
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/JOU-25-83717-Revision-0

MOOSE ProbML:
Parallelized Probabilistic
Machine Learning and
Uncertainty Quantification
for Computational Energy
Applications

December 2025

Som LakshmiNarasimha Dhulipala, Peter German, Yifeng Che, Zachary M
Prince, Xianjian Xie, Pierre-Clement A Simon, Hao Yan

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/JOU-25-83717-Revision-0

MOOSE ProbML: Parallelized Probabilistic Machine
Learning and Uncertainty Quantification for

Computational Energy Applications

Som LakshmiNarasimha Dhulipala, Peter German, Yifeng Che, Zachary M Prince,
Xianjian Xie, Pierre-Clement A Simon, Hao Yan

December 2025

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517, DE-AC07-05ID14517, DE-AC07-05ID14517, DE-

AC07-05ID14517, DE-AC07-05ID14517, DE-AC07-05ID14517

MOOSE ProbML: Parallelized Probabilistic Machine Learning and
Uncertainty Quantification for Computational Energy Applications

Somayajulu L. N. Dhulipalaa,∗, Peter Germanb, Yifeng Chec, Zachary M. Princeb, Xianjian Xied,
Pierre-Clément A. Simona, Vincent M. Labourée, Hao Yand

aComputational Mechanics and Materials Department, Idaho National Laboratory, Idaho Falls, 83415, ID, USA
bComputational Frameworks Department, Idaho National Laboratory, Idaho Falls, 83415, ID, USA

cWoodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
dSchool of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, 85287, USA

eReactor Physics Methods and Analysis Department, Idaho National Laboratory, Idaho Falls, 83415, ID, USA

Abstract

This paper presents the development and demonstration of massively parallel probabilistic machine learning
(ML) and uncertainty quantification (UQ) capabilities within the Multiphysics Object-Oriented Simulation
Environment (MOOSE), an open-source computational platform for parallel finite element and finite volume
analyses. In addressing the computational expense and uncertainties inherent in complex multiphysics
simulations, this paper integrates Gaussian process (GP) variants, active learning, Bayesian inverse UQ,
adaptive forward UQ, Bayesian optimization, evolutionary optimization, and Markov chain Monte Carlo
(MCMC) within MOOSE. It also elaborates on the interaction among key MOOSE systems—Sampler,
MultiApp, Reporter, and Surrogate—in enabling these capabilities. The modularity offered by these
systems enables development of a multitude of probabilistic ML and UQ algorithms in MOOSE. Example
code demonstrations include parallel active learning and parallel Bayesian inference via active learning.
The impact of these developments is illustrated through five applications relevant to computational energy
applications: UQ of nuclear fuel fission product release, using parallel active learning Bayesian inference; very
rare events analysis in nuclear microreactors using active learning; advanced manufacturing process modeling
using multi-output GPs (MOGPs) and dimensionality reduction; fluid flow using deep GPs (DGPs); and
tritium transport model parameter optimization for fusion energy, using batch Bayesian optimization. These
capabilities are part of the MOOSE framework.

Keywords: Active learning, Gaussian processes, Bayesian inference, Bayesian optimization, Finite element
models, Nuclear fission and fusion energy

1. Introduction1

The Multiphysics Object-Oriented Simulation Environment (MOOSE), an open-source computational2

platform for parallel finite element and finite volume analyses, is being developed and maintained primar-3

ily at Idaho National Laboratory, and has a wide user and developer base spanning academia, industry,4

and national laboratories [1]. It is easy to install, offers extensive tutorials, comes with built-in physics5

modules, and naturally lends itself to multiscale and multiphysics simulations. MOOSE supports a vibrant6

community of computational scientists and engineers via a highly active discussions forum, and its code7

base receives tens of pull requests each month (https://github.com/idaholab/moose). MOOSE has tradi-8

tionally supported computational simulations intended to advance energy solutions such as nuclear fission9

energy, geothermal energy, and, more recently, nuclear fusion energy. Several applications were built by10

∗Corresponding author
Email address: Som.Dhulipala@inl.gov (Somayajulu L. N. Dhulipala)

Preprint submitted to Journal of Computational Science November 14, 2025

https://github.com/idaholab/moose

using MOOSE to tackle specific problems such as nuclear fuel performance (BISON [2]), structural mate-11

rials aging (Grizzly [3]), medium-fidelity thermal hydraulics (Pronghorn [4]), radiation transport (Griffin12

[5]), seismic analysis (Mastodon [6]), mesoscale materials simulations (Marmot [7]), high-fidelity thermal-13

hydraulics and/or radiation transport (Cardinal [8]), tritium transport for fusion energy (TMAP8 [9]),14

thermal-hydraulic-mechanical-chemical processes in geothermal systems (Falcon [10]), etc. MOOSE also15

provides a stochastic tools module to support uncertainty quantification (UQ) and propagation, as well as16

surrogate model development for multiphysics simulations [11]. This paper presents the development and17

demonstration of massively parallel probabilistic machine learning (ML) and UQ in the MOOSE stochastic18

tools module to support capabilities such as Gaussian process (GP) ML, active learning, Bayesian inference,19

rare events analysis, Bayesian optimization, and evolutionary optimization. These capabilities in the native20

MOOSE framework are motivated by the following: (1) complex multiphysics simulations, when validated21

with experimental data, are subject to different sources of uncertainties (i.e., model parameters, model in-22

adequacy, and experimental noise) that must be quantified and propagated to the outputs; (2) complex23

multiphysics models are computationally expensive to run, especially in a UQ setting, and surrogate models24

that quantify their prediction uncertainties (i.e., probabilistic ML models such as GPs) will support their25

efficient and accurate execution by leveraging active learning principles; and (3) probabilistic ML and UQ26

capabilities could be leveraged by MOOSE’s extensive user base.27

Probabilistic ML deals with the development of surrogate models that can quantify complex multiphysics28

model prediction uncertainties. UQ deals with all aspects of identifying and inversely quantifying different29

sources of uncertainties, then forward propagating them to the model predictions. Probabilistic ML and30

UQ go hand-in-hand, leading to efficient approaches for active learning, Bayesian inference, Bayesian opti-31

mization, etc. Among the existing software for performing various aspects of probabilistic ML and UQ are32

UQPy [12], CUQIPy [13], MUQ [14], and PyApprox [15], as discussed in Seelinger et al. [16]. Most of these33

software programs were written in Python. The development and demonstration of probabilistic ML and34

UQ capabilities presented herein is oriented toward the extensive user/developer community of MOOSE,35

which is written in C++. Moreover, MOOSE inherently supports massive parallelism, meaning that the36

probabilistic ML and UQ approaches can be scaled to use thousands of processors, thus leading to high37

levels of efficiency when dealing with complex multiphysics models. Ultimately, the right software tools38

can significantly enhance various stages of the research, development, and deployment processes for energy39

solutions, with different tools being better suited to specific scenarios.40

Massively parallel probabilistic ML and UQ in MOOSE is achieved through its Sampler, MultiApp,41

Reporter, and Surrogate systems. Sampler proposes new input parameter samples from the underlying42

probability distributions, MultiApp facilitates evaluation of the MOOSE computational model while han-43

dling massive parallelism, Reporter facilitates post-model-evaluation decision making, and Surrogate44

handles the training, evaluation, and retraining of probabilistic surrogates. These systems and their interac-45

tion are key to the development of GP variants, active learning, Bayesian inverse UQ, adaptive forward UQ,46

Bayesian optimization, evolutionary optimization, and Markov chain Monte Carlo (MCMC) in MOOSE.47

The modularity offered by these systems enables development of a multitude of probabilistic ML and UQ48

algorithms. These aspects will be discussed in detail later in this paper. Besides discussing the software im-49

plementation, this paper also demonstrates its application to five different types of computational problems:50

(1) Bayesian inverse UQ of fission product release from nuclear fuel, using parallel active learning; (2) very51

rare events analysis of a heat pipe (HP) nuclear microreactor, using active learning; (3) acceleration of ad-52

vanced manufacturing process simulations, using multi-output GPs (MOGPs) and dimensionality reduction;53

(4) prediction of lid-driven cavity flow, using with deep GPs (DGPs); and (5) model parameter optimization54

of tritium diffusion for nuclear fusion, using batch Bayesian optimization. Figure 1 presents an overview55

of the probabilistic ML, forward/inverse UQ, active learning, optimization, and dimensionality reduction56

capabilities in MOOSE and the core MOOSE systems that are utilized for achieving these capabilities.57

This paper is organized as follows. Section 2 provides a theoretical review of the active learning, Bayesian58

inverse UQ, adaptive forward UQ, Bayesian optimization, evolutionary optimization, and MCMC methods59

relevant to MOOSE. Section 3 details the MOOSE code implementations. Section 4 discusses the impact60

to the five aforementioned energy applications. Lastly, Section 6 summarizes the paper and presents the61

conclusions.62

2

Standard GP (ARD) Multi-Output GP (LMC) Deep GP (experimental) Training: Adam/AdamW Training: MCMC (ESS +
MH)

Active Learning (batch + sequential)

Expected
Improvement

(EI)

Upper
Confidence

Bound (UCB)

Probability of
Improvement

(PI)

Posterior-
targeted

(Bayesian UQ)

U-function (rare
events)

Global-fit EI /
CoV

Batch selection:
Local

penalization

Inverse UQ (Bayesian, KOH discrepancy)

Parallel Metropolis–
Hastings

Affine-Invariant Stretch
Sampler

Differential Evolution
(ensemble MCMC)

GP discrepancy for
model inadequacy

Posterior prediction via
GP/MCMC

Forward UQ

Monte Carlo Latin Hypercube Sampling
(LHS) Adaptive Importance Sampling Parallel Subset Simulation

(PSS)

Optimization

Batch Bayesian Optimization Evolutionary optimization via PSS

Dimensionality Reduction

Linear PCA (parallel SVD via SLEPc)

Core MOOSE Systems

Sampler (MC, AIS, PSS,
MCMC, Active)

MultiApp (parallel
execution of sub-apps)

Reporter (data
collection, JSON

outputs)

Surrogate & Trainer
(GP/DGP, retraining)

Covariance / Likelihood
/ Acquisition /
Distributions

Representative Applications

TRISO silver release
(Fission): Bayesian

inverse UQ

Nuclear microreactor
(Fission): rare events with

AL

Additive manufacturing:
MOGP + PCA fields

Lid-driven cavity:
DGP vs GP

TMAP8 tritium (Fusion):
batch Bayesian

optimization

Surrogates (probabilistic ML)

Figure 1: An overview of the probabilistic ML, forward/inverse UQ, active learning, optimization, and dimensionality reduction
capabilities in MOOSE and the core MOOSE systems that are utilized for achieving these capabilities. These capabilities are
part of the MOOSE framework.

3

2. Methodology Overview63

This section provides a theoretical overview of the probabilistic ML and UQ methods relevant to the64

MOOSE implementation.65

𝑿

𝜎2

𝒍

𝜏2

𝑌

Standard Gaussian process

Multi-output Gaussian process with

Linear Model of Co-regionalization

Deep Gaussian process with single

hidden layer

𝑿

𝒍𝑊
1

𝒍𝑊
2

𝒍𝑊
𝑝

𝑊1

𝑊2

𝑊𝑝

𝜎2

𝒍

𝜏2

𝑌

𝑿

𝜎2

𝒍

𝜏2

𝒀

𝑨𝑞
1 𝑨𝑞

2 𝑨𝑞
𝑀

𝜆𝑞
1 𝜆𝑞

2 𝜆𝑞
𝑀

Figure 2: Graphical representation of the input (XXX) and output (YYY) mapping of the three GP variants in MOOSE: standard GP,
MOGP, and DGP. σ2, lll, and τ2, respectively, represent the amplitude scale, length scales, and noise variance hyperparameters.
AAAi

q and λi
q are the additional hyperparameters for an MOGP, and llliW is the additional hyperparameters for a DGP. In

MOOSE, these GP variants can be trained via either adaptive moment estimation (Adam) optimization (gradient-based) or
MCMC sampling (gradient-free). Here, “gradients” refers to gradients of the log-likelihood objective function.

2.1. Gaussian process variants66

Figure 2 presents a graphical representation of the different GP variants in MOOSE. The theoretical de-67

tails are briefly discussed below. The GP capabilities are used for Bayesian analysis of fission product release68

in an advanced nuclear fuel (Section 4.1), rare events analysis of a nuclear reactor (Section 4.2), advanced69

manufacturing process modeling (Section 4.3), predicting fluid flow (Section 4.4), and the optimization of a70

computational model for nuclear fusion (Section 4.5), as discussed later in this paper.71

2.1.1. Standard Gaussian process72

A standard GP is a stochastic process in which any finite collection of random variables follows a Gaussian73

distribution. Essentially, a GP describes a probability distribution over a function space and is discretized74

at certain points in the input space. A zero-mean GP is described as [17]:75

yyy ∼ N
(
000, k

(
XXX,XXX ′)) (1)

where yyy is the output vector of size N , k(., .) is the covariance function, and XXX is the input matrix of size76

N ×D (D being the dimensionality of the inputs). As shown in Figure 2, given input vectors xxx and xxx′, the77

scalar kernel function is described as:78

k(xxx,xxx′) = σ2 exp

(
− 1

2

D∑
d=1

(xd − x′
d)

2

l2d
+ τ21xxx=xxx′

)
(2)

