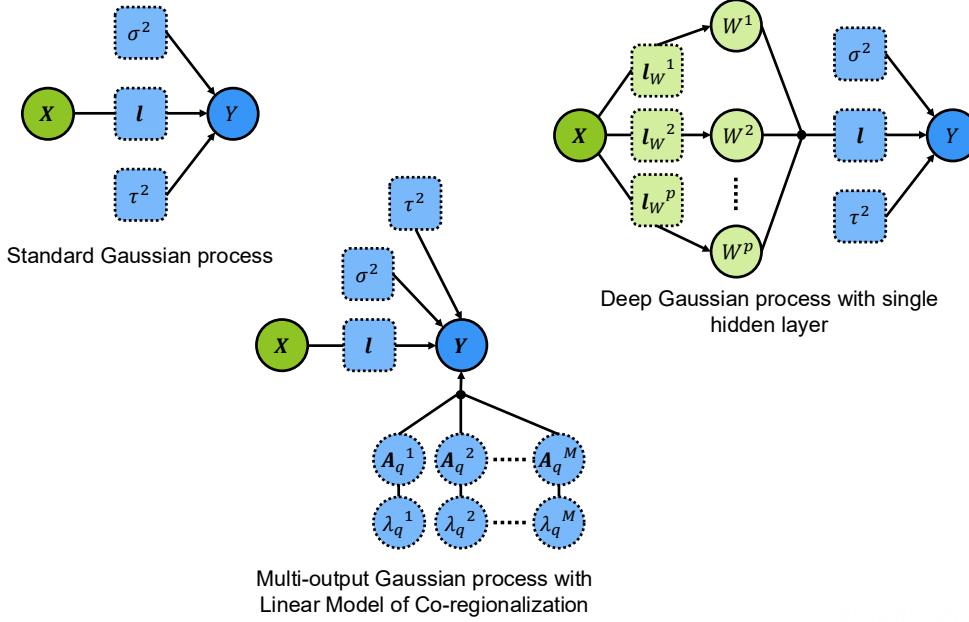


Figure 2: Graphical representation of the input (\mathbf{X}) and output (\mathbf{Y}) mapping of the three GP variants in MOOSE, standard GP, MOGP, and DGP. σ^2 , \mathbf{l} , and τ^2 , respectively, represent the amplitude scale, length scales, and noise variance hyperparameters. \mathbf{A}_q^i and λ_q^i are the additional hyperparameters for an MOGP, and \mathbf{l}_W^i is the additional hyperparameters for a DGP. In MOOSE, these GP variants can be trained via either adaptive moment estimation (Adam) optimization (gradient-based) or MCMC sampling (gradient-free). Here, “gradients” refers to gradients of the log-likelihood objective function.

66 **2.1. Gaussian process variants**

67 Figure 2 presents a graphical representation of the different GP variants in MOOSE. The theoretical de-
68 tails are briefly discussed below. The GP capabilities are used for Bayesian analysis of fission product release
69 in an advanced nuclear fuel (Section 4.1), rare events analysis of a nuclear reactor (Section 4.2), advanced
70 manufacturing process modeling (Section 4.3), predicting fluid flow (Section 4.4), and the optimization of a
71 computational model for nuclear fusion (Section 4.5), as discussed later in this paper.

72 **2.1.1. Standard Gaussian process**

73 A standard GP is a stochastic process in which any finite collection of random variables follows a Gaussian
74 distribution. Essentially, a GP describes a probability distribution over a function space and is discretized
75 at certain points in the input space. A zero-mean GP is described as [17]:

$$\mathbf{y} \sim \mathcal{N}\left(\mathbf{0}, k(\mathbf{X}, \mathbf{X}')\right) \quad (1)$$

76 where \mathbf{y} is the output vector of size N , $k(.,.)$ is the covariance function, and \mathbf{X} is the input matrix of size
77 $N \times D$ (D being the dimensionality of the inputs). As shown in Figure 2, given input vectors \mathbf{x} and \mathbf{x}' , the
78 scalar kernel function is described as:

$$k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp\left(-\frac{1}{2} \sum_{d=1}^D \frac{(x_d - x'_d)^2}{l_d^2} + \tau^2 \mathbf{1}_{\mathbf{x}=\mathbf{x}'}\right) \quad (2)$$

79 where $\mathbf{l} = (l_1, \dots, l_D)$ is the vector of length scales, σ^2 is the amplitude, and τ^2 is the noise term. When
80 each input dimension is associated with its own length scale, the GP fitting procedure is referred to as
81 automatic relevance determination (ARD) [17], which is often used to implicitly determine the relevance of
82 input variables. Note that \mathbf{x} is an input vector and \mathbf{X} is the input matrix at N points. As such, $k(\mathbf{x}, \mathbf{x}')$ is
83 a scalar kernel function and $k(\mathbf{X}, \mathbf{X}')$ is a covariance matrix of size $N \times N$. The parameters $\{\mathbf{l}, \sigma^2, \tau^2\}$ are
84 the hyperparameters to be optimized by maximizing the log-likelihood function:

$$\ln p(\mathbf{y} \mid \mathbf{X}, \sigma^2, \mathbf{l}, \tau^2) \propto -\frac{1}{2} \ln |k(\mathbf{X}, \mathbf{X})| - \frac{1}{2} \mathbf{y}^T k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y} \quad (3)$$

85 where \mathbf{X} and \mathbf{y} are the training inputs and outputs, respectively. Upon optimizing the hyperparameters, as
86 discussed in Section 2.1.4, the predictions of the GP on testing inputs \mathbf{X}_* constitute a Gaussian distribution:

$$p(\mathbf{y}_* \mid \mathbf{X}, \mathbf{X}_*, \mathbf{y}) \sim \mathcal{N} \left(\begin{array}{l} k(\mathbf{X}_*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y}, \\ k(\mathbf{X}_*, \mathbf{X}_*) - k(\mathbf{X}_*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} k(\mathbf{X}, \mathbf{X}_*) \end{array} \right) \quad (4)$$

87 where $p(\mathbf{y}_* \mid \cdot)$ is the probabilistic prediction of the GP with mean vector $k(\mathbf{X}_*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} \mathbf{y}$ and covariance
88 $k(\mathbf{X}_*, \mathbf{X}_*) - k(\mathbf{X}_*, \mathbf{X}) k(\mathbf{X}, \mathbf{X})^{-1} k(\mathbf{X}, \mathbf{X}_*)$.

89 2.1.2. Multi-output Gaussian processes (MOGP)

90 MOGPs model and predict vector outputs of size M . For any input matrix \mathbf{X} , let the matrix of outputs
91 be denoted by $\bar{\mathbf{Y}} = [\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N]^T$. Note that \mathbf{y}_i is of size $M \times 1$ and $\bar{\mathbf{Y}}$ is of size $N \times M$. The matrix $\bar{\mathbf{Y}}$
92 is vectorized and represented as $\hat{\mathbf{y}}$ with size $NM \times 1$. $\hat{\mathbf{y}}$ is modeled with a zero-mean Gaussian distribution
93 prior, defined as:

$$\hat{\mathbf{y}} \sim \mathcal{N}(\hat{\mathbf{0}}, \bar{\mathbf{K}}) \quad (5)$$

94 where $\hat{\mathbf{0}}$ is the mean vector and $\bar{\mathbf{K}}$ is the full covariance matrix. $\bar{\mathbf{K}}$ captures covariances across the input
95 variables and the vector of outputs, and thus has a size of $NM \times NM$. $\bar{\mathbf{K}}$ can be modeled in several different
96 ways, as discussed in [18, 19]. As shown in Figure 2, we will follow the linear model of co-regionalization
97 (LMC), which distinctly models the covariances between the N inputs and the M outputs. Mathematically,
98 the LMC is defined as [18, 20]:

$$\bar{\mathbf{K}} = \sum_{q=1}^Q \bar{\mathbf{B}}_q \otimes \mathbf{K}_q \quad (6)$$

99 where q denotes the basis index, $\bar{\mathbf{B}}_q$ is the outputs covariance matrix of size $M \times M$ for the q^{th} covariate,
100 \mathbf{K}_q is the inputs covariance matrix of size $N \times N$ for the q^{th} covariate, Q is the total number of bases, and
101 \otimes denotes the Kronecker product. $\bar{\mathbf{B}}_q$ is further defined as the sum of two matrices of weight [20]:

$$\bar{\mathbf{B}}_q = \mathbf{A}_q \mathbf{A}_q^T + \text{diag}(\boldsymbol{\lambda}_q) \quad (7)$$

102 where \mathbf{A}_q and $\boldsymbol{\lambda}_q$ are, respectively, the matrix (size $M \times R$) and vector (size $M \times 1$) of hyperparameters,
103 both for the q^{th} basis. The size R is user defined and can be greater than or equal to 1. The larger the
104 R , the more sophisticated the MOGP in modeling complex outputs. Furthermore, the size of Q can also
105 be greater than or equal to 1. Again, the larger the Q , the more sophisticated the MOGP in modeling
106 complex outputs. In total, the MOGP with the LMC output covariance and the squared exponential input
107 covariance kernel will have $Q (D + 1) (M + 1) R$ hyperparameters to be optimized arising from Q basis. If
108 $Q = 1$, the LMC reduces to the intrinsic co-regionalization model, with $(D + 1) (M + 1) R$ hyperparameters
109 to be optimized. The MOGP log-likelihood function has a form similar to that of a scalar GP:

$$\mathcal{L} = -\frac{1}{2} \ln |\bar{\mathbf{K}}| - \frac{1}{2} \hat{\mathbf{y}}^T \bar{\mathbf{K}}^{-1} \hat{\mathbf{y}} - \frac{1}{2} N \ln(2\pi) \quad (8)$$

110 Once the MOGP hyperparameters are optimized, as discussed in Section 2.1.4, probabilistic predictions of
 111 the vector quantities of interest can be made. Given a prediction input \mathbf{x}_* , the probability distribution of
 112 the vector outputs is given by:

$$p(\hat{\mathbf{y}}_* | \mathbf{x}_*, \hat{\mathbf{y}}, \bar{\mathbf{x}}, \boldsymbol{\theta}) = \mathcal{N}(\hat{\boldsymbol{\mu}}_*, \bar{\boldsymbol{\Sigma}}_*) \quad (9)$$

113 where $\bar{\mathbf{x}}$ is the matrix of training inputs, $\hat{\boldsymbol{\mu}}_*$ is the mean vector, and $\bar{\boldsymbol{\Sigma}}_*$ is the covariance matrix. The mean
 114 vector is defined as:

$$\hat{\boldsymbol{\mu}}_* = \bar{\mathbf{K}}_{\hat{\mathbf{y}}_*, \hat{\mathbf{y}}} (\bar{\mathbf{K}}_{\hat{\mathbf{y}}, \hat{\mathbf{y}}})^{-1} \hat{\mathbf{y}} \quad (10)$$

115 where $\bar{\mathbf{K}}_{\hat{\mathbf{y}}_*, \hat{\mathbf{y}}}$ is the full covariance matrix of the training inputs and prediction inputs, and $\bar{\mathbf{K}}_{\hat{\mathbf{y}}, \hat{\mathbf{y}}}$ is the full
 116 covariance matrix of the training inputs. The covariance matrix $\bar{\boldsymbol{\Sigma}}_*$ is defined as:

$$\bar{\boldsymbol{\Sigma}}_* = \bar{\mathbf{K}}_{\hat{\mathbf{y}}_*, \hat{\mathbf{y}}_*} - \bar{\mathbf{K}}_{\hat{\mathbf{y}}_*, \hat{\mathbf{y}}} (\bar{\mathbf{K}}_{\hat{\mathbf{y}}, \hat{\mathbf{y}}})^{-1} \bar{\mathbf{K}}_{\hat{\mathbf{y}}_*, \hat{\mathbf{y}}}^\top \quad (11)$$

117 where $\bar{\mathbf{K}}_{\hat{\mathbf{y}}_*, \hat{\mathbf{y}}_*}$ is the full covariance matrix of the prediction inputs.

118 2.1.3. Deep Gaussian process

119 Standard GPs entail the stationarity assumption, potentially limiting the GP's predictive performance
 120 (e.g., under regime changes in the input/output space). A stationary GP implies that the covariance between
 121 any two points depends only on the distance between them, not on their absolute locations. A DGP was
 122 first introduced by Damianou et al. [21] and Damianou et al. [22] as a means of overcoming this stationarity
 123 assumption. By moving the inputs through hidden Gaussian layers, a DGP achieves non-stationarity even
 124 while using standard kernel functions (e.g., a squared exponential kernel) [23]. Several DGP variants were
 125 proposed based on the optimization procedures used for determining the hyperparameters [24, 25]. Herein,
 126 we rely on the DGP formulation of Sauer et al. [23], who used MCMC for hyperparameter optimization.
 127 Considering a single-hidden-layer DGP (see Figure 2), output y is modeled as GPs over the hidden layer
 128 latents \mathbf{w} , which are themselves modeled as a GP over the input \mathbf{x} . The prior is mathematically described
 129 as:

$$\begin{aligned} y | \mathbf{w} &\sim \mathcal{N}\left(0, k(\mathbf{w}, \mathbf{w}')\right) \\ \mathbf{w} &\sim \mathcal{N}\left(\mathbf{0}, k(\mathbf{x}, \mathbf{x}')\right) \end{aligned} \quad (12)$$

130 Note that, for convenience, the prior is described for a scalar value of the output y corresponding to the
 131 input vector \mathbf{x} . In this case, the latents \mathbf{w} are a vector of size p . Sauer et al. [23] recommends that p be equal
 132 to the size of the input vector. The log-likelihood function is the summation of log-likelihoods describing the
 133 mapping from y to \mathbf{w} and from \mathbf{w} to \mathbf{x} . Given N training inputs, \mathbf{X} , \mathbf{y} , and \mathbf{W} have sizes of $N \times D$, N , and
 134 $N \times p$, respectively. \mathbf{W}^i is the vector of latents for the i^{th} node in the hidden layer, and has dimensionality
 135 N . The compound log-likelihood function is given by:

$$\begin{aligned} \ln p(\mathbf{y} | \mathbf{W}, \sigma^2, \mathbf{l}, \tau^2) &\propto -\frac{1}{2} \ln |k(\mathbf{W}, \mathbf{W})| - \frac{1}{2} \mathbf{y}^\top k(\mathbf{W}, \mathbf{W})^{-1} \mathbf{y} \\ \ln p(\mathbf{W} | \mathbf{X}, \mathbf{l}_W) &\propto \sum_{i=1}^p -\frac{1}{2} \ln |k^i(\mathbf{X}, \mathbf{X})| - \frac{1}{2} (\mathbf{W}^i)^\top k^i(\mathbf{X}, \mathbf{X})^{-1} \mathbf{W}^i \\ \ln p(\mathbf{y} | \mathbf{W}, \sigma^2, \mathbf{X}, \mathbf{l}, \mathbf{l}_W, \tau^2) &= \ln p(\mathbf{y} | \mathbf{W}, \sigma^2, \mathbf{l}, \tau^2) + \ln p(\mathbf{W} | \mathbf{X}, \mathbf{l}_W) \end{aligned} \quad (13)$$

136 The DGP hyperparameters are optimized with respect to the log-likelihood function above, as discussed in
 137 Section 2.1.4. For the testing inputs \mathbf{X}_* , the latents are first predicted per:

$$\begin{aligned} \mu_{w^i}(\mathbf{X}_*) &= k^i(\mathbf{X}_*, \mathbf{X}) k^i(\mathbf{X}, \mathbf{X})^{-1} \mathbf{W}^i \\ \Sigma_{w^i}(\mathbf{X}_*) &= k^i(\mathbf{X}_*, \mathbf{X}_*) - k^i(\mathbf{X}_*, \mathbf{X}) k^i(\mathbf{X}, \mathbf{X})^{-1} k^i(\mathbf{X}, \mathbf{X}_*) \end{aligned} \quad (14)$$

¹³⁸ Note that the index i denotes the node in the hidden layer. Using these latents, the output mean and
¹³⁹ covariance matrix are predicted per:

$$\begin{aligned}\boldsymbol{\mu}_* &= k(\mathbf{W}_*, \mathbf{W}) k(\mathbf{W}, \mathbf{W})^{-1} \mathbf{y} \\ \boldsymbol{\Sigma}_* &= k(\mathbf{W}_*, \mathbf{W}_*) - k(\mathbf{W}_*, \mathbf{W}) k(\mathbf{W}, \mathbf{W})^{-1} k(\mathbf{W}, \mathbf{W}_*)\end{aligned}\quad (15)$$

