INL/JOU-25-83717-Revision-0

MOOSE ProbML:
Parallelized Probabilistic
Machine Learning and
Uncertainty Quantification
for Computational Energy
Applications

December 2025

Som LakshmiNarasimha Dhulipala, Peter German, Yifeng Che, Zachary M
Prince, Xianjian Xie, Pierre-Clement A Simon, Hao Yan

.

|daho National

|_(] oml‘ory INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/JOU-25-83717-Revision-0

MOOSE ProbML.: Parallelized Probabilistic Machine
Learning and Uncertainty Quantification for
Computational Energy Applications

Som LakshmiNarasimha Dhulipala, Peter German, Yifeng Che, Zachary M Prince,
Xianjian Xie, Pierre-Clement A Simon, Hao Yan

December 2025

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517, DE-AC07-05ID14517, DE-AC07-05ID14517, DE-
ACO07-05ID14517, DE-AC07-05ID14517, DE-AC07-05ID14517

MOOSE ProbML: Parallelized Probabilistic Machine Learning and
Uncertainty Quantification for Computational Energy Applications

Somayajulu L. N. Dhulipala®*, Peter GermanP, Yifeng Che®, Zachary M. PrinceP, Xianjian Xied,
Pierre-Clément A. Simon?, Vincent M. Labouré®, Hao Yand

@ Computational Mechanics and Materials Department, Idaho National Laboratory, Idaho Falls, 83415, ID, USA
b Computational Frameworks Department, Idaho National Laboratory, Idaho Falls, 83415, ID, USA
¢ Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
4School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, 85287, USA
¢ Reactor Physics Methods and Analysis Department, Idaho National Laboratory, Idaho Falls, 83415, ID, USA

Abstract

This paper presents the development and demonstration of massively parallel probabilistic machine learning
(ML) and uncertainty quantification (UQ) capabilities within the Multiphysics Object-Oriented Simulation
Environment (MOOSE), an open-source computational platform for parallel finite element and finite volume
analyses. In addressing the computational expense and uncertainties inherent in complex multiphysics
simulations, this paper integrates Gaussian process (GP) variants, active learning, Bayesian inverse UQ),
adaptive forward UQ, Bayesian optimization, evolutionary optimization, and Markov chain Monte Carlo
(MCMC) within MOOSE. It also elaborates on the interaction among key MOOSE systems—Sampler,
MultiApp, Reporter, and Surrogate—in enabling these capabilities. The modularity offered by these
systems enables development of a multitude of probabilistic ML and UQ algorithms in MOOSE. Example
code demonstrations include parallel active learning and parallel Bayesian inference via active learning.
The impact of these developments is illustrated through five applications relevant to computational energy
applications: UQ of nuclear fuel fission product release, using parallel active learning Bayesian inference; very
rare events analysis in nuclear microreactors using active learning; advanced manufacturing process modeling
using multi-output GPs (MOGPs) and dimensionality reduction; fluid flow using deep GPs (DGPs); and
tritium transport model parameter optimization for fusion energy, using batch Bayesian optimization. These
capabilities are part of the MOOSE framework.

Keywords: Active learning, Gaussian processes, Bayesian inference, Bayesian optimization, Finite element
models, Nuclear fission and fusion energy

1. Introduction

The Multiphysics Object-Oriented Simulation Environment (MOOSE), an open-source computational
platform for parallel finite element and finite volume analyses, is being developed and maintained primar-
ily at Idaho National Laboratory, and has a wide user and developer base spanning academia, industry,
and national laboratories [I]. It is easy to install, offers extensive tutorials, comes with built-in physics
modules, and naturally lends itself to multiscale and multiphysics simulations. MOOSE supports a vibrant
community of computational scientists and engineers via a highly active discussions forum, and its code
base receives tens of pull requests each month (https://github.com/idaholab/moose). MOOSE has tradi-
tionally supported computational simulations intended to advance energy solutions such as nuclear fission
energy, geothermal energy, and, more recently, nuclear fusion energy. Several applications were built by

*Corresponding author
Email address: Som.Dhulipala@inl.gov (Somayajulu L. N. Dhulipala)

Preprint submitted to Journal of Computational Science November 14, 2025

https://github.com/idaholab/moose

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

using MOOSE to tackle specific problems such as nuclear fuel performance (BISON [2]), structural mate-
rials aging (Grizzly [3]), medium-fidelity thermal hydraulics (Pronghorn [4]), radiation transport (Griffin
[5]), seismic analysis (Mastodon [6]), mesoscale materials simulations (Marmot [7]), high-fidelity thermal-
hydraulics and/or radiation transport (Cardinal [§]), tritium transport for fusion energy (TMAPS [9]),
thermal-hydraulic-mechanical-chemical processes in geothermal systems (Falcon [I0]), etc. MOOSE also
provides a stochastic tools module to support uncertainty quantification (UQ) and propagation, as well as
surrogate model development for multiphysics simulations [I1]. This paper presents the development and
demonstration of massively parallel probabilistic machine learning (ML) and UQ in the MOOSE stochastic
tools module to support capabilities such as Gaussian process (GP) ML, active learning, Bayesian inference,
rare events analysis, Bayesian optimization, and evolutionary optimization. These capabilities in the native
MOOSE framework are motivated by the following: (1) complex multiphysics simulations, when validated
with experimental data, are subject to different sources of uncertainties (i.e., model parameters, model in-
adequacy, and experimental noise) that must be quantified and propagated to the outputs; (2) complex
multiphysics models are computationally expensive to run, especially in a UQ setting, and surrogate models
that quantify their prediction uncertainties (i.e., probabilistic ML models such as GPs) will support their
efficient and accurate execution by leveraging active learning principles; and (3) probabilistic ML and UQ
capabilities could be leveraged by MOOSE’s extensive user base.

Probabilistic ML deals with the development of surrogate models that can quantify complex multiphysics
model prediction uncertainties. UQ deals with all aspects of identifying and inversely quantifying different
sources of uncertainties, then forward propagating them to the model predictions. Probabilistic ML and
UQ go hand-in-hand, leading to efficient approaches for active learning, Bayesian inference, Bayesian opti-
mization, etc. Among the existing software for performing various aspects of probabilistic ML and UQ are
UQPy [12], CUQIPy [13], MUQ [I4], and PyApprox [I5], as discussed in Seelinger et al. [I6]. Most of these
software programs were written in Python. The development and demonstration of probabilistic ML and
UQ capabilities presented herein is oriented toward the extensive user/developer community of MOOSE,
which is written in C+4. Moreover, MOOSE inherently supports massive parallelism, meaning that the
probabilistic ML and UQ approaches can be scaled to use thousands of processors, thus leading to high
levels of efficiency when dealing with complex multiphysics models. Ultimately, the right software tools
can significantly enhance various stages of the research, development, and deployment processes for energy
solutions, with different tools being better suited to specific scenarios.

Massively parallel probabilistic ML and UQ in MOOSE is achieved through its Sampler, MultiApp,
Reporter, and Surrogate systems. Sampler proposes new input parameter samples from the underlying
probability distributions, MultiApp facilitates evaluation of the MOOSE computational model while han-
dling massive parallelism, Reporter facilitates post-model-evaluation decision making, and Surrogate
handles the training, evaluation, and retraining of probabilistic surrogates. These systems and their interac-
tion are key to the development of GP variants, active learning, Bayesian inverse UQ, adaptive forward UQ),
Bayesian optimization, evolutionary optimization, and Markov chain Monte Carlo (MCMC) in MOOSE.
The modularity offered by these systems enables development of a multitude of probabilistic ML and UQ
algorithms. These aspects will be discussed in detail later in this paper. Besides discussing the software im-
plementation, this paper also demonstrates its application to five different types of computational problems:
(1) Bayesian inverse UQ of fission product release from nuclear fuel, using parallel active learning; (2) very
rare events analysis of a heat pipe (HP) nuclear microreactor, using active learning; (3) acceleration of ad-
vanced manufacturing process simulations, using multi-output GPs (MOGPs) and dimensionality reduction;
(4) prediction of lid-driven cavity flow, using with deep GPs (DGPs); and (5) model parameter optimization
of tritium diffusion for nuclear fusion, using batch Bayesian optimization. Figure [I| presents an overview
of the probabilistic ML, forward/inverse UQ, active learning, optimization, and dimensionality reduction
capabilities in MOOSE and the core MOOSE systems that are utilized for achieving these capabilities.

This paper is organized as follows. Section [2]provides a theoretical review of the active learning, Bayesian
inverse UQ, adaptive forward UQ, Bayesian optimization, evolutionary optimization, and MCMC methods
relevant to MOOSE. Section [3] details the MOOSE code implementations. Section [4] discusses the impact
to the five aforementioned energy applications. Lastly, Section [6] summarizes the paper and presents the
conclusions.

Surrogates (probabilistic ML)

Training: MCMC (ESS +

Standard GP (ARD) MH)

Multi-Output GP (LMC) || Deep GP (experimental) | | Training: Adam/AdamW

Active Learning (batch + sequential)

Expected Upper Probability of Posterior- y . 6 Batch selection:
Improvement Confidence Improvement targeted v fuz\cltelstr;)(rare G|°b(a:|03t B/ Local
(El) Bound (UCB) (PI) (Bayesian UQ) penalization

Inverse UQ (Bayesian, KOH discrepancy)

Differential Evolution
(ensemble MCMC)

Affine-Invariant Stretch
Sampler

Parallel Metropolis—
Hastings

GP discrepancy for
model inadequacy

Posterior prediction via
GP/MCMC

Forward UQ

Parallel Subset Simulation
(PSS)

Latin Hypercube Sampling

Monte Carlo (LHS)

Adaptive Importance Sampling

Optimization

Batch Bayesian Optimization Evolutionary optimization via PSS

Dimensionality Reduction

Linear PCA (parallel SVD via SLEPc)

Core MOOSE Systems

Sampler (MC, AlS, PSS,

MCMC, Active)

MultiApp (parallel
execution of sub-apps)

Reporter (data
collection, JSON
outputs)

Surrogate & Trainer
(GP/DGP, retraining)

Covariance / Likelihood
/ Acquisition /
Distributions

Representative Applications

TRISO silver release
(Fission): Bayesian
inverse UQ

Nuclear microreactor
(Fission): rare events with
AL

Additive manufacturing:
MOGP + PCA fields

Lid-driven cavity:
DGP vs GP

TMAPS tritium (Fusion):
batch Bayesian
optimization

Figure 1: An overview of the probabilistic ML, forward/inverse UQ), active learning, optimization, and dimensionality reduction
capabilities in MOOSE and the core MOOSE systems that are utilized for achieving these capabilities. These capabilities are
part of the MOOSE framework.

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

2. Methodology Overview

This section provides a theoretical overview of the probabilistic ML and UQ methods relevant to the
MOOSE implementation.

Deep Gaussian process with single
hidden layer

Multi-output Gaussian process with
Linear Model of Co-regionalization

Figure 2: Graphical representation of the input (X) and output (Y') mapping of the three GP variants in MOOSE: standard GP,
MOGP, and DGP. 02, 1, and 72, respectively, represent the amplitude scale, length scales, and noise variance hyperparameters.
Afl and)\fl are the additional hyperparameters for an MOGP, and l%/V is the additional hyperparameters for a DGP. In
MOOSE, these GP variants can be trained via either adaptive moment estimation (Adam) optimization (gradient-based) or
MCMC sampling (gradient-free). Here, “gradients” refers to gradients of the log-likelihood objective function.

2.1. Gaussian process variants

Figure [2 presents a graphical representation of the different GP variants in MOOSE. The theoretical de-
tails are briefly discussed below. The GP capabilities are used for Bayesian analysis of fission product release
in an advanced nuclear fuel (Section , rare events analysis of a nuclear reactor (Section 7 advanced
manufacturing process modeling (Section , predicting fluid flow (Section , and the optimization of a
computational model for nuclear fusion (Section , as discussed later in this paper.

2.1.1. Standard Gaussian process

A standard GP is a stochastic process in which any finite collection of random variables follows a Gaussian
distribution. Essentially, a GP describes a probability distribution over a function space and is discretized
at certain points in the input space. A zero-mean GP is described as [17]:

Y~ N(o, k(X,X’)) (1)

where y is the output vector of size N, k(.,.) is the covariance function, and X is the input matrix of size
N x D (D being the dimensionality of the inputs). As shown in Figure [2| given input vectors & and ', the
scalar kernel function is described as:

1 & (rq — x)))?
k(:z:,a:’) = 02 exXp — 5 Z Td + Tzlx:m’ (2)
d=1

S

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

where | = (I1,---Ip) is the vector of length scales, o2 is the amplitude, and 72 is the noise term. When
each input dimension is associated with its own length scale, the GP fitting procedure is referred to as
automatic relevance determination (ARD) [I7], which is often used to implicitly determine the relevance of
input variables. Note that & is an input vector and X is the input matrix at N points. As such, k(z,2’) is
a scalar kernel function and k(X,X’) is a covariance matrix of size N x N. The parameters {l, 02, 7%} are
the hyperparameters to be optimized by maximizing the log-likelihood function:

1 1
In p(y | X>0-27la7-2) X _5 11’1|k‘(X,X)| - § yT k(XaX)_l Yy (3)

where X and y are the training inputs and outputs, respectively. Upon optimizing the hyperparameters, as
discussed in Section the predictions of the GP on testing inputs X, constitute a Gaussian distribution:

Py | X, Xoy) ~ N (R X) KX X) 7y,

(4)
k(X X)) — k(X., X) k(X,X)"! k(X,X.))

where p(y. |.) is the probabilistic prediction of the GP with mean vector k(X ., X) k(X,X)™! y and covari-
ance k(X., X.) — k(X., X) k(X,X) ! k(X,X.,).