4

where lll = (l1, · · · lD) is the vector of length scales, σ2 is the amplitude, and τ2 is the noise term. When79

each input dimension is associated with its own length scale, the GP fitting procedure is referred to as80

automatic relevance determination (ARD) [17], which is often used to implicitly determine the relevance of81

input variables. Note that xxx is an input vector and XXX is the input matrix at N points. As such, k(xxx,xxx′) is82

a scalar kernel function and k(XXX,XXX ′) is a covariance matrix of size N ×N . The parameters {lll, σ2, τ2} are83

the hyperparameters to be optimized by maximizing the log-likelihood function:84

ln p(yyy | XXX,σ2, lll, τ2) ∝ −1

2
ln |k(XXX,XXX)| − 1

2
yyyT k(XXX,XXX)−1 yyy (3)

where XXX and yyy are the training inputs and outputs, respectively. Upon optimizing the hyperparameters, as85

discussed in Section 2.1.4, the predictions of the GP on testing inputsXXX∗ constitute a Gaussian distribution:86

p(yyy∗ | XXX,XXX∗, yyy) ∼ N
(
k(XXX∗,XXX) k(XXX,XXX)−1 yyy,

k(XXX∗,XXX∗)− k(XXX∗,XXX) k(XXX,XXX)−1 k(XXX,XXX∗)
) (4)

where p(yyy∗ |.) is the probabilistic prediction of the GP with mean vector k(XXX∗,XXX) k(XXX,XXX)−1 yyy and covari-87

ance k(XXX∗,XXX∗)− k(XXX∗,XXX) k(XXX,XXX)−1 k(XXX,XXX∗).88

2.1.2. Multi-output Gaussian processes (MOGP)89

MOGPs model and predict vector outputs of size M . For any input matrix XXX, let the matrix of outputs90

be denoted by ȲYY = [yyy1, yyy2, . . . , yyyN]⊺. Note that yyyi is of size M × 1 and ȲYY is of size N ×M . The matrix ȲYY91

is vectorized and represented as ŷyy with size NM × 1. ŷyy is modeled with a zero-mean Gaussian distribution92

prior, defined as:93

ŷyy ∼ N
(
0̂00, K̄KK

)
(5)

where 0̂00 is the mean vector and K̄KK is the full covariance matrix. K̄KK captures covariances across the input94

variables and the vector of outputs, and thus has a size of NM×NM . K̄KK can be modeled in several different95

ways, as discussed in [18, 19]. As shown in Figure 2, we will follow the linear model of co-regionalization96

(LMC), which distinctly models the covariances between the N inputs and the M outputs. Mathematically,97

the LMC is defined as [18, 20]:98

K̄KK =

Q∑
q=1

B̄BBq ⊗KKKq (6)

where q denotes the basis index, B̄BBq is the outputs covariance matrix of size M ×M for the qth covariate,99

KKKq is the inputs covariance matrix of size N ×N for the qth covariate, Q is the total number of bases, and100

⊗ denotes the Kronecker product. B̄BBq is further defined as the sum of two matrices of weight [20]:101

B̄BBq = AAAqAAA
⊺
q + diag

(
λλλq

)
(7)

where AAAq and λλλq are, respectively, the matrix (size M × R) and vector (size M × 1) of hyperparameters,102

both for the qth basis. The size R is user defined and can be greater than or equal to 1. The larger the103

R, the more sophisticated the MOGP in modeling complex outputs. Furthermore, the size of Q can also104

be greater than or equal to 1. Again, the larger the Q, the more sophisticated the MOGP in modeling105

complex outputs. In total, the MOGP with the LMC output covariance and the squared exponential input106

covariance kernel will have Q (D + 1) (M + 1) R hyperparameters to be optimized arising from Q basis. If107

Q = 1, the LMC reduces to the intrinsic co-regionalization model, with (D+1) (M +1) R hyperparameters108

to be optimized. The MOGP log-likelihood function has a form similar to that of a scalar GP:109

L = −1

2
ln |K̄KK| − 1

2
ŷyyT K̄KK

−1
ŷyy − 1

2
N ln(2π) (8)

5

Once the MOGP hyperparameters are optimized, as discussed in Section 2.1.4, probabilistic predictions of110

the vector quantities of interest can be made. Given a prediction input xxx∗, the probability distribution of111

the vector outputs is given by:112

p(ŷyy∗|xxx∗, ŷyy, x̄xx,θθθ) = N (µ̂µµ∗, Σ̄ΣΣ∗) (9)

where x̄xx is the matrix of training inputs, µ̂µµ∗ is the mean vector, and Σ̄ΣΣ∗ is the covariance matrix. The mean113

vector is defined as:114

µ̂µµ∗ = K̄KKŷyy∗,ŷyy
(K̄KKŷyy,ŷyy)

−1 ŷyy (10)

where K̄KKŷyy∗,ŷyy
is the full covariance matrix of the training inputs and prediction inputs, and K̄KKŷyy,ŷyy is the full115

covariance matrix of the training inputs. The covariance matrix Σ̄ΣΣ∗ is defined as:116

Σ̄ΣΣ∗ = K̄KKŷyy∗,ŷyy∗
− K̄KKŷyy∗,ŷyy

(K̄KKŷyy,ŷyy)
−1 K̄KK

⊺
ŷyy∗,ŷyy

(11)

where K̄KKŷyy∗,ŷyy∗
is the full covariance matrix of the prediction inputs.117

2.1.3. Deep Gaussian process118

Standard GPs entail the stationarity assumption, potentially limiting the GP’s predictive performance119

(e.g., under regime changes in the input/output space). A stationary GP implies that the covariance between120

any two points depends only on the distance between them, not on their absolute locations. A DGP was121

first introduced by Damianou et al. [21] and Damianou et al. [22] as a means of overcoming this stationarity122

assumption. By moving the inputs through hidden Gaussian layers, a DGP achieves non-stationarity even123

while using standard kernel functions (e.g., a squared exponential kernel) [23]. Several DGP variants were124

proposed based on the optimization procedures used for determining the hyperparameters [24, 25]. Herein,125

we rely on the DGP formulation of Sauer et al. [23], who used MCMC for hyperparameter optimization.126

Considering a single-hidden-layer DGP (see Figure 2), output y is modeled as GPs over the hidden layer127

latents www, which are themselves modeled as a GP over the input xxx. The prior is mathematically described128

as:129

y|www ∼ N
(
0, k

(
www,www′))

www ∼ N
(
000, k

(
xxx,xxx′)) (12)

Note that, for convenience, the prior is described for a scalar value of the output y corresponding to the130

input vector xxx. In this case, the latents www are a vector of size p. Sauer et al. [23] recommends that p be equal131

to the size of the input vector. The log-likelihood function is the summation of log-likelihoods describing the132

mapping from y to www and from www to xxx. Given N training inputs, XXX, yyy, and WWW have sizes of N ×D, N , and133

N × p, respectively. WWW i is the vector of latents for the ith node in the hidden layer, and has dimensionality134

N . The compound log-likelihood function is given by:135

ln p(yyy | WWW,σ2, lll, τ2) ∝ −1

2
ln |k(WWW,WWW)| − 1

2
yyyT k(WWW,WWW)−1 yyy

ln p(WWW | XXX,lllW) ∝
p∑

i=1

−1

2
ln |ki(XXX,XXX)| − 1

2
(WWW i)T ki(XXX,XXX)−1 WWW i

ln p(yyy | WWW,σ2, XXX, lll, lllW , τ2) = ln p(yyy | WWW,σ2, lll, τ2) + ln p(WWW | XXX,lllW)

(13)

The DGP hyperparameters are optimized with respect to the log-likelihood function above, as discussed in136

Section 2.1.4. For the testing inputs XXX∗, the latents are first predicted per:137

µwi(XXX∗) = ki(XXX∗,XXX) ki(XXX,XXX)−1 WWW i

Σwi(XXX∗) = ki(XXX∗,XXX∗)− ki(XXX∗,XXX) ki(XXX,XXX)−1 ki(XXX,XXX∗)
(14)

6

Note that the index i denotes the node in the hidden layer. Using these latents, the output mean and138

covariance matrix are predicted per:139

µµµ∗ = k(WWW ∗,WWW) k(WWW,WWW)−1 yyy

ΣΣΣ∗ = k(WWW ∗,WWW ∗)− k(WWW ∗,WWW) k(WWW,WWW)−1 k(WWW,WWW ∗)
(15)

2.1.4. Gradient-based and gradient-free optimization methods for hyperparameter tuning140

For gradient-based optimization of the hyperparameters of the GP variants, MOOSE employs adaptive141

moment estimation (Adam) [26]. Adam is a stochastic optimization algorithm that permits mini-batch142

sampling during the optimization iterations. In traditional Adam with regularization, the gradient update143

and hyperparameter update steps are defined as [26]:144

gggt ← ∇Lt(θθθt−1) + λ θθθt−1

θθθt ← θθθt−1 − ηt

(
αm̂mmt/(

√
ν̂ννt + ε)

) (16)

where t is the iteration, θθθ represents the optimizable hyperparameters, ggg is the gradient update, λ is the145

regularization weight, α and ε are internal parameters of the algorithm, m̂mm is the corrected first moment146

update, ν̂νν is the corrected second moment update, and η is the schedule multiplier. Loshchilov et al. [27]147

proposed the AdamW algorithm, which modifies how the regularization is performed in Adam, thereby148

increasing its optimization performance. AdamW modifies the gradient update and hyperparameter update149

steps as follows [27]:150

gggt ← ∇Lt(θθθt−1)

θθθt ← θθθt−1 − ηt

(
αm̂mmt/(

√
ν̂ννt + ε) + λ θθθt−1

) (17)

wherein we see that the regularization is decoupled from the gradient update step and instead added to151

the hyperparameter update step. Loshchilov et al. [27] found that this decoupling generally enhanced the152

Adam algorithm’s performance across the suite of case studies considered.153

In MOOSE, gradient-free optimization is also available for tuning the GP hyperparameters, particularly154

the DGP. This is based on MCMC sampling via the elliptical slice sampler (ESS) and Metropolis-Hastings155

(MH) sampler. ESS is particularly well suited for fields fff with Gaussian priors N (000,ΣΣΣ) [28]. A random156

angle γ ∼ U(0, 2π) is drawn with the bounds set to γmin = γ − 2π and γmax = γ. A new proposal for fff is157

then made with the acceptance rate α, as shown below [28]:158

fff∗ = fff t−1 cos γ + fffprior sin γ

α = min

(
1,
L(fff∗)

L(fff t−1)

)
(18)

where t is the MCMC iteration index and L denotes the likelihood function. Crucially, in contrast to the159

MH sampler, if the proposal fff∗ is rejected, the bounds on γ are shrunken to γmin = γ (if γ < 0) and160

γmax = γ (O.W.). A new proposal for γ is then made using U(γmin, γmax). The procedure is repeated161

until the new proposal fff∗ is accepted in the current iteration t. For DGPs in particular, Sauer et al. [23]162

proposed a hybrid version of ESS and the MH sampler in order to improve hyperparameter inference, and163

this version is implemented in MOOSE. At each MCMC iteration t, the MH sampler is first used to update164

the parameters lll, σ2, τ2, and llliW in sequence, such as in a Gibbs sampling scheme. Then, by conditioning165

on these new values, the latents WWW are updated using ESS. The updating for iteration t is given by:166

σ2[t], τ2[t] via MH with p(yyy | WWW,σ2, lll, τ2)

lll[t] via MH with p(yyy | WWW,σ2, lll, τ2)

llliW [t] via MH with p(WWW | XXX,lllW) ∀ i ∈ {1, . . . , p}
WWW i[t] via ESS with p(yyy | WWW,σ2, lll, τ2) ∀ i ∈ {1, . . . , p}

(19)

7

Note that the combination of MH and ESS for updating at each MCMC iteration resembles a Gibbs sampling167

scheme. Also, p(.) in Equation (19) is used for decision making in either the MH sampler or ESS to168

accept/reject a proposed sample.169

2.2. Batch acquisition functions for parallelized active learning170

MOOSE currently features several acquisition functions for a variety of tasks such as Bayesian opti-171

mization, Bayesian inverse UQ, and global surrogate fitting. These acquisition functions are dependent on172

the mean prediction (µ̂) and standard deviation (σ̂) of the GP variant. Table 1 presents these acquisition173

functions and also lists their usage. Note that some of them have a tuning parameter λ whose functionality174

depends on the usage. For example, λ serves to boost either exploratory or exploitative behavior for Bayesian175

optimization and Bayesian inverse UQ tasks. In contrast, λ is the failure threshold for a rare events analysis176

task. Also, for some GP variants such as MOGP, the mean prediction and standard deviation are vector177

quantities. In such a case, the computed acquisition function will also be a vector quantity that must be178

reduced to a scalar by using operations such as sum, average, maximum, minimum, or product.179

Table 1: Acquisition functions in MOOSE for active learning for tasks such as optimization, Bayesian inverse UQ, and global
surrogate fitting.

Acquisition function a(xxx) Mathematical form Usage

Expected Improvement [29] zΦ(z/σ̂) + σ̂ϕ(z/σ̂) Bayesian optimization

Upper Confidence Bound [30] λσ̂ + µ̂ Bayesian optimization

Probability of Improvement [29] Φ
((
µ̂−M(xxx∗)

)
/σ̂

)
Bayesian optimization

Bayesian posterior targeted [31] exp(2λµ̂)
(
exp(σ̂)− 1

)
Bayesian inverse UQ

U-function [32, 33] (µ̂− λ)/σ̂ Rare events analysis

for Global Fit [34]
Expected Improvement (

µ̂−M(xxx∗)
)2

+ σ̂2 Global fitting

Coefficient of variation σ̂/µ̂ Global fitting

ϕ : Gaussian probability density function (PDF), Φ : Gaussian cumulative distribution function (CDF), µ̂ :
GP variant mean, σ̂ : GP variant standard deviation, M : Computational model, xxx∗ : current best point, λ :
acquisition function parameter, and z = µ̂− λ−M(xxx∗)

The acquisition functions listed in Table 1 permit sequential active learning, with one optimal location xxx180

being specified to run the full-fidelity MOOSE model. However, sequential active learning can incur signifi-181

cant computational cost, as running the full-fidelity MOOSE model several times in sequence is expensive.182

To alleviate this, we used batch versions of the acquisition functions, where b (a user-defined parameter)183

optimal locations of the inputs are specified to run the MOOSE model in parallel. For simplicity, we adopted184

the local penalization approach proposed by Zhan et al. [35]. In it, a correlation function between two inputs185

is first defined as:186

Corr(xxx,xxx′) = 1− exp
(
− 1

2

D∑
d=1

(x− x′)2

l2d

)
(20)

where lll represents the length scales, as obtained through GP hyperparameter optimization. The b optimal187

points for running the MOOSE model are defined as:188

xxx1 = argmax
xxx

a(xxx)

xxx2 = argmax
xxx

a(xxx) Corr(xxx,xxx1)

xxxb = argmax
xxx

a(xxx)

b−1∏
i=1

Corr(xxx,xxxi)

(21)

In this manner, we can select b optimal points within each iteration of active learning by performing local189

penalization to mitigate any clustering of those points. These b points can be evaluated in parallel by190

