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ABSTRACT
The design of moisture-durable building enclosures often involves an iterative process of selecting the materials for the specific 
exposure conditions to meet the performance requirements. While hygrothermal simulations are commonly used to evaluate 
moisture durability, they often require advanced expertise for proper implementation. Machine learning (ML) provides a 
promising alternative by streamlining the design process and minimizing the reliance on complex simulations.

This study presents a machine learning-based approach for predicting moisture durability in residential wall assemblies. The 
ML model was trained to estimate the mold index and maximum moisture content of various layers under typical exposure 
conditions. The model achieved a high predictive accuracy, with a coefficient of determination (R²) exceeding 0.90 when 
compared to traditional hygrothermal simulations on materials that were not part of training the ML model.

Building on these results, the ML model was developed into a practical tool for optimizing wall assembly designs. This tool 
allows users to automatically optimize material selections based on energy, moisture, cost and other performance criteria. By 
incorporating multi-objective optimization, the tool identifies configurations that minimize the cost function while maintaining 
moisture safety and code-compliant thermal performance. Additionally, it provides insights into how material choices influence 
assembly durability, and moisture and thermal performance. The tool will be implemented in the Building Science Advisor 
(BSA), a free online too, to enhance its performance and provide more granularity on the results.

This research highlights the potential for ML-driven tools to simplify the design of high-performance building enclosures, 
offering architects and engineers a faster, more efficient way to balance critical performance factors.

INTRODUCTION

The construction industry faces increasing challenges in achieving high-performance building enclosures that balance 



moisture durability, thermal performance, and resource intensity. Though effective, traditional methods, including 
hygrothermal simulations, are complex and time-consuming. The application of machine learning (ML) offers a streamlined 
alternative that can simplify the design process and improve outcomes.

Machine Learning (ML) enhances building design by optimizing materials and performance. Researchers have applied 
ML techniques to model hygrothermal performance, as demonstrated by Tzuc et al., who trained a neural network using weather 
data to predict vegetative façade behavior (Tzuc et al. 2021). Similarly, Tijskens et al. evaluated different neural networks to 
predict masonry wall hygrothermal performance, identifying convolutional neural networks as the most effective approach 
(Tijskens et al. 2019, I; Tijskens et al. 2019, II). Salonvaara et al. (2021) implemented ML models, such as artificial neural 
networks and gradient-boosted decision trees, to simulate moisture durability in building materials with high accuracy. Beyond 
hygrothermal performance, Kim et al. (2018) leveraged ML to optimize double-skin façades for both thermal performance and 
aesthetics, demonstrating its versatility in architectural design. Additionally, ML has been used to select phase change materials 
(PCMs) for thermal storage, reducing the time and effort required for material selection (Bhamare et al. 2021). These studies 
highlight how ML enables architects and engineers to streamline complex analyses, making it an invaluable tool for optimizing 
building enclosure performance.

ML can significantly enhance the design process of high-performance buildings by reducing reliance on time-intensive 
simulations and expert-driven iterative design. Traditional building simulation methods require expert knowledge and extensive 
computing time to evaluate the effects of materials and climate conditions on performance. ML, however, can recognize 
patterns in vast datasets and quickly generate optimized material and system configurations that balance moisture durability, 
thermal efficiency, and other performance targets. Unlike conventional simulations, which require predefined material 
properties before evaluating system performance, ML can work in both directions – either by analyzing the performance with 
existing material properties or by defining performance requirements first and identifying suitable materials to meet the 
performance requirements accordingly. This capability enables a more flexible and efficient design workflow, allowing 
designers to explore a broader range of material combinations and building envelope solutions while ensuring compliance with 
performance criteria. The option to identify suitable materials to meet the performance criteria could be used to determine 
material properties that the scientists and engineers need to aim for.

The Building Science Advisor (BSA) (Boudreaux et al., 2018, Desjarlais et al., 2021 and 2022) allows users to evaluate 
thermal and moisture performance of wall assemblies without needing hygrothermal simulation expertise. The user selects 
layers and thicknesses from drop-down menus. The results are displayed immediately with written guidance about thermal and 
moisture performance. The tool allows for designing walls for new construction and buildings that need to be retrofitted and 
provides building science knowledge and advice. If the performance is unsatisfactory the tool provides reasons why and guides 
the user with suggestions to improve the assembly.

