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ABSTRACT
The activities of verification, validation, and uncertainty

quantification (VVUQ) provide a comprehensive means to assess
the credibility of computational models. Within VVUQ, solution
verification assesses numerical errors and evaluates whether the
simulation is sufficiently accurate for its intended applications.
As computational modeling gains traction in the development
of complex, high-consequence systems, the need for robust so-
lution verification intensifies, particularly because experimental
data for these systems are often limited. This work examines im-
provements in the robustness of Richardson extrapolation (RE),
a method commonly used in solution verification to study the dis-
cretization error of computational models using a power law.
Nonuniform mesh refinement is discussed alongside other pol-
lutants that affect the robustness of the power law model. Maxi-
mum likelihood estimation (MLE) is proposed as a robust strat-
egy to address the uncertainty generated by nonuniform mesh
refinement. An exploratory computational fluid dynamics (CFD)
study of a 2D planar Poiseuille flow is conducted to determine if
nonuniform mesh noise can be modeled with this MLE approach
for more robust RE. 1
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NOMENCLATURE
f Solution system response quantity
f∞ Extrapolated solution system response quantity
g1 Skewness
g2 Excess kurtosis
h Characteristic mesh size
p Order of convergence
p̂ Observed order of convergence
r Mesh refinement ratio
α Power series coefficients
∆s Mesh edge spacing intervals
δ Unstructured mesh noise
εh Discretization error
µ Mean of data
σ Standard deviation

1 INTRODUCTION
Modern engineered systems such as nuclear reactors [1] or

aircraft [2] can be categorized as complex, high-consequence
systems. Complex systems are those for which formal descrip-
tions do not exist or cannot be solved [2]. High-consequence
systems are those for which failure can cause great harm or
death [3]. Given the stakes, the research, design, and devel-
opment of complex, high-consequence systems are aided by
computational modeling such as computational fluid dynamics
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(CFD) [4–8]. Computational models inherently contain numer-
ical errors and uncertainties and may not represent the physical
(real) system accurately. Thus, computational modeling, includ-
ing CFD, must be accompanied with additional studies to ensure
that simulation results can be used to make informed decisions.

The activities of verification, validation, and uncertainty
quantification (VVUQ) allow engineers to make informed de-
cisions. This paper focuses on solution verification, which aims
to quantify all errors associated with a particular solution to a
model. Often, the dominant error in CFD is the discretization er-
ror that results from solving a continuous problem on a discrete
mesh [9, 10]. A classical method used to estimate discretization
errors is Richardson extrapolation (RE), which involves comput-
ing solutions on multiple uniformly refined meshes. Although
expensive, RE provides global error estimates of all system re-
sponse quantities (SRQs) in a simulation; the term global refers
to the accumulated discretization errors over the entire compu-
tational domain. Informed decision-making involving complex,
high-consequence systems requires these global error estimates
of SRQs for accurate VVUQ.

Other discretization error estimators exist and offer relative
pros and cons compared to RE-based methods. The adjoint-
based error estimates [11–13] can estimate the global errors of
SRQs from a single mesh, although every SRQ requires a sepa-
rate adjoint computation. Thus, the cost quickly increases with
an increasing number of SRQs. Error transport equations pro-
vide global error estimates for all SRQs on a single mesh, but
they require precise estimates of truncation errors [14] or mesh-
induced residuals [15], which are not trivial to compute. Ulti-
mately, there is still a place for all discretization error estimators
today, with RE often serving as a baseline for newer single-mesh
methods. The use of multiple meshes in RE gives insights into
mesh dependence, allowing for further assessment of the cred-
ibility of the simulation results. Therefore, continued improve-
ments in RE are beneficial, even outside the context of complex,
high-consequence systems.