¹⁴⁰ 2.1.4. *Gradient-based and gradient-free optimization methods for hyperparameter tuning*

¹⁴¹ For gradient-based optimization of the hyperparameters of the GP variants, MOOSE employs adaptive
¹⁴² moment estimation (Adam) [26]. Adam is a stochastic optimization algorithm that permits mini-batch
¹⁴³ sampling during the optimization iterations. In traditional Adam with regularization, the gradient update
¹⁴⁴ and hyperparameter update steps are defined as [26]:

$$\begin{aligned}\mathbf{g}_t &\leftarrow \nabla \mathcal{L}_t(\boldsymbol{\theta}_{t-1}) + \lambda \boldsymbol{\theta}_{t-1} \\ \boldsymbol{\theta}_t &\leftarrow \boldsymbol{\theta}_{t-1} - \eta_t \left(\alpha \hat{\mathbf{m}}_t / (\sqrt{\hat{\mathbf{v}}_t} + \varepsilon) \right)\end{aligned}\quad (16)$$

¹⁴⁵ where t is the iteration, $\boldsymbol{\theta}$ represents the optimizable hyperparameters, \mathbf{g} is the gradient update, λ is the
¹⁴⁶ regularization weight, α and ε are internal parameters of the algorithm, $\hat{\mathbf{m}}$ is the corrected first moment
¹⁴⁷ update, $\hat{\mathbf{v}}$ is the corrected second moment update, and η is the schedule multiplier. Loshchilov et al. [27]
¹⁴⁸ proposed the AdamW algorithm, which modifies how the regularization is performed in Adam, thereby
¹⁴⁹ increasing its optimization performance. AdamW modifies the gradient update and hyperparameter update
¹⁵⁰ steps as follows [27]:

$$\begin{aligned}\mathbf{g}_t &\leftarrow \nabla \mathcal{L}_t(\boldsymbol{\theta}_{t-1}) \\ \boldsymbol{\theta}_t &\leftarrow \boldsymbol{\theta}_{t-1} - \eta_t \left(\alpha \hat{\mathbf{m}}_t / (\sqrt{\hat{\mathbf{v}}_t} + \varepsilon) + \lambda \boldsymbol{\theta}_{t-1} \right)\end{aligned}\quad (17)$$

¹⁵¹ wherein we see that the regularization is decoupled from the gradient update step and instead added to
¹⁵² the hyperparameter update step. Loshchilov et al. [27] found that this decoupling generally enhanced the
¹⁵³ Adam algorithm's performance across the suite of case studies considered.

¹⁵⁴ In MOOSE, gradient-free optimization is also available for tuning the GP hyperparameters, particularly
¹⁵⁵ the DGP. This is based on MCMC sampling via the elliptical slice sampler (ESS) and Metropolis-Hastings
¹⁵⁶ (MH) sampler. ESS is particularly well suited for fields \mathbf{f} with Gaussian priors $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ [28]. A random
¹⁵⁷ angle $\gamma \sim \mathcal{U}(0, 2\pi)$ is drawn with the bounds set to $\gamma_{\min} = \gamma - 2\pi$ and $\gamma_{\max} = \gamma$. A new proposal for \mathbf{f} is
¹⁵⁸ then made with the acceptance rate α , as shown below [28]:

$$\begin{aligned}\mathbf{f}^* &= \mathbf{f}^{t-1} \cos \gamma + \mathbf{f}^{\text{prior}} \sin \gamma \\ \alpha &= \min \left(1, \frac{\mathcal{L}(\mathbf{f}^*)}{\mathcal{L}(\mathbf{f}^{t-1})} \right)\end{aligned}\quad (18)$$

¹⁵⁹ where t is the MCMC iteration index and \mathcal{L} denotes the likelihood function. Crucially, in contrast to the
¹⁶⁰ MH sampler, if the proposal \mathbf{f}^* is rejected, the bounds on γ are shrunk to $\gamma_{\min} = \gamma$ (if $\gamma < 0$) and
¹⁶¹ $\gamma_{\max} = \gamma$ (O.W.). A new proposal for γ is then made using $\mathcal{U}(\gamma_{\min}, \gamma_{\max})$. The procedure is repeated
¹⁶² until the new proposal \mathbf{f}^* is accepted in the current iteration t . For DGPs in particular, Sauer et al. [23]
¹⁶³ proposed a hybrid version of ESS and the MH sampler in order to improve hyperparameter inference, and
¹⁶⁴ this version is implemented in MOOSE. At each MCMC iteration t , the MH sampler is first used to update
¹⁶⁵ the parameters \mathbf{l} , σ^2 , τ^2 , and \mathbf{l}_W^i in sequence, such as in a Gibbs sampling scheme. Then, by conditioning
¹⁶⁶ on these new values, the latents \mathbf{W} are updated using ESS. The updating for iteration t is given by:

$$\begin{aligned}\sigma^2[t], \tau^2[t] &\text{ via MH with } p(\mathbf{y} \mid \mathbf{W}, \sigma^2, \mathbf{l}, \tau^2) \\ \mathbf{l}[t] &\text{ via MH with } p(\mathbf{y} \mid \mathbf{W}, \sigma^2, \mathbf{l}, \tau^2) \\ \mathbf{l}_W^i[t] &\text{ via MH with } p(\mathbf{W} \mid \mathbf{X}, \mathbf{l}_W) \forall i \in \{1, \dots, p\} \\ \mathbf{W}^i[t] &\text{ via ESS with } p(\mathbf{y} \mid \mathbf{W}, \sigma^2, \mathbf{l}, \tau^2) \forall i \in \{1, \dots, p\}\end{aligned}\quad (19)$$

167 Note that the combination of MH and ESS for updating at each MCMC iteration resembles a Gibbs sampling
 168 scheme. Also, $p(\cdot)$ in Equation (19) is used for decision making in either the MH sampler or ESS to
 169 accept/reject a proposed sample.

170 *2.2. Batch acquisition functions for parallelized active learning*

171 MOOSE currently features several acquisition functions for a variety of tasks such as Bayesian optimi-
 172 zation, Bayesian inverse UQ, and global surrogate fitting. These acquisition functions are dependent on
 173 the mean prediction ($\hat{\mu}$) and standard deviation ($\hat{\sigma}$) of the GP variant. Table 1 presents these acquisition
 174 functions and also lists their usage. Note that some of them have a tuning parameter λ whose functionality
 175 depends on the usage. For example, λ serves to boost either exploratory or exploitative behavior for Bayesian
 176 optimization and Bayesian inverse UQ tasks. In contrast, λ is the failure threshold for a rare events analysis
 177 task. Also, for some GP variants such as MOGP, the mean prediction and standard deviation are vector
 178 quantities. In such a case, the computed acquisition function will also be a vector quantity that must be
 179 reduced to a scalar by using operations such as sum, average, maximum, minimum, or product.

Table 1: Acquisition functions in MOOSE for active learning for tasks such as optimization, Bayesian inverse UQ, and global surrogate fitting.

Acquisition function $a(\mathbf{x})$	Mathematical form	Usage
Expected Improvement [29]	$z\Phi(z/\hat{\sigma}) + \hat{\sigma}\phi(z/\hat{\sigma})$	Bayesian optimization
Upper Confidence Bound [30]	$\lambda\hat{\sigma} + \hat{\mu}$	Bayesian optimization
Probability of Improvement [29]	$\Phi((\hat{\mu} - \mathcal{M}(\mathbf{x}^*))/\hat{\sigma})$	Bayesian optimization
Bayesian posterior targeted [31]	$\exp(2\lambda\hat{\mu})(\exp(\hat{\sigma}) - 1)$	Bayesian inverse UQ
U-function [32, 33]	$(\hat{\mu} - \lambda)/\hat{\sigma}$	Rare events analysis
Expected Improvement for Global Fit [34]	$(\hat{\mu} - \mathcal{M}(\mathbf{x}^*))^2 + \hat{\sigma}^2$	Global fitting
Coefficient of variation	$\hat{\sigma}/\hat{\mu}$	Global fitting

ϕ : Gaussian probability density function (PDF), Φ : Gaussian cumulative distribution function (CDF), $\hat{\mu}$: GP variant mean, $\hat{\sigma}$: GP variant standard deviation, \mathcal{M} : Computational model, \mathbf{x}^* : current best point, λ : acquisition function parameter, and $z = \hat{\mu} - \lambda - \mathcal{M}(\mathbf{x}^*)$

180 The acquisition functions listed in Table 1 permit sequential active learning, with one optimal location \mathbf{x}
 181 being specified to run the full-fidelity MOOSE model. However, sequential active learning can incur significant
 182 computational cost, as running the full-fidelity MOOSE model several times in sequence is expensive.
 183 To alleviate this, we used batch versions of the acquisition functions, where b (a user-defined parameter)
 184 optimal locations of the inputs are specified to run the MOOSE model in parallel. For simplicity, we adopted
 185 the local penalization approach proposed by Zhan et al. [35]. In it, a correlation function between two inputs
 186 is first defined as:

$$Corr(\mathbf{x}, \mathbf{x}') = 1 - \exp\left(-\frac{1}{2} \sum_{d=1}^D \frac{(x_d - x'_d)^2}{l_d^2}\right) \quad (20)$$

187 where \mathbf{l} represents the length scales, as obtained through GP hyperparameter optimization. The b optimal
 188 points for running the MOOSE model are defined as:

$$\begin{aligned} \mathbf{x}^1 &= \arg \max_{\mathbf{x}} a(\mathbf{x}) \\ \mathbf{x}^2 &= \arg \max_{\mathbf{x}} a(\mathbf{x}) \text{ } Corr(\mathbf{x}, \mathbf{x}^1) \\ \mathbf{x}^b &= \arg \max_{\mathbf{x}} a(\mathbf{x}) \prod_{i=1}^{b-1} Corr(\mathbf{x}, \mathbf{x}^i) \end{aligned} \quad (21)$$

189 In this manner, we can select b optimal points within each iteration of active learning by performing local
 190 penalization to mitigate any clustering of those points. These b points can be evaluated in parallel by

191 using a MOOSE model, and the GP variant is retrained by appending the input/output data with the new
 192 points. These active learning capabilities are used for Bayesian analysis of fission product release in an
 193 advanced nuclear fuel (Section 4.1), rare events analysis of a nuclear reactor (Section 4.2), and optimizing a
 194 computational model in nuclear fusion (Section 4.5), as discussed later in this paper.

195 *2.3. Inverse sampling and Bayesian inference*

196 For inverse UQ, it is often of interest to calibrate computational models given the experimental data while
 197 quantifying the uncertainties associated with model parameters, model inadequacy (i.e., model structural
 198 error), and experimental noise. Following the Kennedy and O'Hagan framework [36], the experimental data
 199 are defined to have originated from a generative model of the following form assuming independent and
 200 identically distributed experiments:

$$\mathcal{D}(\Theta_i) = \mathcal{M}(\boldsymbol{\theta}, \Theta_i) + \delta(\Theta_i) + \varepsilon \quad (22)$$

where, $\varepsilon \sim \mathcal{L}(\sigma_\varepsilon)$

201 where the i^{th} experimental observation is indicated to be the model prediction plus a model inadequacy
 202 term (δ), plus a correction factor (ε) to account for noise in the experimental data. In Equation (22), \mathcal{M} is
 203 the computational model, $\boldsymbol{\theta}$ are the model parameters, and Θ is the experimental configuration. The model
 204 inadequacy term is traditionally modeled with a standard GP, as further discussed in Section 2.1.1. The
 205 correction factor is treated as a random variable that follows a probability distribution generically defined
 206 as \mathcal{L} , and whose scale is σ_ε and mean is 0. \mathcal{L} is the likelihood function that evaluates the adequacy of the
 207 model predictions against the experimental data for a given $\boldsymbol{\theta}$ and σ_ε :

$$\mathcal{L}(\boldsymbol{\theta}, \sigma_\varepsilon | \Theta, \mathcal{M}, \mathcal{D}) = \prod_{i=1}^N \mathcal{L}(\boldsymbol{\theta}, \sigma_\varepsilon | \Theta_i, \mathcal{M}, \mathcal{D}_i) \quad (23)$$

208 where the term within the product sign is specific to a given experimental configuration, and the product
 209 sign itself indicates that the experiments are independent and identically distributed. Specifically, under the
 210 Gaussian assumption, the likelihood function becomes:

$$\mathcal{L}(\boldsymbol{\theta}, \sigma_\varepsilon | \Theta, \mathcal{M}, \mathcal{D}) = \prod_{i=1}^N \mathcal{N}(\mathcal{D}(\Theta_i) - \mathcal{M}(\boldsymbol{\theta}, \Theta_i) - \delta(\Theta_i), \sigma_\varepsilon) \quad (24)$$

211 With the likelihood function defined, the Bayesian inference problem entails quantifying the posterior dis-
 212 tribution of $\{\boldsymbol{\theta}, \sigma_\varepsilon\}$ [36, 37, 38, 39, 40]:

$$f(\boldsymbol{\theta}, \sigma_\varepsilon | \Theta, \mathcal{M}, \mathcal{D}) \propto \mathcal{L}(\boldsymbol{\theta}, \sigma_\varepsilon | \Theta, \mathcal{M}, \mathcal{D}) f(\boldsymbol{\theta}, \sigma_\varepsilon) \quad (25)$$

213 where $f(\boldsymbol{\theta}, \sigma_\varepsilon)$ defines the prior distribution before observing new experimental data. The proportionality
 214 constant in Equation (25) is a multidimensional integration over $\{\boldsymbol{\theta}, \sigma_\varepsilon\}$ and is typically unknown. Thus,
 215 MCMC techniques are traditionally used to solve the Bayesian inverse problem.

216 MCMC techniques, widely regarded as the gold standard for solving the Bayesian inference problem,
 217 involve drawing samples from the posterior distribution described by Equation (25). Use of an MCMC
 218 sampler in practice is presented in Figure 3a. We start from an arbitrary realization of $\{\boldsymbol{\theta}, \sigma\}$ and propose
 219 a new sample. The proposal can rely on the proposal distribution if the MCMC sampler falls under the
 220 MH class. Otherwise, it can be implicitly defined without requiring a proposal distribution, as in the case
 221 of an ensemble MCMC sampler [41, 42]. In any case, the computational model is then evaluated for the
 222 newly proposed $\{\boldsymbol{\theta}, \sigma\}$. Using the computational model output, the likelihood function is evaluated and
 223 the transition probability with respect to the old sample is computed. The new proposal is accepted with
 224 probability t_{xy} . Repeating the process of making a new proposal, evaluating the computational model and
 225 the likelihood function, and accepting/rejecting the proposal a sufficient number of times will give us the
 226 samples from the required posterior distribution.

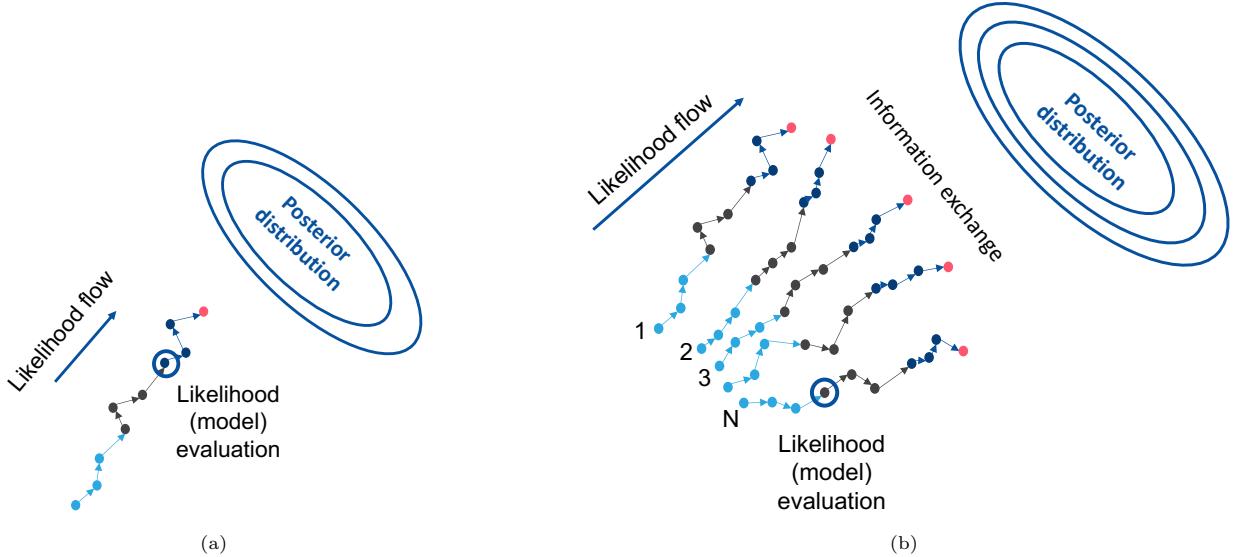


Figure 3: (a) Serial and (b) parallel/ensemble MCMC methods for obtaining samples from the posterior distribution. In comparison to serial MCMC samplers, parallel/ensemble MCMC samplers usually accelerate convergence to the posterior distribution.