2.1.2. Multi-output Gaussian processes (MOGP)

MOGPs model and predict vector outputs of size M. For any input matrix X, let the matrix of outputs
be denoted by Y = [y1, ¥2,..., yn]T. Note that y; is of size M x 1 and Y is of size N x M. The matrix Y’
is vectorized and represented as y with size NM x 1. g is modeled with a zero-mean Gaussian distribution
prior, defined as:

g~ N(ﬁ, K) (5)

where 0 is the mean vector and K is the full covariance matrix. K captures covariances across the input
variables and the vector of outputs, and thus has a size of NM x NM. K can be modeled in several different
ways, as discussed in [I8| 19]. As shown in Figure [2| we will follow the linear model of co-regionalization
(LMC), which distinctly models the covariances between the N inputs and the M outputs. Mathematically,
the LMC is defined as [I8, [20]:

Q
K=> B,®K, (6)
q=1

where ¢ denotes the basis index, Bq is the outputs covariance matrix of size M x M for the ¢*" covariate,
K, is the inputs covariance matrix of size N x N for the ¢*" covariate, @ is the total number of bases, and

® denotes the Kronecker product. By is further defined as the sum of two matrices of weight [20]:
B, = AAT + diag (,\q) (7)

where A, and A, are, respectively, the matrix (size M x R) and vector (size M x 1) of hyperparameters,
both for the ¢'" basis. The size R is user defined and can be greater than or equal to 1. The larger the
R, the more sophisticated the MOGP in modeling complex outputs. Furthermore, the size of () can also
be greater than or equal to 1. Again, the larger the @, the more sophisticated the MOGP in modeling
complex outputs. In total, the MOGP with the LMC output covariance and the squared exponential input
covariance kernel will have @ (D + 1) (M + 1) R hyperparameters to be optimized arising from @ basis. If
Q@ =1, the LMC reduces to the intrinsic co-regionalization model, with (D +1) (M + 1) R hyperparameters
to be optimized. The MOGP log-likelihood function has a form similar to that of a scalar GP:

1 _ _
L=— In|K|--y K y—- N In(2n) (8)

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

Once the MOGP hyperparameters are optimized, as discussed in Section probabilistic predictions of
the vector quantities of interest can be made. Given a prediction input ., the probability distribution of
the vector outputs is given by:

where Z is the matrix of training inputs, fi, is the mean vector, and X, is the covariance matrix. The mean
vector is defined as:

A r > —1 ~

po=Ky 5 (Kgg) 9 (10)
where K 9,5 1s the full covariance matrix of the training inputs and prediction inputs, and K .9 is the full
covariance matrix of the training inputs. The covariance matrix X, is defined as:

- 7 -1 T
Yo=Ky g Ky 5 (Kyy) Ky g (11)
where K 9..9, is the full covariance matrix of the prediction inputs.

2.1.3. Deep Gaussian process

Standard GPs entail the stationarity assumption, potentially limiting the GP’s predictive performance
(e.g., under regime changes in the input/output space). A stationary GP implies that the covariance between
any two points depends only on the distance between them, not on their absolute locations. A DGP was
first introduced by Damianou et al. [2I] and Damianou et al. [22] as a means of overcoming this stationarity
assumption. By moving the inputs through hidden Gaussian layers, a DGP achieves non-stationarity even
while using standard kernel functions (e.g., a squared exponential kernel) [23]. Several DGP variants were
proposed based on the optimization procedures used for determining the hyperparameters [24, 25]. Herein,
we rely on the DGP formulation of Sauer et al. [23], who used MCMC for hyperparameter optimization.
Considering a single-hidden-layer DGP (see Figure , output y is modeled as GPs over the hidden layer
latents w, which are themselves modeled as a GP over the input . The prior is mathematically described
as:

y|lw ~N<O, k('w,w/)>

w NN(O, k(m,z’))

Note that, for convenience, the prior is described for a scalar value of the output y corresponding to the
input vector . In this case, the latents w are a vector of size p. Sauer et al. [23] recommends that p be equal
to the size of the input vector. The log-likelihood function is the summation of log-likelihoods describing the
mapping from y to w and from w to . Given N training inputs, X, y, and W have sizes of N x D, N, and
N x p, respectively. W is the vector of latents for the i*" node in the hidden layer, and has dimensionality
N. The compound log-likelihood function is given by:

(12)

In ply | W,0%1,7) o~ In[K(W,W)| — - 4" kW, W)~y
SN | , 1

In p(W | X,ly) ;—5 In [k*(X, X)| - 5

In py | W,o%, X,1, ly,7®) =In ply | W,0%,1,7%) +1In p(W | X,lw)

The DGP hyperparameters are optimized with respect to the log-likelihood function above, as discussed in
Section [2.1.41 For the testing inputs X, the latents are first predicted per:

fi (X i) = kZ(X*aX) ki(XvX)il w’
Vi (X)) = (X, X,) — (X, X) (X, X)) ¥'(X,X.)
6

(14)

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

Note that the index 7 denotes the node in the hidden layer. Using these latents, the output mean and
covariance matrix are predicted per:

pe = k(W W) k(W W) 1y

, =kW., W,) - kW, W) kW,W) ! LW,W,) (15)
2.1.4. Gradient-based and gradient-free optimization methods for hyperparameter tuning

For gradient-based optimization of the hyperparameters of the GP variants, MOOSE employs adaptive
moment estimation (Adam) [26]. Adam is a stochastic optimization algorithm that permits mini-batch
sampling during the optimization iterations. In traditional Adam with regularization, the gradient update
and hyperparameter update steps are defined as [20]:

9t VL(O:—1)+ X0y
0,61 —m (amt/(\/ﬁj + E))

where t is the iteration, 6 represents the optimizable hyperparameters, g is the gradient update, A is the
regularization weight, o and ¢ are internal parameters of the algorithm, m is the corrected first moment
update, ¥ is the corrected second moment update, and 7 is the schedule multiplier. Loshchilov et al. [27]
proposed the AdamW algorithm, which modifies how the regularization is performed in Adam, thereby
increasing its optimization performance. AdamW modifies the gradient update and hyperparameter update
steps as follows [27]:

(16)

g+ <— V‘Ct(ot—l)
0,01 —n (amt/(\/’Z‘f’ g)+A 91571)

wherein we see that the regularization is decoupled from the gradient update step and instead added to
the hyperparameter update step. Loshchilov et al. [27] found that this decoupling generally enhanced the
Adam algorithm’s performance across the suite of case studies considered.

In MOOSE, gradient-free optimization is also available for tuning the GP hyperparameters, particularly
the DGP. This is based on MCMC sampling via the elliptical slice sampler (ESS) and Metropolis-Hastings
(MH) sampler. ESS is particularly well suited for fields f with Gaussian priors N (0,X) [28]. A random
angle v ~ U(0, 27) is drawn with the bounds set to Ymin = 7 — 27 and ymax = 7. A new proposal for f is
then made with the acceptance rate a, as shown below [28]:

(17)

f* — ft—l cos 7y +fprior Sil’l’y

a=min | 1 & (18)
TL(fY

where ¢ is the MCMC iteration index and £ denotes the likelihood function. Crucially, in contrast to the
MH sampler, if the proposal f* is rejected, the bounds on v are shrunken to vy, = v (if v < 0) and
Ymax = 7 (O.W.). A new proposal for v is then made using U (Ymin, Ymax). The procedure is repeated
until the new proposal f* is accepted in the current iteration ¢. For DGPs in particular, Sauer et al. [23]
proposed a hybrid version of ESS and the MH sampler in order to improve hyperparameter inference, and
this version is implemented in MOOSE. At each MCMC iteration ¢, the MH sampler is first used to update
the parameters I, 02, 72, and li;, in sequence, such as in a Gibbs sampling scheme. Then, by conditioning
on these new values, the latents W are updated using ESS. The updating for iteration ¢ is given by:

o?[t], 7%[t] via MH with p(y | W,02,1,7?)
I[t] via MH with p(y | W,0?%,1,7?)
iy [t] via MH with p(W | X, lw) Vi€ {1,...,p}
Wit] via ESS with p(y | W,o%,l,73) Vie {1,...,p}
7

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

Note that the combination of MH and ESS for updating at each MCMC iteration resembles a Gibbs sampling
scheme. Also, p(.) in Equation is used for decision making in either the MH sampler or ESS to
accept/reject a proposed sample.

2.2. Batch acquisition functions for parallelized active learning

MOOSE currently features several acquisition functions for a variety of tasks such as Bayesian opti-
mization, Bayesian inverse UQ, and global surrogate fitting. These acquisition functions are dependent on
the mean prediction (i) and standard deviation (&) of the GP variant. Table [1| presents these acquisition
functions and also lists their usage. Note that some of them have a tuning parameter A whose functionality
depends on the usage. For example, A serves to boost either exploratory or exploitative behavior for Bayesian
optimization and Bayesian inverse UQ tasks. In contrast, A is the failure threshold for a rare events analysis
task. Also, for some GP variants such as MOGP, the mean prediction and standard deviation are vector
quantities. In such a case, the computed acquisition function will also be a vector quantity that must be

reduced to a scalar by using operations such as sum, average, maximum, minimum, or product.

Table 1: Acquisition functions in MOOSE for active learning for tasks such as optimization, Bayesian inverse UQ, and global
surrogate fitting.

Acquisition function a(z) Mathematical form Usage
Expected Improvement [29] 2®(z/6) + 6¢(2/5) Bayesian optimization
Upper Confidence Bound [30] AG + i Bayesian optimization

Probability of Improvement [29] P((o—M(z*))/5) Bayesian optimization
Bayesian posterior targeted [31] | exp(2Af) (exp(6) — 1) | Bayesian inverse UQ

U-function [32] [33] (n—MN)/o Rare events analysis
Expected Improvement . F\\2 | A2 .

for Global Fit [34] (A= M(@")" +6 Global fitting
Coeflicient of variation 6/i Global fitting

¢ : Gaussian probability density function (PDF), ® : Gaussian cumulative distribution function (CDF), f :
GP variant mean, & : GP variant standard deviation, M : Computational model, * : current best point, A :
acquisition function parameter, and z = i — A — M(z*)

The acquisition functions listed in Table [1| permit sequential active learning, with one optimal location x
being specified to run the full-fidelity MOOSE model. However, sequential active learning can incur signifi-
cant computational cost, as running the full-fidelity MOOSE model several times in sequence is expensive.
To alleviate this, we used batch versions of the acquisition functions, where b (a user-defined parameter)
optimal locations of the inputs are specified to run the MOOSE model in parallel. For simplicity, we adopted
the local penalization approach proposed by Zhan et al. [35]. In it, a correlation function between two inputs
is first defined as:

1 & (v —a')?
Corr(z,z') =1 — exp (- = E 72> (20)
2 ;3

d=1
where [represents the length scales, as obtained through GP hyperparameter optimization. The b optimal

points for running the MOOSE model are defined as:

z! = argmax a(x)
x

z? = argmax a(z) Corr(z,z')
@ (21)

b—1
z’ = argmax a(x) H Corr(z,x")
® i=1

In this manner, we can select b optimal points within each iteration of active learning by performing local
penalization to mitigate any clustering of those points. These b points can be evaluated in parallel by

8

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

using a MOOSE model, and the GP variant is retrained by appending the input/output data with the new
points. These active learning capabilities are used for Bayesian analysis of fission product release in an
advanced nuclear fuel (Section , rare events analysis of a nuclear reactor (Section , and optimizing a
computational model in nuclear fusion (Section , as discussed later in this paper.

2.8. Inverse sampling and Bayesian inference

For inverse UQ), it is often of interest to calibrate computational models given the experimental data while
quantifying the uncertainties associated with model parameters, model inadequacy (i.e., model structural
error), and experimental noise. Following the Kennedy and O’Hagan framework [36], the experimental data
are defined to have originated from a generative model of the following form assuming independent and
identically distributed experiments:

22
where, € ~ L(0.) (22)

where the i*" experimental observation is indicated to be the model prediction plus a model inadequacy
term (6), plus a correction factor (¢) to account for noise in the experimental data. In Equation , M is
the computational model, 8 are the model parameters, and © is the experimental configuration. The model
inadequacy term is traditionally modeled with a standard GP, as further discussed in Section [2.1.1] The
correction factor is treated as a random variable that follows a probability distribution generically defined
as L, and whose scale is 0. and mean is 0. £ is the likelihood function that evaluates the adequacy of the
model predictions against the experimental data for a given 8 and o.:

N
[’(0708|6aM7D) = H£(0706|@i3M7Di) (23)
i=1
where the term within the product sign is specific to a given experimental configuration, and the product
sign itself indicates that the experiments are independent and identically distributed. Specifically, under the
Gaussian assumption, the likelihood function becomes:

N
L(0,0./6,M, D) = [[N(D(©:) — M(8, ©;) —5(6:), o¢) (24)
=1

With the likelihood function defined, the Bayesian inference problem entails quantifying the posterior dis-
tribution of {8, 0.} [36, 37 [38] [39, [40]:

f(6,0:10, M, D) x L(0,0.|10, M,D) f(0,0.) (25)

where f(0,0.) defines the prior distribution before observing new experimental data. The proportionality
constant in Equation is a multidimensional integration over {#,0.} and is typically unknown. Thus,
MCMC techniques are traditionally used to solve the Bayesian inverse problem.

MCMC techniques, widely regarded as the gold standard for solving the Bayesian inference problem,
involve drawing samples from the posterior distribution described by Equation . Use of an MCMC
sampler in practice is presented in Figure We start from an arbitrary realization of {6, o} and propose
a new sample. The proposal can rely on the proposal distribution if the MCMC sampler falls under the
MH class. Otherwise, it can be implicitly defined without requiring a proposal distribution, as in the case
of an ensemble MCMC sampler 41, [42]. In any case, the computational model is then evaluated for the
newly proposed {8, o}. Using the computational model output, the likelihood function is evaluated and
the transition probability with respect to the old sample is computed. The new proposal is accepted with
probability ¢,,. Repeating the process of making a new proposal, evaluating the computational model and
the likelihood function, and accepting/rejecting the proposal a sufficient number of times will give us the
samples from the required posterior distribution.