8

using a MOOSE model, and the GP variant is retrained by appending the input/output data with the new191

points. These active learning capabilities are used for Bayesian analysis of fission product release in an192

advanced nuclear fuel (Section 4.1), rare events analysis of a nuclear reactor (Section 4.2), and optimizing a193

computational model in nuclear fusion (Section 4.5), as discussed later in this paper.194

2.3. Inverse sampling and Bayesian inference195

For inverse UQ, it is often of interest to calibrate computational models given the experimental data while196

quantifying the uncertainties associated with model parameters, model inadequacy (i.e., model structural197

error), and experimental noise. Following the Kennedy and O’Hagan framework [36], the experimental data198

are defined to have originated from a generative model of the following form assuming independent and199

identically distributed experiments:200

D(Θi) =M(θθθ, Θi) + δ(Θi) + ε

where, ε ∼ L(σε)
(22)

where the ith experimental observation is indicated to be the model prediction plus a model inadequacy201

term (δ), plus a correction factor (ε) to account for noise in the experimental data. In Equation (22),M is202

the computational model, θθθ are the model parameters, and Θ is the experimental configuration. The model203

inadequacy term is traditionally modeled with a standard GP, as further discussed in Section 2.1.1. The204

correction factor is treated as a random variable that follows a probability distribution generically defined205

as L, and whose scale is σε and mean is 0. L is the likelihood function that evaluates the adequacy of the206

model predictions against the experimental data for a given θθθ and σε:207

L(θθθ, σε|ΘΘΘ,M,DDD) =
N∏
i=1

L(θθθ, σε|Θi,M,Di) (23)

where the term within the product sign is specific to a given experimental configuration, and the product208

sign itself indicates that the experiments are independent and identically distributed. Specifically, under the209

Gaussian assumption, the likelihood function becomes:210

L(θθθ, σε|ΘΘΘ,M,DDD) =
N∏
i=1

N
(
D(Θi)−M(θθθ, Θi)− δ(Θi), σε

)
(24)

With the likelihood function defined, the Bayesian inference problem entails quantifying the posterior dis-211

tribution of {θθθ, σε} [36, 37, 38, 39, 40]:212

f(θθθ, σε|ΘΘΘ,M,DDD) ∝ L(θθθ, σε|ΘΘΘ,M,DDD) f(θθθ, σε) (25)

where f(θθθ, σε) defines the prior distribution before observing new experimental data. The proportionality213

constant in Equation (25) is a multidimensional integration over {θθθ, σε} and is typically unknown. Thus,214

MCMC techniques are traditionally used to solve the Bayesian inverse problem.215

MCMC techniques, widely regarded as the gold standard for solving the Bayesian inference problem,216

involve drawing samples from the posterior distribution described by Equation (25). Use of an MCMC217

sampler in practice is presented in Figure 3a. We start from an arbitrary realization of {θθθ, σ} and propose218

a new sample. The proposal can rely on the proposal distribution if the MCMC sampler falls under the219

MH class. Otherwise, it can be implicitly defined without requiring a proposal distribution, as in the case220

of an ensemble MCMC sampler [41, 42]. In any case, the computational model is then evaluated for the221

newly proposed {θθθ, σ}. Using the computational model output, the likelihood function is evaluated and222

the transition probability with respect to the old sample is computed. The new proposal is accepted with223

probability txy. Repeating the process of making a new proposal, evaluating the computational model and224

the likelihood function, and accepting/rejecting the proposal a sufficient number of times will give us the225

samples from the required posterior distribution.226

9

Posterior

distribution

Likelihood
(model)

evaluation

Lik
eli

ho
od

 flo
w

(a)

Like
lihood flo

w

Information exchange

Likelihood
(model)

evaluation

1
2

3

N

Posterior

distribution

(b)

Figure 3: (a) Serial and (b) parallel/ensemble MCMC methods for obtaining samples from the posterior distribution. In
comparison to serial MCMC samplers, parallel/ensemble MCMC samplers usually accelerate convergence to the posterior
distribution.

This version of the MCMC sampler is serial in nature. Thus, it can take a significant number of serial227

steps to reach convergence, entailing many serial evaluations of the computational model. As this can228

be very expensive in practice, we will discuss parallelizable MCMC samplers that have multiple parallel229

Markov chains. Figure 3b presents the working principle behind parallel MCMC samplers, which is similar230

to that of a serial MCMC sampler. At each step, P parallel proposals are made, then the computational231

model corresponding to each proposal is evaluated. Since these model evaluations are independent of each232

other, they can be parallelized. The outputs are then used to compute the likelihood functions, and the233

Markov chains exchange information with each other to determine the next-best set of P parallel proposals.234

The manner in which information exchange between chains is formulated differentiates the parallel MCMC235

samplers. Calderhead [43] proposed a parallelized version of the MH class of samplers. Goodman and236

Weare [42] proposed a version of ensemble MCMC based on the affine invariance property, whereas Braak237

[41] proposed one based on differential evolution optimization [44]. All these parallel MCMC variants are238

available in MOOSE. Interested readers are referred to [43, 42, 41, 45] for the corresponding mathematical239

details.240

In addition to being massively parallelizable, parallel/ensemble samplers have been shown to accelerate241

convergence to the posterior, in comparison to the serial MCMC samplers. Studies such as Laloy and Vrugt242

[46], Foreman-Mackey et al. [47], and Opara and Arabas [48] discuss the convergence of MCMC samplers243

with the aid of metrics such as the Gelman-Rubin diagnostic [49] and the effective sample size.244

For any new experimental configuration Θ̂, the posterior predictive distribution is:245

f
(
M(Θ̂, θθθ)|ΘΘΘ,DDD

)
=

∫
σε

∫
θθθ

L(θθθ, σε|ΘΘΘ,M,DDD) f(θθθ, σε|ΘΘΘ,M,DDD) dθθθ dσε (26)

where L(θθθ, σε|ΘΘΘ,M,DDD) has the same form as in Equation (23). From the probability distribution of the246

model prediction described in Equation (26), statistics such as the median prediction and confidence bands247

can be inferred. This requires forward sampling techniques, discussed next. The inverse UQ capabilities are248

used for Bayesian analysis of fission product release in an advanced nuclear fuel (Section 4.1), as discussed249

later in this paper.250

10

2.4. Forward sampling251

Forward sampling methods sample from a known probability distribution q(xxx). Traditional methods such252

as Monte Carlo sampling and Latin hypercube sampling (LHS) are available in MOOSE. When estimating253

certain statistics, Monte Carlo and LHS may require numerous evaluations of the modelM, thus becoming254

computationally intractable. There may also be cases in which directly drawing samples from the distribution255

q(xxx) is infeasible. Importance sampling addresses these concerns by sampling from an importance density256

f(xxx). The mean estimator of the quantity of interest Q
(
M(xxx)

)
is then computed via the modified equation257

[50]:258

Q̂ =
1

S

S∑
i=1

Q
(
M(xxxi)

) q(xxxi)

f(xxxi)
(27)

where S is the number of samples drawn from the importance density f(xxx). The variance of the estimator259

is computed per [50]:260

Var(Q̂) = 1

S

{
1

S

S∑
i=1

[
Q
(
M(xxxi)

) q(xxxi)

f(xxxi)

]2
− Q̂2

}
(28)

A crucial component of importance sampling is the creation of importance density f(xxx). To estimate rare261

events, MCMC is a popular approach for creating f(xxx) by using an adaptive importance sampling scheme262

[51, 52, 53]. For other applications, methods that use control variates [54], multilevel Monte Carlo [55], and263

multifidelity modeling [56] have also been proposed to create f(xxx).264

For more complex forward UQ applications such as global optimization and very rare events analysis,265

MOOSE also features a parallel subset simulation sampler [57, 58]. This is a variant of the sequential Monte266

Carlo sampler [59], with the goal being to sample from the failure or the optimal region. Subset simulation267

creates a series of intermediate thresholds—representing the suboptimal regions—that incrementally draw268

nearer to the optimal region. The method begins with regular Monte Carlo sampling for N samples. The269

top po ∈ [0, 1] samples are then selected in light of the quantity of interest Q
(
M(xxx)

)
. Using these po270

samples, Markov chains are initiated such that they propagate toward the optimal region and not in the271

other direction. If there are NM Markov chains, each is evaluated int(N/NM) times to obtain N samples272

from this intermediate suboptimal region. The process of selecting the top po samples from this intermediate273

region and initiating the Markov chains is repeated until convergence is achieved. As tens or hundreds of274

Markov chains are propagated in each subset, these and the corresponding MOOSE model evaluations can275

be massively parallelized. Note that parallelization can only be achieved across all the Markov chains, and276

not within the individual chains. More advanced versions of subset simulation have been proposed with277

respect to aspects such as the dynamic/adaptive intermediate thresholds [59, 60] and the MCMC samplers278

[61, 62, 63]. Building on the subset simulation sampler, other variants of this method—or of sequential279

Monte Carlo samplers in general—can be implemented in MOOSE at some point in the future. The forward280

UQ capabilities are used for rare events analysis of a nuclear reactor (Section 4.2), as discussed later in this281

paper.282

2.5. Dimensionality reduction283

MOOSE stochastic tools module supports linear principal component analysis (PCA), a dimensionality284

reduction technique widely used across multiple scientific disciplines [64]. Linear PCA can be used to285

determine a lower-dimensional space (latent space) that is closest to the given data in a discrete L2 norm.286

Let sss ∈ RN be a high-dimensional vector (N is large) representing the high-dimensional solution fields from287

numerical solvers in MOOSE. To discover a low-dimensional latent space by using PCA, we collect snapshots288

of the solution fields and organize them into a snapshot matrix SSS = [sss1, sss2, ..., sssNs
]. For discrete problems289

such as the one presented here, singular value decomposition (SVD) is performed for a linear PCA analysis.290

Therefore, we can obtain the principal components of the snapshots (basis functions of the latent space) by291

computing the SVD of the snapshot matrix:292

11

SSS = UUUΣΣΣVVV T (29)

where matrices UUU and VVV are unitary and contain the left and right singular vectors, respectively, whereas293

diagonal matrix ΣΣΣ contains the singular values. MOOSE relies on the parallel SVD solvers through the aid294

of SLEPc [65], enabling it to efficiently compress very high-dimensional output fields. The columns of UUU are295

also called principal components, and can be used to approximate the high-dimensional snapshots per:296

sss ≈ U rcccr (30)

where cccr ∈ Rr contains the expansion coefficients or coordinates in the lower-dimensional latent space, while297

matrix U r contains the first r principal components. The columns of U r span the closest r-dimensional298

subspace to the snapshots in S. Based on this expression and the fact that the principal components are299

orthonormal, we can map the snapshots to the latent space via the following operation:300

cccr = UT
r sss (31)

To determine the necessary number of principal components, (i.e., r) an explained variation-based approach301

is utilized that relies on the the singular values (σi) located on the diagonal of matrix Σ:302

r = argmin
1≤r≤Ns

1−

r∑
i=1

σ2
i

Ns∑
i=1

σ2
i

 < τ (32)

The above metric selects r so that the relative sum of the squared singular values from r to Ns is lower than303

a given number τ ∈ (0, 1]. The dimensionality reduction capabilities are used for advanced manufacturing304

process modeling (Section 4.3), as discussed later in this paper.305

3. MOOSE Code Implementations306

3.1. Background on the MOOSE Stochastic Tools Module307

The MOOSE stochastic tools module aims to efficiently and scalably sample parameters, run multiphysics308

models, and perform stochastic analyses, including UQ, sensitivity analysis, and surrogate model generation.309

In Slaughter et al. [11], a more comprehensive and general overview of the module is presented. The following310

subsections describe the MOOSE systems relevant to the probabilistic ML and UQ techniques focused on311

in this paper.312

3.1.1. Samplers system313

The Samplers system represents a class of objects responsible for generating random samples. MOOSE314

provides a variety of objects for specific sampling strategies, including MonteCarlo and LatinHypercube315

for basic random sampling, Quadrature for sparse quadrature sampling, AdaptiveImportance and316

ParallelSubsetSimulation for MC-based forward-UQ sampling, and various objects for MC-based317

inverse-UQ sampling. For adaptive sampling schemes (e.g., MC-based sampling), these objects can gather318

data from associated objects so as to determine subsequent sets of samples—for instance, gathering whether319

or not a sample was rejected or accepted in the chain. Samplers also define how the multiphysics runs are320

parallelized. Typically, the number of parallel runs and the number of processors needed for each run are321

determined programmatically, though there are input parameters that allow for user control.322

12

3.1.2. MultiApps system323

MultiApps is a framework-level system in MOOSE that enables instantiation of independent simulations324

[66]. MOOSE utilizes this system to run multiphysics simulations during stochastic sampling and to gather325

the results. In particular, it leverages the flexibility in distributing simulations across processors, making the326

stochastic simulations both extremely scalable and memory efficient. This parallelism works on two fronts:327

sample parallelism and model parallelism. Sample parallelism involves distributing the concurrent simu-328

lations evenly across the available processors—possibly leaving multiple processors per simulation. Model329

parallelism is supported by distributed memory parallelism (with MPI) and shared memory parallelism330

(with OpenMP). This interplay between sample and model parallelism is customizable within MOOSE to331

help with memory consumption for larger models. Further details on the distribution of MultiApps for332

MOOSE are presented in Slaughter et al. [11]. GPU-based parallelism for model parallelism is currently333

under development. However, MOOSE can be configured and compiled with Libtorch, the C++ frontend of334

PyTorch [67, 68]. Libtorch modules within MOOSE can already harness the GPU acceleration for Libtorch335

model evaluations, model training, and tensor manipulations.336

3.1.3. Reporters system337

The MOOSE Reporters system provides an interface for declaring, manipulating, and gathering global338

data in a given application. MOOSE primarily utilizes this system to store data from MultiApps runs339

during the stochastic simulation. Reporter objects also handle heterogeneous storage of the data, keeping340

data distributed for memory efficiency and homogenizing them when necessary. Reporters is also the341

primary strategy for outputting data such as UQ results, typically in the form of JSON files.342

3.1.4. Surrogates system343

The Surrogates system in MOOSE provides the capability to train and evaluate meta-models. Trainers344

are responsible for gathering parameter values from Samplers and responses from Reporters to com-345

pute the necessary data for model generation. These data can be declared globally or output for later use.346