The current version of the Building Science Advisor (BSA) includes a database of previously simulated cases but is 
limited in the range of materials and layer thicknesses it can evaluate. Figure 1 shows the user interface of BSA with inputs 
and performance outputs options. If users select materials or configurations outside the pre-simulated dataset, BSA cannot 
provide results. To overcome this limitation, an ML-powered optimization tool has been developed to enhance BSA by 
automating material selection based on energy efficiency, moisture durability, and life cycle impact, and even cost if data are 
available. Instead of relying solely on predefined simulations, the ML approach uses material properties as inputs to predict 
performance for various configurations. This enables multi-objective optimization, allowing the tool to identify wall assemblies 
that balance moisture safety, thermal compliance, and other user’s requirements. By integrating ML, BSA can offer architects 
and engineers more precise and adaptable recommendations, improving the design of high-performance enclosures for both 
new construction and retrofits. While the existing BSA tool relies on a database of pre-run simulations, which can be viewed 
as a simple look-up table, this approach is inherently limited to the exact configurations in the database. Any deviation in 
material type or thickness requires a new, time-consuming hygrothermal simulation. This research addresses this gap by 
developing a predictive model that generalizes across a continuous/discrete space of material properties. The Artificial Neural 
Network (ANN) provides a powerful and flexible alternative to basic look-up tables by learning the complex, non-linear 
relationships between wall assembly inputs and performance outputs. This allows for rapid performance prediction for designs 
and enables a robust optimization framework, significantly accelerating the design process compared to traditional simulation-
based approaches.



Figure 1. Building Science Advisor with user input and performance outputs.

MACHINE LEARNING INTEGRATION

Tool implementation

The developed tool is designed to be user-friendly, allowing designers and engineers to input project-specific data and 
receive optimized material and assembly recommendations. The tool provides visualizations of performance trade-offs and 
sensitivity analyses, offering insights into how different material choices impact overall performance. Integrating this tool into 
the Building Science Advisor (BSA) platform enhances its utility, providing a holistic view of building enclosure performance.

Data collection and pre- and post-processing

The foundation of any ML model lies in the quality and extent of the data used for training. For this study, an extensive 
dataset of residential wall assemblies was compiled, capturing various parameters, including material properties, indoor and 
outdoor climatic conditions, and moisture performance data. The data set originated from hygrothermal simulations that were 
pre-processed to provide descriptive properties of assembly set up for each simulated case. The simulations were post-processed 
to provide information that designers would use to decide whether the wall assembly is acceptable and well-performing. 
Permutations of different cladding, continuous insulation, water-resistive barrier, exterior sheathing, cavity insulation, and 
vapor retarder options were used to create about 60 000 simulation cases. The materials were selected such that the range of 
properties would cover typical materials in construction. Post-processing outputs were mold growth index (Ojanen et al., 2010) 
at critical layers of the walls, and the maximum annual moisture content of the exterior sheathing. Additionally, the U-value of 
the simulated wall assemblies was calculated to help evaluate code compliance or user’s requirements for thermal efficiency.

ML Model Architecture

As shown in Figure 2, the primary inputs to the model are the physical properties of the materials in each layer of the wall 



assembly. These include such as material type, thickness, thermal conductivity, and vapor resistivity. The model also considers 
climatic conditions for different geographic locations. The model is trained to predict two key moisture durability indicators: 
the Mold Index (MI) at critical material interfaces and the maximum Moisture Content (MC) of the exterior sheathing. These 
outputs were selected as primary metrics used by building scientists to assess moisture-related risks.

Figure 2. Neural network model

An Artificial Neural Network (ANN) was selected as the predictive model due to its proven ability to approximate 
complex, non-linear relationships. An ANN provides superior generalization across the continuous space of input variables, 
making it more suitable for an optimization-focused tool in this study. The ANN architecture consists of an input layer, two 
hidden layers, and an output layer that predicts the MI and MC values. This multi-layer structure allows the model to learn 
hierarchical features from the input data, leading to more accurate predictions. Two separate ANN models were trained: one 
for predicting the mold index and another for predicting moisture content.

ML Model training and validation

The models were trained on the simulation dataset and validated using a 10-fold cross-validation technique to ensure robustness 
and prevent overfitting. This process involves partitioning the dataset into ten subsets, training the model on nine of them, and 
testing it on the remaining one, repeating this process until each subset has been used for testing.

The model's predictive accuracy is high, with an average coefficient of determination (R²) exceeding 0.95 across the 
validation folds. Figure 3 shows scatter plots comparing the model's predictions for Mold Index and Moisture Content against 
the actual values from the hygrothermal simulations. The tight clustering of points around the diagonal line (representing perfect 
agreement) demonstrates the model's ability to accurately replicate the simulation results. These results confirm that the trained 
ANN models are reliable surrogates for the time-consuming hygrothermal simulations, enabling the rapid performance 
predictions for the optimization framework.