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

9
X
00/ .
N
V) I
Likelihood
(model) o
o evaluation Likelihood
P (model)
' evaluation

(a) (b)

Figure 3: (a) Serial and (b) parallel/ensemble MCMC methods for obtaining samples from the posterior distribution. In
comparison to serial MCMC samplers, parallel/ensemble MCMC samplers usually accelerate convergence to the posterior
distribution.

This version of the MCMC sampler is serial in nature. Thus, it can take a significant number of serial
steps to reach convergence, entailing many serial evaluations of the computational model. As this can
be very expensive in practice, we will discuss parallelizable MCMC samplers that have multiple parallel
Markov chains. Figure [3b| presents the working principle behind parallel MCMC samplers, which is similar
to that of a serial MCMC sampler. At each step, P parallel proposals are made, then the computational
model corresponding to each proposal is evaluated. Since these model evaluations are independent of each
other, they can be parallelized. The outputs are then used to compute the likelihood functions, and the
Markov chains exchange information with each other to determine the next-best set of P parallel proposals.
The manner in which information exchange between chains is formulated differentiates the parallel MCMC
samplers. Calderhead [43] proposed a parallelized version of the MH class of samplers. Goodman and
Weare [42] proposed a version of ensemble MCMC based on the affine invariance property, whereas Braak
[41] proposed one based on differential evolution optimization [44]. All these parallel MCMC variants are
available in MOOSE. Interested readers are referred to [43] [42] [41], [45] for the corresponding mathematical
details.

In addition to being massively parallelizable, parallel/ensemble samplers have been shown to accelerate
convergence to the posterior, in comparison to the serial MCMC samplers. Studies such as Laloy and Vrugt
[46], Foreman-Mackey et al. [47], and Opara and Arabas [48] discuss the convergence of MCMC samplers
with the aid of metrics such as the Gelman-Rubin diagnostic [49] and the effective sample size.

For any new experimental configuration @, the posterior predictive distribution is:

F(M(6, 6))8,D) :/ /01:(0,049,/\4,1)) £(6,0.18, M, D) df do. (26)

where £(6,0.|0, M,D) has the same form as in Equation (23). From the probability distribution of the
model prediction described in Equation , statistics such as the median prediction and confidence bands
can be inferred. This requires forward sampling techniques, discussed next. The inverse UQ capabilities are
used for Bayesian analysis of fission product release in an advanced nuclear fuel (Section 7 as discussed
later in this paper.

10

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

2.4. Forward sampling

Forward sampling methods sample from a known probability distribution ¢(z). Traditional methods such
as Monte Carlo sampling and Latin hypercube sampling (LHS) are available in MOOSE. When estimating
certain statistics, Monte Carlo and LHS may require numerous evaluations of the model M, thus becoming
computationally intractable. There may also be cases in which directly drawing samples from the distribution
q(z) is infeasible. Importance sampling addresses these concerns by sampling from an importance density
f(z). The mean estimator of the quantity of interest Q(./\/l (:L')) is then computed via the modified equation
[50]:

0= L1 3 oM 42 1)
S = Y f ()

where S is the number of samples drawn from the importance density f(z). The variance of the estimator
is computed per [50]:

(28)

T
[N~}
|
o
V)
——

11 g(z;
Var(Q) = & {5 > [Q(M(mi)) @)

i=1

~

A crucial component of importance sampling is the creation of importance density f(z). To estimate rare
events, MCMC is a popular approach for creating f(z) by using an adaptive importance sampling scheme
[51), 52, 53]. For other applications, methods that use control variates [54], multilevel Monte Carlo [55], and
multifidelity modeling [56] have also been proposed to create f(z).

For more complex forward UQ applications such as global optimization and very rare events analysis,
MOOSE also features a parallel subset simulation sampler [57, 58]. This is a variant of the sequential Monte
Carlo sampler [59], with the goal being to sample from the failure or the optimal region. Subset simulation
creates a series of intermediate thresholds—representing the suboptimal regions—that incrementally draw
nearer to the optimal region. The method begins with regular Monte Carlo sampling for N samples. The
top po € [0, 1] samples are then selected in light of the quantity of interest Q(M(m)) Using these p,
samples, Markov chains are initiated such that they propagate toward the optimal region and not in the
other direction. If there are Nj; Markov chains, each is evaluated int(N/Nys) times to obtain N samples
from this intermediate suboptimal region. The process of selecting the top p, samples from this intermediate
region and initiating the Markov chains is repeated until convergence is achieved. As tens or hundreds of
Markov chains are propagated in each subset, these and the corresponding MOOSE model evaluations can
be massively parallelized. Note that parallelization can only be achieved across all the Markov chains, and
not within the individual chains. More advanced versions of subset simulation have been proposed with
respect to aspects such as the dynamic/adaptive intermediate thresholds [59] 60] and the MCMC samplers
[6T, 62, [63]. Building on the subset simulation sampler, other variants of this method—or of sequential
Monte Carlo samplers in general—can be implemented in MOOSE at some point in the future. The forward
UQ capabilities are used for rare events analysis of a nuclear reactor (Section , as discussed later in this

paper.

2.5. Dimensionality reduction

MOOSE stochastic tools module supports linear principal component analysis (PCA), a dimensionality
reduction technique widely used across multiple scientific disciplines [64]. Linear PCA can be used to
determine a lower-dimensional space (latent space) that is closest to the given data in a discrete L? norm.
Let s € RY be a high-dimensional vector (N is large) representing the high-dimensional solution fields from
numerical solvers in MOOSE. To discover a low-dimensional latent space by using PCA, we collect snapshots
of the solution fields and organize them into a snapshot matrix S = [s1, 82, ..., 8n,]. For discrete problems
such as the one presented here, singular value decomposition (SVD) is performed for a linear PCA analysis.
Therefore, we can obtain the principal components of the snapshots (basis functions of the latent space) by
computing the SVD of the snapshot matrix:

11

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

S=uxvT (29)

where matrices U and V are unitary and contain the left and right singular vectors, respectively, whereas
diagonal matrix ¥ contains the singular values. MOOSE relies on the parallel SVD solvers through the aid
of SLEPc [65], enabling it to efficiently compress very high-dimensional output fields. The columns of U are
also called principal components, and can be used to approximate the high-dimensional snapshots per:

s~U,c, (30)

where ¢, € R” contains the expansion coefficients or coordinates in the lower-dimensional latent space, while
matrix U, contains the first r principal components. The columns of U, span the closest r-dimensional
subspace to the snapshots in S. Based on this expression and the fact that the principal components are
orthonormal, we can map the snapshots to the latent space via the following operation:

c.=Uls (31)

To determine the necessary number of principal components, (i.e.,) an explained variation-based approach
is utilized that relies on the the singular values (o) located on the diagonal of matrix X:

T
> o}

r=argmin [1 - =1 <T (32)
1<r<N, Ny
i=

The above metric selects 7 so that the relative sum of the squared singular values from r to N is lower than
a given number 7 € (0,1]. The dimensionality reduction capabilities are used for advanced manufacturing
process modeling (Section 4.3)), as discussed later in this paper.

3. MOOSE Code Implementations

3.1. Background on the MOOSE Stochastic Tools Module

The MOOSE stochastic tools module aims to efficiently and scalably sample parameters, run multiphysics
models, and perform stochastic analyses, including UQ, sensitivity analysis, and surrogate model generation.
In Slaughter et al. [I1], a more comprehensive and general overview of the module is presented. The following
subsections describe the MOOSE systems relevant to the probabilistic ML and UQ techniques focused on
in this paper.

3.1.1. Samplers system

The Samplers system represents a class of objects responsible for generating random samples. MOOSE
provides a variety of objects for specific sampling strategies, including MonteCarlo and LatinHypercube
for basic random sampling, Quadrature for sparse quadrature sampling, AdaptiveImportance and
ParallelSubsetSimulation for MC-based forward-UQ sampling, and various objects for MC-based
inverse-UQ sampling. For adaptive sampling schemes (e.g., MC-based sampling), these objects can gather
data from associated objects so as to determine subsequent sets of samples—for instance, gathering whether
or not a sample was rejected or accepted in the chain. Samplers also define how the multiphysics runs are
parallelized. Typically, the number of parallel runs and the number of processors needed for each run are
determined programmatically, though there are input parameters that allow for user control.

12

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

3.1.2. MultiApps system

MultiApps is a framework-level system in MOOSE that enables instantiation of independent simulations
[66]. MOOSE utilizes this system to run multiphysics simulations during stochastic sampling and to gather
the results. In particular, it leverages the flexibility in distributing simulations across processors, making the
stochastic simulations both extremely scalable and memory efficient. This parallelism works on two fronts:
sample parallelism and model parallelism. Sample parallelism involves distributing the concurrent simu-
lations evenly across the available processors—possibly leaving multiple processors per simulation. Model
parallelism is supported by distributed memory parallelism (with MPI) and shared memory parallelism
(with OpenMP). This interplay between sample and model parallelism is customizable within MOOSE to
help with memory consumption for larger models. Further details on the distribution of MultiApps for
MOOSE are presented in Slaughter et al. [II]. GPU-based parallelism for model parallelism is currently
under development. However, MOOSE can be configured and compiled with Libtorch, the C++ frontend of
PyTorch [67, [68]. Libtorch modules within MOOSE can already harness the GPU acceleration for Libtorch
model evaluations, model training, and tensor manipulations.

3.1.3. Reporters system

The MOOSE Reporters system provides an interface for declaring, manipulating, and gathering global
data in a given application. MOOSE primarily utilizes this system to store data from MultiApps runs
during the stochastic simulation. Reporter objects also handle heterogeneous storage of the data, keeping
data distributed for memory efficiency and homogenizing them when necessary. Reporters is also the
primary strategy for outputting data such as UQ results, typically in the form of JSON files.

3.1.4. Surrogates system

The Surrogates system in MOOSE provides the capability to train and evaluate meta-models. Trainers

are responsible for gathering parameter values from Samplers and responses from Reporters to com-
pute the necessary data for model generation. These data can be declared globally or output for later use.
Surrogates then takes the trained model and provides an interface for evaluating it. Specified Trainers
and Surrogates are accessible from any MOOSE object in order to either evaluate the model based on
specific parameters or retrain them on-the-fly. All the GP variants are built using the Surrogates system.
While not directly relevant to probabilistic ML, MOOSE also has support for other types of surrogates
such as polynomial chaos, polynomial, and proper orthogonal decomposition reduced basis. Importantly,
MOOSE can be configured and compiled with Libtorch, the C++ frontend of PyTorch [67) [68]. This means
more complex surrogates like neural networks can either be trained natively in MOOSE or be imported from
Python/PyTorch via TorchScript.

3.2. Modularity: understanding the Sampler, MultiApp, Reporter, and Surrogate interaction

The Sampler, MultiApp, Reporter, and Surrogate systems in MOOSE afford extensive modularity
and enable development of many variants of active learning, forward/inverse UQ, and Bayesian optimization
algorithms. Moreover, these algorithms can be implemented in an inherently parallel manner by calling sev-
eral instances of the computational MOOSE model in parallel, using the MultiApp system. Understanding
how the Sampler, MultiApp, Reporter, and Surrogate systems interact with each other—as well as
their order of execution within MOOSE—is key to implementing these algorithms. This section discusses
the interaction between these systems.

For the sake of simplicity, the interaction among Sampler, MultiApp, and Reporter is discussed
first. Sampler proposes new samples from the underlying probability distributions, using objects in the
Distributions system. These proposed samples are stored in a global array, with the rows containing
the samples to be executed in parallel and the columns representing the parameters to the computational
model. The numerical simulations corresponding to the proposed samples are automatically executed in
parallel, if the user desires, via the MultiApp system. Upon execution, the simulation outputs are received
by the Reporter system and stored in a JSON file. Under simple schemes such as Monte Carlo or LHS,
the Reporter system only outputs the simulation results and the Sampler system then moves on to

13

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

propose the next batch of samples, without any influence from the previously proposed samples or their
simulation outcomes. In schemes such as adaptive Monte Carlo and MCMC, the Reporter system plays
a more crucial role of influencing the next batch of samples proposed by the Sampler system, depending
upon the simulation outcomes of the previously proposed batch of samples. Several adaptive Monte Carlo
and MCMC algorithms such as adaptive importance sampling and parallel subset simulation for forward
UQ and parallel MH, and ensemble MCMC for inverse UQ, fit well within the Sampler, MultiApp, and
Reporter interaction scheme in MOOSE. For Bayesian inverse UQ problems, the Sampler system per-
forms the additional function of collecting the user-supplied experimental configuration data and combining
them with the proposed samples of model parameters by creating combinations of these parameters and
experimental configurations. Owing to the inherent parallelization via the MultiApp system, algorithms
such as parallel subset simulation, parallel MH, and ensemble MCMC, which rely on multiple Markov chains,
can be massively parallelized in terms of the computational model calls. Figure [] presents the Sampler,
MultiApp, and Reporter system interaction flowchart, along with several objects available in MOOSE
for forward and inverse UQ applications.

GaussianProcess
! |m———— Surrogate
DeepGaussianProcess 1

influence Sampler and/or Reporter

Single and Multi-Output Covariance
SubApp 1

batch of input samples SubApp 2

outputs SubApp N

influence next

samples Executed in parallel

/ Forward: \
MonteCarlo, LatinHypercube,

AdaptivelImportanceSampler,
ParallelSubsetSimulation
ActivelLearningMonteCarlo

AISActivelLearning
SubsetSimulationActiveLearning,
GenericActivelLearning

] Forward:
AdaptiveMonteCarloDecision
ActivelLearningGPDecision

8 o BiFidelityActiveLearningGPDecis
ayesian inverse: ; ; : ion, GenericActivelLearner
ParallelMCMCRase, Distributions
IndependentGaussianMH, Bayesian inverse:
AffineInvariantStretchSampler, ParallelMCMCDecigion
AffineInvariantDE R
s t eA 1? li EDES, [parallelAcquisition }——» IndependentMHDecision,
ayesianictivelearning AffinelInvariantStretchDecision,
AffineInvariantDifferentialDeci
sion, BayesianActiveLearner

Figure 4: Sampler, MultiApp, Reporter, and Surrogate system interaction in MOOSE for performing parallel active
learning. The available objects deriving off of Sampler and Reporter are also shown in regard to supporting tasks such as
forward/inverse UQ, Bayesian optimization, and active learning with different GP variants.