This version of the MCMC sampler is serial in nature. Thus, it can take a significant number of serial steps to reach convergence, entailing many serial evaluations of the computational model. As this can be very expensive in practice, we will discuss parallelizable MCMC samplers that have multiple parallel Markov chains. Figure 3b presents the working principle behind parallel MCMC samplers, which is similar to that of a serial MCMC sampler. At each step, P parallel proposals are made, then the computational model corresponding to each proposal is evaluated. Since these model evaluations are independent of each other, they can be parallelized. The outputs are then used to compute the likelihood functions, and the Markov chains exchange information with each other to determine the next-best set of P parallel proposals. The manner in which information exchange between chains is formulated differentiates the parallel MCMC samplers. Calderhead [43] proposed a parallelized version of the MH class of samplers. Goodman and Weare [42] proposed a version of ensemble MCMC based on the affine invariance property, whereas Braak [41] proposed one based on differential evolution optimization [44]. All these parallel MCMC variants are available in MOOSE. Interested readers are referred to [43, 42, 41, 45] for the corresponding mathematical details.

In addition to being massively parallelizable, parallel/ensemble samplers have been shown to accelerate convergence to the posterior, in comparison to the serial MCMC samplers. Studies such as Laloy and Vrugt [46], Foreman-Mackey et al. [47], and Opara and Arabas [48] discuss the convergence of MCMC samplers with the aid of metrics such as the Gelman-Rubin diagnostic [49] and the effective sample size.

For any new experimental configuration $\hat{\Theta}$, the posterior predictive distribution is:

$$f(\mathcal{M}(\hat{\Theta}, \boldsymbol{\theta}) | \boldsymbol{\Theta}, \mathcal{D}) = \int_{\sigma_\varepsilon} \int_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \sigma_\varepsilon | \boldsymbol{\Theta}, \mathcal{M}, \mathcal{D}) f(\boldsymbol{\theta}, \sigma_\varepsilon | \boldsymbol{\Theta}, \mathcal{M}, \mathcal{D}) d\boldsymbol{\theta} d\sigma_\varepsilon \quad (26)$$

where $\mathcal{L}(\boldsymbol{\theta}, \sigma_\varepsilon | \boldsymbol{\Theta}, \mathcal{M}, \mathcal{D})$ has the same form as in Equation (23). From the probability distribution of the model prediction described in Equation (26), statistics such as the median prediction and confidence bands can be inferred. This requires forward sampling techniques, discussed next. The inverse UQ capabilities are used for Bayesian analysis of fission product release in an advanced nuclear fuel (Section 4.1), as discussed later in this paper.

251 *2.4. Forward sampling*

252 Forward sampling methods sample from a known probability distribution $q(\mathbf{x})$. Traditional methods such
 253 as Monte Carlo sampling and Latin hypercube sampling (LHS) are available in MOOSE. When estimating
 254 certain statistics, Monte Carlo and LHS may require numerous evaluations of the model \mathcal{M} , thus becoming
 255 computationally intractable. There may also be cases in which directly drawing samples from the distribution
 256 $q(\mathbf{x})$ is infeasible. Importance sampling addresses these concerns by sampling from an importance density
 257 $f(\mathbf{x})$. The mean estimator of the quantity of interest $\mathcal{Q}(\mathcal{M}(\mathbf{x}))$ is then computed via the modified equation
 258 [50]:

$$\hat{\mathcal{Q}} = \frac{1}{S} \sum_{i=1}^S \mathcal{Q}(\mathcal{M}(\mathbf{x}_i)) \frac{q(\mathbf{x}_i)}{f(\mathbf{x}_i)} \quad (27)$$

259 where S is the number of samples drawn from the importance density $f(\mathbf{x})$. The variance of the estimator
 260 is computed per [50]:

$$\text{Var}(\hat{\mathcal{Q}}) = \frac{1}{S} \left\{ \frac{1}{S} \sum_{i=1}^S \left[\mathcal{Q}(\mathcal{M}(\mathbf{x}_i)) \frac{q(\mathbf{x}_i)}{f(\mathbf{x}_i)} \right]^2 - \hat{\mathcal{Q}}^2 \right\} \quad (28)$$

261 A crucial component of importance sampling is the creation of importance density $f(\mathbf{x})$. To estimate rare
 262 events, MCMC is a popular approach for creating $f(\mathbf{x})$ by using an adaptive importance sampling scheme
 263 [51, 52, 53]. For other applications, methods that use control variates [54], multilevel Monte Carlo [55], and
 264 multifidelity modeling [56] have also been proposed to create $f(\mathbf{x})$.

265 For more complex forward UQ applications such as global optimization and very rare events analysis,
 266 MOOSE also features a parallel subset simulation sampler [57, 58]. This is a variant of the sequential Monte
 267 Carlo sampler [59], with the goal being to sample from the failure or the optimal region. Subset simulation
 268 creates a series of intermediate thresholds—representing the suboptimal regions—that incrementally draw
 269 nearer to the optimal region. The method begins with regular Monte Carlo sampling for N samples. The
 270 top $p_o \in [0, 1]$ samples are then selected in light of the quantity of interest $\mathcal{Q}(\mathcal{M}(\mathbf{x}))$. Using these p_o
 271 samples, Markov chains are initiated such that they propagate toward the optimal region and not in the
 272 other direction. If there are N_M Markov chains, each is evaluated $\text{int}(N/N_M)$ times to obtain N samples
 273 from this intermediate suboptimal region. The process of selecting the top p_o samples from this intermediate
 274 region and initiating the Markov chains is repeated until convergence is achieved. As tens or hundreds of
 275 Markov chains are propagated in each subset, these and the corresponding MOOSE model evaluations can
 276 be massively parallelized. Note that parallelization can only be achieved across all the Markov chains, and
 277 not within the individual chains. More advanced versions of subset simulation have been proposed with
 278 respect to aspects such as the dynamic/adaptive intermediate thresholds [59, 60] and the MCMC samplers
 279 [61, 62, 63]. Building on the subset simulation sampler, other variants of this method—or of sequential
 280 Monte Carlo samplers in general—can be implemented in MOOSE at some point in the future. The forward
 281 UQ capabilities are used for rare events analysis of a nuclear reactor (Section 4.2), as discussed later in this
 282 paper.

283 *2.5. Dimensionality reduction*

284 MOOSE stochastic tools module supports linear principal component analysis (PCA), a dimensionality
 285 reduction technique widely used across multiple scientific disciplines [64]. Linear PCA can be used to
 286 determine a lower-dimensional space (latent space) that is closest to the given data in a discrete L^2 norm.
 287 Let $\mathbf{s} \in \mathbb{R}^N$ be a high-dimensional vector (N is large) representing the high-dimensional solution fields from
 288 numerical solvers in MOOSE. To discover a low-dimensional latent space by using PCA, we collect snapshots
 289 of the solution fields and organize them into a snapshot matrix $\mathbf{S} = [\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_{N_s}]$. For discrete problems
 290 such as the one presented here, singular value decomposition (SVD) is performed for a linear PCA analysis.
 291 Therefore, we can obtain the principal components of the snapshots (basis functions of the latent space) by
 292 computing the SVD of the snapshot matrix:

$$\mathbf{S} = \mathbf{U}\Sigma\mathbf{V}^T \quad (29)$$

293 where matrices \mathbf{U} and \mathbf{V} are unitary and contain the left and right singular vectors, respectively, whereas
 294 diagonal matrix Σ contains the singular values. MOOSE relies on the parallel SVD solvers through the aid
 295 of SLEPc [65], enabling it to efficiently compress very high-dimensional output fields. The columns of \mathbf{U} are
 296 also called principal components, and can be used to approximate the high-dimensional snapshots per:

$$\mathbf{s} \approx \mathbf{U}_r \mathbf{c}_r \quad (30)$$

297 where $\mathbf{c}_r \in \mathbb{R}^r$ contains the expansion coefficients or coordinates in the lower-dimensional latent space, while
 298 matrix \mathbf{U}_r contains the first r principal components. The columns of \mathbf{U}_r span the closest r -dimensional
 299 subspace to the snapshots in \mathbf{S} . Based on this expression and the fact that the principal components are
 300 orthonormal, we can map the snapshots to the latent space via the following operation:

$$\mathbf{c}_r = \mathbf{U}_r^T \mathbf{s} \quad (31)$$

301 To determine the necessary number of principal components, (i.e., r) an explained variation-based approach
 302 is utilized that relies on the the singular values (σ_i) located on the diagonal of matrix Σ :

$$r = \arg \min_{1 \leq r \leq N_s} \left(1 - \frac{\sum_{i=1}^r \sigma_i^2}{\sum_{i=1}^{N_s} \sigma_i^2} \right) < \tau \quad (32)$$

303 The above metric selects r so that the relative sum of the squared singular values from r to N_s is lower than
 304 a given number $\tau \in (0, 1]$. The dimensionality reduction capabilities are used for advanced manufacturing
 305 process modeling (Section 4.3), as discussed later in this paper.

306 3. MOOSE Code Implementations

307 3.1. Background on the MOOSE Stochastic Tools Module

308 The MOOSE stochastic tools module aims to efficiently and scalably sample parameters, run multiphysics
 309 models, and perform stochastic analyses, including UQ, sensitivity analysis, and surrogate model generation.
 310 In Slaughter et al. [11], a more comprehensive and general overview of the module is presented. The following
 311 subsections describe the MOOSE systems relevant to the probabilistic ML and UQ techniques focused on
 312 in this paper.

313 3.1.1. Samplers system

314 The Samplers system represents a class of objects responsible for generating random samples. MOOSE
 315 provides a variety of objects for specific sampling strategies, including MonteCarlo and LatinHypercube
 316 for basic random sampling, Quadrature for sparse quadrature sampling, AdaptiveImportance and
 317 ParallelSubsetSimulation for MC-based forward-UQ sampling, and various objects for MC-based
 318 inverse-UQ sampling. For adaptive sampling schemes (e.g., MC-based sampling), these objects can gather
 319 data from associated objects so as to determine subsequent sets of samples—for instance, gathering whether
 320 or not a sample was rejected or accepted in the chain. Samplers also define how the multiphysics runs are
 321 parallelized. Typically, the number of parallel runs and the number of processors needed for each run are
 322 determined programmatically, though there are input parameters that allow for user control.

323 *3.1.2. MultiApps system*

324 MultiApps is a framework-level system in MOOSE that enables instantiation of independent simulations
325 [66]. MOOSE utilizes this system to run multiphysics simulations during stochastic sampling and to gather
326 the results. In particular, it leverages the flexibility in distributing simulations across processors, making the
327 stochastic simulations both extremely scalable and memory efficient. This parallelism works on two fronts:
328 sample parallelism and model parallelism. Sample parallelism involves distributing the concurrent simulations
329 evenly across the available processors—possibly leaving multiple processors per simulation. Model
330 parallelism is supported by distributed memory parallelism (with MPI) and shared memory parallelism
331 (with OpenMP). This interplay between sample and model parallelism is customizable within MOOSE to
332 help with memory consumption for larger models. Further details on the distribution of MultiApps for
333 MOOSE are presented in Slaughter et al. [11]. GPU-based parallelism for model parallelism is currently
334 under development. However, MOOSE can be configured and compiled with Libtorch, the C++ frontend of
335 PyTorch [67, 68]. Libtorch modules within MOOSE can already harness the GPU acceleration for Libtorch
336 model evaluations, model training, and tensor manipulations.

337 *3.1.3. Reporters system*

338 The MOOSE Reporters system provides an interface for declaring, manipulating, and gathering global
339 data in a given application. MOOSE primarily utilizes this system to store data from MultiApps runs
340 during the stochastic simulation. Reporter objects also handle heterogeneous storage of the data, keeping
341 data distributed for memory efficiency and homogenizing them when necessary. Reporters is also the
342 primary strategy for outputting data such as UQ results, typically in the form of JSON files.

343 *3.1.4. Surrogates system*

344 The Surrogates system in MOOSE provides the capability to train and evaluate meta-models. Trainers
345 are responsible for gathering parameter values from Samplers and responses from Reporters to com-
346 pute the necessary data for model generation. These data can be declared globally or output for later use.
347 Surrogates then takes the trained model and provides an interface for evaluating it. Specified Trainers
348 and Surrogates are accessible from any MOOSE object in order to either evaluate the model based on
349 specific parameters or retrain them on-the-fly. All the GP variants are built using the Surrogates system.
350 While not directly relevant to probabilistic ML, MOOSE also has support for other types of surrogates
351 such as polynomial chaos, polynomial, and proper orthogonal decomposition reduced basis. Importantly,
352 MOOSE can be configured and compiled with Libtorch, the C++ frontend of PyTorch [67, 68]. This means
353 more complex surrogates like neural networks can either be trained natively in MOOSE or be imported from
354 Python/PyTorch via TorchScript.

355 *3.2. Modularity: understanding the Sampler, MultiApp, Reporter, and Surrogate interaction*

356 The Sampler, MultiApp, Reporter, and Surrogate systems in MOOSE afford extensive modularity
357 and enable development of many variants of active learning, forward/inverse UQ, and Bayesian optimization
358 algorithms. Moreover, these algorithms can be implemented in an inherently parallel manner by calling sev-
359 eral instances of the computational MOOSE model in parallel, using the MultiApp system. Understanding
360 how the Sampler, MultiApp, Reporter, and Surrogate systems interact with each other—as well as
361 their order of execution within MOOSE—is key to implementing these algorithms. This section discusses
362 the interaction between these systems.

363 For the sake of simplicity, the interaction among Sampler, MultiApp, and Reporter is discussed
364 first. Sampler proposes new samples from the underlying probability distributions, using objects in the
365 Distributions system. These proposed samples are stored in a global array, with the rows containing
366 the samples to be executed in parallel and the columns representing the parameters to the computational
367 model. The numerical simulations corresponding to the proposed samples are automatically executed in
368 parallel, if the user desires, via the MultiApp system. Upon execution, the simulation outputs are received
369 by the Reporter system and stored in a JSON file. Under simple schemes such as Monte Carlo or LHS,
370 the Reporter system only outputs the simulation results and the Sampler system then moves on to

371 propose the next batch of samples, without any influence from the previously proposed samples or their
 372 simulation outcomes. In schemes such as adaptive Monte Carlo and MCMC, the Reporter system plays
 373 a more crucial role of influencing the next batch of samples proposed by the Sampler system, depending
 374 upon the simulation outcomes of the previously proposed batch of samples. Several adaptive Monte Carlo
 375 and MCMC algorithms such as adaptive importance sampling and parallel subset simulation for forward
 376 UQ and parallel MH, and ensemble MCMC for inverse UQ, fit well within the Sampler, MultiApp, and
 377 Reporter interaction scheme in MOOSE. For Bayesian inverse UQ problems, the Sampler system per-
 378 forms the additional function of collecting the user-supplied experimental configuration data and combining
 379 them with the proposed samples of model parameters by creating combinations of these parameters and
 380 experimental configurations. Owing to the inherent parallelization via the MultiApp system, algorithms
 381 such as parallel subset simulation, parallel MH, and ensemble MCMC, which rely on multiple Markov chains,
 382 can be massively parallelized in terms of the computational model calls. Figure 4 presents the Sampler,
 383 MultiApp, and Reporter system interaction flowchart, along with several objects available in MOOSE
 384 for forward and inverse UQ applications.