Surrogates then takes the trained model and provides an interface for evaluating it. Specified Trainers347

and Surrogates are accessible from any MOOSE object in order to either evaluate the model based on348

specific parameters or retrain them on-the-fly. All the GP variants are built using the Surrogates system.349

While not directly relevant to probabilistic ML, MOOSE also has support for other types of surrogates350

such as polynomial chaos, polynomial, and proper orthogonal decomposition reduced basis. Importantly,351

MOOSE can be configured and compiled with Libtorch, the C++ frontend of PyTorch [67, 68]. This means352

more complex surrogates like neural networks can either be trained natively in MOOSE or be imported from353

Python/PyTorch via TorchScript.354

3.2. Modularity: understanding the Sampler, MultiApp, Reporter, and Surrogate interaction355

The Sampler, MultiApp, Reporter, and Surrogate systems in MOOSE afford extensive modularity356

and enable development of many variants of active learning, forward/inverse UQ, and Bayesian optimization357

algorithms. Moreover, these algorithms can be implemented in an inherently parallel manner by calling sev-358

eral instances of the computational MOOSE model in parallel, using the MultiApp system. Understanding359

how the Sampler, MultiApp, Reporter, and Surrogate systems interact with each other—as well as360

their order of execution within MOOSE—is key to implementing these algorithms. This section discusses361

the interaction between these systems.362

For the sake of simplicity, the interaction among Sampler, MultiApp, and Reporter is discussed363

first. Sampler proposes new samples from the underlying probability distributions, using objects in the364

Distributions system. These proposed samples are stored in a global array, with the rows containing365

the samples to be executed in parallel and the columns representing the parameters to the computational366

model. The numerical simulations corresponding to the proposed samples are automatically executed in367

parallel, if the user desires, via the MultiApp system. Upon execution, the simulation outputs are received368

by the Reporter system and stored in a JSON file. Under simple schemes such as Monte Carlo or LHS,369

the Reporter system only outputs the simulation results and the Sampler system then moves on to370

13

propose the next batch of samples, without any influence from the previously proposed samples or their371

simulation outcomes. In schemes such as adaptive Monte Carlo and MCMC, the Reporter system plays372

a more crucial role of influencing the next batch of samples proposed by the Sampler system, depending373

upon the simulation outcomes of the previously proposed batch of samples. Several adaptive Monte Carlo374

and MCMC algorithms such as adaptive importance sampling and parallel subset simulation for forward375

UQ and parallel MH, and ensemble MCMC for inverse UQ, fit well within the Sampler, MultiApp, and376

Reporter interaction scheme in MOOSE. For Bayesian inverse UQ problems, the Sampler system per-377

forms the additional function of collecting the user-supplied experimental configuration data and combining378

them with the proposed samples of model parameters by creating combinations of these parameters and379

experimental configurations. Owing to the inherent parallelization via the MultiApp system, algorithms380

such as parallel subset simulation, parallel MH, and ensemble MCMC, which rely on multiple Markov chains,381

can be massively parallelized in terms of the computational model calls. Figure 4 presents the Sampler,382

MultiApp, and Reporter system interaction flowchart, along with several objects available in MOOSE383

for forward and inverse UQ applications.384

Reporter

Sampler

Executed in parallel

MultiApp

SubApp 1

SubApp 2

SubApp N

.

.

.

batch of input samples

outputs
influence next

samplesForward:
MonteCarlo, LatinHypercube,

AdaptiveImportanceSampler,
ParallelSubsetSimulation,
ActiveLearningMonteCarlo,

AISActiveLearning,
SubsetSimulationActiveLearning,

GenericActiveLearning

Bayesian inverse:
ParallelMCMCBase,

IndependentGaussianMH,

AffineInvariantStretchSampler,
AffineInvariantDES,

BayesianActiveLearning

Forward:
AdaptiveMonteCarloDecision,

ActiveLearningGPDecision,
BiFidelityActiveLearningGPDecis

ion, GenericActiveLearner

Bayesian inverse:
ParallelMCMCDecision,

IndependentMHDecision,

AffineInvariantStretchDecision,

AffineInvariantDifferentialDeci

sion, BayesianActiveLearner

Surrogate

influence Sampler and/or Reporter

GaussianProcess,
DeepGaussianProcess

Single and Multi-Output Covariance

ParallelAcquisition

Distributions

Figure 4: Sampler, MultiApp, Reporter, and Surrogate system interaction in MOOSE for performing parallel active
learning. The available objects deriving off of Sampler and Reporter are also shown in regard to supporting tasks such as
forward/inverse UQ, Bayesian optimization, and active learning with different GP variants.

Next, we will discuss the Surrogate system’s influence on the interaction among the Sampler,385

MultiApp, and Reporter systems. Training, evaluation, and active/online learning of the GP variants in386

MOOSE are handled by Surrogate and Trainer. The Surrogate system can be easily coupled to the387

Reporter system to influence its behavior and/or that of the Sampler system. For example, in parallel ac-388

tive learning tasks such as forward/inverse UQ and Bayesian optimization, the GP surrogate variant, based389

on its predictive uncertainties and the acquisition function values, tells the Sampler system the best sets390

of input parameters under which to call the MOOSE computational model during the next iteration. After391

evaluating the computational model, in parallel, the outputs will be obtained by the Reporter system,392

which retrains the GP variant with the appended new data. The Reporter system will then query the393

acquisition function about the next-best sets of input parameters, and this process repeats until reaching394

a user-specified number of outer iterations. GaussianProcess and DeepGaussianProcess surrogates395

14

are currently derivable off of the Surrogate system. Both rely on the Covariance system to set up396

the training data input/output covariances (output covariances are only required for the MOGP surrogate).397

They also rely on the GaussianProcess class, which handles the training and retraining by using the398

gradient-based Adam algorithm or gradient-free MCMC sampling. Here, “gradients” refers to gradients of399

the log-likelihood function of the GP variant. Figure 4 indicates how the Surrogate system influences the400

interaction among Sampler, MultiApp, and Reporter, and supports parallelized active learning. More-401

over, a pre-trained GP surrogate variant saved as an .rd (restartable data) file can be loaded and evaluated402

by using a combination of user-specified Sampler and Reporter objects, without calling the MOOSE403

computational model.404

3.3. Example implementation of parallelized active learning405

An example implementation of parallel active learning capabilities in MOOSE—via leveraging the Sampler,406

MultiApp, Reporter, and Surrogate interaction—will now be discussed for Bayesian UQ and Bayesian407

optimization applications. Figure 5a presents the MOOSE objects and their dependencies. This schematic408

is comprised of the following main components:409

• GenericActiveLearningSampler/BayesianActiveLearningSampler:410

GenericActiveLearningSampler creates a large population of input samples at each iteration,411

and this is retrieved by the Reporter object to facilitate optimization of the acquisition function.412

Importantly, this object also facilitates evaluation of the computational model via the MultiApp sys-413

tem for a best batch of inputs, as informed by the GP model. BayesianActiveLearningSampler414

derives from GenericActiveLearningSampler and is tailored for Bayesian UQ applications such415

that it considers the experimental configurations. Specifically, before sending the inputs to the416

MultiApp system, BayesianActiveLearningSampler combines them with the experimental con-417

figurations.418

• GenericActiveLearner/BayesianActiveLearner:419

GenericActiveLearner optimizes the acquisition function via the GaussianProcess surrogate420

and selects the next-best set of inputs to the Sampler object. The acquisition function is opti-421

mized by selecting the best P inputs from among the large population of samples created earlier in422

the iteration by the GenericActiveLearningSampler. BayesianActiveLearner derives from423

GenericActiveLearner to compute the log-likelihood function, which serves as the training/re-424

training data for the GP for Bayesian UQ applications.425

• Support objects: CovarianceFunctionBase constructs covariances for the GP object, based on426

the kernel specified by the user. LikelihoodFunctionBase evaluates the likelihood function, given427

inputs and model outputs based on the user-specified distribution. AcquisitionFunctionBase428

computes the acquisition function specified by the user and performs local penalization when selecting429

the best P input samples.430

GenericActiveLearningSampler and GenericActiveLearner can readily perform batch Bayesian431

optimization for maximizing a user-defined objective evaluated via a MOOSE computational model. For432

Bayesian UQ, BayesianActiveLearningSampler and BayesianActiveLearner train a GP model433

by prioritizing regions of high log-likelihood via the Bayesian posterior targeted acquisition function detailed434

in Table 1. The trained GP model is saved as an .rd file. This will be used in conjunction with MCMC objects435

such as the AffineInvariantDifferentialEvolution sampler GPDifferentialEvolutionDecision436

reporter for sampling from the posterior distribution. Doing so circumvents evaluation of the MOOSE com-437

putational model, since the trained GP model will directly predict the log-likelihood values during forward438

evaluation. The flowchart in Figure 5b details the use of an actively trained GP model for sampling from439

the posterior distribution.440

15

BayesianActiveLearner

BayesianActiveLearningSampler

Executed in parallel

MultiApp

SubApp 1

SubApp 2

SubApp P

.

.

.

ActiveLearningGaussianProcess

(batch of input samples)

(outputs)

CovarianceFunctionBase

AcqusitionFunctionBaseGenericActiveLearner

GenericActiveLearningSampler

LikelihoodFunctionBase

Sampler object

Application object

Reporter object

Surrogate object

Support object

(a)

GPDifferentialEvolutionDecision

AffineInvariantDifferentialEvolution

GaussianProcess

(batch of input samples)

ParallelMCMCDecision

ParallelMCMCBase

(predicted model outputs)

(b)

Figure 5: (a) MOOSE objects and their dependencies for performing parallel active learning for Bayesian optimization
and Bayesian UQ applications by leveraging the Sampler, MultiApp, Reporter, and Surrogate interaction. Note
that the combination of GenericActiveLearningSampler and GenericActiveLearner performs Bayesian optimization.
BayesianActiveLearningSampler and BayesianActiveLearner are derived objects for Bayesian UQ, and they consider
the experimental configurations and likelihood functions supplied by the user. For Bayesian UQ, the actively trained GP
prioritizes regions of high log-likelihood and is saved as an .rd file. (b) Evaluation phase of the actively trained GP for Bayesian
UQ by leveraging the MCMC sampling objects; specifically, the AffineInvariantDifferentialEvolution for proposing
new samples and the GPDifferentialEvolutionDecision for decision-making. Here, the GP model directly predicts the
log-likelihood values under different input parameters and experimental configurations, thus circumventing evaluation of the
computational MOOSE model.

3.4. A note on parallel scalability441

Many of the discussed capabilities in MOOSE rely on generating samples of model parameters from442

distributions and executing the sub-applications (i.e., model evaluations) in parallel. To this end, MOOSE443

features three modes for parallelization: (1) normal mode creates one sub-application per row of data444

(i.e., one realization of the parameters) supplied by the Sampler object; (2) batch-reset mode creates445

N sub-applications, where the sub-applications are destroyed and re-created (on the same existing MPI446

communicator) for each row of data supplied by the Sampler object; and (3) batch-restore mode447

creates N sub-applications, where the sub-application is backed up after initialization and for each row of448

16

data supplied by the Sampler object the sub-application is restored to the initial state prior to execution.449

Here, N is min (nrows,floor(
nproc

nmin
)), where nrows is the number of rows in the Sampler object, nproc is the450

number of processors, and nmin is the minimum number of processors per sub-application specified by the451

user. More information can be found here: MOOSE Stochastic Tools Batch Mode.452

Embarrassing parallelizability depends on two factors, the computational overhead and the parallelizabil-453

ity of the algorithms themselves. The computational overhead indeed increases with the number of parallel454

calls to the model and this overhead depends upon the model and the physics involved. However, we found455

for our practical applications that this overhead is minimal compared to the time it takes to evaluate the456

model itself. Sampling methods like Monte Carlo and Latin Hypercube are embarrassingly parallel by prin-457

ciple. Adaptive methods like the PSS and parallel MCMC can be parallelized to a certain extent. For458

example, the PSS method can only be parallelized across the Markov chains but not within each chain. This459

creates a limit for parallelization after which adding more processors can only further speed up the model460

evaluations but not the PSS method itself; for more information, interested readers are referred to Figure461

8 in Dhulipala et al. [50]. MCMC methods for Bayesian inversion are parallelizable across the Markov462

chains and also the experimental configurations. However, after each iteration, all the MCMC chains in the463

implemented methods have to exchange information to decide their flow in the next iteration. Interested464

readers are referred to Figure 23 in Dhulipala et al. [69]. Parallelizability of the parallel active and batch465

Bayesian optimization methods is controlled by the user specified batch size which controls the number of466

model evaluations at each outer iteration.467

4. Application Demonstrations468

Most of the application demonstrations are run on the Sawtooth high-performance computing cluster at469

the Idaho National Laboratory. This cluster has 2052 compute nodes each with 2 Intel Xeon 8268 CPUs,470

Cascade Lake Platinum chipset, 24 cores per CPU, 192GB of RAM, and Mellanox Infiniband EDR for inter-471

node communication. It also features 27 nodes each with 2 Intel Xeon 8268 CPUs, Cascade Lake Platinum472

chipset, 24 cores per CPU, 384GB of RAM, Mellanox Infiniband EDR for inter-node communication, and 4473

NVidia Tesla V100 32 GPUs.474

4.1. Parallel active learning for Bayesian inverse UQ of TRISO nuclear fuel fission product release475

This section uses the active learning with GP and forward UQ capabilities discussed in Sections 2.2 and476

2.3, respectively.477

Tristructural isotropic (TRISO) particle fuel is proposed for use in advanced reactors because of its high478

temperature resistance. Its protective layers are intended to encapsulate the fission products, which these479

reactor designs are based on. Thus, it critical to assess the predictive uncertainties in the TRISO fission480

product release model. To this end, inverse UQ of the TRISO fission product release model is necessary to481

quantify the uncertainties due to model parameters, model inadequacy, and experimental noise. A 25-mm-482

long, 6-mm-radius cylindrical fuel compact can contain approximately 10,000–15,000 TRISO particles, each483

with a radius of around 375–430 µm [70]. Each TRISO particle has several protective layers around the fuel484

kernel—namely, the buffer, inner pyrolitic carbon (PyC), silicon carbide, and outer PyC layers.485