Next, we will discuss the Surrogate system’s influence on the interaction among the Sampler,
MultiApp, and Reporter systems. Training, evaluation, and active/online learning of the GP variants in
MOOSE are handled by Surrogate and Trainer. The Surrogate system can be easily coupled to the
Reporter system to influence its behavior and/or that of the Sampler system. For example, in parallel ac-
tive learning tasks such as forward/inverse UQ and Bayesian optimization, the GP surrogate variant, based
on its predictive uncertainties and the acquisition function values, tells the Sampler system the best sets
of input parameters under which to call the MOOSE computational model during the next iteration. After
evaluating the computational model, in parallel, the outputs will be obtained by the Reporter system,
which retrains the GP variant with the appended new data. The Reporter system will then query the
acquisition function about the next-best sets of input parameters, and this process repeats until reaching
a user-specified number of outer iterations. GaussianProcess and DeepGaussianProcess surrogates

14

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

are currently derivable off of the Surrogate system. Both rely on the Covariance system to set up
the training data input/output covariances (output covariances are only required for the MOGP surrogate).
They also rely on the GaussianProcess class, which handles the training and retraining by using the
gradient-based Adam algorithm or gradient-free MCMC sampling. Here, “gradients” refers to gradients of
the log-likelihood function of the GP variant. Figure [4]indicates how the Surrogate system influences the
interaction among Sampler, MultiApp, and Reporter, and supports parallelized active learning. More-
over, a pre-trained GP surrogate variant saved as an .rd (restartable data) file can be loaded and evaluated
by using a combination of user-specified Sampler and Reporter objects, without calling the MOOSE
computational model.

3.3. Ezample implementation of parallelized active learning

An example implementation of parallel active learning capabilities in MOOSE—via leveraging the Sampler,
MultiApp, Reporter, and Surrogate interaction—will now be discussed for Bayesian UQ and Bayesian
optimization applications. Figure [bal presents the MOOSE objects and their dependencies. This schematic
is comprised of the following main components:

e GenericActiveLearningSampler/BayesianActiveLearningSampler:
GenericActivelearningSampler creates a large population of input samples at each iteration,
and this is retrieved by the Reporter object to facilitate optimization of the acquisition function.
Importantly, this object also facilitates evaluation of the computational model via the MultiApp sys-
tem for a best batch of inputs, as informed by the GP model. BayesianActivelLearningSampler
derives from GenericActivelLearningSampler and is tailored for Bayesian UQ applications such
that it considers the experimental configurations. Specifically, before sending the inputs to the
MultiApp system, BayesianActiveLearningSampler combines them with the experimental con-
figurations.

e GenericActiveLearner/BayesianActiveLearner:
GenericActivelearner optimizes the acquisition function via the GaussianProcess surrogate
and selects the next-best set of inputs to the Sampler object. The acquisition function is opti-
mized by selecting the best P inputs from among the large population of samples created earlier in
the iteration by the GenericActiveLearningSampler. BayesianActiveLearner derives from
GenericActivelLearner to compute the log-likelihood function, which serves as the training/re-
training data for the GP for Bayesian UQ applications.

e Support objects: CovarianceFunctionBase constructs covariances for the GP object, based on
the kernel specified by the user. LikelihoodFunctionBase evaluates the likelihood function, given
inputs and model outputs based on the user-specified distribution. AcquisitionFunctionBase
computes the acquisition function specified by the user and performs local penalization when selecting
the best P input samples.

GenericActiveLearningSampler and GenericActivelLearner can readily perform batch Bayesian
optimization for maximizing a user-defined objective evaluated via a MOOSE computational model. For
Bayesian UQ, BayesianActivelLearningSampler and BayesianActiveLearner train a GP model
by prioritizing regions of high log-likelihood via the Bayesian posterior targeted acquisition function detailed
in Table[I] The trained GP model is saved as an .rd file. This will be used in conjunction with MCMC objects
such asthe AffineInvariantDifferentialEvolution sampler GPDifferentialEvolutionDecision
reporter for sampling from the posterior distribution. Doing so circumvents evaluation of the MOOSE com-
putational model, since the trained GP model will directly predict the log-likelihood values during forward
evaluation. The flowchart in Figure details the use of an actively trained GP model for sampling from
the posterior distribution.

15

441

442

443

444

445

446

447

448

GenericActiveLearningSampler

(batch of input samples) SubApp 1

SubApp 2

BayesianActivelLearningSampler

MultiApp

SubApp P
I sampler object

[Application object
[Reporter object
I surrogate object
E Support object

Executed in parallel
(outputs)

BayesianActiveLearner LikelihoodFunctionBase]

ActivelearningGaussianProcess GenericActiveLearner AcqusitionFunctionBase]

[CovarianceFunctionBase]

(@)

ParallelMCMCBase

AffineInvariantDifferentialEvolution

(predicted model outputs)

(batch of input samples)

GPDifferentialEvolutionDecision

GaussianProcess

ParallelMCMCDecision

(b)

Figure 5: (a) MOOSE objects and their dependencies for performing parallel active learning for Bayesian optimization
and Bayesian UQ applications by leveraging the Sampler, MultiApp, Reporter, and Surrogate interaction. Note
that the combination of GenericActivelLearningSampler and GenericActivelLearner performs Bayesian optimization.
BayesianActivelLearningSampler and BayesianActiveLearner are derived objects for Bayesian UQ, and they consider
the experimental configurations and likelihood functions supplied by the user. For Bayesian UQ, the actively trained GP
prioritizes regions of high log-likelihood and is saved as an .rd file. (b) Evaluation phase of the actively trained GP for Bayesian
UQ by leveraging the MCMC sampling objects; specifically, the AffineInvariantDifferentialEvolution for proposing
new samples and the GPDifferentialEvolutionDecision for decision-making. Here, the GP model directly predicts the
log-likelihood values under different input parameters and experimental configurations, thus circumventing evaluation of the
computational MOOSE model.

3.4. A note on parallel scalability

Many of the discussed capabilities in MOOSE rely on generating samples of model parameters from
distributions and executing the sub-applications (i.e., model evaluations) in parallel. To this end, MOOSE
features three modes for parallelization: (1) normal mode creates one sub-application per row of data
(i.e., one realization of the parameters) supplied by the Sampler object; (2) batch-reset mode creates
N sub-applications, where the sub-applications are destroyed and re-created (on the same existing MPI
communicator) for each row of data supplied by the Sampler object; and (3) batch-restore mode
creates N sub-applications, where the sub-application is backed up after initialization and for each row of

16

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

data supplied by the Sampler object the sub-application is restored to the initial state prior to execution.
Here, N is min (nyows, ﬂoor(i"’ﬂ)), where 7,ows 1 the number of rows in the Sampler object, nproc is the
number of processors, and Nanin i the minimum number of processors per sub-application specified by the
user. More information can be found here: MOOSE Stochastic Tools Batch Mode.

Embarrassing parallelizability depends on two factors, the computational overhead and the parallelizabil-
ity of the algorithms themselves. The computational overhead indeed increases with the number of parallel
calls to the model and this overhead depends upon the model and the physics involved. However, we found
for our practical applications that this overhead is minimal compared to the time it takes to evaluate the
model itself. Sampling methods like Monte Carlo and Latin Hypercube are embarrassingly parallel by prin-
ciple. Adaptive methods like the PSS and parallel MCMC can be parallelized to a certain extent. For
example, the PSS method can only be parallelized across the Markov chains but not within each chain. This
creates a limit for parallelization after which adding more processors can only further speed up the model
evaluations but not the PSS method itself; for more information, interested readers are referred to Figure
8 in Dhulipala et al. [50]. MCMC methods for Bayesian inversion are parallelizable across the Markov
chains and also the experimental configurations. However, after each iteration, all the MCMC chains in the
implemented methods have to exchange information to decide their flow in the next iteration. Interested
readers are referred to Figure 23 in Dhulipala et al. [69]. Parallelizability of the parallel active and batch
Bayesian optimization methods is controlled by the user specified batch size which controls the number of
model evaluations at each outer iteration.

4. Application Demonstrations

Most of the application demonstrations are run on the Sawtooth high-performance computing cluster at
the Idaho National Laboratory. This cluster has 2052 compute nodes each with 2 Intel Xeon 8268 CPUs,
Cascade Lake Platinum chipset, 24 cores per CPU, 192GB of RAM, and Mellanox Infiniband EDR for inter-
node communication. It also features 27 nodes each with 2 Intel Xeon 8268 CPUs, Cascade Lake Platinum
chipset, 24 cores per CPU, 384GB of RAM, Mellanox Infiniband EDR for inter-node communication, and 4
NVidia Tesla V100 32 GPUs.

4.1. Parallel active learning for Bayesian inverse UQ of TRISO nuclear fuel fission product release

This section uses the active learning with GP and forward UQ capabilities discussed in Sections and
respectively.

Tristructural isotropic (TRISO) particle fuel is proposed for use in advanced reactors because of its high
temperature resistance. Its protective layers are intended to encapsulate the fission products, which these
reactor designs are based on. Thus, it critical to assess the predictive uncertainties in the TRISO fission
product release model. To this end, inverse UQ of the TRISO fission product release model is necessary to
quantify the uncertainties due to model parameters, model inadequacy, and experimental noise. A 25-mm-
long, 6-mm-radius cylindrical fuel compact can contain approximately 10,000-15,000 TRISO particles, each
with a radius of around 375-430 pm [70]. Each TRISO particle has several protective layers around the fuel
kernel—mnamely, the buffer, inner pyrolitic carbon (PyC), silicon carbide, and outer PyC layers.

Fission products, particularly silver release, are modeled using the BISON fuel performance code [2] [71],
which is a MOOSE-based application. The diffusion process of fission products in TRISO particles requires
computation of the fuel temperature (if not prescribed), temperature-dependent diffusion coefficients, source
rates for the fission products, and the particle geometry. Material models were developed in BISON for each
type of material in the TRISO particles: the buffer, the PyC layers, the silicon carbide layer, and the fuel
kernel. Fission product diffusion is governed by the Fickian diffusion equation, wherein the diffusivity of
the fission products is in units of m?/s, and is normally estimated via an effective diffusivity defined per
an Arrhenius law. See [2| [71] for further details on the modeling using BISON. The values for the pre-
exponential factor D; and activation energy @; in the Arrhenius equation for the different TRISO layers
are usually calibrated from existing experimental data. A sensitivity analysis conducted in Dhulipala et al.
[69] concluded that the pre-exponential factors of the fuel kernel and PyC layer are, in comparison to the

17

https://mooseframework.inl.gov/modules/stochastic_tools/batch_mode.html

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

other model parameters, unimportant in predicting fractional silver release, which is the fission product of
interest herein. Hence, the parameter space of interest is @ = {Qrernel, Qipyc, Dsic; @sicy when considering
the Arrhenius equation for silver diffusivity.

Experimental datasets on the observed silver release from TRISO particles are available from the De-
partment of Energy Advanced Gas Reactor program. This enables inverse calibration and UQ of the TRISO
model parameter space. At the same time, it is also of interest to quantify the predictive uncertainty associ-
ated with model inadequacy and experimental noise. We used the massively parallel MCMC samplers and
parallelizable active learning in MOOSE to inversely quantify the model parameters 6 and the sigma term
(model inadequacy plus experimental noise). Thanks to the Advanced Gas Reactor program, 32 experimen-
tal data points on the observed silver release have been made available, and were used for the inverse UQ
process [72].

The approaches to inversely assess the uncertainties in the model parameters and model inadequacy plus
experimental noise are detailed below.

e Parallel MCMC: The TRISO fractional silver release predictions and observations are bounded between
0 and 1. So, we used a truncated normal likelihood function to assess the model predictions against
the experimental data. The inversely calibrated parameters were {#,c}, and the prior distributions
for all the parameters were uniformly distributed. We used the differential evolution sampler [41] in
MOOSE to inversely quantify the uncertainties in {@,c}. For this purpose, we used 50 parallel chains,
each executing the MOOSE model 32 times (i.e., the number of experimental data points), in parallel,
to evaluate the likelihood function. As a result, 1,600 (i.e., 50 x 32) processors were employed to
perform inverse UQ for a total of 500 serial iterations in the differential evolution sampler.

e Parallel active learning: For this, we used the same likelihood formulation and priors as before. We
used a standard GP to predict the fractional silver release of the MOOSE model. For active learning,
we relied on the Bayesian posterior targeted acquisition function from Table|[l| to actively acquire new
training data by running the MOOSE model. We also combined this acquisition function with the
local penalization approach (Equations 7) to acquire a batch of new training data. We set the
batch size to 10 and performed 80 serial iterations of active learning. At the end of the 80 iterations,
we observed that a convergence metric had sufficiently stabilized. Then, using the actively trained
standard GP, we performed differential evolution sampling, just as before, by replacing the MOOSE
model evaluations. This led to an approximated posterior distribution of {6, c}.

Figurel@presents the inversely quantified posterior distributions of §, comparing the parallel MCMC and
parallel active learning approaches. Note that, in general, parallel active learning gives posterior distributions
consistent with parallel MCMC, which is considered to be the reference solution. Between the model
parameters Dg;c and Qg;., we see a strong non-linear correlation, as shown in the subplots located in the
third row, fourth column and the fourth row, third column. Parallel active learning is able to capture this
non-linear correlation, though it struggles near the bottom left tip, where there is a small concentration of
probability density. Figure [6b| presents the posterior distribution of the sigma (o) term, which captures the
model inadequacy plus the experimental noise. Again, parallel MCMC and parallel active learning produce
highly consistent results.