                                                                                                                                                   

Figure 3. Example machine learning (ML) model testing results through a 10-fold cross-validation on training dataset

Multi-objective optimization

The optimization framework integrates the ML model with Particle Swarm Optimization (PSO) techniques to identify 
optimal configurations for wall assemblies. PSO efficiently explores various material selections, balancing durability and 
thermal performance based on machine learning predictions. Each particle represents a potential wall assembly configuration, 
exploring multiple design choices iteratively. By managing both continuous and discrete variables, the optimization process 
reflects real-world constraints, ensuring adaptable and applicable design solutions.

This approach allows for the rapid evaluation of thousands of potential wall assembly configurations to find solutions 
that balance multiple performance objectives. Mathematically, the multi-objective optimization problem can be stated as:

                                                                  Minimize 𝐹(𝑥) = [𝑓1(𝑥),𝑓2(𝑥),…,𝑓𝑘(𝑥)]                                                          (1)
s. t.  𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1,2,…,𝑚 

 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

Where x is a vector of design variables (e.g. choice of materials, thickness for certain layers,), ƒi(x) are the objective 
functions for different terms such as mold index, maximum moisture content, U-value, and cost and other performance targets. 
gj(x) are constraints (e.g., upper limit on mold index, maximum moisture content, or minimum U-value requirement), xmin and 
xmax denote allowable bounds for each design variable.

A key feature of the framework is its adaptable objective function. Each objective is integrated into the cost function 
according to specific requirements. Some examples are:

 Thermal Performance (U-value): The U-value is calculated based on the cumulative thermal resistances of the wall 
components. Different U-value requirements are enforced for commercial and residential buildings based on different 
climate zones. If the computed U-value exceeds the target limit, a penalty is added proportionate to the violation 
magnitude.

 Moisture Performance: The machine learning model predicts the mold index (MI) and maximum moisture content 
(MC) for each candidate assembly. If these exceed acceptable limits (e.g., mold index > 2 or MC% > 20), a penalty is 
added to the cost function, or the solution is rejected. Alternatively, the user can define a soft constraint where solutions 
exceeding the limit are still evaluated but heavily penalized.

 Other constraints: Other cost functions can be introduced. For example, the total cost of materials can be added as 
another objective or as part of a weighted sum with moisture and durability goals.

The optimization tool effectively manages continuous and discrete variables, reflecting practical design constraints. 
Particle Swarm Optimization (PSO) is employed as the optimization engine in the designed framework. PSO uses a swarm of 
particles (candidate solutions) that move through the design space, guided by their own best positions and the global best 
position found so far. PSO can handle continuous variables (e.g., layer thickness) efficiently and can also be adapted for mixed-
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variable problems. In this approach, each particle represents a candidate wall assembly configuration defined by its position 
(i.e., the set of design variables) and a velocity vector that dictates the search direction. 

Two trained neural network models serve as predictors within the framework: one estimates the mold index and the other 
predicts the moisture content. These models are incorporated directly into the objective function to provide immediate feedback 
on moisture performance for any candidate solution. As the PSO algorithm iterates, the predicted MI and MC values inform 
the penalty terms within the cost function, ensuring that only configurations satisfying the durability criteria are favored. This 
integration significantly reduces the reliance on complex simulations and expedites the iteration process.

Figure 4 illustrates the workflow for optimizing wall assemblies while allowing users to pre-select certain layers. The 
optimization process begins by allowing users to pre-select certain layers (e.g., specific exterior cladding, water-resistive 
barrier, and sheathing board types). After fixing certain layers, the user may choose which remaining parameters to optimize, 
such as:

 Discrete parameters: e.g., material type of the water-resistive barrier, vapor barrier, continuous insulation, cavity 
insulation, and exterior sheathing.

 Continuous parameters: e.g., material thicknesses for continuous insulation, cavity insulation, and exterior 
sheathing.

Figure 4 Example optimization workflow

Figure 5 is an example convergence plot from the PSO-based optimization process. For the selected layers, the user 
specifies upper and lower bounds for thickness (for continuous variables) and selects permissible material types (for discrete 
variables). Once these choices are made, the PSO is applied with the machine learning predictors (for mold index and moisture 
content) to find the optimal configuration that satisfies the performance criteria, such as limiting mold index, meeting required 
U-values. In this process, pre-selection of layers effectively reduces the dimensionality of the optimization problem, making it 
more computationally efficient and easier to focus on critical variables. The PSO algorithm utilizes machine learning 
predictions to efficiently navigate the search space and identify optimal solutions that balance key performance objectives. By 
fixing certain layers in advance, users can ensure that design elements with regulatory constraints remain unchanged, while 
still exploring innovative ways to improve the wall assembly’s overall performance. Figure 5 shows how different design 
variables (e.g., thicknesses for cladding, exterior sheathing, cavity insulation, and continuous insulation) evolve over the 
iterations, along with the corresponding cost, mold index, moisture content, and U-values for each candidate solution (particle). 