Fission products, particularly silver release, are modeled using the BISON fuel performance code [2, 71],486

which is a MOOSE-based application. The diffusion process of fission products in TRISO particles requires487

computation of the fuel temperature (if not prescribed), temperature-dependent diffusion coefficients, source488

rates for the fission products, and the particle geometry. Material models were developed in BISON for each489

type of material in the TRISO particles: the buffer, the PyC layers, the silicon carbide layer, and the fuel490

kernel. Fission product diffusion is governed by the Fickian diffusion equation, wherein the diffusivity of491

the fission products is in units of m2/s, and is normally estimated via an effective diffusivity defined per492

an Arrhenius law. See [2, 71] for further details on the modeling using BISON. The values for the pre-493

exponential factor Di and activation energy Qi in the Arrhenius equation for the different TRISO layers494

are usually calibrated from existing experimental data. A sensitivity analysis conducted in Dhulipala et al.495

[69] concluded that the pre-exponential factors of the fuel kernel and PyC layer are, in comparison to the496

17

https://mooseframework.inl.gov/modules/stochastic_tools/batch_mode.html

other model parameters, unimportant in predicting fractional silver release, which is the fission product of497

interest herein. Hence, the parameter space of interest is θθθ = {Qkernel, Qipyc, Dsic, Qsic} when considering498

the Arrhenius equation for silver diffusivity.499

Experimental datasets on the observed silver release from TRISO particles are available from the De-500

partment of Energy Advanced Gas Reactor program. This enables inverse calibration and UQ of the TRISO501

model parameter space. At the same time, it is also of interest to quantify the predictive uncertainty associ-502

ated with model inadequacy and experimental noise. We used the massively parallel MCMC samplers and503

parallelizable active learning in MOOSE to inversely quantify the model parameters θθθ and the sigma term504

(model inadequacy plus experimental noise). Thanks to the Advanced Gas Reactor program, 32 experimen-505

tal data points on the observed silver release have been made available, and were used for the inverse UQ506

process [72].507

The approaches to inversely assess the uncertainties in the model parameters and model inadequacy plus508

experimental noise are detailed below.509

• Parallel MCMC: The TRISO fractional silver release predictions and observations are bounded between510

0 and 1. So, we used a truncated normal likelihood function to assess the model predictions against511

the experimental data. The inversely calibrated parameters were {θθθ, σ}, and the prior distributions512

for all the parameters were uniformly distributed. We used the differential evolution sampler [41] in513

MOOSE to inversely quantify the uncertainties in {θθθ, σ}. For this purpose, we used 50 parallel chains,514

each executing the MOOSE model 32 times (i.e., the number of experimental data points), in parallel,515

to evaluate the likelihood function. As a result, 1, 600 (i.e., 50 × 32) processors were employed to516

perform inverse UQ for a total of 500 serial iterations in the differential evolution sampler.517

• Parallel active learning: For this, we used the same likelihood formulation and priors as before. We518

used a standard GP to predict the fractional silver release of the MOOSE model. For active learning,519

we relied on the Bayesian posterior targeted acquisition function from Table 1 to actively acquire new520

training data by running the MOOSE model. We also combined this acquisition function with the521

local penalization approach (Equations (20)–(21)) to acquire a batch of new training data. We set the522

batch size to 10 and performed 80 serial iterations of active learning. At the end of the 80 iterations,523

we observed that a convergence metric had sufficiently stabilized. Then, using the actively trained524

standard GP, we performed differential evolution sampling, just as before, by replacing the MOOSE525

model evaluations. This led to an approximated posterior distribution of {θθθ, σ}.526

Figure 6a presents the inversely quantified posterior distributions of θθθ, comparing the parallel MCMC and527

parallel active learning approaches. Note that, in general, parallel active learning gives posterior distributions528

consistent with parallel MCMC, which is considered to be the reference solution. Between the model529

parameters DSiC and Qsic, we see a strong non-linear correlation, as shown in the subplots located in the530

third row, fourth column and the fourth row, third column. Parallel active learning is able to capture this531

non-linear correlation, though it struggles near the bottom left tip, where there is a small concentration of532

probability density. Figure 6b presents the posterior distribution of the sigma (σ) term, which captures the533

model inadequacy plus the experimental noise. Again, parallel MCMC and parallel active learning produce534

highly consistent results.535

Figure 7 compares the computational cost of inverse UQ in regard to parallel active learning and parallel536

MCMC. Computational cost is measured as the product of the number of processors required times the537

elapsed time necessary to solve the inverse UQ problem. Parallel active learning has shown to have a538

computational cost at least three orders of magnitude smaller than parallel MCMC, which is considered539

the reference solution, while still delivering satisfactory posterior uncertainties. Capturing features in the540

posterior distribution like sharp tails can be accomplished by increasing the number of iteration or using a541

better acquisition function.542

4.2. Active learning variance reduction for very rare events analysis of a heat-pipe nuclear microreactor543

This section uses the active learning with GP and forward UQ capabilities discussed in Sections 2.2 and544

2.4, respectively.545

18

(a)

0.9 1.0 1.1 1.2 1.3 1.4 1.5
 (predictive uncertainty)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

si
ty

Parallel MCMC
Parallel active learning

(b)

Figure 6: Comparison of the posterior distributions of (a) the model parameters θθθ and (b) the sigma term (model inadequacy
plus noise) in regard to parallel MCMC and parallel active learning approaches for the TRISO fuel silver release case.

Parallel MCMC Parallel active learning

103

104

Pr
oc

es
so

rs
 ×

 E
la

ps
ed

 T
im

e
(H

ou
rs

)

Figure 7: Comparison of the computational cost of performing inverse UQ in regard to the parallel active learning and parallel
MCMC approaches for the TRISO fuel silver release case. (Computational cost is measured as the product of the number of
processors required times the elapsed time necessary to solve the inverse UQ problem.)

This section demonstrates the use of MOOSE ProbML capabilities for estimating very rare events, based546

on an HP nuclear microreactor model. Very rare events correspond to low failure probabilities on the order547

of 10−6 or lower. Unlike other types of nuclear reactors, HP-cooled microreactors must consider additional548

failure modes stemming from heat transfer limitations governing HP operability. These bounding limits549

constrain how much heat can be removed by the HPs, depending mainly on the HP design parameters and550

its temperature. Failure limits are computed using the MOOSE-based application Sockeye [73], based on551

the design parameters specified in Terlizzi et al. [74], with the pore radius increased to 45 µm (to lower552

the capillary limit). Even though the sonic and viscous limits are not catastrophic—in that the HPs can553

recover after reaching them—for the purpose of this demonstration, all these limits are considered when554

determining failure probability. As manufacturing and thermal property uncertainties are very much design555

specific, and because the model considered herein is a prototypical design, this demonstration only serves as a556

proof-of-concept of MOOSE’s methodological implementations for computing very low failure probabilities.557

19

As such, the reported values of the failure probabilities should not be directly applied to assess the safety558

of HP reactors.559

The MOOSE computational model consists of a single HP. It employs the effective heat conduction560

model in Sockeye [73], with the HP vapor core being represented as a material with extremely high thermal561

conductivity, as described in Matthews et al. [75]. Four uncertain parameters are considered: (1) Qevap:562

the power removed by (or heating rate of) the HP; (2) Tsink: the sink temperature on the HP condenser;563

(3) htcsink: the corresponding heat transfer coefficient; and (4) Rpore: the pore radius in the HP wick. Each564

of these parameters was assumed to follow normal distributions, with the means being defined consistently565

with what was used in Terlizzi et al. [74] (i.e., 1821 W, 900 K, 103 W/K/m2, and 45 µm, respectively). The566

standard deviation for each parameter was arbitrarily chosen to be equal to 10% of the mean.567

We used three forward UQ approaches in MOOSE to quantify the low probability of HP failure: (1)568

Monte Carlo, which serves as the reference solution but is computationally expensive; (2) standard subset569

simulation executed in a massively parallel fashion; and (3) subset simulation with active learning via a570

standard GP. These approaches are detailed below.571

• Monte Carlo: We used 109 MOOSE model evaluations to compute the HP failure probability.572

• Standard subset simulation executed in parallel: We used seven subsets and 20, 000 MOOSE model573

evaluations per subset. In each subset, we used 40 independent Markov chains, each evaluating the574

MOOSE model 500 times in serial. These 40 Markov chains were launched in parallel fashion. Inter-575

mediate thresholds were computed, corresponding to a probability of 0.1. In total, the MOOSE model576

was evaluated 140, 000 times to compute the failure probability.577

• Active learning subset simulation: We used seven subsets and 2, 000 samples per subset. The input578

samples were first evaluated by using a standard GP to predict the MOOSE model output. If the GP579

prediction, as deemed by the U-function (see Table 1), is inadequate, only then is the MOOSE model580

evaluation performed. Intermediate thresholds were computed, corresponding to a probability of 0.1.581

Note that the number of actual MOOSE model evaluations depends on the adequacy of the GP model582

for each input sample. This is discussed in detail next.583

Table 2 presents the failure probabilities computed using the three different approaches, along with the584

corresponding coefficient of variation, the total number of MOOSE model evaluations, and the required585

number of processors. First, note that all three methods return similar failure probability values. As586

the failure probability is extremely small, Monte Carlo requires an enormous number of MOOSE model587

evaluations. Subset simulation reduces this number by a factor of 7, 000 as compared to Monte Carlo.588

Active learning subset simulation reduces this number even further, by a factor of 7.7 × 106 and 1, 000 in589

comparison to Monte Carlo and subset simulation, respectively. Figure 8 presents the distributions of input590

parameters for failed HPs so as to enable further comparison of the three approaches. Note that all three591

return similar input parameter distributions for the failed HPs.592

Table 2: Comparison of the statistics for the three forward UQ approaches in MOOSE when evaluating the failure of an HP
microreactor model. Shown for reference are the number of MOOSE model evaluations and the number of required processors
utilized when computing the failure probabilities.

Method
probability

Failure
variation

Coefficient of
evaluations

MOOSE model
Processors used

Carlo
Monte

7× 10−8 0.12 109 192

subset simulation
Parallelized

5.1× 10−8 0.06 140, 000 40

subset simulation
Active learning

4.75× 10−8 0.192 130 1

The “MOOSE model evaluations” column represents the total number of model evaluations required.

20

Figure 8: Distributions of the input parameters for failed HPs when comparing the three approaches: Monte Carlo (MC),
parallelized subset simulation (PSS), and active learning subset simulation (AL-SS). Also shown for reference are the nominal
input parameter distributions to the MOOSE HP model.

4.3. Multi-output Gaussian processes and dimensionality reduction for advanced manufacturing simulations593

This section uses the MOGP and dimensionality reduction capabilities discussed in Sections 2.1.2 and594

2.5, respectively.595

Several advanced manufacturing techniques, including direct energy deposition and laser powder bed596

fusion, rely on the melting of metals with the help of a laser. The quality of the final product depends on597

the process parameters employed (e.g. laser power and beam radius). However, simulation of laser melt598

pools is challenging due to the multiple physics involved, including melting and solidification along with599

fluid dynamics and heat transfer in the melt pool. This is why development of surrogate models for such600

simulations carries high potential for accelerating parametric studies that aim to explore the relationship601

between process parameters and product quality. We trained an MOGP-based surrogate model combined602

with dimensionality reduction, using linear PCA within MOOSE to predict full temperature fields during603

the advanced manufacturing process [76]. The high-fidelity MOOSE model was run to gather temperature604

fields with different process parameters—namely, effective laser power and effective laser beam radius. The605

MOOSE model relied on the Arbitrary Lagrangian-Eulerian method for capturing deformations caused by606

the vapor pressure on the melt pool surface. Figure 9 presents the MOOSE model setup, together with the607

temperature distribution for a specific combination of the two process parameters.608

In this work, the temperature field at a given time step was the primary quantity of interest. In total, 120609

snapshots of temperature fields were collected from the high-fidelity model by varying the process parameters.610

LHS was employed to randomize the process parameters, using U(70, 83) [W] and U(125, 200) [µm] for the611

effective laser power and beam radius, respectively. Then linear PCA was applied to the temperature field612

snapshots for data compression. The decay of the squared singular values and the relative variance content613

are presented in Figure 10a. We see rapid decay in the explained variance, indicating that a few PCA614

components are sufficient to describe the thermal behavior of the system. Based on this information, a615

latent space of 10 dimensions was selected, and the temperature snapshot fields were mapped onto this616

space by using the first 10 components of linear PCA.617

The 10 latent space components across 120 random realizations of the process parameters served as the618

training samples for the MOGP. The MOGP was trained via Adam optimization with 1,000 epochs, at a619

learning rate of 5 × 10−4. The trained MOGP was then evaluated on a test set, using 200 samples of the620

process parameters. The MOGP-predicted latent quantities, which have 10 dimensions, were projected back621

21

Figure 9: Temperature field output from the high-fidelity MOOSE model, which simulated the advanced manufacturing process
by considering an effective laser power of P = 81.97 W and a laser radius of R = 125.8 µm. The model relied on the Arbitrary
Lagrangian-Eulerian method for capturing deformations caused by the vapor pressure on the melt pool surface.

1 2 3 4 5 6 7 8 9 10 11
Index

10−10

10−8

10−6

10−4

10−2

100

N
or

m
al

iz
ed

S
qu

ar
ed

S
in

gu
la

r
V

al
u

e

Normalized Square SV

Relative Variance

10−10

10−8

10−6

10−4

10−2

100

R
em

ai
n

in
g

R
el

at
iv

e
V

ar
ia

n
ce

(a)

10−3 10−2 10−1 100 101 102

||ΦFOM−ΦROM ||2
||ΦFOM ||2 [%]

0

10

20

30

40

50

C
ou

nt

Mean : 0.11
Maximum : 1.65

(b)

Figure 10: (a) Decay in the squared singular values of the temperature fields upon performing linear PCA. The remaining
relative variance is also shown, as computed by excluding the variance of the modes up the given index. (b) Histogram of
the relative L2 errors (in %) of the temperature field between the high-fidelity model and the reconstructed solution from the
MOGP by considering the testing set of 200 samples.

to the original space by using an inverse PCA. The reconstructed temperature fields were then compared622

against the reference temperature fields obtained by evaluating the high-fidelity MOOSE model. Figure 10b623

presents a histogram of the relative full-field errors (in percentages) for the testing set. Generally, these624

relative errors are quite small, with a mean relative error of around 0.1% and a maximum relative error of625

1.65%. The maximum error occurs near the boundary of the parameter domain, which was not properly626

covered by the training set, thus leading to minor inaccuracies in the MOGP prediction.627

The reference temperature field, along with the space-dependent absolute error between the reference628

and the MOGP solutions, is presented in Figure 11 for those process parameters with the highest relative629

error in Figure 10b. We see that the highest space-wise error is approximately 2.5%, which is acceptable630

for the given use case. Evaluation of the MOGP occurred 4–5 orders of magnitude faster than the solving631

of the transient melt pool simulation. This further reflects the high potential for accelerating parameter632

studies related to the product quality’s dependence on process parameters, in addition to permitting active633

learning based on the uncertainty estimates of the MOGP.634

22

Figure 11: Comparison of solutions from the high-fidelity MOOSE model and reduced-order models at the least accurate sample
in the testing set. Top: temperature profile computed using the high-fidelity MOOSE model. Bottom: absolute difference
between the MOOSE model and the reconstructed MOGP solutions.