Figure [7] compares the computational cost of inverse UQ in regard to parallel active learning and parallel
MCMC. Computational cost is measured as the product of the number of processors required times the
elapsed time necessary to solve the inverse UQ problem. Parallel active learning has shown to have a
computational cost at least three orders of magnitude smaller than parallel MCMC, which is considered
the reference solution, while still delivering satisfactory posterior uncertainties. Capturing features in the
posterior distribution like sharp tails can be accomplished by increasing the number of iteration or using a
better acquisition function.

4.2. Active learning variance reduction for very rare events analysis of a heat-pipe nuclear microreactor
This section uses the active learning with GP and forward UQ capabilities discussed in Sections [2:2] and

[2:4) respectively.
18

546

547

548

549

550

551

552

553

554

555

556

557

[Parallel-M

09 10 11 12 13 14 15
o (predictive uncertainty)

0 50 100 100 150 200 00 25 50 7.5 180 200 220 240
Qnr e Dsc le-8 Qsc

(a) (b)

Figure 6: Comparison of the posterior distributions of (a) the model parameters # and (b) the sigma term (model inadequacy
plus noise) in regard to parallel MCMC and parallel active learning approaches for the TRISO fuel silver release case.

104 4

103 4

Processors x Elapsed Time (Hours)

Parallel MCMC Parallel active learning

Figure 7: Comparison of the computational cost of performing inverse UQ in regard to the parallel active learning and parallel
MCMC approaches for the TRISO fuel silver release case. (Computational cost is measured as the product of the number of
processors required times the elapsed time necessary to solve the inverse UQ problem.)

This section demonstrates the use of MOOSE ProbML capabilities for estimating very rare events, based
on an HP nuclear microreactor model. Very rare events correspond to low failure probabilities on the order
of 107° or lower. Unlike other types of nuclear reactors, HP-cooled microreactors must consider additional
failure modes stemming from heat transfer limitations governing HP operability. These bounding limits
constrain how much heat can be removed by the HPs, depending mainly on the HP design parameters and
its temperature. Failure limits are computed using the MOOSE-based application Sockeye [73], based on
the design parameters specified in Terlizzi et al. [74], with the pore radius increased to 45 pm (to lower
the capillary limit). Even though the sonic and viscous limits are not catastrophic—in that the HPs can
recover after reaching them—for the purpose of this demonstration, all these limits are considered when
determining failure probability. As manufacturing and thermal property uncertainties are very much design
specific, and because the model considered herein is a prototypical design, this demonstration only serves as a
proof-of-concept of MOOSE’s methodological implementations for computing very low failure probabilities.

19

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

As such, the reported values of the failure probabilities should not be directly applied to assess the safety
of HP reactors.

The MOOSE computational model consists of a single HP. It employs the effective heat conduction
model in Sockeye [73], with the HP vapor core being represented as a material with extremely high thermal
conductivity, as described in Matthews et al. [75]. Four uncertain parameters are considered: (1) Qecyap:
the power removed by (or heating rate of) the HP; (2) Ts;nk: the sink temperature on the HP condenser;
(3) htcgink: the corresponding heat transfer coefficient; and (4) Rpore: the pore radius in the HP wick. Each
of these parameters was assumed to follow normal distributions, with the means being defined consistently
with what was used in Terlizzi et al. [74] (i.e., 1821 W, 900 K, 10> W/K/m?, and 45 um, respectively). The
standard deviation for each parameter was arbitrarily chosen to be equal to 10% of the mean.

We used three forward UQ approaches in MOOSE to quantify the low probability of HP failure: (1)
Monte Carlo, which serves as the reference solution but is computationally expensive; (2) standard subset
simulation executed in a massively parallel fashion; and (3) subset simulation with active learning via a
standard GP. These approaches are detailed below.

o Monte Carlo: We used 10° MOOSE model evaluations to compute the HP failure probability.

e Standard subset simulation executed in parallel: We used seven subsets and 20,000 MOOSE model
evaluations per subset. In each subset, we used 40 independent Markov chains, each evaluating the
MOOSE model 500 times in serial. These 40 Markov chains were launched in parallel fashion. Inter-
mediate thresholds were computed, corresponding to a probability of 0.1. In total, the MOOSE model
was evaluated 140,000 times to compute the failure probability.

o Active learning subset simulation: We used seven subsets and 2,000 samples per subset. The input
samples were first evaluated by using a standard GP to predict the MOOSE model output. If the GP
prediction, as deemed by the U-function (see Table , is inadequate, only then is the MOOSE model
evaluation performed. Intermediate thresholds were computed, corresponding to a probability of 0.1.
Note that the number of actual MOOSE model evaluations depends on the adequacy of the GP model
for each input sample. This is discussed in detail next.

Table [2| presents the failure probabilities computed using the three different approaches, along with the
corresponding coefficient of variation, the total number of MOOSE model evaluations, and the required
number of processors. First, note that all three methods return similar failure probability values. As
the failure probability is extremely small, Monte Carlo requires an enormous number of MOOSE model
evaluations. Subset simulation reduces this number by a factor of 7,000 as compared to Monte Carlo.
Active learning subset simulation reduces this number even further, by a factor of 7.7 x 10 and 1,000 in
comparison to Monte Carlo and subset simulation, respectively. Figure [§| presents the distributions of input
parameters for failed HPs so as to enable further comparison of the three approaches. Note that all three
return similar input parameter distributions for the failed HPs.

Table 2: Comparison of the statistics for the three forward UQ approaches in MOOSE when evaluating the failure of an HP
microreactor model. Shown for reference are the number of MOOSE model evaluations and the number of required processors
utilized when computing the failure probabilities.

Failure Coefficient of | MOOSE model

Method probability variation evaluations Processors used
Monte 7x 1078 0.12 10° 192
Carlo

Parallelized 51% 1078 0.06 140, 000 40

subset simulation

Active learning

-8
subset simulation 4.75 x 10 0.192 130 1

The “MOOSE model evaluations” column represents the total number of model evaluations required.

20

593

594

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

0.04 |
5, 0-004 1 > i
D B it
C C |
© @ I,{
© 0.002 A Q 0.02 |
0.000 0.00 } N — Prior
800 1000 Nominal
Tsink MmC
--- Pss
y AL-SS
0.0100 1 150000 h
2 0.0075 - > ;\
o S 100000 -
o J o
& 0.0050 8
0.0025 50000 A
1
0.0000 -— ' : 0 L ‘ —
750 1000 1250 4 5
htcsink Rpore le-5

Figure 8: Distributions of the input parameters for failed HPs when comparing the three approaches: Monte Carlo (MC),
parallelized subset simulation (PSS), and active learning subset simulation (AL-SS). Also shown for reference are the nominal
input parameter distributions to the MOOSE HP model.

4.8. Multi-output Gaussian processes and dimensionality reduction for advanced manufacturing simulations

This section uses the MOGP and dimensionality reduction capabilities discussed in Sections [2:1.2] and
[2.5 respectively.

Several advanced manufacturing techniques, including direct energy deposition and laser powder bed
fusion, rely on the melting of metals with the help of a laser. The quality of the final product depends on
the process parameters employed (e.g. laser power and beam radius). However, simulation of laser melt
pools is challenging due to the multiple physics involved, including melting and solidification along with
fluid dynamics and heat transfer in the melt pool. This is why development of surrogate models for such
simulations carries high potential for accelerating parametric studies that aim to explore the relationship
between process parameters and product quality. We trained an MOGP-based surrogate model combined
with dimensionality reduction, using linear PCA within MOOSE to predict full temperature fields during
the advanced manufacturing process [76]. The high-fidelity MOOSE model was run to gather temperature
fields with different process parameters—namely, effective laser power and effective laser beam radius. The
MOOSE model relied on the Arbitrary Lagrangian-Eulerian method for capturing deformations caused by
the vapor pressure on the melt pool surface. Figure [J] presents the MOOSE model setup, together with the
temperature distribution for a specific combination of the two process parameters.

In this work, the temperature field at a given time step was the primary quantity of interest. In total, 120
snapshots of temperature fields were collected from the high-fidelity model by varying the process parameters.
LHS was employed to randomize the process parameters, using U (70,83) [W] and ¢/(125,200) [pm] for the
effective laser power and beam radius, respectively. Then linear PCA was applied to the temperature field
snapshots for data compression. The decay of the squared singular values and the relative variance content
are presented in Figure We see rapid decay in the explained variance, indicating that a few PCA
components are sufficient to describe the thermal behavior of the system. Based on this information, a
latent space of 10 dimensions was selected, and the temperature snapshot fields were mapped onto this
space by using the first 10 components of linear PCA.

The 10 latent space components across 120 random realizations of the process parameters served as the
training samples for the MOGP. The MOGP was trained via Adam optimization with 1,000 epochs, at a
learning rate of 5 x 10~#. The trained MOGP was then evaluated on a test set, using 200 samples of the
process parameters. The MOGP-predicted latent quantities, which have 10 dimensions, were projected back

21

622

623

624

625

626

627

628

629

630

631

632

633

634

Laser beam

Scanning direction

Temperature [K]
300.0 700 1100 1500 1900 2300 2700 3090.0

— ‘ | L —

Figure 9: Temperature field output from the high-fidelity MOOSE model, which simulated the advanced manufacturing process
by considering an effective laser power of P = 81.97 W and a laser radius of R = 125.8 um. The model relied on the Arbitrary
Lagrangian-Eulerian method for capturing deformations caused by the vapor pressure on the melt pool surface.

10° 10°
—&— Normalized Square SV

—»— Relative Variance

Mean : 0.11
Maximum : 1.65

,1072

H
9
L

H

9
S

s

,10—4 E

w
o

Count

,1076

—_
7
=
/
DO
j=}

L 10—8

,_.
9
o)

Normalized Squared Singular Value
y
Remaining Relative Variance

10710 " " " " " " " " " 10710
2 3 4 5 6 7T 8 9 10 11 [®rom=@roul: 17
Index [[®ronll2 [G]

1071 10° 102

(2) (b)

Figure 10: (a) Decay in the squared singular values of the temperature fields upon performing linear PCA. The remaining
relative variance is also shown, as computed by excluding the variance of the modes up the given index. (b) Histogram of
the relative L? errors (in %) of the temperature field between the high-fidelity model and the reconstructed solution from the
MOGP by considering the testing set of 200 samples.

to the original space by using an inverse PCA. The reconstructed temperature fields were then compared
against the reference temperature fields obtained by evaluating the high-fidelity MOOSE model. Figure
presents a histogram of the relative full-field errors (in percentages) for the testing set. Generally, these
relative errors are quite small, with a mean relative error of around 0.1% and a maximum relative error of
1.65%. The maximum error occurs near the boundary of the parameter domain, which was not properly
covered by the training set, thus leading to minor inaccuracies in the MOGP prediction.

The reference temperature field, along with the space-dependent absolute error between the reference
and the MOGP solutions, is presented in Figure [L1| for those process parameters with the highest relative
error in Figure m We see that the highest space-wise error is approximately 2.5%, which is acceptable
for the given use case. Evaluation of the MOGP occurred 4-5 orders of magnitude faster than the solving
of the transient melt pool simulation. This further reflects the high potential for accelerating parameter
studies related to the product quality’s dependence on process parameters, in addition to permitting active
learning based on the uncertainty estimates of the MOGP.

22

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

FOM
300.0 700 1100 1500 1900 2368.9

ITrom — Tmoce - roml [K]

0.0 8 16 24 32 40 48 56 63.7
— | | ‘ | —

Figure 11: Comparison of solutions from the high-fidelity MOOSE model and reduced-order models at the least accurate sample
in the testing set. Top: temperature profile computed using the high-fidelity MOOSE model. Bottom: absolute difference
between the MOOSE model and the reconstructed MOGP solutions.

4.4. Comparing deep and standard Gaussian processes for a lid-driven cavity flow

’ Note that the deep Gaussian process capabilities in MOOSE are still in the experimental phase.

This section uses the GP and deep GP capabilities discussed in Sections and [2.1.3] respectively.

In this section, we compare a DGP trained using MCMC against a standard GP trained using either
MCMC or Adam optimization for a four-sided lid-driven cavity flow problem. The fluid domain, a 2D square
region defined by viscosity and density, is subjected to velocity boundary conditions on all four sides. The
pressure is set to zero at the lower-left corner. More details on the problem setup can be found in Dhulipala
et al. [33]. We are interested in predicting the resultant velocity at the domain’s center as a function of the
viscosity and density of the fluid and of the four boundary conditions. We used the MOOSE Navier-Stokes
Module to generate training and testing data under random values for the viscosity and density of the fluid
and the four boundary conditions [77].

The training data were comprised of 30 points, and the testing data were comprised of 100. We first
trained a standard GP by using MCMC. There were seven hyperparameters to optimize (i.e., six length
scales and one amplitude scale), and we used 10,000 samples in the MCMC algorithm in order to estimate
the posterior distributions of the hyperparameters. We then trained a DGP with one hidden layer using
MCMC. This time, there were 43 hyperparameters; that is, six for each of six nodes in the hidden layer,
plus an additional seven for the output layer. We again used 10,000 samples in the MCMC algorithm so as
to estimate the posterior distributions of the hyperparameters. Finally, we trained a standard GP by using
Adam optimization (giving us seven hyperparameters to optimize). The Adam optimization entailed 1,000
iterations, a learning rate of 0.005, and a batch size of 20.

We compared the three approaches for predicting the resultant velocity—mamely, GP using MCMC,
DGP using MCMC, and GP using Adam optimization—based on diagnostics such as parity plots, calibration
curves, uncertainty distributions, and error bars, as detailed in Tran et al. [78] and Kuleshov et al. [79]. The
parity plots assessed the accuracy of the predictions and presented metrics such as median absolute error,
root mean squared error, mean absolute error, and mean absolute relative percent difference. Calibration
curves “use the standard deviation predictions to create Gaussian random variables for each test point and
then test how well the residuals followed their respective Gaussian random variables” [7§]. In other words,
the model is said to be well calibrated if the expected-vs.-observed cumulative distribution of the testing
points follows a straight line. A well-calibrated model could still have large uncertainty estimates that are
less useful in practice [7§]. Thus, from the uncertainty distributions, metrics such as sharpness and coefficient
of variation (C,) are derived. Large uncertainty estimates are less desirable than small values, and sharpness
assesses this by taking the root mean of the predicted variances. The model should not predict constant
uncertainty estimates outside the training bounds, and C, assesses this by computing the coefficient of
variation of the predictive variances. While smaller values of the accuracy metrics, miscalibration area, and
sharpness are preferred, a larger value of C,, is desirable.