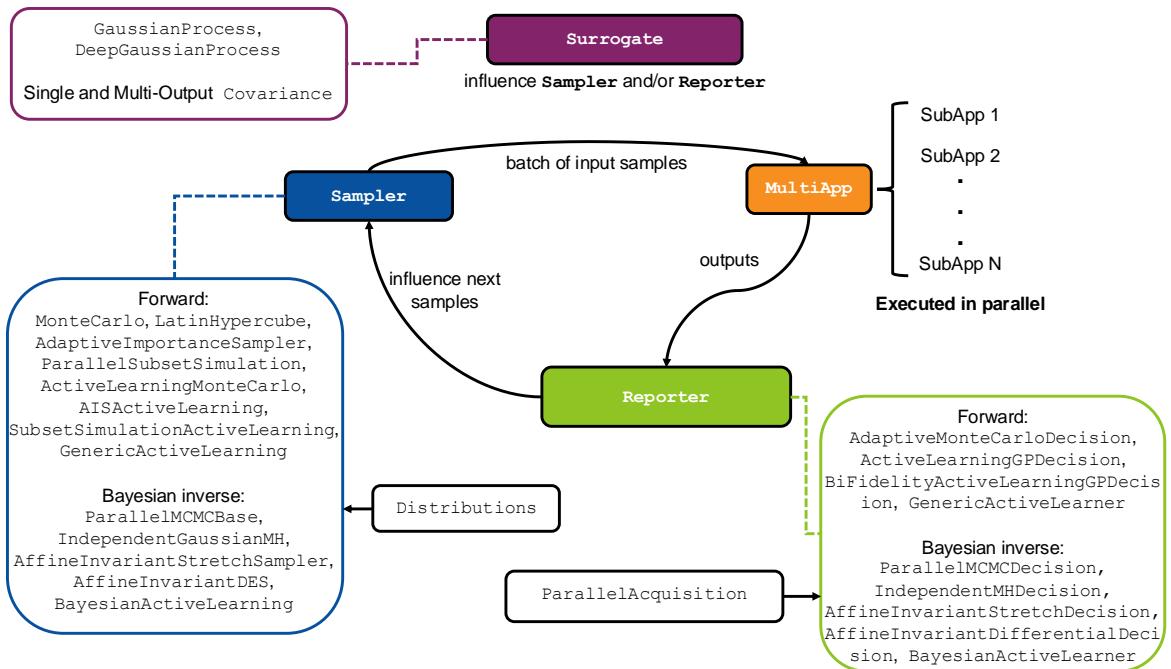


Figure 4: Sampler, MultiApp, Reporter, and Surrogate system interaction in MOOSE for performing parallel active learning. The available objects deriving off of Sampler and Reporter are also shown in regard to supporting tasks such as forward/inverse UQ, Bayesian optimization, and active learning with different GP variants.

385 Next, we will discuss the Surrogate system's influence on the interaction among the Sampler,
 386 MultiApp, and Reporter systems. Training, evaluation, and active/online learning of the GP variants in
 387 MOOSE are handled by Surrogate and Trainer. The Surrogate system can be easily coupled to the
 388 Reporter system to influence its behavior and/or that of the Sampler system. For example, in parallel ac-
 389 tive learning tasks such as forward/inverse UQ and Bayesian optimization, the GP surrogate variant, based
 390 on its predictive uncertainties and the acquisition function values, tells the Sampler system the best sets
 391 of input parameters under which to call the MOOSE computational model during the next iteration. After
 392 evaluating the computational model, in parallel, the outputs will be obtained by the Reporter system,
 393 which retrains the GP variant with the appended new data. The Reporter system will then query the
 394 acquisition function about the next-best sets of input parameters, and this process repeats until reaching
 395 a user-specified number of outer iterations. GaussianProcess and DeepGaussianProcess surrogates

396 are currently derivable off of the Surrogate system. Both rely on the Covariance system to set up
397 the training data input/output covariances (output covariances are only required for the MOGP surrogate).
398 They also rely on the GaussianProcess class, which handles the training and retraining by using the
399 gradient-based Adam algorithm or gradient-free MCMC sampling. Here, “gradients” refers to gradients of
400 the log-likelihood function of the GP variant. Figure 4 indicates how the Surrogate system influences the
401 interaction among Sampler, MultiApp, and Reporter, and supports parallelized active learning. More-
402 over, a pre-trained GP surrogate variant saved as an .rd (restartable data) file can be loaded and evaluated
403 by using a combination of user-specified Sampler and Reporter objects, without calling the MOOSE
404 computational model.

405 *3.3. Example implementation of parallelized active learning*

406 An example implementation of parallel active learning capabilities in MOOSE—via leveraging the Sampler,
407 MultiApp, Reporter, and Surrogate interaction—will now be discussed for Bayesian UQ and Bayesian
408 optimization applications. Figure 5a presents the MOOSE objects and their dependencies. This schematic
409 is comprised of the following main components:

410 • **GenericActiveLearningSampler/BayesianActiveLearningSampler:**

411 GenericActiveLearningSampler creates a large population of input samples at each iteration,
412 and this is retrieved by the Reporter object to facilitate optimization of the acquisition function.
413 Importantly, this object also facilitates evaluation of the computational model via the MultiApp sys-
414 tem for a best batch of inputs, as informed by the GP model. BayesianActiveLearningSampler
415 derives from GenericActiveLearningSampler and is tailored for Bayesian UQ applications such
416 that it considers the experimental configurations. Specifically, before sending the inputs to the
417 MultiApp system, BayesianActiveLearningSampler combines them with the experimental con-
418 figurations.

419 • **GenericActiveLearner/BayesianActiveLearner:**

420 GenericActiveLearner optimizes the acquisition function via the GaussianProcess surrogate
421 and selects the next-best set of inputs to the Sampler object. The acquisition function is opti-
422 mized by selecting the best P inputs from among the large population of samples created earlier in
423 the iteration by the GenericActiveLearningSampler. BayesianActiveLearner derives from
424 GenericActiveLearner to compute the log-likelihood function, which serves as the training/re-
425 training data for the GP for Bayesian UQ applications.

426 • **Support objects:** CovarianceFunctionBase constructs covariances for the GP object, based on
427 the kernel specified by the user. LikelihoodFunctionBase evaluates the likelihood function, given
428 inputs and model outputs based on the user-specified distribution. AcquisitionFunctionBase
429 computes the acquisition function specified by the user and performs local penalization when selecting
430 the best P input samples.

431 GenericActiveLearningSampler and GenericActiveLearner can readily perform batch Bayesian
432 optimization for maximizing a user-defined objective evaluated via a MOOSE computational model. For
433 Bayesian UQ, BayesianActiveLearningSampler and BayesianActiveLearner train a GP model
434 by prioritizing regions of high log-likelihood via the Bayesian posterior targeted acquisition function detailed
435 in Table 1. The trained GP model is saved as an .rd file. This will be used in conjunction with MCMC objects
436 such as the `AffineInvariantDifferentialEvolution` sampler `GPDifferentialEvolutionDecision`
437 reporter for sampling from the posterior distribution. Doing so circumvents evaluation of the MOOSE com-
438 putational model, since the trained GP model will directly predict the log-likelihood values during forward
439 evaluation. The flowchart in Figure 5b details the use of an actively trained GP model for sampling from
440 the posterior distribution.

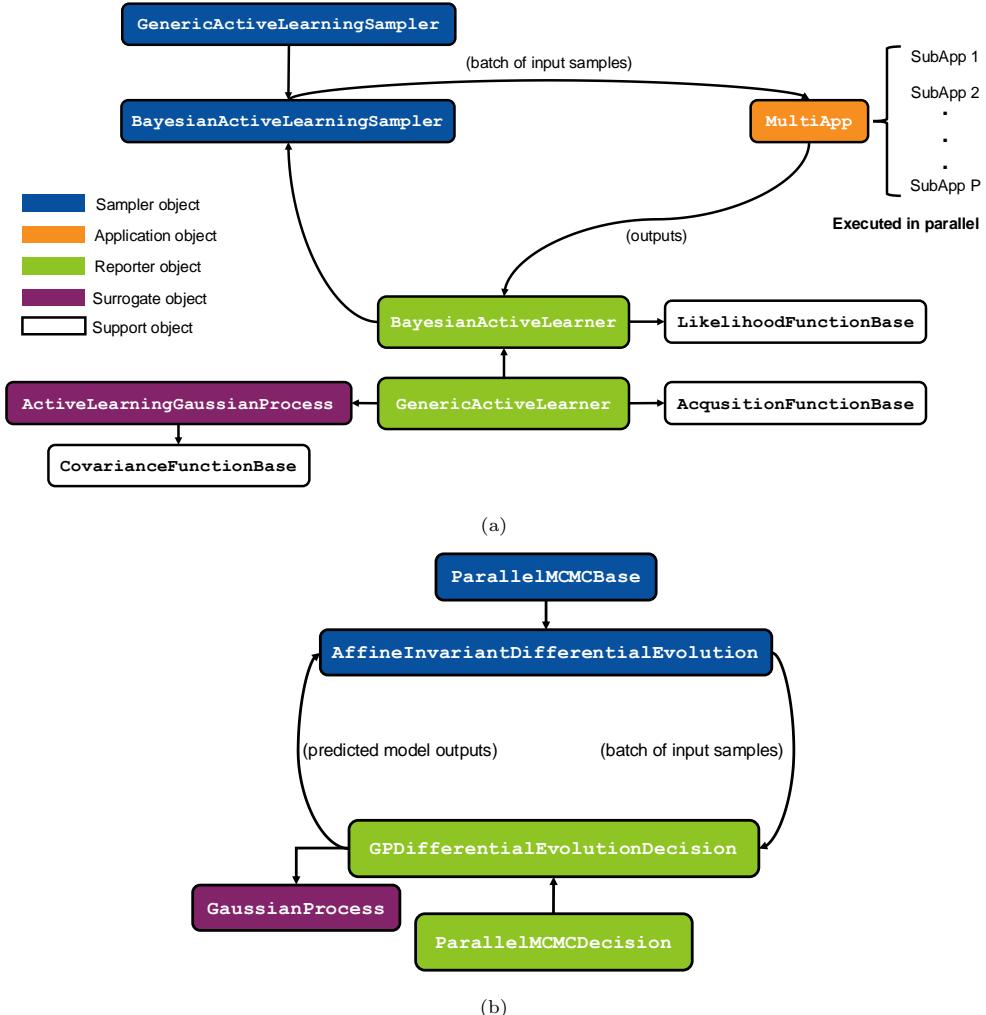


Figure 5: (a) MOOSE objects and their dependencies for performing parallel active learning for Bayesian optimization and Bayesian UQ applications by leveraging the Sampler, MultiApp, Reporter, and Surrogate interaction. Note that the combination of `GenericActiveLearningSampler` and `GenericActiveLearner` performs Bayesian optimization. `BayesianActiveLearningSampler` and `BayesianActiveLearner` are derived objects for Bayesian UQ, and they consider the experimental configurations and likelihood functions supplied by the user. For Bayesian UQ, the actively trained GP prioritizes regions of high log-likelihood and is saved as an .rd file. (b) Evaluation phase of the actively trained GP for Bayesian UQ by leveraging the MCMC sampling objects; specifically, the `AffineInvariantDifferentialEvolution` for proposing new samples and the `GPDifferentialEvolutionDecision` for decision-making. Here, the GP model directly predicts the log-likelihood values under different input parameters and experimental configurations, thus circumventing evaluation of the computational MOOSE model.

441 3.4. A note on parallel scalability

442 Many of the discussed capabilities in MOOSE rely on generating samples of model parameters from
443 distributions and executing the sub-applications (i.e., model evaluations) in parallel. To this end, MOOSE
444 features three modes for parallelization: (1) normal mode creates one sub-application per row of data
445 (i.e., one realization of the parameters) supplied by the Sampler object; (2) batch-reset mode creates
446 N sub-applications, where the sub-applications are destroyed and re-created (on the same existing MPI
447 communicator) for each row of data supplied by the Sampler object; and (3) batch-restore mode
448 creates N sub-applications, where the sub-application is backed up after initialization and for each row of

449 data supplied by the Sampler object the sub-application is restored to the initial state prior to execution.
450 Here, N is $\min(n_{\text{rows}}, \text{floor}(\frac{n_{\text{proc}}}{n_{\text{min}}}))$, where n_{rows} is the number of rows in the Sampler object, n_{proc} is the
451 number of processors, and n_{min} is the minimum number of processors per sub-application specified by the
452 user. More information can be found here: MOOSE Stochastic Tools Batch Mode.

453 Embarrassing parallelizability depends on two factors, the computational overhead and the parallelizability
454 of the algorithms themselves. The computational overhead indeed increases with the number of parallel
455 calls to the model and this overhead depends upon the model and the physics involved. However, we found
456 for our practical applications that this overhead is minimal compared to the time it takes to evaluate the
457 model itself. Sampling methods like Monte Carlo and Latin Hypercube are embarrassingly parallel by principle.
458 Adaptive methods like the PSS and parallel MCMC can be parallelized to a certain extent. For example, the PSS
459 method can only be parallelized across the Markov chains but not within each chain. This creates a limit for
460 parallelization after which adding more processors can only further speed up the model evaluations but not the
461 PSS method itself; for more information, interested readers are referred to Figure 8 in Dhulipala et al. [50]. MCMC
462 methods for Bayesian inversion are parallelizable across the Markov chains and also the experimental
463 configurations. However, after each iteration, all the MCMC chains in the implemented methods have to
464 exchange information to decide their flow in the next iteration. Interested readers are referred to Figure 23 in
465 Dhulipala et al. [69]. Parallelizability of the parallel active and batch Bayesian optimization methods is controlled
466 by the user specified batch size which controls the number of model evaluations at each outer iteration.
467

468 4. Application Demonstrations

469 Most of the application demonstrations are run on the Sawtooth high-performance computing cluster at
470 the Idaho National Laboratory. This cluster has 2052 compute nodes each with 2 Intel Xeon 8268 CPUs,
471 Cascade Lake Platinum chipset, 24 cores per CPU, 192GB of RAM, and Mellanox Infiniband EDR for inter-
472 node communication. It also features 27 nodes each with 2 Intel Xeon 8268 CPUs, Cascade Lake Platinum
473 chipset, 24 cores per CPU, 384GB of RAM, Mellanox Infiniband EDR for inter-node communication, and 4
474 NVidia Tesla V100 32 GPUs.

475 4.1. Parallel active learning for Bayesian inverse UQ of TRISO nuclear fuel fission product release

476 This section uses the active learning with GP and forward UQ capabilities discussed in Sections 2.2 and
477 2.3, respectively.

478 Tristructural isotropic (TRISO) particle fuel is proposed for use in advanced reactors because of its high
479 temperature resistance. Its protective layers are intended to encapsulate the fission products, which these
480 reactor designs are based on. Thus, it is critical to assess the predictive uncertainties in the TRISO fission
481 product release model. To this end, inverse UQ of the TRISO fission product release model is necessary to
482 quantify the uncertainties due to model parameters, model inadequacy, and experimental noise. A 25-mm-
483 long, 6-mm-radius cylindrical fuel compact can contain approximately 10,000–15,000 TRISO particles, each
484 with a radius of around 375–430 μm [70]. Each TRISO particle has several protective layers around the fuel
485 kernel—namely, the buffer, inner pyrolytic carbon (PyC), silicon carbide, and outer PyC layers.

486 **Fission products**, particularly silver release, are modeled using the BISON fuel performance code [2, 71],
487 which is a MOOSE-based application. The diffusion process of fission products in TRISO particles requires
488 computation of the fuel temperature (if not prescribed), temperature-dependent diffusion coefficients, source
489 rates for the fission products, and the particle geometry. Material models were developed in BISON for each
490 type of material in the TRISO particles: the buffer, the PyC layers, the silicon carbide layer, and the fuel
491 kernel. Fission product diffusion is governed by the Fickian diffusion equation, wherein the diffusivity of
492 the fission products is in units of m^2/s , and is normally estimated via an effective diffusivity defined per
493 an Arrhenius law. See [2, 71] for further details on the modeling using BISON. The values for the pre-
494 exponential factor D_i and activation energy Q_i in the Arrhenius equation for the different TRISO layers
495 are usually calibrated from existing experimental data. A sensitivity analysis conducted in Dhulipala et al.
496 [69] concluded that the pre-exponential factors of the fuel kernel and PyC layer are, in comparison to the

497 other model parameters, unimportant in predicting fractional silver release, which is the fission product of
498 interest herein. Hence, the parameter space of interest is $\boldsymbol{\theta} = \{Q_{kernel}, Q_{ipyc}, D_{sic}, Q_{sic}\}$ when considering
499 the Arrhenius equation for silver diffusivity.