4.4. Comparing deep and standard Gaussian processes for a lid-driven cavity flow635

Note that the deep Gaussian process capabilities in MOOSE are still in the experimental phase.636

This section uses the GP and deep GP capabilities discussed in Sections 2.1.1 and 2.1.3, respectively.637

In this section, we compare a DGP trained using MCMC against a standard GP trained using either638

MCMC or Adam optimization for a four-sided lid-driven cavity flow problem. The fluid domain, a 2D square639

region defined by viscosity and density, is subjected to velocity boundary conditions on all four sides. The640

pressure is set to zero at the lower-left corner. More details on the problem setup can be found in Dhulipala641

et al. [33]. We are interested in predicting the resultant velocity at the domain’s center as a function of the642

viscosity and density of the fluid and of the four boundary conditions. We used the MOOSE Navier-Stokes643

Module to generate training and testing data under random values for the viscosity and density of the fluid644

and the four boundary conditions [77].645

The training data were comprised of 30 points, and the testing data were comprised of 100. We first646

trained a standard GP by using MCMC. There were seven hyperparameters to optimize (i.e., six length647

scales and one amplitude scale), and we used 10,000 samples in the MCMC algorithm in order to estimate648

the posterior distributions of the hyperparameters. We then trained a DGP with one hidden layer using649

MCMC. This time, there were 43 hyperparameters; that is, six for each of six nodes in the hidden layer,650

plus an additional seven for the output layer. We again used 10,000 samples in the MCMC algorithm so as651

to estimate the posterior distributions of the hyperparameters. Finally, we trained a standard GP by using652

Adam optimization (giving us seven hyperparameters to optimize). The Adam optimization entailed 1,000653

iterations, a learning rate of 0.005, and a batch size of 20.654

We compared the three approaches for predicting the resultant velocity—namely, GP using MCMC,655

DGP using MCMC, and GP using Adam optimization—based on diagnostics such as parity plots, calibration656

curves, uncertainty distributions, and error bars, as detailed in Tran et al. [78] and Kuleshov et al. [79]. The657

parity plots assessed the accuracy of the predictions and presented metrics such as median absolute error,658

root mean squared error, mean absolute error, and mean absolute relative percent difference. Calibration659

curves “use the standard deviation predictions to create Gaussian random variables for each test point and660

then test how well the residuals followed their respective Gaussian random variables” [78]. In other words,661

the model is said to be well calibrated if the expected-vs.-observed cumulative distribution of the testing662

points follows a straight line. A well-calibrated model could still have large uncertainty estimates that are663

less useful in practice [78]. Thus, from the uncertainty distributions, metrics such as sharpness and coefficient664

of variation (Cv) are derived. Large uncertainty estimates are less desirable than small values, and sharpness665

assesses this by taking the root mean of the predicted variances. The model should not predict constant666

uncertainty estimates outside the training bounds, and Cv assesses this by computing the coefficient of667

variation of the predictive variances. While smaller values of the accuracy metrics, miscalibration area, and668

sharpness are preferred, a larger value of Cv is desirable.669

23

Figure 12 compares the three approaches—GP using MCMC, DGP using MCMC, and GP using Adam670

optimization—in light of the aforementioned diagnostics. The first row corresponds to GP using MCMC,671

the second row to DGP using MCMC, and the third row to GP using Adam optimization. In comparing672

GP using MCMC against DGP using MCMC, the latter generally outperforms the former in almost every673

metric. DGP using MCMC has better accuracy, lower sharpness, and a larger Cv than GP using MCMC,674

showing the power of DGP method compared to GP. Although GP using MCMC has a smaller miscalibration675

area, this is likely due to it predicting constant wider uncertainty bands (as observed by comparing Figure676

12d to Figure 12h) than does DGP using MCMC. As such, hidden layers help a DGP model with more677

expressivity and better uncertainty quality than a standard GP when trained using MCMC. In comparing678

DGP using MCMC against GP using Adam optimization, the latter outperforms the former in every metric.679

We suspect that this is largely due to the inefficiency of MCMC in high-dimensional parameter spaces in680

DGP and the optimization algorithm plays a big role in the predictive performance (including accuracy681

and uncertainty quality) of the GP models. In the future, DGP will be implemented with a more efficient682

variational inference and gradient-based solvers coupled with MOOSE’s libtorch capabilities [68].683

4.5. Batch Bayesian optimization of tritium diffusion experiment in beryllium684

This section uses the active learning with GP capabilities discussed in Section 2.2.685

The TritiumMigration Analysis Program, Version 8 (TMAP8) is a state-of-the-art, open-source, MOOSE-686

based application designed for multiscale tritium transport. TMAP8 incorporates multispecies, multiphysics,687

multiscale simulation capabilities on complex geometries. These capabilities make it an essential tool for688

the fusion energy community, particularly for addressing the challenges of tritium tracking, fusion system689

safety, and fuel sustainability. Validation case study val-2b in TMAP8’s test suite validates against implan-690

tation and thermal absorption/desorption experiments on wafers of polished beryllium from Macaulay et al.691

[80]. The beryllium was exposed to 13.3 kPa of deuterium at 773 K for 50 hours, cooled down to 300 K in692

vacuum, and then heated back up to 1073 K at a rate of 3 K/min to desorb the deuterium. Further details693

are available in Simon et al. [9]. The modeled deuterium flux during desorption was compared against694

experimental data, as shown in Figure 13a. Herein, batch Bayesian optimization was applied to calibrate695

the diffusivities and solubilities of the TMAP8 model in order to improve agreement with the experimental696

data.697

The deuterium flux model had 10 parameters, comprised of the diffusivities and solubilities that must698

be calibrated against the experimental data. Prior to the calibration, the model predictions and the exper-699

imental data resulted in a root mean squared percent error of 22.72%. Two approaches in MOOSE were700

used to achieve this calibration: parallel subset simulation, which is an evolutionary approach, and batch701

Bayesian optimization. The aim of the optimization with respect to the model parameters was to minimize702

the mean squared percentage error between the experimental data and the model predictions regarding the703

deuterium flux during desorption. Details on the usage of these approaches are as follows:704

• Parallel subset simulation: Run for five subsets, with 1,000 samples per subset. Ten processors705

were used, simultaneously simulating five parallel chains for 1,000 serial model evaluations.706

• Batch Bayesian optimization: Run for 80 serial iterations, with a batch of five optimal points707

selected in parallel in each iteration by using the expected improvement acquisition function. A708

standard GP with squared exponent covariance matrix was trained using Adam optimization, in which709

2,000 iterations were performed using a learning rate of 0.01. The five selected optimal points were710

used for evaluating the computational model in parallel.711

Figure 13a presents the model output against the experimental data following the parameter calibration. We712

see that both the parallel subset simulation and batch Bayesian optimization have similar root mean squared713

percent error values, and both substantially reduce this error metric in comparison to the uncalibrated model.714

Figure 13b presents the computational burden of the two approaches, as assessed based on the product of715

the number of processors and the elapsed time in hours. Ultimately, batch Bayesian optimization is revealed716

to be substantially lower in computational cost than parallel subset simulation.717

24

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12: Predictive performance of the three GP variants in terms of both accuracy and uncertainty quality. Top row [(a)–
(d)]: GP trained using MCMC. Middle row [(e)–(h)]: DGP trained using MCMC. Bottom row [(i)–(l)]: GP trained using Adam
optimization. (a), (e), and (i) show the parity plots and present accuracy metrics such as median absolute error, root mean
squared error, mean absolute error, and mean absolute relative percent difference. (b), (f), and (j) show the calibration plots
and miscalibration area metric for uncertainty quality. (c), (g), and (k) show histograms of the predictive standard deviations,
the metric sharpness, and the Cv . (d), (h), and (l) show the error bars.

5. Discussion of Future Implementations718

There are several avenues for future implementations which can be made possible through the modularity719

of the MOOSE framework. Specifically, the modularity offered by the Sampler, MultiApp, Reporter,720

and Surrogate objects interaction. For example, the parallel active learning and batch Bayesian optimiza-721

tion are currently dependent on the local penalization approach (Equation (20)). Other approaches for batch722

(parallel) selection of the optimal points are also available, such as the Kriging Believer algorithm proposed723

by Ginsbourger et al. [81]. Wang et al. [82] provide a review of the recent developments in batch selection.724

These approaches will be pursued in MOOSE in the future. Similarly, optimization-based Bayesian infer-725

ence approaches like variational inference can be implemented to mitigate the high computational cost of726

25

700 800 900 1000 1100
Temperature (K)

0

1

2

3

4

5

6

D
eu

te
riu

m
 F

lu
x

(a
to

m
/m

2 /
s)

1e16

RMSPE = 22.72 %

RMSPE = 8.72 %

RMSPE = 9.83 %

Experiment
TMAP8
TMAP8 (PSS)
TMAP8 (BO)

(a)

PSS BO0

100

200

300

400

500

P
ro

ce
ss

or
-h

ou
rs

(b)

Figure 13: (a) Modeled deuterium flux during desorption, compared against experimental data. Before calibrating the model
parameters, the model had a root mean squared percent error of 22.72% when examined against the experimental data. Upon
calibration based on parallel subset simulation (an evolutionary approach) and batch Bayesian optimization, the root mean
squared percent error reduced to 8.72% and 9.83%, respectively. (b) The computational cost of calibrating the model parameters
via parallel subset simulation and Bayesian optimization was measured as the product of the number of processors and the
elapsed time (in hours).

MCMC methods, but with a trade off for accuracy [83]. Methods like black-box variational inference are727

particularly attractive given that they do not require gradient estimations of the model outputs [84]. Also,728

while MOOSE currently supports linear dimensionality reduction via PCA, nonlinear methods like kernel729

PCA, diffusion maps, and manifold learning methods can be pursued in the future [85].730

One significant capability of MOOSE which can be expanded upon from a ML/UQ standpoint is its731

libtorch integration [67, 68]. The libtorch library provides PyTorch like functionalities from within732

C++ and supports the training and evaluation of more sophisticated ML models like deep neural networks733

and operator learning networks. These expressive ML models can be integrated into active learning frame-734

works to mitigate the limitations of GPs, especially when dealing with high-dimensional data. Furthermore,735

the TorchScript capability in MOOSE also allows importing of ML models trained in PyTorch into C++736

code.737

6. Summary and Conclusions738

MOOSE, an open-source computational platform for parallel numerical analysis, is being actively de-739

veloped and is maintained at Idaho National Laboratory. MOOSE has an extensive user base in varied740

scientific and engineering fields. Complex multiphysics simulations, when validated against experimental741

data, are subject to different sources of uncertainties that must be quantified and propagated to the out-742

puts. They are also computationally expensive to run, especially in a UQ setting, and surrogate models743

for quantifying their prediction uncertainties will foster their efficient and accurate execution by leveraging744

active learning principles. In this context, the present paper covered the development and demonstration745

of massive parallel probabilistic ML and UQ capabilities in MOOSE. Among these capabilities are active746

learning, Bayesian inverse UQ, adaptive forward UQ, Bayesian optimization, evolutionary optimization, and747

MCMC. The MOOSE systems Sampler, MultiApp, Reporter, and Surrogate, as well as the modu-748

larity thereof, were discussed in detail in regard to successfully developing a multitude of probabilistic ML749

and UQ algorithms. Example code demonstrations include parallel active learning and parallel Bayesian750

inference via active learning. Finally, the impacts of these code developments were discussed in regard to five751

26

different applications: nuclear fuel fission product release, using parallel active learning Bayesian inference;752

nuclear microreactor very rare events analysis, using active learning; advanced manufacturing process mod-753

eling, using MOGP and dimensionality reduction; lid-driven cavity flow, using DGPs; and tritium transport754

for fusion energy, using batch Bayesian optimization. These capabilities are part of the MOOSE framework.755

Acknowledgements756

The forward UQ capability developments, including active learning and multifidelity modeling for for-757

ward problems, are supported through Idaho National Laboratory (INL)’s Laboratory Directed Research &758

Development (LDRD) Program under U.S. Department of Energy (DOE) Idaho Operations Office Contract759

DE-AC07-05ID14517.760

The Bayesian inverse UQ capability developments, including active learning for inverse problems, are761

supported through Battelle Energy Alliance, LLC under contract no. DE-AC07-05ID14517 with DOE, along762

with funding from the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program within the763

DOE Office of Nuclear Energy (DOE-NE).764

The multi-output Gaussian processes and dimensionality reduction capability developments are sup-765

ported through Battelle Energy Alliance, LLC under contract no. DE-AC07-05ID14517 with DOE, with766

funding from the Advanced Materials and Manufacturing Technologies (AMMT) program within DOE-NE.767

The deep Gaussian processes and Bayesian optimization capability developments are supported through768

Battelle Energy Alliance, LLC under contract no. DE-AC07-05ID14517 with DOE, along with funding from769

the Nuclear Energy University Partnerships (NEUP) program within DOE-NE.770

This research made use of resources of the High-Performance Computing Center at INL, which is sup-771

ported by DOE-NE and the Nuclear Science User Facilities under contract no. DE-AC07-05ID14517.772

We thank the following individuals for their support in developing the capabilities of the MOOSE Stochas-773

tic Tools Module: Stephen R. Novascone, Sudipta Biswas, Benjamin W. Spencer, Jason D. Hales, and Daniel774

Schwen from Idaho National Laboratory; Michael D. Shields and Promit Chakroborty from Johns Hopkins775