23

671

672

673

674

675

676

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

Figure [12| compares the three approaches—GP using MCMC, DGP using MCMC, and GP using Adam
optimization—in light of the aforementioned diagnostics. The first row corresponds to GP using MCMC,
the second row to DGP using MCMC, and the third row to GP using Adam optimization. In comparing
GP using MCMC against DGP using MCMC, the latter generally outperforms the former in almost every
metric. DGP using MCMC has better accuracy, lower sharpness, and a larger C,, than GP using MCMC,
showing the power of DGP method compared to GP. Although GP using MCMC has a smaller miscalibration
area, this is likely due to it predicting constant wider uncertainty bands (as observed by comparing Figure
to Figure than does DGP using MCMC. As such, hidden layers help a DGP model with more
expressivity and better uncertainty quality than a standard GP when trained using MCMC. In comparing
DGP using MCMC against GP using Adam optimization, the latter outperforms the former in every metric.
We suspect that this is largely due to the inefficiency of MCMC in high-dimensional parameter spaces in
DGP and the optimization algorithm plays a big role in the predictive performance (including accuracy
and uncertainty quality) of the GP models. In the future, DGP will be implemented with a more efficient
variational inference and gradient-based solvers coupled with MOOSE’s libtorch capabilities [68].

4.5. Batch Bayesian optimization of tritium diffusion experiment in beryllium

This section uses the active learning with GP capabilities discussed in Section 2.2}

The Tritium Migration Analysis Program, Version 8 (TMAPS) is a state-of-the-art, open-source, MOOSE-
based application designed for multiscale tritium transport. TMAPS incorporates multispecies, multiphysics,
multiscale simulation capabilities on complex geometries. These capabilities make it an essential tool for
the fusion energy community, particularly for addressing the challenges of tritium tracking, fusion system
safety, and fuel sustainability. Validation case study val-2b in TMAPS’s test suite validates against implan-
tation and thermal absorption/desorption experiments on wafers of polished beryllium from Macaulay et al.
[80]. The beryllium was exposed to 13.3 kPa of deuterium at 773 K for 50 hours, cooled down to 300 K in
vacuum, and then heated back up to 1073 K at a rate of 3 K/min to desorb the deuterium. Further details
are available in Simon et al. [9]. The modeled deuterium flux during desorption was compared against
experimental data, as shown in Figure [[3a] Herein, batch Bayesian optimization was applied to calibrate
the diffusivities and solubilities of the TMAPS8 model in order to improve agreement with the experimental
data.

The deuterium flux model had 10 parameters, comprised of the diffusivities and solubilities that must
be calibrated against the experimental data. Prior to the calibration, the model predictions and the exper-
imental data resulted in a root mean squared percent error of 22.72%. Two approaches in MOOSE were
used to achieve this calibration: parallel subset simulation, which is an evolutionary approach, and batch
Bayesian optimization. The aim of the optimization with respect to the model parameters was to minimize
the mean squared percentage error between the experimental data and the model predictions regarding the
deuterium flux during desorption. Details on the usage of these approaches are as follows:

e Parallel subset simulation: Run for five subsets, with 1,000 samples per subset. Ten processors
were used, simultaneously simulating five parallel chains for 1,000 serial model evaluations.

e Batch Bayesian optimization: Run for 80 serial iterations, with a batch of five optimal points
selected in parallel in each iteration by using the expected improvement acquisition function. A
standard GP with squared exponent covariance matrix was trained using Adam optimization, in which
2,000 iterations were performed using a learning rate of 0.01. The five selected optimal points were
used for evaluating the computational model in parallel.

Figure[I3a] presents the model output against the experimental data following the parameter calibration. We
see that both the parallel subset simulation and batch Bayesian optimization have similar root mean squared
percent error values, and both substantially reduce this error metric in comparison to the uncalibrated model.
Figure [I3D] presents the computational burden of the two approaches, as assessed based on the product of
the number of processors and the elapsed time in hours. Ultimately, batch Bayesian optimization is revealed
to be substantially lower in computational cost than parallel subset simulation.

24

718

719

720

721

722

723

724

725

726

o

1.07 MDAE = 0.04 ” 7 10

7
MAE = 0.05 - ©oo ldeal Sharpness = 0.10 09
08 RMSE =0.23 & S 08 GP using MCMC , c, =011 08
.81 : / 1 S 08 . 4 ,
g MARPD = 9% 2 I a // 5 o7
. P g % g & 07
\ | @
2 06 BT 0 B=_ 3 06 e 2 3 06
% = . g &
g’ I s 5 g) d 3 2 05
3 0.4+ 1 S 041 /] 8 3 04+
o o /’ £ o v
[0} 2 A S O 03+ P
0241 - 1 goz{ 7 024
o) od
2 v Miscalibration area = 0.08 ,/
0.0+ —— T z ! 00 —— B 00 F————————
0.00 025 050 075 1.00 00 02 04 06 08 10 00 02 04 06 08 10 00 0.1 02 03 04 0506 0.7 0.8 0.9 10
True value Expected cumulative distribution Predicted standard deviations True value
(a) (b) (c) (d)
1.07 MDAE = 0.02 / 10 % 10 —
MAE = 0.03 o - ~77 ldeal - Sharpness = 0.06 09 e
0.8{ RMSE =0.16 ’/' I 8 Two-layer DGP C, =022
.81 : y S 08 08
MARPD = 4% & m 2 -
a o T 3 074
O] s] 2
< -] @ 5
0 0.6 P o 06 B 8 06
) g - = g o
g wn — < 5 054
E o’ 2 | 3 2o
& 044 ‘ 3 04 Ve 3 S 04
5 . = o £ Z Ve
4 2 5 0.3 .
o2l y c 2 Y
0.2 P go2q 024 7
o) v 1 -
el ~ Miscalibration area = 0.17 019 -
0.0 ; ; : ! 00— —_— 00 +F————1——1——
000 025 050 075 1.00 00 02 04 06 08 10 00 02 04 06 08 10 00 010203 04 0506 07 08 09 10
True value Expected cumulative distribution Predicted standard deviations True value
(e) () (8) (h)
1.0 MDAE = 0.01 10— % 10 —
MAE = 0.02 | = IglejalIJsm Adam ’/ Shajpness =001 094 .{r
0.8{ RMSE =0.13 y é 9 L C,=055 o] p:
I3 MARPD = 2% I 2 =
@ 2 0.7
3 -, 2 5 £
206 - 2 S 064
50° N H g os
2 2 — K 3 2 05+
5044 & m E S 2 ad
a , 3 s o >
o g 5 © 034 ~
e s z s
021 1 2 024
[} i 014
e // Miscalibration area = 0.14 s
0.0+ T i ! 00 s —_— 00 +F———+——T—T—1——
000 025 050 075 1.00 00 02 04 06 08 10 00 02 04 06 08 10 00010203 04 0506 07 08 09 10
True value Expected cumulative distribution Predicted standard deviations True value
@) () (1) 0

Figure 12: Predictive performance of the three GP variants in terms of both accuracy and uncertainty quality. Top row [(a)—
(d)]: GP trained using MCMC. Middle row [(e)—(h)]: DGP trained using MCMC. Bottom row [(i)—(1)]: GP trained using Adam
optimization. (a), (e), and (i) show the parity plots and present accuracy metrics such as median absolute error, root mean
squared error, mean absolute error, and mean absolute relative percent difference. (b), (f), and (j) show the calibration plots
and miscalibration area metric for uncertainty quality. (c), (g), and (k) show histograms of the predictive standard deviations,
the metric sharpness, and the Cy. (d), (h), and (1) show the error bars.

5. Discussion of Future Implementations

There are several avenues for future implementations which can be made possible through the modularity
of the MOOSE framework. Specifically, the modularity offered by the Sampler, MultiApp, Reporter,
and Surrogate objects interaction. For example, the parallel active learning and batch Bayesian optimiza-
tion are currently dependent on the local penalization approach (Equation) Other approaches for batch
(parallel) selection of the optimal points are also available, such as the Kriging Believer algorithm proposed
by Ginsbourger et al. [81I]. Wang et al. [82] provide a review of the recent developments in batch selection.
These approaches will be pursued in MOOSE in the future. Similarly, optimization-based Bayesian infer-
ence approaches like variational inference can be implemented to mitigate the high computational cost of

25

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

1e16

6l A Ao Experiment
-=- TMAP8
—— TMAPS (PSS)

500

[¢,]

4} 14
3

2 300
3[RMSPE =22.72 % 5
(%]
RMSPE =8.72 % @
Q

ol RMSPE = 9.83 % 2 200
o

Deuterium Flux (atom/m?/s)

=N
T

100

700 800 900 1000 1100

Temperature (K)

BO
(a) (b)

Figure 13: (a) Modeled deuterium flux during desorption, compared against experimental data. Before calibrating the model
parameters, the model had a root mean squared percent error of 22.72% when examined against the experimental data. Upon
calibration based on parallel subset simulation (an evolutionary approach) and batch Bayesian optimization, the root mean
squared percent error reduced to 8.72% and 9.83%, respectively. (b) The computational cost of calibrating the model parameters
via parallel subset simulation and Bayesian optimization was measured as the product of the number of processors and the
elapsed time (in hours).

MCMC methods, but with a trade off for accuracy [83]. Methods like black-box variational inference are
particularly attractive given that they do not require gradient estimations of the model outputs [84]. Also,
while MOOSE currently supports linear dimensionality reduction via PCA, nonlinear methods like kernel
PCA, diffusion maps, and manifold learning methods can be pursued in the future [85].

One significant capability of MOOSE which can be expanded upon from a ML/UQ standpoint is its
libtorch integration [67, [68]. The 1ibtorch library provides PyTorch like functionalities from within
C++ and supports the training and evaluation of more sophisticated ML models like deep neural networks
and operator learning networks. These expressive ML models can be integrated into active learning frame-
works to mitigate the limitations of GPs, especially when dealing with high-dimensional data. Furthermore,
the TorchScript capability in MOOSE also allows importing of ML models trained in PyTorch into C++
code.

6. Summary and Conclusions

MOOSE, an open-source computational platform for parallel numerical analysis, is being actively de-
veloped and is maintained at Idaho National Laboratory. MOOSE has an extensive user base in varied
scientific and engineering fields. Complex multiphysics simulations, when validated against experimental
data, are subject to different sources of uncertainties that must be quantified and propagated to the out-
puts. They are also computationally expensive to run, especially in a UQ setting, and surrogate models
for quantifying their prediction uncertainties will foster their efficient and accurate execution by leveraging
active learning principles. In this context, the present paper covered the development and demonstration
of massive parallel probabilistic ML and UQ capabilities in MOOSE. Among these capabilities are active
learning, Bayesian inverse UQ, adaptive forward UQ, Bayesian optimization, evolutionary optimization, and
MCMC. The MOOSE systems Sampler, MultiApp, Reporter, and Surrogate, as well as the modu-
larity thereof, were discussed in detail in regard to successfully developing a multitude of probabilistic ML
and UQ algorithms. Example code demonstrations include parallel active learning and parallel Bayesian
inference via active learning. Finally, the impacts of these code developments were discussed in regard to five

26

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

7

778

779

780

781

782

783

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800

different applications: nuclear fuel fission product release, using parallel active learning Bayesian inference;
nuclear microreactor very rare events analysis, using active learning; advanced manufacturing process mod-
eling, using MOGP and dimensionality reduction; lid-driven cavity flow, using DGPs; and tritium transport
for fusion energy, using batch Bayesian optimization. These capabilities are part of the MOOSE framework.

Acknowledgements

The forward UQ capability developments, including active learning and multifidelity modeling for for-
ward problems, are supported through Idaho National Laboratory (INL)’s Laboratory Directed Research &
Development (LDRD) Program under U.S. Department of Energy (DOE) Idaho Operations Office Contract
DE-AC07-05ID14517.

The Bayesian inverse UQ capability developments, including active learning for inverse problems, are
supported through Battelle Energy Alliance, LLC under contract no. DE-AC07-05ID14517 with DOE, along
with funding from the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program within the
DOE Office of Nuclear Energy (DOE-NE).

The multi-output Gaussian processes and dimensionality reduction capability developments are sup-
ported through Battelle Energy Alliance, LLC under contract no. DE-AC07-051D14517 with DOE, with
funding from the Advanced Materials and Manufacturing Technologies (AMMT) program within DOE-NE.

The deep Gaussian processes and Bayesian optimization capability developments are supported through
Battelle Energy Alliance, LLC under contract no. DE-AC07-05ID14517 with DOE, along with funding from
the Nuclear Energy University Partnerships (NEUP) program within DOE-NE.

This research made use of resources of the High-Performance Computing Center at INL, which is sup-
ported by DOE-NE and the Nuclear Science User Facilities under contract no. DE-AC07-051D14517.

We thank the following individuals for their support in developing the capabilities of the MOOSE Stochas-
tic Tools Module: Stephen R. Novascone, Sudipta Biswas, Benjamin W. Spencer, Jason D. Hales, and Daniel
Schwen from Idaho National Laboratory; Michael D. Shields and Promit Chakroborty from Johns Hopkins
University; and Andi Wang from the University of Wisconsin-Madison. We thank John Shaver at INL for
his technical edit of this paper.

Declaration of generative AI and Al-assisted technologies in the writing process

The authors did not use generative Al technologies during the initial writing process or editing of this
paper. During the revisions stage, the authors used the ChatGPT 5 Thinking model in order to improve the
readability and language of the manuscript. After using this tool/service, the authors reviewed and edited
the content as needed and take full responsibility for the content of the published article.