500 **Experimental datasets** on the observed silver release from TRISO particles are available from the De-
501 partment of Energy Advanced Gas Reactor program. This enables inverse calibration and UQ of the TRISO
502 model parameter space. At the same time, it is also of interest to quantify the predictive uncertainty associ-
503 ated with model inadequacy and experimental noise. We used the massively parallel MCMC samplers and
504 parallelizable active learning in MOOSE to inversely quantify the model parameters $\boldsymbol{\theta}$ and the sigma term
505 (model inadequacy plus experimental noise). Thanks to the Advanced Gas Reactor program, 32 experimen-
506 tal data points on the observed silver release have been made available, and were used for the inverse UQ
507 process [72].

508 The approaches to inversely assess the uncertainties in the model parameters and model inadequacy plus
509 experimental noise are detailed below.

- 510 • *Parallel MCMC*: The TRISO fractional silver release predictions and observations are bounded between
511 0 and 1. So, we used a truncated normal likelihood function to assess the model predictions against
512 the experimental data. The inversely calibrated parameters were $\{\boldsymbol{\theta}, \sigma\}$, and the prior distributions
513 for all the parameters were uniformly distributed. We used the differential evolution sampler [41] in
514 MOOSE to inversely quantify the uncertainties in $\{\boldsymbol{\theta}, \sigma\}$. For this purpose, we used 50 parallel chains,
515 each executing the MOOSE model 32 times (i.e., the number of experimental data points), in parallel,
516 to evaluate the likelihood function. As a result, 1,600 (i.e., 50×32) processors were employed to
517 perform inverse UQ for a total of 500 serial iterations in the differential evolution sampler.
- 518 • *Parallel active learning*: For this, we used the same likelihood formulation and priors as before. We
519 used a standard GP to predict the fractional silver release of the MOOSE model. For active learning,
520 we relied on the Bayesian posterior targeted acquisition function from Table 1 to actively acquire new
521 training data by running the MOOSE model. We also combined this acquisition function with the
522 local penalization approach (Equations (20)–(21)) to acquire a batch of new training data. We set the
523 batch size to 10 and performed 80 serial iterations of active learning. At the end of the 80 iterations,
524 we observed that a convergence metric had sufficiently stabilized. Then, using the actively trained
525 standard GP, we performed differential evolution sampling, just as before, by replacing the MOOSE
526 model evaluations. This led to an approximated posterior distribution of $\{\boldsymbol{\theta}, \sigma\}$.

527 Figure 6a presents the inversely quantified posterior distributions of $\boldsymbol{\theta}$, comparing the parallel MCMC and
528 parallel active learning approaches. Note that, in general, parallel active learning gives posterior distributions
529 consistent with parallel MCMC, which is considered to be the reference solution. Between the model
530 parameters D_{sic} and Q_{sic} , we see a strong non-linear correlation, as shown in the subplots located in the
531 third row, fourth column and the fourth row, third column. Parallel active learning is able to capture this
532 non-linear correlation, though it struggles near the bottom left tip, where there is a small concentration of
533 probability density. Figure 6b presents the posterior distribution of the sigma (σ) term, which captures the
534 model inadequacy plus the experimental noise. Again, parallel MCMC and parallel active learning produce
535 highly consistent results.

536 Figure 7 compares the computational cost of inverse UQ in regard to parallel active learning and parallel
537 MCMC. Computational cost is measured as the product of the number of processors required times the
538 elapsed time necessary to solve the inverse UQ problem. Parallel active learning has shown to have a
539 computational cost at least three orders of magnitude smaller than parallel MCMC, which is considered
540 the reference solution, while still delivering satisfactory posterior uncertainties. Capturing features in the
541 posterior distribution like sharp tails can be accomplished by increasing the number of iteration or using a
542 better acquisition function.

543 4.2. Active learning variance reduction for very rare events analysis of a heat-pipe nuclear microreactor

544 This section uses the active learning with GP and forward UQ capabilities discussed in Sections 2.2 and
545 2.4, respectively.

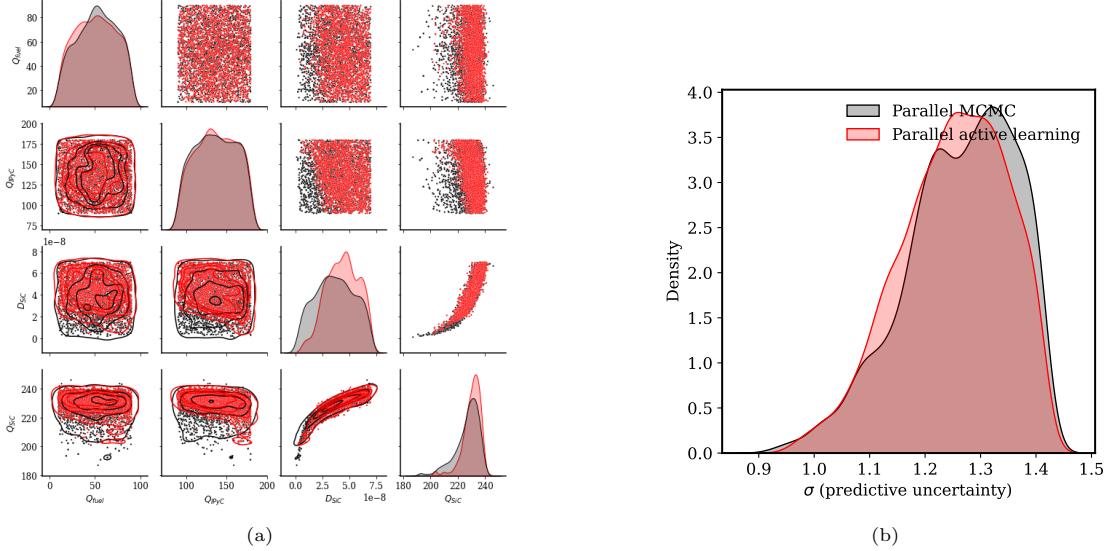


Figure 6: Comparison of the posterior distributions of (a) the model parameters θ and (b) the sigma term (model inadequacy plus noise) in regard to parallel MCMC and parallel active learning approaches for the TRISO fuel silver release case.

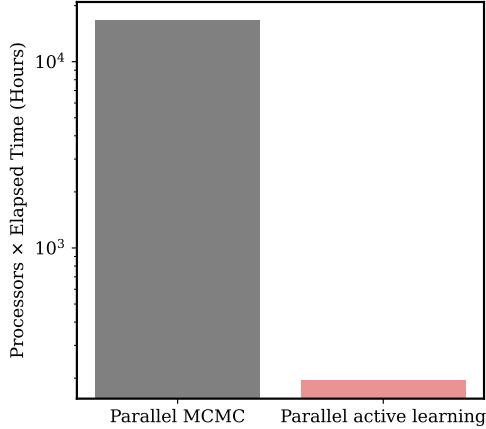


Figure 7: Comparison of the computational cost of performing inverse UQ in regard to the parallel active learning and parallel MCMC approaches for the TRISO fuel silver release case. (Computational cost is measured as the product of the number of processors required times the elapsed time necessary to solve the inverse UQ problem.)

546 This section demonstrates the use of MOOSE ProbML capabilities for estimating very rare events, based
 547 on an HP nuclear microreactor model. Very rare events correspond to low failure probabilities on the order
 548 of 10^{-6} or lower. Unlike other types of nuclear reactors, HP-cooled microreactors must consider additional
 549 failure modes stemming from heat transfer limitations governing HP operability. These bounding limits
 550 constrain how much heat can be removed by the HPs, depending mainly on the HP design parameters and
 551 its temperature. Failure limits are computed using the MOOSE-based application Sockeye [73], based on
 552 the design parameters specified in Terlizzi et al. [74], with the pore radius increased to $45 \mu\text{m}$ (to lower
 553 the capillary limit). Even though the sonic and viscous limits are not catastrophic—in that the HPs can
 554 recover after reaching them—for the purpose of this demonstration, all these limits are considered when
 555 determining failure probability. As manufacturing and thermal property uncertainties are very much design
 556 specific, and because the model considered herein is a prototypical design, this demonstration only serves as a
 557 proof-of-concept of MOOSE’s methodological implementations for computing very low failure probabilities.

558 As such, the reported values of the failure probabilities should not be directly applied to assess the safety
 559 of HP reactors.

560 The MOOSE computational model consists of a single HP. It employs the effective heat conduction
 561 model in Sockeye [73], with the HP vapor core being represented as a material with extremely high thermal
 562 conductivity, as described in Matthews et al. [75]. Four uncertain parameters are considered: (1) Q_{evap} :
 563 the power removed by (or heating rate of) the HP; (2) T_{sink} : the sink temperature on the HP condenser;
 564 (3) htc_{sink} : the corresponding heat transfer coefficient; and (4) R_{pore} : the pore radius in the HP wick. Each
 565 of these parameters was assumed to follow normal distributions, with the means being defined consistently
 566 with what was used in Terlizzi et al. [74] (i.e., 1821 W, 900 K, 10^3 W/K/m², and 45 μ m, respectively). The
 567 standard deviation for each parameter was arbitrarily chosen to be equal to 10% of the mean.

568 We used three forward UQ approaches in MOOSE to quantify the low probability of HP failure: (1)
 569 Monte Carlo, which serves as the reference solution but is computationally expensive; (2) standard subset
 570 simulation executed in a massively parallel fashion; and (3) subset simulation with active learning via a
 571 standard GP. These approaches are detailed below.

- 572 • *Monte Carlo*: We used 10^9 MOOSE model evaluations to compute the HP failure probability.
- 573 • *Standard subset simulation executed in parallel*: We used seven subsets and 20,000 MOOSE model
 574 evaluations per subset. In each subset, we used 40 independent Markov chains, each evaluating the
 575 MOOSE model 500 times in serial. These 40 Markov chains were launched in parallel fashion. Inter-
 576 mediate thresholds were computed, corresponding to a probability of 0.1. In total, the MOOSE model
 577 was evaluated 140,000 times to compute the failure probability.
- 578 • *Active learning subset simulation*: We used seven subsets and 2,000 samples per subset. The input
 579 samples were first evaluated by using a standard GP to predict the MOOSE model output. If the GP
 580 prediction, as deemed by the U-function (see Table 1), is inadequate, only then is the MOOSE model
 581 evaluation performed. Intermediate thresholds were computed, corresponding to a probability of 0.1.
 582 Note that the number of actual MOOSE model evaluations depends on the adequacy of the GP model
 583 for each input sample. This is discussed in detail next.

584 Table 2 presents the failure probabilities computed using the three different approaches, along with the
 585 corresponding coefficient of variation, the total number of MOOSE model evaluations, and the required
 586 number of processors. First, note that all three methods return similar failure probability values. As
 587 the failure probability is extremely small, Monte Carlo requires an enormous number of MOOSE model
 588 evaluations. Subset simulation reduces this number by a factor of 7,000 as compared to Monte Carlo.
 589 Active learning subset simulation reduces this number even further, by a factor of 7.7×10^6 and 1,000 in
 590 comparison to Monte Carlo and subset simulation, respectively. Figure 8 presents the distributions of input
 591 parameters for failed HPs so as to enable further comparison of the three approaches. Note that all three
 592 return similar input parameter distributions for the failed HPs.

Table 2: Comparison of the statistics for the three forward UQ approaches in MOOSE when evaluating the failure of an HP microreactor model. Shown for reference are the number of MOOSE model evaluations and the number of required processors utilized when computing the failure probabilities.

Method	Failure probability	Coefficient of variation	MOOSE model evaluations	Processors used
Monte Carlo	7×10^{-8}	0.12	10^9	192
Parallelized subset simulation	5.1×10^{-8}	0.06	140,000	40
Active learning subset simulation	4.75×10^{-8}	0.192	130	1

The “MOOSE model evaluations” column represents the total number of model evaluations required.

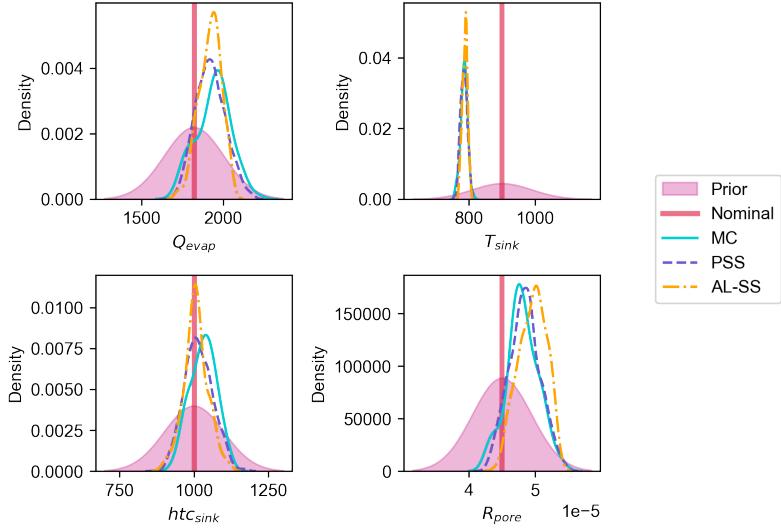


Figure 8: Distributions of the input parameters for failed HPs when comparing the three approaches: Monte Carlo (MC), parallelized subset simulation (PSS), and active learning subset simulation (AL-SS). Also shown for reference are the nominal input parameter distributions to the MOOSE HP model.

593 *4.3. Multi-output Gaussian processes and dimensionality reduction for advanced manufacturing simulations*

594 This section uses the MOGP and dimensionality reduction capabilities discussed in Sections 2.1.2 and
595 2.5, respectively.

596 Several advanced manufacturing techniques, including direct energy deposition and laser powder bed
597 fusion, rely on the melting of metals with the help of a laser. The quality of the final product depends on
598 the process parameters employed (e.g. laser power and beam radius). However, simulation of laser melt
599 pools is challenging due to the multiple physics involved, including melting and solidification along with
600 fluid dynamics and heat transfer in the melt pool. This is why development of surrogate models for such
601 simulations carries high potential for accelerating parametric studies that aim to explore the relationship
602 between process parameters and product quality. We trained an MOGP-based surrogate model combined
603 with dimensionality reduction, using linear PCA within MOOSE to predict full temperature fields during
604 the advanced manufacturing process [76]. The high-fidelity MOOSE model was run to gather temperature
605 fields with different process parameters—namely, effective laser power and effective laser beam radius. The
606 MOOSE model relied on the Arbitrary Lagrangian-Eulerian method for capturing deformations caused by
607 the vapor pressure on the melt pool surface. Figure 9 presents the MOOSE model setup, together with the
608 temperature distribution for a specific combination of the two process parameters.

609 In this work, the temperature field at a given time step was the primary quantity of interest. In total, 120
610 snapshots of temperature fields were collected from the high-fidelity model by varying the process parameters.
611 LHS was employed to randomize the process parameters, using $\mathcal{U}(70, 83)$ [W] and $\mathcal{U}(125, 200)$ [μm] for the
612 effective laser power and beam radius, respectively. Then linear PCA was applied to the temperature field
613 snapshots for data compression. The decay of the squared singular values and the relative variance content
614 are presented in Figure 10a. We see rapid decay in the explained variance, indicating that a few PCA
615 components are sufficient to describe the thermal behavior of the system. Based on this information, a
616 latent space of 10 dimensions was selected, and the temperature snapshot fields were mapped onto this
617 space by using the first 10 components of linear PCA.