University; and Andi Wang from the University of Wisconsin-Madison. We thank John Shaver at INL for776

his technical edit of this paper.777

Declaration of generative AI and AI-assisted technologies in the writing process778

The authors did not use generative AI technologies during the initial writing process or editing of this779

paper. During the revisions stage, the authors used the ChatGPT 5 Thinking model in order to improve the780

readability and language of the manuscript. After using this tool/service, the authors reviewed and edited781

the content as needed and take full responsibility for the content of the published article.782

References783

[1] G. Giudicelli, A. Lindsay, L. Harbour, C. Icenhour, M. Li, J. E. Hansel, P. German, P. Behne, O. Marin, R. H. Stogner,784

J. Miller, 3.0-MOOSE: Enabling massively parallel multiphysics simulations, SoftwareX 26 (2024) 101690. doi:10.1016/785

j.softx.2024.101690.786

[2] R. L. Williamson, J. D. Hales, S. R. Novascone, G. Pastore, K. A. Gamble, B. W. Spencer, W. Jiang, S. A. Pitts,787

A. Casagranda, D. Schwen, A. X. Zabriskie, BISON: A flexible code for advanced simulation of the performance of788

multiple nuclear fuel forms, Nuclear Technology 207 (7) (2021) 954–980. doi:10.1080/00295450.2020.1836940.789

[3] B. W. Spencer, W. M. Hoffman, S. Biswas, W. Jiang, A. Giorla, M. A. Backman, Grizzly and BlackBear: Structural790

component aging simulation codes, Nuclear Technology 207 (2021) 981–1003. doi:10.1080/00295450.2020.1868278.791

[4] A. J. Novak, R. W. Carlsen, S. Schunert, P. Balestra, D. Reger, R. N. Slaybaugh, R. C. Martineau, Pronghorn: A792

multidimensional coarse-mesh application for advanced reactor thermal hydraulics, Nuclear Technology 207 (2021) 1015–793

1046. doi:10.1080/00295450.2020.1825307.794

[5] Y. Wang, Z. M. Prince, H. Park, O. W. Calvin, N. Choi, Y. S. Jung, S. Schunert, S. Kumar, J. T. Hanophy, V. M.795

Labouré, C. Lee, Griffin: A MOOSE-based reactor physics application for multiphysics simulation of advanced nuclear796

reactors, Annals of Nuclear Energy 211 (2025) 110917. doi:10.1016/j.anucene.2024.110917.797

[6] S. Veeraraghavan, C. Bolisetti, A. Slaughter, J. Coleman, S. L. N. Dhulipala, W. Hoffman, K. Kim, E. Kurt, R. Spears,798

L. Munday, MASTODON: an open-source software for seismic analysis and risk assessment of critical infrastructure,799

Nuclear Technology 207 (2021) 1073–1095. doi:10.1080/00295450.2020.1807282.800

27

http://dx.doi.org/10.1016/j.softx.2024.101690
http://dx.doi.org/10.1016/j.softx.2024.101690
http://dx.doi.org/10.1016/j.softx.2024.101690
http://dx.doi.org/10.1080/00295450.2020.1836940
http://dx.doi.org/10.1080/00295450.2020.1868278
http://dx.doi.org/10.1080/00295450.2020.1825307
http://dx.doi.org/10.1016/j.anucene.2024.110917
http://dx.doi.org/10.1080/00295450.2020.1807282

[7] M. R. Tonks, D. Gaston, P. C. Millett, D. Andrs, P. Talbot, An object-oriented finite element framework for multiphysics801

phase field simulations, Computational Materials Science 51 (2012) 20–29. doi:10.1016/j.commatsci.2011.07.028.802

[8] A. J. Novak, D. Andrs, P. Shriwise, J. Fang, H. Yuan, D. Shaver, E. Merzari, P. K. Romano, R. Martineau, Coupled803

Monte Carlo and thermal-fluid modeling of high temperature gas reactors using Cardinal, Annals of Nuclear Energy 177804

(2022) 109310. doi:10.1016/j.anucene.2022.109310.805

[9] P. C. A. Simon, C. T. Icenhour, G. Singh, A. D. Lindsay, C. Bhave, L. Yang, A. Riet, Y. Che, P. Humrickhouse,806

P. Calderoni, M. Shimada, MOOSE-based tritium migration analysis program, version 8 (TMAP8) for advanced open-807

source tritium transport and fuel cycle modeling, Fusion Engineering and Design 214 (2025) 114874. doi:10.1016/J.808

FUSENGDES.2025.114874.809

[10] P. R., A. Finnila, S. Simmons, J. McLennan, A Reference Thermal-Hydrologic-Mechanical Native State Model of the Utah810

FORGE Enhanced Geothermal Site, Energies 14 (2021) 4758. doi:10.3390/en14164758.811

[11] A. E. Slaughter, Z. M. Prince, P. German, I. Halvic, W. Jiang, B. W. Spencer, S. L. N. Dhulipala, D. R. Gaston, MOOSE812

Stochastic Tools: A module for performing parallel, memory-efficient in situ stochastic simulations, SoftwareX 22 (2023)813

101345. doi:10.1016/j.softx.2023.101345.814

[12] D. Tsapetis, M. D. Shields, D. G. Giovanis, A. Olivier, L. Novak, P. Chakroborty, H. Sharma, M. Chauhan, K. Kontolati,815

L. Vandanapu, D. Loukrezis, Uqpy v4. 1: Uncertainty quantification with Python, SoftwareX 24 (2023) 101561. doi:816

10.1016/j.softx.2023.101561.817

[13] N. A. Riis, A. M. Alghamdi, F. Uribe, S. L. Christensen, B. M. Afkham, P. C. Hansen, J. S. Jørgensen, CUQIpy: I.818

Computational uncertainty quantification for inverse problems in Python, Inverse Problems 40 (2024) 045009. doi:819

10.1088/1361-6420/ad22e7.820

[14] M. Parno, A. Davis, L. Seelinger, MUQ: The MIT uncertainty quantification library, Journal of Open Source Software 6821

(2021) 3076. doi:10.21105/joss.03076.822

[15] J. D. Jakeman, PyApprox: A software package for sensitivity analysis, Bayesian inference, optimal experimental design,823

and multi-fidelity uncertainty quantification and surrogate modeling, Environmental Modelling & Software 170 (2023)824

105825. doi:10.1016/j.envsoft.2023.105825.825

[16] L. Seelinger, A. Reinarz, M. B. Lykkegaard, R. Akers, A. M. Alghamdi, D. Aristoff, W. Bangerth, J. Bénézech, M. Diez,826

K. Frey, J. D. Jakeman, Democratizing uncertainty quantification, Journal of Computational Physics 521 (2025) 113542.827

doi:10.1016/j.jcp.2024.113542.828

[17] C. K. Williams, C. E. Rasmussen, Gaussian processes for machine learning, 2nd Edition, MIT press, 2006.829

[18] H. Liu, J. Cai, Y. S. Ong, Remarks on multi-output Gaussian process regression, Knowledge-Based Systems 144 (2018)830

102–112. doi:10.1016/j.knosys.2017.12.034.831

[19] M. A. Alvarez, L. Rosasco, N. D. Lawrence, Kernels for vector-valued functions: A review, Foundations and Trends in832

Machine Learning 4 (3) (2012) 195–266. doi:10.1561/2200000036.833

[20] L. F. Cheng, B. Dumitrascu, G. Darnell, C. Chivers, M. Draugelis, K. Li, B. E. Engelhardt, Sparse multi-output Gaussian834

processes for online medical time series prediction, BMC medical informatics and decision making 20 (1) (2020) 1–23.835

doi:10.1186/s12911-020-1069-4.836

[21] A. Damianou, N. D. Lawrence, Deep Gaussian processes, in: Artificial Intelligence and Statistics, Proceedings of Machine837

Learning Research, Scottsdale, AZ United States, 2013, pp. 207–215.838

[22] A. Damianou, Deep Gaussian processes and variational propagation of uncertainty, Doctoral dissertation, University of839

Sheffield (2015).840

[23] A. Sauer, R. B. Gramacy, D. Higdon, Active learning for deep Gaussian process surrogates, Technometrics 65 (1) (2023)841

4–18. doi:10.1080/00401706.2021.2008505.842

[24] H. Salimbeni, M. Deisenroth, Doubly stochastic variational inference for deep Gaussian processes, in: Advances in Neural843

Information Processing Systems, Long Beach, CA United States, 2017, pp. 1–12.844

[25] Z. Dai, A. Damianou, J. Hensman, N. Lawrence, Gaussian process models with parallelization and GPU acceleration,845

arXiv:1410.4984 (2014). arXiv:1410.4984.846

[26] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1711.05101 (2014). arXiv:1412.6980.847

[27] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, arXiv:1711.05101 (2017). arXiv:1711.05101.848

[28] I. Murray, R. Adams, D. MacKay, Elliptical slice sampling, in: Proceedings of the Thirteenth International Conference on849

Artificial Intelligence and Statistics, Sardinia, Italy, 2010, pp. 541–548.850

[29] C. Chen, J. Liu, P. Xu, Comparison of parallel infill sampling criteria based on kriging surrogate model, Scientific Reports851

12 (1) (2022) 678. doi:10.1137/16M1082469.852

[30] E. Contal, D. Buffoni, A. Robicquet, N. Vayatis, Parallel Gaussian process optimization with upper confidence bound and853

pure exploration, Springer Berlin Heidelberg, 2013.854

[31] J. El Gammal, N. Schöneberg, J. Torrado, C. Fidler, Fast and robust Bayesian inference using Gaussian processes with855

GPry, Journal of Cosmology and Astroparticle Physics 2023 (2023) 021. doi:10.1088/1475-7516/2023/10/021.856

[32] B. Echard, N. Gayton, M. Lemaire, AK-MCS: an active learning reliability method combining Kriging and Monte Carlo857

simulation, Structural Safety 33 (2) (2011) 145–154. doi:10.1016/j.strusafe.2011.01.002.858

[33] S. L. N. Dhulipala, M. D. Shields, B. W. Spencer, C. Bolisetti, A. E. Slaughter, V. M. Labouré, P. Chakroborty, Active859

learning with multifidelity modeling for efficient rare event simulation, Journal of Computational Physics 468 (2022)860

111506. doi:10.1016/j.jcp.2022.111506.861

[34] C. Q. Lam, Sequential adaptive designs in computer experiments for response surface model fit, Doctoral dissertation,862

The Ohio State University (2008).863

[35] D. Zhan, J. Qian, Y. Cheng, Pseudo expected improvement criterion for parallel EGO algorithm, Journal of Global864

Optimization 68 (2017) 641–662. doi:10.1007/s10898-016-0484-7.865

28

http://dx.doi.org/10.1016/j.commatsci.2011.07.028
http://dx.doi.org/10.1016/j.anucene.2022.109310
http://dx.doi.org/10.1016/J.FUSENGDES.2025.114874
http://dx.doi.org/10.1016/J.FUSENGDES.2025.114874
http://dx.doi.org/10.1016/J.FUSENGDES.2025.114874
http://dx.doi.org/10.3390/en14164758
http://dx.doi.org/10.1016/j.softx.2023.101345
http://dx.doi.org/10.1016/j.softx.2023.101561
http://dx.doi.org/10.1016/j.softx.2023.101561
http://dx.doi.org/10.1016/j.softx.2023.101561
http://dx.doi.org/10.1088/1361-6420/ad22e7
http://dx.doi.org/10.1088/1361-6420/ad22e7
http://dx.doi.org/10.1088/1361-6420/ad22e7
http://dx.doi.org/10.21105/joss.03076
http://dx.doi.org/10.1016/j.envsoft.2023.105825
http://dx.doi.org/10.1016/j.jcp.2024.113542
http://dx.doi.org/10.1016/j.knosys.2017.12.034
http://dx.doi.org/10.1561/2200000036
http://dx.doi.org/10.1186/s12911-020-1069-4
http://dx.doi.org/10.1080/00401706.2021.2008505
http://arxiv.org/abs/1410.4984
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1711.05101
http://dx.doi.org/10.1137/16M1082469
http://dx.doi.org/10.1088/1475-7516/2023/10/021
http://dx.doi.org/10.1016/j.strusafe.2011.01.002
http://dx.doi.org/10.1016/j.jcp.2022.111506
http://dx.doi.org/10.1007/s10898-016-0484-7

[36] M. C. Kennedy, A. O’Hagan, Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B866

(Statistical Methodology) 63 (3) (2001) 425–464. doi:10.1111/1467-9868.00294.867

[37] P. D. Arendt, D. W. Apley, W. Chen, Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identi-868

fiability, ASME Journal of Mechanical Design 134 (10) (2012) 100908. doi:10.1115/1.4007390.869

[38] X. Wu, T. Kozlowski, H. Meidani, K. Shirvan, Inverse uncertainty quantification using the modular Bayesian approach870

based on Gaussian process, Part 1: Theory, Nuclear Engineering and Design 335 (2018) 339–355. doi:10.1016/j.871

nucengdes.2018.06.004.872

[39] M. I. Radaideh, K. Borowiec, T. Kozlowski, Integrated framework for model assessment and advanced uncertainty quan-873

tification of nuclear computer codes under bayesian statistics, Reliability Engineering & System Safety 189 (2019) 357–377.874

doi:10.1016/j.ress.2019.04.020.875

[40] P. Robbe, D. Andersson, L. Bonnet, T. A. Casey, M. D. Cooper, C. Matthews, K. Sargsyan, H. N. Najm, Bayesian876

calibration with summary statistics for the prediction of xenon diffusion in UO2 nuclear fuel, Computational Materials877

Science 225 (2023) 112184. doi:10.1016/j.commatsci.2023.112184.878

[41] C. J. T. Braak, A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian879

computing for real parameter spaces, Statistics and Computing 16 (2006) 239–249. doi:10.1007/s11222-006-8769-1.880

[42] J. Goodman, J. Weare, Ensemble samplers with affine invariance, Communications in applied mathematics and compu-881

tational science 5 (1) (2010) 65–80. doi:10.2140/camcos.2010.5.65.882

[43] B. Calderhead, A general construction for parallelizing Metropolis-Hastings algorithms, Proceedings of the National883

Academy of Sciences 111 (49) (2014) 17408–17413. doi:10.1073/pnas.1408184111.884

[44] B. Nelson, E. B. Ford, M. J. Payne, Run DMC: an efficient, parallel code for analyzing radial velocity observations using885

n-body integrations and differential evolution Markov chain Monte Carlo, The Astrophysical Journal Supplement Series886