References

[1] G. Giudicelli, A. Lindsay, L. Harbour, C. Icenhour, M. Li, J. E. Hansel, P. German, P. Behne, O. Marin, R. H. Stogner,
J. Miller, 3.0-MOOSE: Enabling massively parallel multiphysics simulations, SoftwareX 26 (2024) 101690. [doi:10.1016/
Jj.softx.2024.101690.

[2] R. L. Williamson, J. D. Hales, S. R. Novascone, G. Pastore, K. A. Gamble, B. W. Spencer, W. Jiang, S. A. Pitts,
A. Casagranda, D. Schwen, A. X. Zabriskie, BISON: A flexible code for advanced simulation of the performance of
multiple nuclear fuel forms, Nuclear Technology 207 (7) (2021) 954-980. doi:10.1080/00295450.2020.1836940,

[3] B. W. Spencer, W. M. Hoffman, S. Biswas, W. Jiang, A. Giorla, M. A. Backman, Grizzly and BlackBear: Structural
component aging simulation codes, Nuclear Technology 207 (2021) 981-1003. |[doi:10.1080/00295450.2020.1868278|

[4] A. J. Novak, R. W. Carlsen, S. Schunert, P. Balestra, D. Reger, R. N. Slaybaugh, R. C. Martineau, Pronghorn: A
multidimensional coarse-mesh application for advanced reactor thermal hydraulics, Nuclear Technology 207 (2021) 1015—
1046. [do1:10.1080/00295450.2020.1825307.

[5] Y. Wang, Z. M. Prince, H. Park, O. W. Calvin, N. Choi, Y. S. Jung, S. Schunert, S. Kumar, J. T. Hanophy, V. M.
Labouré, C. Lee, Griffin: A MOOSE-based reactor physics application for multiphysics simulation of advanced nuclear
reactors, Annals of Nuclear Energy 211 (2025) 110917. |doi:10.1016/7.anucene.2024.110917.

[6] S. Veeraraghavan, C. Bolisetti, A. Slaughter, J. Coleman, S. L. N. Dhulipala, W. Hoffman, K. Kim, E. Kurt, R. Spears,
L. Munday, MASTODON: an open-source software for seismic analysis and risk assessment of critical infrastructure,
Nuclear Technology 207 (2021) 1073-1095. |[doi:10.1080/00295450.2020.1807282.

27

http://dx.doi.org/10.1016/j.softx.2024.101690
http://dx.doi.org/10.1016/j.softx.2024.101690
http://dx.doi.org/10.1016/j.softx.2024.101690
http://dx.doi.org/10.1080/00295450.2020.1836940
http://dx.doi.org/10.1080/00295450.2020.1868278
http://dx.doi.org/10.1080/00295450.2020.1825307
http://dx.doi.org/10.1016/j.anucene.2024.110917
http://dx.doi.org/10.1080/00295450.2020.1807282

801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865

7]
(8]

(9]

(10]

(11]

(12]

(13]

(14]
(15]
[16]
[17]
(18]
19]

20]

[21]
2]
23]
[24]
[25]
[26]
[27]
28]
[29]
EY
31]
[32]

(33]

34]

(35]

M. R. Tonks, D. Gaston, P. C. Millett, D. Andrs, P. Talbot, An object-oriented finite element framework for multiphysics
phase field simulations, Computational Materials Science 51 (2012) 20-29. [doi:10.1016/7.commatsci.2011.07.028.
A. J. Novak, D. Andrs, P. Shriwise, J. Fang, H. Yuan, D. Shaver, E. Merzari, P. K. Romano, R. Martineau, Coupled
Monte Carlo and thermal-fluid modeling of high temperature gas reactors using Cardinal, Annals of Nuclear Energy 177
(2022) 109310. |[doi:10.1016/7j.anucene.2022.109310l

P. C. A. Simon, C. T. Icenhour, G. Singh, A. D. Lindsay, C. Bhave, L. Yang, A. Riet, Y. Che, P. Humrickhouse,
P. Calderoni, M. Shimada, MOOSE-based tritium migration analysis program, version 8 (TMAPS8) for advanced open-
source tritium transport and fuel cycle modeling, Fusion Engineering and Design 214 (2025) 114874. [doi:10.1016/J.
FUSENGDES.2025.114874.

P. R., A. Finnila, S. Simmons, J. McLennan, A Reference Thermal-Hydrologic-Mechanical Native State Model of the Utah
FORGE Enhanced Geothermal Site, Energies 14 (2021) 4758. doi:10.3390/en14164758,

A. E. Slaughter, Z. M. Prince, P. German, I. Halvic, W. Jiang, B. W. Spencer, S. L. N. Dhulipala, D. R. Gaston, MOOSE
Stochastic Tools: A module for performing parallel, memory-efficient in situ stochastic simulations, SoftwareX 22 (2023)
101345. [doi1:10.1016/7.s0ftx.2023.101345!|

D. Tsapetis, M. D. Shields, D. G. Giovanis, A. Olivier, L. Novak, P. Chakroborty, H. Sharma, M. Chauhan, K. Kontolati,
L. Vandanapu, D. Loukrezis, Uqpy v4. 1: Uncertainty quantification with Python, SoftwareX 24 (2023) 101561. doi:
10.1016/7.s0ftx.2023.101561.

N. A. Riis, A. M. Alghamdi, F. Uribe, S. L. Christensen, B. M. Afkham, P. C. Hansen, J. S. Jorgensen, CUQIpy: 1.
Computational uncertainty quantification for inverse problems in Python, Inverse Problems 40 (2024) 045009. |doi:
10.1088/1361-6420/ad22e7.

M. Parno, A. Davis, L. Seelinger, MUQ: The MIT uncertainty quantification library, Journal of Open Source Software 6
(2021) 3076. [doi:10.21105/0ss.03076.

J. D. Jakeman, PyApprox: A software package for sensitivity analysis, Bayesian inference, optimal experimental design,
and multi-fidelity uncertainty quantification and surrogate modeling, Environmental Modelling & Software 170 (2023)
105825. [doi:10.1016/j.envsoft.2023.105825.

L. Seelinger, A. Reinarz, M. B. Lykkegaard, R. Akers, A. M. Alghamdi, D. Aristoff, W. Bangerth, J. Bénézech, M. Diez,
K. Frey, J. D. Jakeman, Democratizing uncertainty quantification, Journal of Computational Physics 521 (2025) 113542.
doi:10.1016/7.9cp.2024.113542,

C. K. Williams, C. E. Rasmussen, Gaussian processes for machine learning, 2nd Edition, MIT press, 2006.

H. Liu, J. Cai, Y. S. Ong, Remarks on multi-output Gaussian process regression, Knowledge-Based Systems 144 (2018)
102-112. |[do1:10.1016/7.knosys.2017.12.034.

M. A. Alvarez, L. Rosasco, N. D. Lawrence, Kernels for vector-valued functions: A review, Foundations and Trends in
Machine Learning 4 (3) (2012) 195-266. |do1:10.1561/2200000036.

L. F. Cheng, B. Dumitrascu, G. Darnell, C. Chivers, M. Draugelis, K. Li, B. E. Engelhardt, Sparse multi-output Gaussian
processes for online medical time series prediction, BMC medical informatics and decision making 20 (1) (2020) 1-23.
doi1:10.1186/s12911-020-1069-4.

A. Damianou, N. D. Lawrence, Deep Gaussian processes, in: Artificial Intelligence and Statistics, Proceedings of Machine
Learning Research, Scottsdale, AZ United States, 2013, pp. 207-215.

A. Damianou, Deep Gaussian processes and variational propagation of uncertainty, Doctoral dissertation, University of
Sheffield (2015).

A. Sauer, R. B. Gramacy, D. Higdon, Active learning for deep Gaussian process surrogates, Technometrics 65 (1) (2023)
4-18./d01:10.1080/00401706.2021.2008505.

H. Salimbeni, M. Deisenroth, Doubly stochastic variational inference for deep Gaussian processes, in: Advances in Neural
Information Processing Systems, Long Beach, CA United States, 2017, pp. 1-12.

Z. Dai, A. Damianou, J. Hensman, N. Lawrence, Gaussian process models with parallelization and GPU acceleration,
arXiv:1410.4984 (2014). larXiv:1410.4984,

D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1711.05101 (2014). arXiv:1412.6980,

I. Loshchilov, F. Hutter, Decoupled weight decay regularization, arXiv:1711.05101 (2017). arXiv:1711.05101.

I. Murray, R. Adams, D. MacKay, Elliptical slice sampling, in: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, Sardinia, Italy, 2010, pp. 541-548.

C. Chen, J. Liu, P. Xu, Comparison of parallel infill sampling criteria based on kriging surrogate model, Scientific Reports
12 (1) (2022) 678. [do1:10.1137/16M1082469)

E. Contal, D. Buffoni, A. Robicquet, N. Vayatis, Parallel Gaussian process optimization with upper confidence bound and
pure exploration, Springer Berlin Heidelberg, 2013.

J. El Gammal, N. Schéneberg, J. Torrado, C. Fidler, Fast and robust Bayesian inference using Gaussian processes with
GPry, Journal of Cosmology and Astroparticle Physics 2023 (2023) 021. |doi:10.1088/1475-7516/2023/10/021.

B. Echard, N. Gayton, M. Lemaire, AK-MCS: an active learning reliability method combining Kriging and Monte Carlo
simulation, Structural Safety 33 (2) (2011) 145-154. doi:10.1016/j.strusafe.2011.01.002.

S. L. N. Dhulipala, M. D. Shields, B. W. Spencer, C. Bolisetti, A. E. Slaughter, V. M. Labouré, P. Chakroborty, Active
learning with multifidelity modeling for efficient rare event simulation, Journal of Computational Physics 468 (2022)
111506. [doi:10.1016/75.3cp.2022.111506l

C. Q. Lam, Sequential adaptive designs in computer experiments for response surface model fit, Doctoral dissertation,
The Ohio State University (2008).

D. Zhan, J. Qian, Y. Cheng, Pseudo expected improvement criterion for parallel EGO algorithm, Journal of Global
Optimization 68 (2017) 641-662. |doi:10.1007/s10898-016-0484-7.

28

http://dx.doi.org/10.1016/j.commatsci.2011.07.028
http://dx.doi.org/10.1016/j.anucene.2022.109310
http://dx.doi.org/10.1016/J.FUSENGDES.2025.114874
http://dx.doi.org/10.1016/J.FUSENGDES.2025.114874
http://dx.doi.org/10.1016/J.FUSENGDES.2025.114874
http://dx.doi.org/10.3390/en14164758
http://dx.doi.org/10.1016/j.softx.2023.101345
http://dx.doi.org/10.1016/j.softx.2023.101561
http://dx.doi.org/10.1016/j.softx.2023.101561
http://dx.doi.org/10.1016/j.softx.2023.101561
http://dx.doi.org/10.1088/1361-6420/ad22e7
http://dx.doi.org/10.1088/1361-6420/ad22e7
http://dx.doi.org/10.1088/1361-6420/ad22e7
http://dx.doi.org/10.21105/joss.03076
http://dx.doi.org/10.1016/j.envsoft.2023.105825
http://dx.doi.org/10.1016/j.jcp.2024.113542
http://dx.doi.org/10.1016/j.knosys.2017.12.034
http://dx.doi.org/10.1561/2200000036
http://dx.doi.org/10.1186/s12911-020-1069-4
http://dx.doi.org/10.1080/00401706.2021.2008505
http://arxiv.org/abs/1410.4984
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1711.05101
http://dx.doi.org/10.1137/16M1082469
http://dx.doi.org/10.1088/1475-7516/2023/10/021
http://dx.doi.org/10.1016/j.strusafe.2011.01.002
http://dx.doi.org/10.1016/j.jcp.2022.111506
http://dx.doi.org/10.1007/s10898-016-0484-7

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930

(36]
37]

(38]

(39]

[40]

[41]
42]
[43]

[44]

[45]

[46]

(47]

(48]
[49]

[50]

[51]
[52]

(53]

[54]
[55]
[56]
[57]
(58]
[59]

(60]

[61]
(62]

(63]

M. C. Kennedy, A. O’Hagan, Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 63 (3) (2001) 425-464. |doi:10.1111/1467-9868.00294,

P. D. Arendt, D. W. Apley, W. Chen, Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identi-
fiability, ASME Journal of Mechanical Design 134 (10) (2012) 100908. doi:10.1115/1.4007390}

X. Wu, T. Kozlowski, H. Meidani, K. Shirvan, Inverse uncertainty quantification using the modular Bayesian approach
based on Gaussian process, Part 1: Theory, Nuclear Engineering and Design 335 (2018) 339-355. |doi:10.1016/7.
nucengdes.2018.06.004.

M. I. Radaideh, K. Borowiec, T. Kozlowski, Integrated framework for model assessment and advanced uncertainty quan-
tification of nuclear computer codes under bayesian statistics, Reliability Engineering & System Safety 189 (2019) 357-377.
doi1:10.1016/7.ress.2019.04.020.

P. Robbe, D. Andersson, L. Bonnet, T. A. Casey, M. D. Cooper, C. Matthews, K. Sargsyan, H. N. Najm, Bayesian
calibration with summary statistics for the prediction of xenon diffusion in UO2 nuclear fuel, Computational Materials
Science 225 (2023) 112184. [doi:10.1016/j.commatsci.2023.112184,

C. J. T. Braak, A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian
computing for real parameter spaces, Statistics and Computing 16 (2006) 239-249. doi:10.1007/s11222-006-8769-1.
J. Goodman, J. Weare, Ensemble samplers with affine invariance, Communications in applied mathematics and compu-
tational science 5 (1) (2010) 65-80. doi:10.2140/camcos.2010.5.65.

B. Calderhead, A general construction for parallelizing Metropolis-Hastings algorithms, Proceedings of the National
Academy of Sciences 111 (49) (2014) 17408-17413. |[doi:10.1073/pnas.1408184111/

B. Nelson, E. B. Ford, M. J. Payne, Run DMC: an efficient, parallel code for analyzing radial velocity observations using
n-body integrations and differential evolution Markov chain Monte Carlo, The Astrophysical Journal Supplement Series
11 (2013) 11-25. |[doi:10.1088/0067-0049/210/1/11.