Figure 5 Example convergence process of the optimization, illustrating how variables such as thickness, cost, mold index, 
MC values, and U-values evolve over iterations for different particles

EVALUATION AND RESULTS

Case study analysis

Case studies across various climates demonstrated the ML tool’s effectiveness, with optimized designs showing lower 
mold indices and moisture content. As shown in Figure 6, two case studies were conducted in two different climate zones with 
different U-value requirements. 

Figure 6 Example optimization results for Syracuse, NY, (Climate zone 5A) and Minneapolis, MN (Climate zone 6A).



The result shows the comparison of the original and the optimized wall assemblies for each climate zone. Fiber Cement 
Siding and OSB Sheathing were fixed in both case studies based on user’s design preferences. The tool was permitted to select 
materials and thicknesses for the continuous insulation (CI), water-resistive barrier (WRB), vapor barrier (VB), and cavity 
insulation. As shown in the figure, each optimized solution features unique thicknesses and material choices for these layers, 
demonstrating the tool’s search for an improved design tailored to each climate zone’s U-value requirement. Across both zones, 
the predicted mold index and the maximum moisture content in the optimized designs are lower than in the original samples, 
indicating enhanced moisture durability. Each optimized design also meets its respective U-value limit (defined by the user for 
commercial buildings) (0.065 for 5A and 0.057 for 6A). The tool’s adaptive feature allows it to identify optimal trade-offs 
among moisture durability, thermal performance, and user’s other constraints for each specific climate.

Performance metrics

The performance of the optimized designs was evaluated based on several metrics, including thermal resistance, moisture 
content, and life cycle impact. The optimized designs consistently outperformed baseline designs balancing these performance 
targets. The tool's ability to provide rapid and accurate predictions significantly reduces the time and expertise required for 
design iterations. The integration of this ML optimization tool into the Building Science Advisor has significant implications 
for the construction industry. By automating the selection of wall assembly materials based on energy efficiency, moisture 
durability, and users’ other constraints, this tool enables architects, engineers, and builders to make more informed design 
decisions. It modernizes the evaluation of competing objectives, ensuring that building envelopes meet thermal and moisture 
performance requirements while minimizing use of resources. This advancement not only enhances the efficiency of new 
construction and retrofit projects but also promotes the adoption of novel materials and construction practices, ultimately 
leading to more durable buildings with low energy cost.

DISCUSSION

Implications for the construction industry and future research directions

The adoption of machine learning and optimization fundamentally changes traditional approaches, allowing for faster, 
more precise, and more effective design processes that previously relied on more labor-intensive or conventional methods. The 
integration of this ML optimization tool into the Building Science Advisor automates the selection of wall assembly materials 
based on thermal, energy and moisture performance, durability and other user’s constraints. This tool enables the construction 
industry stakeholders such as architects, engineers, and builders to make more informed designs to more durable and energy-
efficient buildings. While the current study demonstrates the feasibility and benefits of ML-driven optimization, further 
research is needed to refine the models and expand their applicability. Future work could explore the integration of additional 
performance criteria, such as acoustic performance and fire safety, into the optimization framework. Expanding the dataset to 
include a wider variety of building types and materials will enhance the model's robustness.

CONCLUSION

The study presents a novel machine learning-driven approach to optimize building enclosure designs. The developed tool 
efficiently balances moisture durability, thermal efficiency, and other factors under user-defined constraints. By reducing 
reliance on extensive hygrothermal simulations, it rapidly provides tailored recommendations for specific climates and building 
requirements. The case studies demonstrate that the ML-driven optimization tool enhances wall assembly designs by improving 
moisture resilience, minimizing trial and error, and meeting defined thermal performance criteria. By translating advanced 
computational insights into practical recommendations, the tool not only streamlines decision-making but also sets a new 
benchmark for achieving high-performance building envelopes. Integrating this optimization tool into the Building Science 
Advisor provides industry professionals with an effective resource for simplifying complex trade-offs and fosters data-driven 
decision-making. Future developments could expand its capabilities to include cost considerations, further enhancing its value 
for high-performance building design.
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NOMENCLATURE

F = Optimized function
f = Objective functions for different terms such as mold index, maximum moisture content, U-value, etc.
g = Constraints for objective function.

Subscripts

i, j = index values
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