11 (2013) 11–25. doi:10.1088/0067-0049/210/1/11.887

[45] S. Dhulipala, D. Schwen, Y. Che, R. Sweet, A. Toptan, Z. M. Prince, P. German, S. R. Novascone, Massively parallel888

Bayesian model calibration and uncertainty quantification with applications to nuclear fuels and materials, Tech. Rep.889

INL/RPT-23-73383-Rev000, Idaho National Laboratory, Idaho Falls, ID United States (2023).890

[46] E. Laloy, J. A. Vrugt, High-dimensional posterior exploration of hydrologic models using multiple-try DREAM (ZS) and891

high-performance computing, Water Resources Research 48 (1). doi:10.1029/2011WR010608.892

[47] D. Foreman-Mackey, W. M. Farr, M. Sinha, A. M. Archibald, D. W. Hogg, J. S. Sanders, J. Zuntz, P. K. Williams,893

A. R. Nelson, M. de Val-Borro, T. Erhardt, emcee v3: A Python ensemble sampling toolkit for affine-invariant MCMC,894

arXiv:1911.07688 (2019). arXiv:1911.07688.895

[48] K. R. Opara, J. Arabas, Differential Evolution: A survey of theoretical analyses, Swarm and Evolutionary Computation896

44 (2019) 546–558. doi:10.1016/j.swevo.2018.06.010.897

[49] D. Vats, C. Knudson, Revisiting the Gelman–Rubin diagnostic, Statistical Science 36 (4) (2021) 518–529. doi:10.1214/898

20-STS812.899

[50] S. L. N. Dhulipala, W. Jiang, B. W. Spencer, J. D. Hales, M. D. Shields, A. E. Slaughter, Z. M. Prince, V. M. Labouré,900

C. Bolisetti, P. Chakroborty, Accelerated statistical failure analysis of multifidelity TRISO fuel models, Journal of Nuclear901

Materials 563 (2022) 153604. doi:10.1016/j.jnucmat.2022.153604.902

[51] S. K. Au, J. L. Beck, A new adaptive importance sampling scheme for reliability calculations, Structural safety 21 (2)903

(1999) 135–158. doi:10.1016/S0167-4730(99)00014-4.904

[52] H. Zhao, Z. Yue, Y. Liu, Z. Gao, Y. Zhang, An efficient reliability method combining adaptive importance sampling and905

Kriging metamodel, Applied Mathematical Modelling 39 (7) (2015) 1853–1866. doi:10.1016/j.apm.2014.10.015.906

[53] J. Zhang, M. Xiao, L. Gao, S. Chu, A combined projection-outline-based active learning Kriging and adaptive importance907

sampling method for hybrid reliability analysis with small failure probabilities, Computer Methods in Applied Mechanics908

and Engineering 344 (2019) 13–33. doi:10.1016/j.cma.2018.10.003.909

[54] R. Kawai, Adaptive importance sampling and control variates, Journal of Mathematical Analysis and Applications 483 (1)910

(2020) 123608. doi:10.1016/j.jmaa.2019.123608.911

[55] A. Kebaier, J. Lelong, Coupling importance sampling and multilevel Monte Carlo using sample average approximation,912

Methodology and Computing in Applied Probability 20 (2018) 611–641. doi:10.1007/s11009-017-9579-y.913

[56] B. Peherstorfer, T. Cui, Y. Marzouk, K. Willcox, Multifidelity importance sampling, Computer Methods in Applied914

Mechanics and Engineering 300 (2016) 490–509. doi:10.1016/j.cma.2015.12.002.915

[57] S. K. Au, J. L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic Eng.916

Mech. 16 (4) (2001) 263–277. doi:10.1016/S0266-8920(01)00019-4.917

[58] H. S. Li, S. K. Au, Design optimization using subset simulation algorithm, Structural Safety 32 (6) (2010) 384–392.918

doi:10.1016/j.strusafe.2010.03.001.919

[59] J. Bect, L. Li, E. Vazquez, Bayesian subset simulation, SIAM/ASA Journal on Uncertainty Quantification 5 (2017)920

762–786. doi:10.1137/16M1078276.921

[60] Y. Zhao, Z. Wang, Subset simulation with adaptable intermediate failure probability for robust reliability analysis: An922

unsupervised learning-based approach, Structural and Multidisciplinary Optimization 65 (2022) 172. doi:10.1007/923

s00158-022-03260-7.924

[61] I. Papaioannou, W. Betz, K. Zwirglmaier, D. Straub, MCMC algorithms for subset simulation, Probabilistic Engineering925

Mechanics 41 (2015) 89–103. doi:10.1016/j.probengmech.2015.06.006.926

[62] Z. Wang, M. Broccardo, J. Song, Hamiltonian Monte Carlo methods for subset simulation in reliability analysis, Structural927

Safety 76 (2019) 51–67. doi:10.1016/j.strusafe.2018.05.005.928

[63] M. D. Shields, D. G. Giovanis, V. S. Sundar, Subset simulation for problems with strongly non-Gaussian, highly anisotropic,929

and degenerate distributions, Computers & Structures 245 (2021) 106431. doi:10.1016/j.compstruc.2020.106431.930

29

http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1115/1.4007390
http://dx.doi.org/10.1016/j.nucengdes.2018.06.004
http://dx.doi.org/10.1016/j.nucengdes.2018.06.004
http://dx.doi.org/10.1016/j.nucengdes.2018.06.004
http://dx.doi.org/10.1016/j.ress.2019.04.020
http://dx.doi.org/10.1016/j.commatsci.2023.112184
http://dx.doi.org/10.1007/s11222-006-8769-1
http://dx.doi.org/10.2140/camcos.2010.5.65
http://dx.doi.org/10.1073/pnas.1408184111
http://dx.doi.org/10.1088/0067-0049/210/1/11
http://dx.doi.org/10.1029/2011WR010608
http://arxiv.org/abs/1911.07688
http://dx.doi.org/10.1016/j.swevo.2018.06.010
http://dx.doi.org/10.1214/20-STS812
http://dx.doi.org/10.1214/20-STS812
http://dx.doi.org/10.1214/20-STS812
http://dx.doi.org/10.1016/j.jnucmat.2022.153604
http://dx.doi.org/10.1016/S0167-4730(99)00014-4
http://dx.doi.org/10.1016/j.apm.2014.10.015
http://dx.doi.org/10.1016/j.cma.2018.10.003
http://dx.doi.org/10.1016/j.jmaa.2019.123608
http://dx.doi.org/10.1007/s11009-017-9579-y
http://dx.doi.org/10.1016/j.cma.2015.12.002
http://dx.doi.org/10.1016/S0266-8920(01)00019-4
http://dx.doi.org/10.1016/j.strusafe.2010.03.001
http://dx.doi.org/10.1137/16M1078276
http://dx.doi.org/10.1007/s00158-022-03260-7
http://dx.doi.org/10.1007/s00158-022-03260-7
http://dx.doi.org/10.1007/s00158-022-03260-7
http://dx.doi.org/10.1016/j.probengmech.2015.06.006
http://dx.doi.org/10.1016/j.strusafe.2018.05.005
http://dx.doi.org/10.1016/j.compstruc.2020.106431

[64] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemometrics and Intelligent Laboratory Systems 2 (1-3)931

(1987) 37–52. doi:10.1016/0169-7439(87)80084-9.932

[65] V. Hernandez, J. E. Roman, V. Vidal, Slepc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM933

Transactions on Mathematical Software (TOMS) 31 (3) (2005) 351–362.934

[66] D. R. Gaston, C. J. Permann, J. W. Peterson, A. E. Slaughter, D. Andrš, Y. Wang, M. P. Short, D. M. Perez, M. R.935

Tonks, J. Ortensi, L. Zou, R. C. Martineau, Physics-based multiscale coupling for full core nuclear reactor simulation,936

Annals of Nuclear Energy 84 (2015) 45–54. doi:10.1016/j.anucene.2014.09.060.937

[67] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic938

differentiation in PyTorch, in: Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach,939

CA, 2017, pp. 1–4.940

[68] P. German, D. Yushu, Enabling scientific machine learning in MOOSE using Libtorch, SoftwareX 23 (2023) 101489.941

doi:10.1016/j.softx.2023.101489.942

[69] S. L. N. Dhulipala, A. Toptan, Y. Che, D. Schwen, R. T. Sweet, J. D. Hales, S. R. Novascone, Bayesian uncertainty943

quantification of tristructural isotropic particle fuel silver release: Decomposing model inadequacy plus experimental noise944

and parametric uncertainties, Journal of Nuclear Materials 588 (2024) 154790. doi:10.1016/j.jnucmat.2023.154790.945

[70] D. A. Petti, P. A. Demkowicz, J. T. Maki, Triso-coated particle fuel performance, Comprehensive Nuclear Materials 3946

(2012) 151–213. doi:10.1016/B978-0-08-056033-5.00055-0.947

[71] J. D. Hales, W. Jiang, A. Toptan, K. A. Gamble, Modeling fission product diffusion in triso fuel particles with bison,948

Journal of Nuclear Materials 548 (2021) 152840. doi:10.1016/j.jnucmat.2021.152840.949

[72] J. D. Stempien, R. N. Morris, T. J. Gerczak, P. A. Demkowicz, AGR-2 TRISO fuel post-irradiation examination final950

report, Tech. rep., Idaho National Laboratory, INL/EXT-21-64279 (2021).951

URL https://www.osti.gov/biblio/1822447952

[73] J. E. Hansel, R. A. Berry, D. Andrs, M. S. Kunick, R. C. Martineau, Sockeye: A one-dimensional, two-phase, compressible953

flow heat pipe application, Nuclear Technology 207 (7) (2021) 1096–1117. doi:10.1080/00295450.2020.1861879.954

[74] S. Terlizzi, V. Labouré, Asymptotic hydrogen redistribution analysis in Yttrium-Hydride-moderated heat-pipe-cooled955

microreactors using DireWolf, Annals of Nuclear Energy 186. doi:10.1016/j.anucene.2023.109735.956

[75] C. Matthews, V. Laboure, M. DeHart, J. Hansel, D. Andrs, Y. Wang, J. Ortensi, R. C. Martineau, Coupled multiphysics957

simulations of heat pipe microreactors using DireWolf, Nuclear Technology 207 (7) (2021) 1142–1162. doi:10.1080/958

00295450.2021.1906474.959

[76] S. Biswas, S. L. N. Dhulipala, P. German, A. M. Jokisaari, D. Yushu, M. D. McMurtrey, Multiscale And Machine Learning960

Modeling For Process-informed Microstructure Prediction In Additively Manufactured Materials Using MALAMUTE,961

Tech. Rep. INL/RPT-24-80418, Idaho National Laboratory, Idaho Falls, ID United States (2024).962

[77] J. W. Peterson, A. D. Lindsay, F. Kong, Overview of the incompressible navier–stokes simulation capabilities in the moose963

framework, Advances in Engineering Software 119 (2018) 68–92. doi:10.1016/j.advengsoft.2018.02.004.964

[78] K. Tran, W. Neiswanger, J. Yoon, Q. Zhang, E. Xing, Z. W. Ulissi, Methods for comparing uncertainty quantifications965

for material property predictions, Machine Learning: Science and Technology 1 (2) (2020) 025006. doi:10.1088/966

2632-2153/ab7e1a.967

[79] V. Kuleshov, N. Fenner, S. Ermon, Elliptical slice sampling, in: Proceedings of the 35th International Conference on968

Machine Learning, Stockholm, Sweden, 2018, pp. 2796–2804.969

[80] R. G. Macaulay-Newcombe, D. A. Thompson, W. W. Smeltzer, Deuterium diffusion, trapping and release in ion-implanted970

beryllium, Fusion Engineering and Design 18 (1991) 419–424. doi:10.1016/0920-3796(91)90158-M.971

[81] D. Ginsbourger, R. Le Riche, L. Carraro, Kriging is well-suited to parallelize optimization, Springer Berlin Heidelberg,972

2010.973

[82] X. Wang, Y. Jin, S. Schmitt, M. Olhofer, Recent advances in Bayesian optimization, ACM Computing Surveys 55 (13s)974

(2023) 1–36. doi:10.1145/3582078.975

[83] D. M. Blei, A. Kucukelbir, J. D. McAuliffe, Variational inference: A review for statisticians, Journal of the American976

statistical Association 112 (518) (2017) 859–877. doi:10.1080/01621459.2017.1285773.977

[84] R. Ranganath, S. Gerrish, D. Blei, Black box variational inference, in: Proceedings of the 17th International Conference978

on Artificial Intelligence and Statistics, Reykjavik, Iceland, 2014, pp. 814–822.979

[85] K. Kontolati, D. Loukrezis, D. G. Giovanis, L. Vandanapu, M. D. Shields, A survey of unsupervised learning methods980

for high-dimensional uncertainty quantification in black-box-type problems, Journal of Computational Physics 464 (2022)981

111313. doi:10.1016/j.jcp.2022.111313.982

30

http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1016/j.anucene.2014.09.060
http://dx.doi.org/10.1016/j.softx.2023.101489
http://dx.doi.org/10.1016/j.jnucmat.2023.154790
http://dx.doi.org/10.1016/B978-0-08-056033-5.00055-0
http://dx.doi.org/10.1016/j.jnucmat.2021.152840
https://www.osti.gov/biblio/1822447
https://www.osti.gov/biblio/1822447
https://www.osti.gov/biblio/1822447
https://www.osti.gov/biblio/1822447
http://dx.doi.org/10.1080/00295450.2020.1861879
http://dx.doi.org/10.1016/j.anucene.2023.109735
http://dx.doi.org/10.1080/00295450.2021.1906474
http://dx.doi.org/10.1080/00295450.2021.1906474
http://dx.doi.org/10.1080/00295450.2021.1906474
http://dx.doi.org/10.1016/j.advengsoft.2018.02.004
http://dx.doi.org/10.1088/2632-2153/ab7e1a
http://dx.doi.org/10.1088/2632-2153/ab7e1a
http://dx.doi.org/10.1088/2632-2153/ab7e1a
http://dx.doi.org/10.1016/0920-3796(91)90158-M
http://dx.doi.org/10.1145/3582078
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1016/j.jcp.2022.111313