S. Dhulipala, D. Schwen, Y. Che, R. Sweet, A. Toptan, Z. M. Prince, P. German, S. R. Novascone, Massively parallel
Bayesian model calibration and uncertainty quantification with applications to nuclear fuels and materials, Tech. Rep.
INL/RPT-23-73383-Rev000, Idaho National Laboratory, Idaho Falls, ID United States (2023).

E. Laloy, J. A. Vrugt, High-dimensional posterior exploration of hydrologic models using multiple-try DREAM (ZS) and
high-performance computing, Water Resources Research 48 (1). doi:10.1029/2011WR010608,

D. Foreman-Mackey, W. M. Farr, M. Sinha, A. M. Archibald, D. W. Hogg, J. S. Sanders, J. Zuntz, P. K. Williams,
A. R. Nelson, M. de Val-Borro, T. Erhardt, emcee v3: A Python ensemble sampling toolkit for affine-invariant MCMC,
arXiv:1911.07688 (2019). larxiv:1911.07688,

K. R. Opara, J. Arabas, Differential Evolution: A survey of theoretical analyses, Swarm and Evolutionary Computation
44 (2019) 546-558. [doi:10.1016/3.swevo.2018.06.010

D. Vats, C. Knudson, Revisiting the Gelman—Rubin diagnostic, Statistical Science 36 (4) (2021) 518-529. [doi:10.1214/
20-STS812.

S. L. N. Dhulipala, W. Jiang, B. W. Spencer, J. D. Hales, M. D. Shields, A. E. Slaughter, Z. M. Prince, V. M. Labouré,
C. Bolisetti, P. Chakroborty, Accelerated statistical failure analysis of multifidelity TRISO fuel models, Journal of Nuclear
Materials 563 (2022) 153604. doi:10.1016/7.jnucmat.2022.153604.

S. K. Au, J. L. Beck, A new adaptive importance sampling scheme for reliability calculations, Structural safety 21 (2)
(1999) 135-158. |doi:10.1016/S0167-4730(99) 00014-4.

H. Zhao, Z. Yue, Y. Liu, Z. Gao, Y. Zhang, An efficient reliability method combining adaptive importance sampling and
Kriging metamodel, Applied Mathematical Modelling 39 (7) (2015) 1853-1866. |doi:10.1016/3j.apm.2014.10.015,

J. Zhang, M. Xiao, L. Gao, S. Chu, A combined projection-outline-based active learning Kriging and adaptive importance
sampling method for hybrid reliability analysis with small failure probabilities, Computer Methods in Applied Mechanics
and Engineering 344 (2019) 13-33. |[doi:10.1016/j.cma.2018.10.003|

R. Kawai, Adaptive importance sampling and control variates, Journal of Mathematical Analysis and Applications 483 (1)
(2020) 123608. |[doi1:10.1016/j.jmaa.2019.123608

A. Kebaier, J. Lelong, Coupling importance sampling and multilevel Monte Carlo using sample average approximation,
Methodology and Computing in Applied Probability 20 (2018) 611-641. |doi:10.1007/s11009-017-9579-y,

B. Peherstorfer, T. Cui, Y. Marzouk, K. Willcox, Multifidelity importance sampling, Computer Methods in Applied
Mechanics and Engineering 300 (2016) 490-509. |[doi:10.1016/j.cma.2015.12.002}

S. K. Au, J. L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic Eng.
Mech. 16 (4) (2001) 263-277. [doi:10.1016/50266-8920 (01)00019-4!

H. S. Li, S. K. Au, Design optimization using subset simulation algorithm, Structural Safety 32 (6) (2010) 384-392.
doi:10.1016/7.strusafe.2010.03.001.

J. Bect, L. Li, E. Vazquez, Bayesian subset simulation, STAM/ASA Journal on Uncertainty Quantification 5 (2017)
762-786. |do1:10.1137/16M1078276.

Y. Zhao, Z. Wang, Subset simulation with adaptable intermediate failure probability for robust reliability analysis: An
unsupervised learning-based approach, Structural and Multidisciplinary Optimization 65 (2022) 172. |doi:10.1007/
s00158-022-03260-7.

I. Papaioannou, W. Betz, K. Zwirglmaier, D. Straub, MCMC algorithms for subset simulation, Probabilistic Engineering
Mechanics 41 (2015) 89-103. |[doi:10.1016/7.probengmech.2015.06.006.

Z. Wang, M. Broccardo, J. Song, Hamiltonian Monte Carlo methods for subset simulation in reliability analysis, Structural
Safety 76 (2019) 51-67. doi:10.1016/j.strusafe.2018.05.005}

M. D. Shields, D. G. Giovanis, V. S. Sundar, Subset simulation for problems with strongly non-Gaussian, highly anisotropic,
and degenerate distributions, Computers & Structures 245 (2021) 106431. [doi:10.1016/j.compstruc.2020.106431|

29

http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1115/1.4007390
http://dx.doi.org/10.1016/j.nucengdes.2018.06.004
http://dx.doi.org/10.1016/j.nucengdes.2018.06.004
http://dx.doi.org/10.1016/j.nucengdes.2018.06.004
http://dx.doi.org/10.1016/j.ress.2019.04.020
http://dx.doi.org/10.1016/j.commatsci.2023.112184
http://dx.doi.org/10.1007/s11222-006-8769-1
http://dx.doi.org/10.2140/camcos.2010.5.65
http://dx.doi.org/10.1073/pnas.1408184111
http://dx.doi.org/10.1088/0067-0049/210/1/11
http://dx.doi.org/10.1029/2011WR010608
http://arxiv.org/abs/1911.07688
http://dx.doi.org/10.1016/j.swevo.2018.06.010
http://dx.doi.org/10.1214/20-STS812
http://dx.doi.org/10.1214/20-STS812
http://dx.doi.org/10.1214/20-STS812
http://dx.doi.org/10.1016/j.jnucmat.2022.153604
http://dx.doi.org/10.1016/S0167-4730(99)00014-4
http://dx.doi.org/10.1016/j.apm.2014.10.015
http://dx.doi.org/10.1016/j.cma.2018.10.003
http://dx.doi.org/10.1016/j.jmaa.2019.123608
http://dx.doi.org/10.1007/s11009-017-9579-y
http://dx.doi.org/10.1016/j.cma.2015.12.002
http://dx.doi.org/10.1016/S0266-8920(01)00019-4
http://dx.doi.org/10.1016/j.strusafe.2010.03.001
http://dx.doi.org/10.1137/16M1078276
http://dx.doi.org/10.1007/s00158-022-03260-7
http://dx.doi.org/10.1007/s00158-022-03260-7
http://dx.doi.org/10.1007/s00158-022-03260-7
http://dx.doi.org/10.1016/j.probengmech.2015.06.006
http://dx.doi.org/10.1016/j.strusafe.2018.05.005
http://dx.doi.org/10.1016/j.compstruc.2020.106431

931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982

[64]
(65]

(6]

[67)

(68]

[69]

[70]
[71]

[72]

(73]
[74]

[75]

[76]

[77]

(78]

[79]
(80]
(81]
(82]
(83]
(84]

(85]

S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemometrics and Intelligent Laboratory Systems 2 (1-3)
(1987) 37-52. [doi:10.1016/0169-7439(87)80084-9.

V. Hernandez, J. E. Roman, V. Vidal, Slepc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM
Transactions on Mathematical Software (TOMS) 31 (3) (2005) 351-362.

D. R. Gaston, C. J. Permann, J. W. Peterson, A. E. Slaughter, D. Andrs, Y. Wang, M. P. Short, D. M. Perez, M. R.
Tonks, J. Ortensi, L. Zou, R. C. Martineau, Physics-based multiscale coupling for full core nuclear reactor simulation,
Annals of Nuclear Energy 84 (2015) 45-54. [doi:10.1016/j.anucene.2014.09.060.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic
differentiation in PyTorch, in: Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach,
CA, 2017, pp. 1-4.

P. German, D. Yushu, Enabling scientific machine learning in MOOSE using Libtorch, SoftwareX 23 (2023) 101489.
doi:10.1016/7.s0ftx.2023.101489.

S. L. N. Dhulipala, A. Toptan, Y. Che, D. Schwen, R. T. Sweet, J. D. Hales, S. R. Novascone, Bayesian uncertainty
quantification of tristructural isotropic particle fuel silver release: Decomposing model inadequacy plus experimental noise
and parametric uncertainties, Journal of Nuclear Materials 588 (2024) 154790. |doi:10.1016/3. jnucmat.2023.154790.
D. A. Petti, P. A. Demkowicz, J. T. Maki, Triso-coated particle fuel performance, Comprehensive Nuclear Materials 3
(2012) 151-213. |[doi:10.1016/B978-0-08-056033-5.00055-0.

J. D. Hales, W. Jiang, A. Toptan, K. A. Gamble, Modeling fission product diffusion in triso fuel particles with bison,
Journal of Nuclear Materials 548 (2021) 152840. |[doi:10.1016/7.jnucmat.2021.152840l

J. D. Stempien, R. N. Morris, T. J. Gerczak, P. A. Demkowicz, AGR-2 TRISO fuel post-irradiation examination final
report, Tech. rep., Idaho National Laboratory, INL/EXT-21-64279 (2021).

URL https://www.osti.gov/biblio/1822447

J. E. Hansel, R. A. Berry, D. Andrs, M. S. Kunick, R. C. Martineau, Sockeye: A one-dimensional, two-phase, compressible
flow heat pipe application, Nuclear Technology 207 (7) (2021) 1096-1117. doi:10.1080/00295450.2020.1861879\

S. Terlizzi, V. Labouré, Asymptotic hydrogen redistribution analysis in Yttrium-Hydride-moderated heat-pipe-cooled
microreactors using DireWolf, Annals of Nuclear Energy 186. [doi:10.1016/7j.anucene.2023.109735.

C. Matthews, V. Laboure, M. DeHart, J. Hansel, D. Andrs, Y. Wang, J. Ortensi, R. C. Martineau, Coupled multiphysics
simulations of heat pipe microreactors using DireWolf, Nuclear Technology 207 (7) (2021) 1142-1162. |doi:10.1080/
00295450.2021.1906474.

S. Biswas, S. L. N. Dhulipala, P. German, A. M. Jokisaari, D. Yushu, M. D. McMurtrey, Multiscale And Machine Learning
Modeling For Process-informed Microstructure Prediction In Additively Manufactured Materials Using MALAMUTE,
Tech. Rep. INL/RPT-24-80418, Idaho National Laboratory, Idaho Falls, ID United States (2024).

J. W. Peterson, A. D. Lindsay, F. Kong, Overview of the incompressible navier—stokes simulation capabilities in the moose
framework, Advances in Engineering Software 119 (2018) 68-92. doi:10.1016/3.advengsoft.2018.02.004}

K. Tran, W. Neiswanger, J. Yoon, Q. Zhang, E. Xing, Z. W. Ulissi, Methods for comparing uncertainty quantifications
for material property predictions, Machine Learning: Science and Technology 1 (2) (2020) 025006. |doi:10.1088/
2632-2153/ab’ela.

V. Kuleshov, N. Fenner, S. Ermon, Elliptical slice sampling, in: Proceedings of the 35th International Conference on
Machine Learning, Stockholm, Sweden, 2018, pp. 2796-2804.

R. G. Macaulay-Newcombe, D. A. Thompson, W. W. Smeltzer, Deuterium diffusion, trapping and release in ion-implanted
beryllium, Fusion Engineering and Design 18 (1991) 419-424. |[doi1:10.1016/0920-3796(91) 90158-M.

D. Ginsbourger, R. Le Riche, L. Carraro, Kriging is well-suited to parallelize optimization, Springer Berlin Heidelberg,
2010.

X. Wang, Y. Jin, S. Schmitt, M. Olhofer, Recent advances in Bayesian optimization, ACM Computing Surveys 55 (13s)
(2023) 1-36. doi:10.1145/3582078!.

D. M. Blei, A. Kucukelbir, J. D. McAuliffe, Variational inference: A review for statisticians, Journal of the American
statistical Association 112 (518) (2017) 859-877. do1:10.1080/01621459.2017.1285773,

R. Ranganath, S. Gerrish, D. Blei, Black box variational inference, in: Proceedings of the 17th International Conference
on Artificial Intelligence and Statistics, Reykjavik, Iceland, 2014, pp. 814-822.

K. Kontolati, D. Loukrezis, D. G. Giovanis, L. Vandanapu, M. D. Shields, A survey of unsupervised learning methods
for high-dimensional uncertainty quantification in black-box-type problems, Journal of Computational Physics 464 (2022)
111313. [doi:10.1016/73.7cp.2022.111313l

30

http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1016/j.anucene.2014.09.060
http://dx.doi.org/10.1016/j.softx.2023.101489
http://dx.doi.org/10.1016/j.jnucmat.2023.154790
http://dx.doi.org/10.1016/B978-0-08-056033-5.00055-0
http://dx.doi.org/10.1016/j.jnucmat.2021.152840
https://www.osti.gov/biblio/1822447
https://www.osti.gov/biblio/1822447
https://www.osti.gov/biblio/1822447
https://www.osti.gov/biblio/1822447
http://dx.doi.org/10.1080/00295450.2020.1861879
http://dx.doi.org/10.1016/j.anucene.2023.109735
http://dx.doi.org/10.1080/00295450.2021.1906474
http://dx.doi.org/10.1080/00295450.2021.1906474
http://dx.doi.org/10.1080/00295450.2021.1906474
http://dx.doi.org/10.1016/j.advengsoft.2018.02.004
http://dx.doi.org/10.1088/2632-2153/ab7e1a
http://dx.doi.org/10.1088/2632-2153/ab7e1a
http://dx.doi.org/10.1088/2632-2153/ab7e1a
http://dx.doi.org/10.1016/0920-3796(91)90158-M
http://dx.doi.org/10.1145/3582078
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1016/j.jcp.2022.111313