618 The 10 latent space components across 120 random realizations of the process parameters served as the
619 training samples for the MOGP. The MOGP was trained via Adam optimization with 1,000 epochs, at a
620 learning rate of 5×10^{-4} . The trained MOGP was then evaluated on a test set, using 200 samples of the
621 process parameters. The MOGP-predicted latent quantities, which have 10 dimensions, were projected back

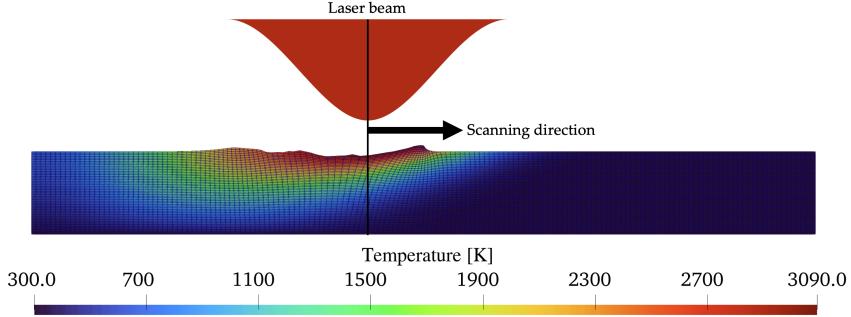


Figure 9: Temperature field output from the high-fidelity MOOSE model, which simulated the advanced manufacturing process by considering an effective laser power of $P = 81.97 \text{ W}$ and a laser radius of $R = 125.8 \mu\text{m}$. The model relied on the Arbitrary Lagrangian-Eulerian method for capturing deformations caused by the vapor pressure on the melt pool surface.

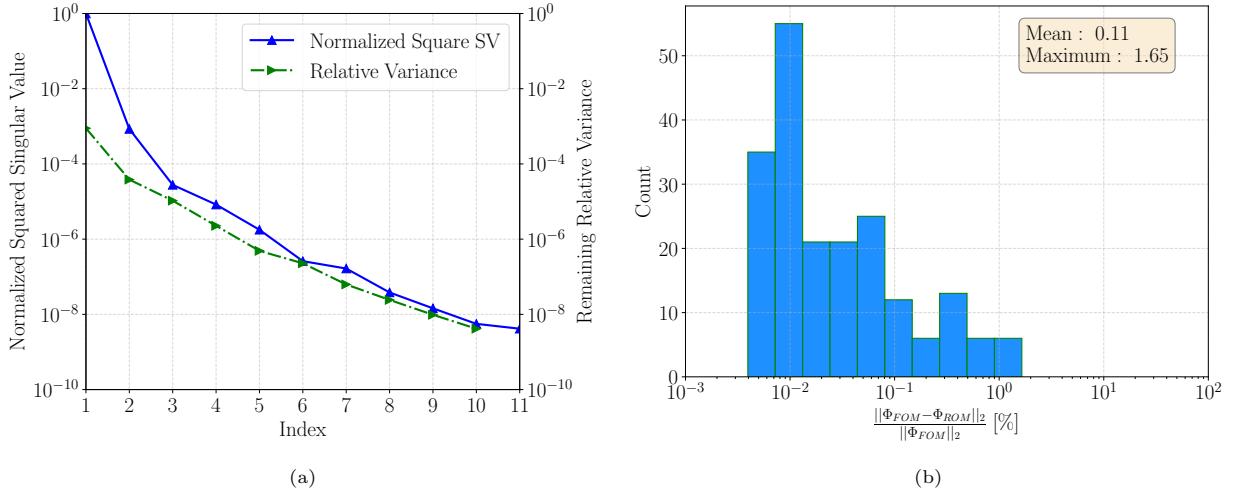


Figure 10: (a) Decay in the squared singular values of the temperature fields upon performing linear PCA. The remaining relative variance is also shown, as computed by excluding the variance of the modes up the given index. (b) Histogram of the relative L^2 errors (in %) of the temperature field between the high-fidelity model and the reconstructed solution from the MOGP by considering the testing set of 200 samples.

622 to the original space by using an inverse PCA. The reconstructed temperature fields were then compared
 623 against the reference temperature fields obtained by evaluating the high-fidelity MOOSE model. Figure 10b
 624 presents a histogram of the relative full-field errors (in percentages) for the testing set. Generally, these
 625 relative errors are quite small, with a mean relative error of around 0.1% and a maximum relative error of
 626 1.65%. The maximum error occurs near the boundary of the parameter domain, which was not properly
 627 covered by the training set, thus leading to minor inaccuracies in the MOGP prediction.

628 The reference temperature field, along with the space-dependent absolute error between the reference
 629 and the MOGP solutions, is presented in Figure 11 for those process parameters with the highest relative
 630 error in Figure 10b. We see that the highest space-wise error is approximately 2.5%, which is acceptable
 631 for the given use case. Evaluation of the MOGP occurred 4–5 orders of magnitude faster than the solving
 632 of the transient melt pool simulation. This further reflects the high potential for accelerating parameter
 633 studies related to the product quality’s dependence on process parameters, in addition to permitting active
 634 learning based on the uncertainty estimates of the MOGP.

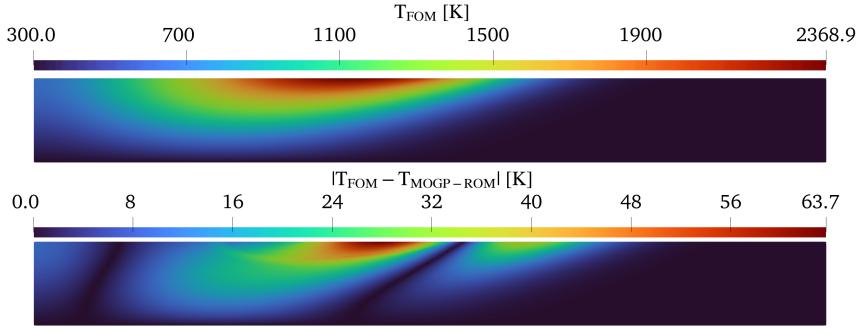


Figure 11: Comparison of solutions from the high-fidelity MOOSE model and reduced-order models at the least accurate sample in the testing set. Top: temperature profile computed using the high-fidelity MOOSE model. Bottom: absolute difference between the MOOSE model and the reconstructed MOGP solutions.

635 *4.4. Comparing deep and standard Gaussian processes for a lid-driven cavity flow*

636 Note that the deep Gaussian process capabilities in MOOSE are still in the experimental phase.

637 This section uses the GP and deep GP capabilities discussed in Sections 2.1.1 and 2.1.3, respectively.

638 In this section, we compare a DGP trained using MCMC against a standard GP trained using either
 639 MCMC or Adam optimization for a four-sided lid-driven cavity flow problem. The fluid domain, a 2D square
 640 region defined by viscosity and density, is subjected to velocity boundary conditions on all four sides. The
 641 pressure is set to zero at the lower-left corner. More details on the problem setup can be found in Dhulipala
 642 et al. [33]. We are interested in predicting the resultant velocity at the domain’s center as a function of the
 643 viscosity and density of the fluid and of the four boundary conditions. We used the MOOSE Navier-Stokes
 644 Module to generate training and testing data under random values for the viscosity and density of the fluid
 645 and the four boundary conditions [77].

646 The training data were comprised of 30 points, and the testing data were comprised of 100. We first
 647 trained a standard GP by using MCMC. There were seven hyperparameters to optimize (i.e., six length
 648 scales and one amplitude scale), and we used 10,000 samples in the MCMC algorithm in order to estimate
 649 the posterior distributions of the hyperparameters. We then trained a DGP with one hidden layer using
 650 MCMC. This time, there were 43 hyperparameters; that is, six for each of six nodes in the hidden layer,
 651 plus an additional seven for the output layer. We again used 10,000 samples in the MCMC algorithm so as
 652 to estimate the posterior distributions of the hyperparameters. Finally, we trained a standard GP by using
 653 Adam optimization (giving us seven hyperparameters to optimize). The Adam optimization entailed 1,000
 654 iterations, a learning rate of 0.005, and a batch size of 20.

655 We compared the three approaches for predicting the resultant velocity—namely, GP using MCMC,
 656 DGP using MCMC, and GP using Adam optimization—based on diagnostics such as parity plots, calibration
 657 curves, uncertainty distributions, and error bars, as detailed in Tran et al. [78] and Kuleshov et al. [79]. The
 658 parity plots assessed the accuracy of the predictions and presented metrics such as median absolute error,
 659 root mean squared error, mean absolute error, and mean absolute relative percent difference. Calibration
 660 curves “use the standard deviation predictions to create Gaussian random variables for each test point and
 661 then test how well the residuals followed their respective Gaussian random variables” [78]. In other words,
 662 the model is said to be well calibrated if the expected-vs.-observed cumulative distribution of the testing
 663 points follows a straight line. A well-calibrated model could still have large uncertainty estimates that are
 664 less useful in practice [78]. Thus, from the uncertainty distributions, metrics such as sharpness and coefficient
 665 of variation (C_v) are derived. Large uncertainty estimates are less desirable than small values, and sharpness
 666 assesses this by taking the root mean of the predicted variances. The model should not predict constant
 667 uncertainty estimates outside the training bounds, and C_v assesses this by computing the coefficient of
 668 variation of the predictive variances. While smaller values of the accuracy metrics, miscalibration area, and
 669 sharpness are preferred, a larger value of C_v is desirable.

670 Figure 12 compares the three approaches—GP using MCMC, DGP using MCMC, and GP using Adam
 671 optimization—in light of the aforementioned diagnostics. The first row corresponds to GP using MCMC,
 672 the second row to DGP using MCMC, and the third row to GP using Adam optimization. In comparing
 673 GP using MCMC against DGP using MCMC, the latter generally outperforms the former in almost every
 674 metric. DGP using MCMC has better accuracy, lower sharpness, and a larger C_v than GP using MCMC,
 675 showing the power of DGP method compared to GP. Although GP using MCMC has a smaller miscalibration
 676 area, this is likely due to it predicting constant wider uncertainty bands (as observed by comparing Figure
 677 12d to Figure 12h) than does DGP using MCMC. As such, hidden layers help a DGP model with more
 678 expressivity and better uncertainty quality than a standard GP when trained using MCMC. In comparing
 679 DGP using MCMC against GP using Adam optimization, the latter outperforms the former in every metric.
 680 We suspect that this is largely due to the inefficiency of MCMC in high-dimensional parameter spaces in
 681 DGP and the optimization algorithm plays a big role in the predictive performance (including accuracy
 682 and uncertainty quality) of the GP models. In the future, DGP will be implemented with a more efficient
 683 variational inference and gradient-based solvers coupled with MOOSE’s libtorch capabilities [68].

684 4.5. Batch Bayesian optimization of tritium diffusion experiment in beryllium

685 This section uses the active learning with GP capabilities discussed in Section 2.2.

686 The Tritium Migration Analysis Program, Version 8 (TMAP8) is a state-of-the-art, open-source, MOOSE-
 687 based application designed for multiscale tritium transport. TMAP8 incorporates multispecies, multiphysics,
 688 multiscale simulation capabilities on complex geometries. These capabilities make it an essential tool for
 689 the fusion energy community, particularly for addressing the challenges of tritium tracking, fusion system
 690 safety, and fuel sustainability. Validation case study val-2b in TMAP8’s test suite validates against implan-
 691 tation and thermal absorption/desorption experiments on wafers of polished beryllium from Macaulay et al.
 692 [80]. The beryllium was exposed to 13.3 kPa of deuterium at 773 K for 50 hours, cooled down to 300 K in
 693 vacuum, and then heated back up to 1073 K at a rate of 3 K/min to desorb the deuterium. Further details
 694 are available in Simon et al. [9]. The modeled deuterium flux during desorption was compared against
 695 experimental data, as shown in Figure 13a. Herein, batch Bayesian optimization was applied to calibrate
 696 the diffusivities and solubilities of the TMAP8 model in order to improve agreement with the experimental
 697 data.

698 The deuterium flux model had 10 parameters, comprised of the diffusivities and solubilities that must
 699 be calibrated against the experimental data. Prior to the calibration, the model predictions and the exper-
 700 imental data resulted in a root mean squared percent error of 22.72%. Two approaches in MOOSE were
 701 used to achieve this calibration: parallel subset simulation, which is an evolutionary approach, and batch
 702 Bayesian optimization. The aim of the optimization with respect to the model parameters was to minimize
 703 the mean squared percentage error between the experimental data and the model predictions regarding the
 704 deuterium flux during desorption. Details on the usage of these approaches are as follows:

- 705 • **Parallel subset simulation:** Run for five subsets, with 1,000 samples per subset. Ten processors
 706 were used, simultaneously simulating five parallel chains for 1,000 serial model evaluations.
- 707 • **Batch Bayesian optimization:** Run for 80 serial iterations, with a batch of five optimal points
 708 selected in parallel in each iteration by using the expected improvement acquisition function. A
 709 standard GP with squared exponent covariance matrix was trained using Adam optimization, in which
 710 2,000 iterations were performed using a learning rate of 0.01. The five selected optimal points were
 711 used for evaluating the computational model in parallel.

712 Figure 13a presents the model output against the experimental data following the parameter calibration. We
 713 see that both the parallel subset simulation and batch Bayesian optimization have similar root mean squared
 714 percent error values, and both substantially reduce this error metric in comparison to the uncalibrated model.
 715 Figure 13b presents the computational burden of the two approaches, as assessed based on the product of
 716 the number of processors and the elapsed time in hours. Ultimately, batch Bayesian optimization is revealed
 717 to be substantially lower in computational cost than parallel subset simulation.

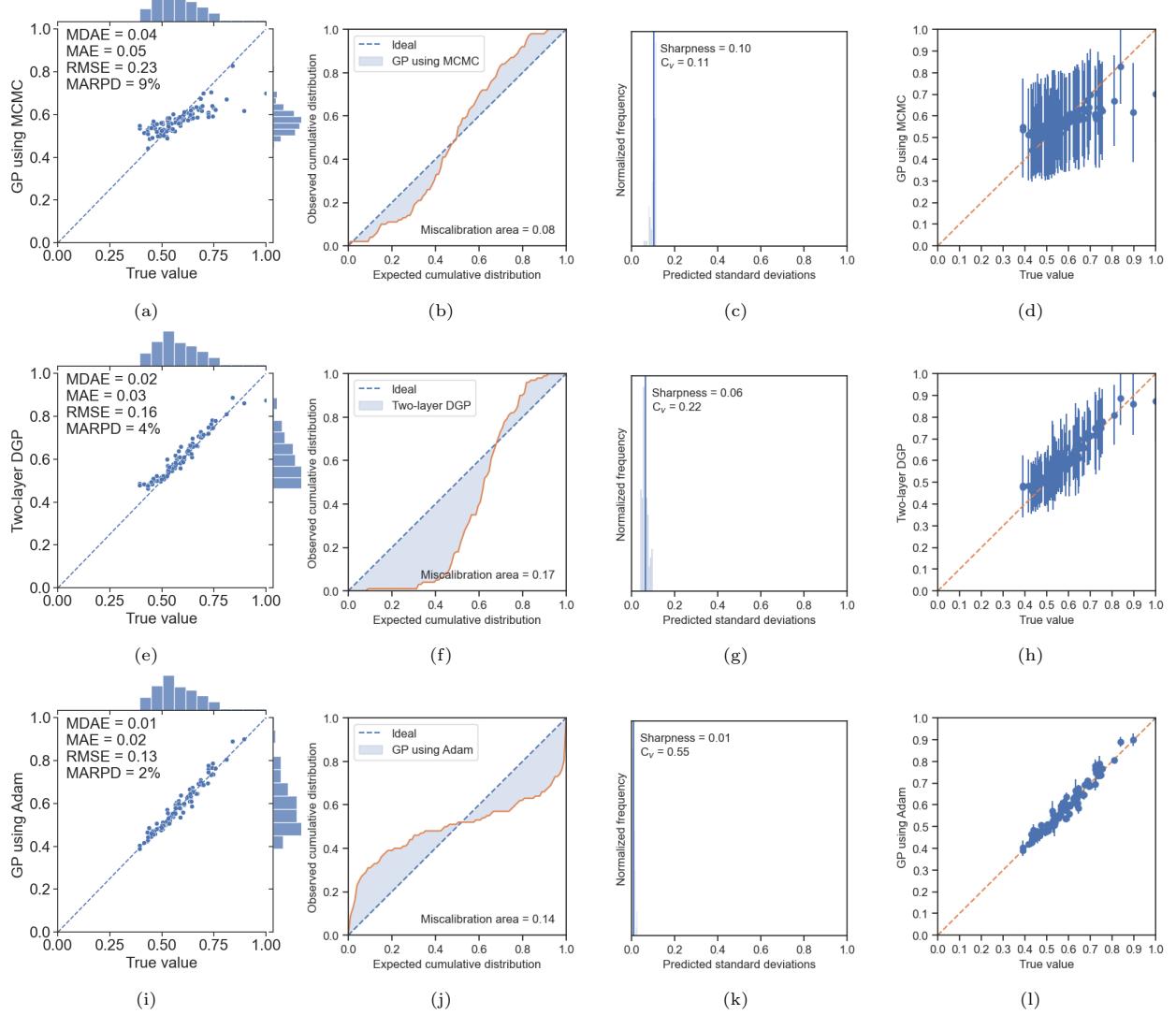


Figure 12: Predictive performance of the three GP variants in terms of both accuracy and uncertainty quality. Top row [(a)–(d)]: GP trained using MCMC. Middle row [(e)–(h)]: DGP trained using MCMC. Bottom row [(i)–(l)]: GP trained using Adam optimization. (a), (e), and (i) show the parity plots and present accuracy metrics such as median absolute error, root mean squared error, mean absolute error, and mean absolute relative percent difference. (b), (f), and (j) show the calibration plots and miscalibration area metric for uncertainty quality. (c), (g), and (k) show histograms of the predictive standard deviations, the metric sharpness, and the C_v . (d), (h), and (l) show the error bars.

718 5. Discussion of Future Implementations

719 There are several avenues for future implementations which can be made possible through the modularity
 720 of the MOOSE framework. Specifically, the modularity offered by the `Sampler`, `MultiApp`, `Reporter`,
 721 and `Surrogate` objects interaction. For example, the parallel active learning and batch Bayesian optimization
 722 are currently dependent on the local penalization approach (Equation (20)). Other approaches for batch
 723 (parallel) selection of the optimal points are also available, such as the Kriging Believer algorithm proposed
 724 by Ginsbourger et al. [81]. Wang et al. [82] provide a review of the recent developments in batch selection.
 725 These approaches will be pursued in MOOSE in the future. Similarly, optimization-based Bayesian inference
 726 approaches like variational inference can be implemented to mitigate the high computational cost of

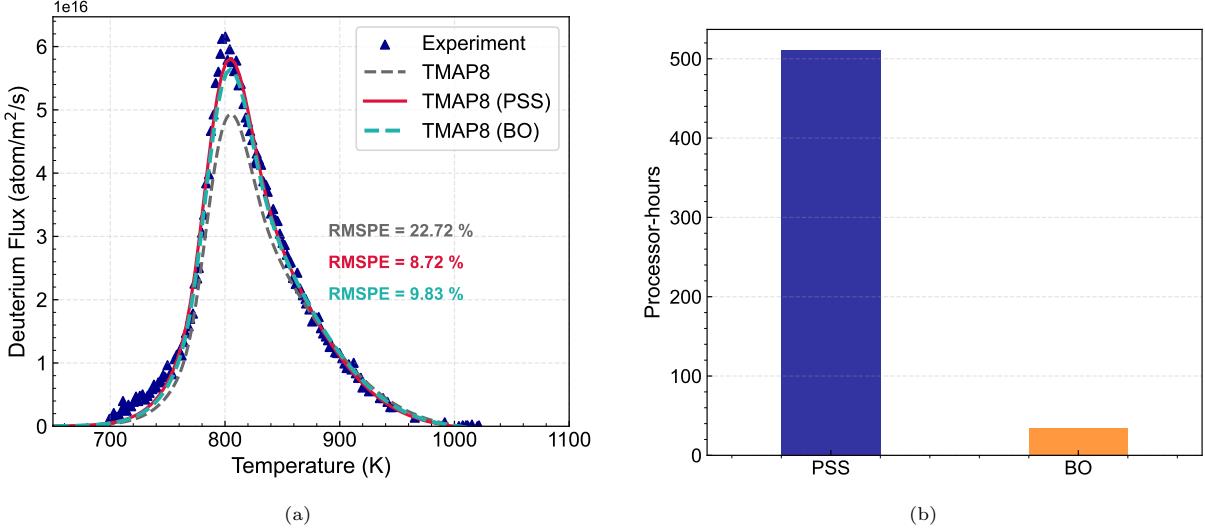


Figure 13: (a) Modeled deuterium flux during desorption, compared against experimental data. Before calibrating the model parameters, the model had a root mean squared percent error of 22.72% when examined against the experimental data. Upon calibration based on parallel subset simulation (an evolutionary approach) and batch Bayesian optimization, the root mean squared percent error reduced to 8.72% and 9.83%, respectively. (b) The computational cost of calibrating the model parameters via parallel subset simulation and Bayesian optimization was measured as the product of the number of processors and the elapsed time (in hours).

727 MCMC methods, but with a trade off for accuracy [83]. Methods like black-box variational inference are
 728 particularly attractive given that they do not require gradient estimations of the model outputs [84]. Also,
 729 while MOOSE currently supports linear dimensionality reduction via PCA, nonlinear methods like kernel
 730 PCA, diffusion maps, and manifold learning methods can be pursued in the future [85].

731 One significant capability of MOOSE which can be expanded upon from a ML/UQ standpoint is its
 732 `libtorch` integration [67, 68]. The `libtorch` library provides PyTorch like functionalities from within
 733 C++ and supports the training and evaluation of more sophisticated ML models like deep neural networks
 734 and operator learning networks. These expressive ML models can be integrated into active learning frame-
 735 works to mitigate the limitations of GPs, especially when dealing with high-dimensional data. Furthermore,
 736 the `TorchScript` capability in MOOSE also allows importing of ML models trained in PyTorch into C++
 737 code.

738 6. Summary and Conclusions

739 MOOSE, an open-source computational platform for parallel numerical analysis, is being actively de-
 740 veloped and is maintained at Idaho National Laboratory. MOOSE has an extensive user base in varied
 741 scientific and engineering fields. Complex multiphysics simulations, when validated against experimental
 742 data, are subject to different sources of uncertainties that must be quantified and propagated to the out-
 743 puts. They are also computationally expensive to run, especially in a UQ setting, and surrogate models
 744 for quantifying their prediction uncertainties will foster their efficient and accurate execution by leveraging
 745 active learning principles. In this context, the present paper covered the development and demonstration
 746 of massive parallel probabilistic ML and UQ capabilities in MOOSE. Among these capabilities are active
 747 learning, Bayesian inverse UQ, adaptive forward UQ, Bayesian optimization, evolutionary optimization, and
 748 MCMC. The MOOSE systems `Sampler`, `MultiApp`, `Reporter`, and `Surrogate`, as well as the modu-
 749 larity thereof, were discussed in detail in regard to successfully developing a multitude of probabilistic ML
 750 and UQ algorithms. Example code demonstrations include parallel active learning and parallel Bayesian
 751 inference via active learning. Finally, the impacts of these code developments were discussed in regard to five

752 different applications: nuclear fuel fission product release, using parallel active learning Bayesian inference;
753 nuclear microreactor very rare events analysis, using active learning; advanced manufacturing process mod-
754 eling, using MOGP and dimensionality reduction; lid-driven cavity flow, using DGPs; and tritium transport
755 for fusion energy, using batch Bayesian optimization. [These capabilities are part of the MOOSE framework.](#)

756 Acknowledgements

757 The forward UQ capability developments, including active learning and multifidelity modeling for for-
758 ward problems, are supported through Idaho National Laboratory (INL)'s Laboratory Directed Research &
759 Development (LDRD) Program under U.S. Department of Energy (DOE) Idaho Operations Office Contract
760 DE-AC07-05ID14517.

761 The Bayesian inverse UQ capability developments, including active learning for inverse problems, are
762 supported through Battelle Energy Alliance, LLC under contract no. DE-AC07-05ID14517 with DOE, along
763 with funding from the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program within the
764 DOE Office of Nuclear Energy (DOE-NE).

765 The multi-output Gaussian processes and dimensionality reduction capability developments are sup-
766 ported through Battelle Energy Alliance, LLC under contract no. DE-AC07-05ID14517 with DOE, with
767 funding from the Advanced Materials and Manufacturing Technologies (AMMT) program within DOE-NE.

768 The deep Gaussian processes and Bayesian optimization capability developments are supported through
769 Battelle Energy Alliance, LLC under contract no. DE-AC07-05ID14517 with DOE, along with funding from
770 the Nuclear Energy University Partnerships (NEUP) program within DOE-NE.

771 This research made use of resources of the High-Performance Computing Center at INL, which is sup-
772 ported by DOE-NE and the Nuclear Science User Facilities under contract no. DE-AC07-05ID14517.

773 We thank the following individuals for their support in developing the capabilities of the MOOSE Stochas-
774 tic Tools Module: Stephen R. Novascone, Sudipta Biswas, Benjamin W. Spencer, Jason D. Hales, and Daniel
775 Schwen from Idaho National Laboratory; Michael D. Shields and Promit Chakraborty from Johns Hopkins
776 University; and Andi Wang from the University of Wisconsin-Madison. We thank John Shaver at INL for
777 his technical edit of this paper.

778 Declaration of generative AI and AI-assisted technologies in the writing process

779 The authors did not use generative AI technologies during the initial writing process or editing of this
780 paper. During the revisions stage, the authors used the ChatGPT 5 Thinking model in order to improve the
781 readability and language of the manuscript. After using this tool/service, the authors reviewed and edited
782 the content as needed and take full responsibility for the content of the published article.

783 References

- 784 [1] G. Giudicelli, A. Lindsay, L. Harbour, C. Icenhour, M. Li, J. E. Hansel, P. German, P. Behne, O. Marin, R. H. Stogner,
785 J. Miller, 3.0-MOOSE: Enabling massively parallel multiphysics simulations, *SoftwareX* 26 (2024) 101690. doi:[10.1016/j.softx.2024.101690](https://doi.org/10.1016/j.softx.2024.101690).
- 786 [2] R. L. Williamson, J. D. Hales, S. R. Novascone, G. Pastore, K. A. Gamble, B. W. Spencer, W. Jiang, S. A. Pitts,
787 A. Casagrande, D. Schwen, A. X. Zabriskie, BISON: A flexible code for advanced simulation of the performance of
788 multiple nuclear fuel forms, *Nuclear Technology* 207 (7) (2021) 954–980. doi:[10.1080/00295450.2020.1836940](https://doi.org/10.1080/00295450.2020.1836940).
- 789 [3] B. W. Spencer, W. M. Hoffman, S. Biswas, W. Jiang, A. Girola, M. A. Backman, Grizzly and BlackBear: Structural
790 component aging simulation codes, *Nuclear Technology* 207 (2021) 981–1003. doi:[10.1080/00295450.2020.1868278](https://doi.org/10.1080/00295450.2020.1868278).
- 791 [4] A. J. Novak, R. W. Carlsen, S. Schunert, P. Balestra, D. Reger, R. N. Slaybaugh, R. C. Martineau, Pronghorn: A
792 multidimensional coarse-mesh application for advanced reactor thermal hydraulics, *Nuclear Technology* 207 (2021) 1015–
793 1046. doi:[10.1080/00295450.2020.1825307](https://doi.org/10.1080/00295450.2020.1825307).
- 794 [5] Y. Wang, Z. M. Prince, H. Park, O. W. Calvin, N. Choi, Y. S. Jung, S. Schunert, S. Kumar, J. T. Hanophy, V. M.
795 Labouré, C. Lee, Griffin: A MOOSE-based reactor physics application for multiphysics simulation of advanced nuclear
796 reactors, *Annals of Nuclear Energy* 211 (2025) 110917. doi:[10.1016/j.anucene.2024.110917](https://doi.org/10.1016/j.anucene.2024.110917).
- 797 [6] S. Veeraraghavan, C. Bolisetti, A. Slaughter, J. Coleman, S. L. N. Dhulipala, W. Hoffman, K. Kim, E. Kurt, R. Spears,
798 L. Munday, MASTODON: an open-source software for seismic analysis and risk assessment of critical infrastructure,
799 *Nuclear Technology* 207 (2021) 1073–1095. doi:[10.1080/00295450.2020.1807282](https://doi.org/10.1080/00295450.2020.1807282).

801 [7] M. R. Tonks, D. Gaston, P. C. Millett, D. Andrs, P. Talbot, An object-oriented finite element framework for multiphysics
802 phase field simulations, *Computational Materials Science* 51 (2012) 20–29. doi:10.1016/j.commatsci.2011.07.028.

803 [8] A. J. Novak, D. Andrs, P. Shriwise, J. Fang, H. Yuan, D. Shaver, E. Merzari, P. K. Romano, R. Martineau, Coupled
804 Monte Carlo and thermal-fluid modeling of high temperature gas reactors using Cardinal, *Annals of Nuclear Energy* 177
805 (2022) 109310. doi:10.1016/j.anucene.2022.109310.

806 [9] P. C. A. Simon, C. T. Icenhour, G. Singh, A. D. Lindsay, C. Bhave, L. Yang, A. Riet, Y. Che, P. Humrickhouse,
807 P. Calderoni, M. Shimada, MOOSE-based tritium migration analysis program, version 8 (TMAP8) for advanced open-
808 source tritium transport and fuel cycle modeling, *Fusion Engineering and Design* 214 (2025) 114874. doi:10.1016/J.
809 FUSENGDES.2025.114874.

810 [10] P. R., A. Finnila, S. Simmons, J. McLennan, A Reference Thermal-Hydrologic-Mechanical Native State Model of the Utah
811 FORGE Enhanced Geothermal Site, *Energies* 14 (2021) 4758. doi:10.3390/en14164758.

812 [11] A. E. Slaughter, Z. M. Prince, P. German, I. Halvic, W. Jiang, B. W. Spencer, S. L. N. Dhulipala, D. R. Gaston, MOOSE
813 Stochastic Tools: A module for performing parallel, memory-efficient in situ stochastic simulations, *SoftwareX* 22 (2023)
814 101345. doi:10.1016/j.softx.2023.101345.

815 [12] D. Tsapetis, M. D. Shields, D. G. Giovanis, A. Olivier, L. Novak, P. Chakraborty, H. Sharma, M. Chauhan, K. Kontolati,
816 L. Vandana, D. Loukrezis, Uqpy v4. 1: Uncertainty quantification with Python, *SoftwareX* 24 (2023) 101561. doi:
817 10.1016/j.softx.2023.101561.

818 [13] N. A. Riis, A. M. Alghamdi, F. Uribe, S. L. Christensen, B. M. Afkham, P. C. Hansen, J. S. Jørgensen, CUQIPy: I.
819 Computational uncertainty quantification for inverse problems in Python, *Inverse Problems* 40 (2024) 045009. doi:
820 10.1088/1361-6420/ad22e7.

821 [14] M. Parno, A. Davis, L. Seelinger, MUQ: The MIT uncertainty quantification library, *Journal of Open Source Software* 6
822 (2021) 3076. doi:10.21105/joss.03076.

823 [15] J. D. Jakeman, PyApprox: A software package for sensitivity analysis, Bayesian inference, optimal experimental design,
824 and multi-fidelity uncertainty quantification and surrogate modeling, *Environmental Modelling & Software* 170 (2023)
825 105825. doi:10.1016/j.envsoft.2023.105825.

826 [16] L. Seelinger, A. Reinartz, M. B. Lykkegaard, R. Akers, A. M. Alghamdi, D. Aristoff, W. Bangerth, J. Bénézech, M. Diez,
827 K. Frey, J. D. Jakeman, Democratizing uncertainty quantification, *Journal of Computational Physics* 521 (2025) 113542.
828 doi:10.1016/j.jcp.2024.113542.

829 [17] C. K. Williams, C. E. Rasmussen, Gaussian processes for machine learning, 2nd Edition, MIT press, 2006.

830 [18] H. Liu, J. Cai, Y. S. Ong, Remarks on multi-output Gaussian process regression, *Knowledge-Based Systems* 144 (2018)
831 102–112. doi:10.1016/j.knosys.2017.12.034.

832 [19] M. A. Alvarez, L. Rosasco, N. D. Lawrence, Kernels for vector-valued functions: A review, *Foundations and Trends in
833 Machine Learning* 4 (3) (2012) 195–266. doi:10.1561/2200000036.

834 [20] L. F. Cheng, B. Dumitrescu, G. Darnell, C. Chivers, M. Draugelis, K. Li, B. E. Engelhardt, Sparse multi-output Gaussian
835 processes for online medical time series prediction, *BMC medical informatics and decision making* 20 (1) (2020) 1–23.
836 doi:10.1186/s12911-020-1069-4.

837 [21] A. Damianou, N. D. Lawrence, Deep Gaussian processes, in: *Artificial Intelligence and Statistics*, Proceedings of Machine
838 Learning Research, Scottsdale, AZ United States, 2013, pp. 207–215.

839 [22] A. Damianou, Deep Gaussian processes and variational propagation of uncertainty, Doctoral dissertation, University of
840 Sheffield (2015).

841 [23] A. Sauer, R. B. Gramacy, D. Higdon, Active learning for deep Gaussian process surrogates, *Technometrics* 65 (1) (2023)
842 4–18. doi:10.1080/00401706.2021.2008505.

843 [24] H. Salimbeni, M. Deisenroth, Doubly stochastic variational inference for deep Gaussian processes, in: *Advances in Neural
844 Information Processing Systems*, Long Beach, CA United States, 2017, pp. 1–12.

845 [25] Z. Dai, A. Damianou, J. Hensman, N. Lawrence, Gaussian process models with parallelization and GPU acceleration,
846 arXiv:1410.4984 (2014). arXiv:1410.4984.

847 [26] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1711.05101 (2014). arXiv:1412.6980.

848 [27] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, arXiv:1711.05101 (2017). arXiv:1711.05101.

849 [28] I. Murray, R. Adams, D. MacKay, Elliptical slice sampling, in: *Proceedings of the Thirteenth International Conference on
850 Artificial Intelligence and Statistics*, Sardinia, Italy, 2010, pp. 541–548.

851 [29] C. Chen, J. Liu, P. Xu, Comparison of parallel infill sampling criteria based on kriging surrogate model, *Scientific Reports*
852 12 (1) (2022) 678. doi:10.1137/16M1082469.

853 [30] E. Contal, D. Buffoni, A. Robicquet, N. Vayatis, Parallel Gaussian process optimization with upper confidence bound and
854 pure exploration, Springer Berlin Heidelberg, 2013.

855 [31] J. El Gammal, N. Schöneberg, J. Torrado, C. Fidler, Fast and robust Bayesian inference using Gaussian processes with
856 GPry, *Journal of Cosmology and Astroparticle Physics* 2023 (2023) 021. doi:10.1088/1475-7516/2023/10/021.

857 [32] B. Echard, N. Gayton, M. Lemaire, AK-MCS: an active learning reliability method combining Kriging and Monte Carlo
858 simulation, *Structural Safety* 33 (2) (2011) 145–154. doi:10.1016/j.strusafe.2011.01.002.

859 [33] S. L. N. Dhulipala, M. D. Shields, B. W. Spencer, C. Bolisetti, A. E. Slaughter, V. M. Labouré, P. Chakraborty, Active
860 learning with multifidelity modeling for efficient rare event simulation, *Journal of Computational Physics* 468 (2022)
861 111506. doi:10.1016/j.jcp.2022.111506.

862 [34] C. Q. Lam, Sequential adaptive designs in computer experiments for response surface model fit, Doctoral dissertation,
863 The Ohio State University (2008).

864 [35] D. Zhan, J. Qian, Y. Cheng, Pseudo expected improvement criterion for parallel EGO algorithm, *Journal of Global
865 Optimization* 68 (2017) 641–662. doi:10.1007/s10898-016-0484-7.

866 [36] M. C. Kennedy, A. O'Hagan, Bayesian calibration of computer models, *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 63 (3) (2001) 425–464. doi:10.1111/1467-9868.00294.

867 [37] P. D. Arendt, D. W. Apley, W. Chen, Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability, *ASME Journal of Mechanical Design* 134 (10) (2012) 100908. doi:10.1115/1.4007390.

868 [38] X. Wu, T. Kozlowski, H. Meidani, K. Shirvan, Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 1: Theory, *Nuclear Engineering and Design* 335 (2018) 339–355. doi:10.1016/j.nucengdes.2018.06.004.

869 [39] M. I. Radaideh, K. Borowiec, T. Kozlowski, Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under bayesian statistics, *Reliability Engineering & System Safety* 189 (2019) 357–377. doi:10.1016/j.ress.2019.04.020.

870 [40] P. Robbe, D. Andersson, L. Bonnet, T. A. Casey, M. D. Cooper, C. Matthews, K. Sargsyan, H. N. Najm, Bayesian calibration with summary statistics for the prediction of xenon diffusion in UO₂ nuclear fuel, *Computational Materials Science* 225 (2023) 112184. doi:10.1016/j.commatsci.2023.112184.

871 [41] C. J. T. Braak, A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces, *Statistics and Computing* 16 (2006) 239–249. doi:10.1007/s11222-006-8769-1.

872 [42] J. Goodman, J. Weare, Ensemble samplers with affine invariance, *Communications in applied mathematics and computational science* 5 (1) (2010) 65–80. doi:10.2140/camcos.2010.5.65.

873 [43] B. Calderhead, A general construction for parallelizing Metropolis-Hastings algorithms, *Proceedings of the National Academy of Sciences* 111 (49) (2014) 17408–17413. doi:10.1073/pnas.140818411.

874 [44] B. Nelson, E. B. Ford, M. J. Payne, Run DMC: an efficient, parallel code for analyzing radial velocity observations using n-body integrations and differential evolution Markov chain Monte Carlo, *The Astrophysical Journal Supplement Series* 11 (2013) 11–25. doi:10.1088/0067-0049/210/1/11.

875 [45] S. Dhulipala, D. Schwen, Y. Che, R. Sweet, A. Toptan, Z. M. Prince, P. German, S. R. Novascone, Massively parallel Bayesian model calibration and uncertainty quantification with applications to nuclear fuels and materials, *Tech. Rep. INL/RPT-23-73383-Rev000*, Idaho National Laboratory, Idaho Falls, ID United States (2023).

876 [46] E. Laloy, J. A. Vrugt, High-dimensional posterior exploration of hydrologic models using multiple-try DREAM (ZS) and high-performance computing, *Water Resources Research* 48 (1). doi:10.1029/2011WR010608.

877 [47] D. Foreman-Mackey, W. M. Farr, M. Sinha, A. M. Archibald, D. W. Hogg, J. S. Sanders, J. Zuntz, P. K. Williams, A. R. Nelson, M. de Val-Borro, T. Erhardt, emcee v3: A Python ensemble sampling toolkit for affine-invariant MCMC, *arXiv:1911.07688* (2019). arXiv:1911.07688.

878 [48] K. R. Opara, J. Arabas, Differential Evolution: A survey of theoretical analyses, *Swarm and Evolutionary Computation* 44 (2019) 546–558. doi:10.1016/j.swevo.2018.06.010.

879 [49] D. Vats, C. Knudson, Revisiting the Gelman–Rubin diagnostic, *Statistical Science* 36 (4) (2021) 518–529. doi:10.1214/20-STS812.

880 [50] S. L. N. Dhulipala, W. Jiang, B. W. Spencer, J. D. Hales, M. D. Shields, A. E. Slaughter, Z. M. Prince, V. M. Labouré, C. Bolisetti, P. Chakraborty, Accelerated statistical failure analysis of multifidelity TRISO fuel models, *Journal of Nuclear Materials* 563 (2022) 153604. doi:10.1016/j.jnucmat.2022.153604.

881 [51] S. K. Au, J. L. Beck, A new adaptive importance sampling scheme for reliability calculations, *Structural safety* 21 (2) (1999) 135–158. doi:10.1016/S0167-4730(99)00014-4.

882 [52] H. Zhao, Z. Yue, Y. Liu, Z. Gao, Y. Zhang, An efficient reliability method combining adaptive importance sampling and Kriging metamodel, *Applied Mathematical Modelling* 39 (7) (2015) 1853–1866. doi:10.1016/j.apm.2014.10.015.

883 [53] J. Zhang, M. Xiao, L. Gao, S. Chu, A combined projection-outline-based active learning Kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities, *Computer Methods in Applied Mechanics and Engineering* 344 (2019) 13–33. doi:10.1016/j.cma.2018.10.003.

884 [54] R. Kawai, Adaptive importance sampling and control variates, *Journal of Mathematical Analysis and Applications* 483 (1) (2020) 123608. doi:10.1016/j.jmaa.2019.123608.

885 [55] A. Kebaier, J. Lelong, Coupling importance sampling and multilevel Monte Carlo using sample average approximation, *Methodology and Computing in Applied Probability* 20 (2018) 611–641. doi:10.1007/s11009-017-9579-y.

886 [56] B. Peherstorfer, T. Cui, Y. Marzouk, K. Willcox, Multifidelity importance sampling, *Computer Methods in Applied Mechanics and Engineering* 300 (2016) 490–509. doi:10.1016/j.cma.2015.12.002.

887 [57] S. K. Au, J. L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, *Probabilistic Eng. Mech.* 16 (4) (2001) 263–277. doi:10.1016/S0266-8920(01)00019-4.

888 [58] H. S. Li, S. K. Au, Design optimization using subset simulation algorithm, *Structural Safety* 32 (6) (2010) 384–392. doi:10.1016/j.strusafe.2010.03.001.

889 [59] J. Bect, L. Li, E. Vazquez, Bayesian subset simulation, *SIAM/ASA Journal on Uncertainty Quantification* 5 (2017) 762–786. doi:10.1137/16M1078276.

890 [60] Y. Zhao, Z. Wang, Subset simulation with adaptable intermediate failure probability for robust reliability analysis: An unsupervised learning-based approach, *Structural and Multidisciplinary Optimization* 65 (2022) 172. doi:10.1007/s00158-022-03260-7.

891 [61] I. Papaioannou, W. Betz, K. Zwirglmaier, D. Straub, MCMC algorithms for subset simulation, *Probabilistic Engineering Mechanics* 41 (2015) 89–103. doi:10.1016/j.probengmech.2015.06.006.

892 [62] Z. Wang, M. Broccardo, J. Song, Hamiltonian Monte Carlo methods for subset simulation in reliability analysis, *Structural Safety* 76 (2019) 51–67. doi:10.1016/j.strusafe.2018.05.005.

893 [63] M. D. Shields, D. G. Giovanis, V. S. Sundar, Subset simulation for problems with strongly non-Gaussian, highly anisotropic, and degenerate distributions, *Computers & Structures* 245 (2021) 106431. doi:10.1016/j.compstruc.2020.106431.

931 [64] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, *Chemometrics and Intelligent Laboratory Systems* 2 (1-3)
 932 (1987) 37–52. doi:10.1016/0169-7439(87)80084-9.

933 [65] V. Hernandez, J. E. Roman, V. Vidal, Slepce: A scalable and flexible toolkit for the solution of eigenvalue problems, *ACM
 934 Transactions on Mathematical Software (TOMS)* 31 (3) (2005) 351–362.

935 [66] D. R. Gaston, C. J. Permann, J. W. Peterson, A. E. Slaughter, D. Andrš, Y. Wang, M. P. Short, D. M. Perez, M. R.
 936 Tonks, J. Ortensi, L. Zou, R. C. Martineau, Physics-based multiscale coupling for full core nuclear reactor simulation,
 937 *Annals of Nuclear Energy* 84 (2015) 45–54. doi:10.1016/j.anucene.2014.09.060.

938 [67] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic
 939 differentiation in PyTorch, in: *Proceedings of the 31st Conference on Neural Information Processing Systems*, Long Beach,
 940 CA, 2017, pp. 1–4.

941 [68] P. German, D. Yushu, Enabling scientific machine learning in MOOSE using Libtorch, *SoftwareX* 23 (2023) 101489.
 942 doi:10.1016/j.softx.2023.101489.

943 [69] S. L. N. Dhulipala, A. Toptan, Y. Che, D. Schwen, R. T. Sweet, J. D. Hales, S. R. Novascone, Bayesian uncertainty
 944 quantification of tristructural isotropic particle fuel silver release: Decomposing model inadequacy plus experimental noise
 945 and parametric uncertainties, *Journal of Nuclear Materials* 588 (2024) 154790. doi:10.1016/j.jnucmat.2023.154790.

946 [70] D. A. Petti, P. A. Demkowicz, J. T. Maki, Triso-coated particle fuel performance, *Comprehensive Nuclear Materials* 3
 947 (2012) 151–213. doi:10.1016/B978-0-08-056033-5.00055-0.

948 [71] J. D. Hales, W. Jiang, A. Toptan, K. A. Gamble, Modeling fission product diffusion in triso fuel particles with bison,
 949 *Journal of Nuclear Materials* 548 (2021) 152840. doi:10.1016/j.jnucmat.2021.152840.

950 [72] J. D. Stempien, R. N. Morris, T. J. Gerczak, P. A. Demkowicz, AGR-2 TRISO fuel post-irradiation examination final
 951 report, Tech. rep., Idaho National Laboratory, INL/EXT-21-64279 (2021).
 952 URL <https://www.osti.gov/biblio/1822447>

953 [73] J. E. Hansel, R. A. Berry, D. Andrs, M. S. Kunick, R. C. Martineau, Sockeye: A one-dimensional, two-phase, compressible
 954 flow heat pipe application, *Nuclear Technology* 207 (7) (2021) 1096–1117. doi:10.1080/00295450.2020.1861879.

955 [74] S. Terlizzi, V. Labouré, Asymptotic hydrogen redistribution analysis in Yttrium-Hydride-moderated heat-pipe-cooled
 956 microreactors using DireWolf, *Annals of Nuclear Energy* 186. doi:10.1016/j.anucene.2023.109735.

957 [75] C. Matthews, V. Laboure, M. DeHart, J. Hansel, D. Andrs, Y. Wang, J. Ortensi, R. C. Martineau, Coupled multiphysics
 958 simulations of heat pipe microreactors using DireWolf, *Nuclear Technology* 207 (7) (2021) 1142–1162. doi:10.1080/
 959 00295450.2021.1906474.

960 [76] S. Biswas, S. L. N. Dhulipala, P. German, A. M. Jokisaari, D. Yushu, M. D. McMurtrey, Multiscale And Machine Learning
 961 Modeling For Process-informed Microstructure Prediction In Additively Manufactured Materials Using MALAMUTE,
 962 Tech. Rep. INL/RPT-24-80418, Idaho National Laboratory, Idaho Falls, ID United States (2024).

963 [77] J. W. Peterson, A. D. Lindsay, F. Kong, Overview of the incompressible navier–stokes simulation capabilities in the moose
 964 framework, *Advances in Engineering Software* 119 (2018) 68–92. doi:10.1016/j.advengsoft.2018.02.004.

965 [78] K. Tran, W. Neiswanger, J. Yoon, Q. Zhang, E. Xing, Z. W. Ulissi, Methods for comparing uncertainty quantifications
 966 for material property predictions, *Machine Learning: Science and Technology* 1 (2) (2020) 025006. doi:10.1088/
 967 2632-2153/ab7e1a.

968 [79] V. Kuleshov, N. Fenner, S. Ermon, Elliptical slice sampling, in: *Proceedings of the 35th International Conference on
 969 Machine Learning*, Stockholm, Sweden, 2018, pp. 2796–2804.

970 [80] R. G. Macaulay-Newcombe, D. A. Thompson, W. W. Smeltzer, Deuterium diffusion, trapping and release in ion-implanted
 971 beryllium, *Fusion Engineering and Design* 18 (1991) 419–424. doi:10.1016/0920-3796(91)90158-M.

972 [81] D. Ginsbourger, R. Le Riche, L. Carraro, Kriging is well-suited to parallelize optimization, Springer Berlin Heidelberg,
 973 2010.

974 [82] X. Wang, Y. Jin, S. Schmitt, M. Olhofer, Recent advances in Bayesian optimization, *ACM Computing Surveys* 55 (13s)
 975 (2023) 1–36. doi:10.1145/3582078.

976 [83] D. M. Blei, A. Kucukelbir, J. D. McAuliffe, Variational inference: A review for statisticians, *Journal of the American
 977 statistical Association* 112 (518) (2017) 859–877. doi:10.1080/01621459.2017.1285773.

978 [84] R. Ranganath, S. Gerrish, D. Blei, Black box variational inference, in: *Proceedings of the 17th International Conference
 979 on Artificial Intelligence and Statistics*, Reykjavik, Iceland, 2014, pp. 814–822.

980 [85] K. Kontolati, D. Loukrezis, D. G. Giovanis, L. Vandana, M. D. Shields, A survey of unsupervised learning methods
 981 for high-dimensional uncertainty quantification in black-box-type problems, *Journal of Computational Physics* 464 (2022)
 982 111313. doi:10.1016/j.jcp.2022.111313.