This paper focuses on improving the robustness of RE,
specifically the ability of RE-based solution verification meth-
ods to handle pollutants from nonuniform refinement of unstruc-
tured meshes. To uniformly refine unstructured meshes, an in-
teger refinement ratio of 2 or greater is needed. This makes
RE-based methods prohibitively expensive for the unstructured
meshes used to solve complex CFD models. A fractional refine-
ment ratio reduces the computational cost but induces noise or
errors due to nonuniform mesh refinement. This paper proposes
that RE can be made more robust to this noise by selecting the
proper maximum likelihood estimator (MLE) for the underlying
uncertainty in nonuniform mesh refinement.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the theoretical foundation of RE with a focus on
the standard power law model and its underlying assumptions.
Section 3 discusses the impacts of pollutants in the RE-based er-

ror estimates on the overall robustness of RE-based solution veri-
fication methods. Sections 4 and 5 describe current and proposed
robust approaches to improve RE in the presence of pollutants,
respectively. Section 6 examines the hypothesized model of pol-
lutants induced by the discrete mesh. Section 7 shows the results
from a CFD simulation of a 2D planar Poiseuille flow. Section 8
concludes this analysis and discusses future research directions.

2 FOUNDATION OF RICHARDSON EXTRAPOLATION-
BASED SOLUTION VERIFICATION METHODS
Fundamentally, discretization error is caused by solving a

continuous problem on a discrete mesh. Hence, discretization
error (εh) is the difference between the discrete solution ( fh) and
the “true” (exact) solution f∞:

εh = fh − f∞. (1)

The subscript ∞ refers to the “true” (exact) solution solved on a
continuous domain, which is often conceptually thought of as the
solution on a mesh with infinitely small cells or elements. Note
that Eqn. (1) results in positive εh when fh > f∞ and negative
when fh < f∞. In practice, εh ̸= 0 because the cell or element size
is always finite. Power series expansion gives a mathematical
expression of discretization error as

εh = α1h+α2h2 +α3h3 + ..., (2)

where h is the characteristic mesh size, and αn are the power se-
ries coefficients. Equation (2) serves as the mathematical foun-
dation of RE-based solution verification methods. When the so-
lutions are obtained on sufficiently fine meshes and in the asymp-
totic region of convergence, the discretization error is of the form
εh = αhp, where α is constant for various h, and p is the theo-
retical order of convergence of the numerical scheme. RE-based
solution verification was popularized in CFD by Roache through
the Grid Convergence Index (GCI) method [16].

2.1 Solution Verification for CFD
For second-order CFD solvers, p = 2, and the first-order

term in Eqn. (2) vanishes (i.e., α1 = 0):

fh = f∞ +α2h2 +O(h3). (3)

When fh is in the asymptotic region of convergence, Eqn. (3)
can be further simplified because α2 = α is constant for any h,
and the higher order terms are negligible because α2h2 ≫ O(h3).
Hence,

fh ≈ f∞ +αh2 =⇒ εh = αh2. (4)
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Because Eqn. (4) is quadratic, two solutions solved on two
meshes from the same family (i.e., one finer and one coarser,
with mesh refinement ratio r) are sufficient to solve for f∞ and
α . However, in practice, the observed order of convergence ( p̂)
is not necessarily equal to the theoretical order of convergence
(p). For example, factors such as shock waves, geometrical dis-
continuities, solution singularities, and linear approximations to
curved boundaries degrade convergence [16]. So, in practice,
Eqn. (5) is solved instead of Eqn. (4) when performing RE-based
solution verification:

fh = f∞ +αhp̂ =⇒ εh = αhp̂ (5)

Consequently, the following system of equations is formed to
solve for f∞, α , and p̂:


f1 = f∞ +αhp̂

1 ,

f2 = f∞ +αhp̂
2 ,

f3 = f∞ +αhp̂
3 ,

(6)

where discrete solutions f1, f2, and f3 are obtained using a CFD
solver on a family of three uniformly refined meshes, h1,h2, and
h3. Uniform mesh refinement is a must to ensure discretization
error from each element decreases by the same factor. However,
the refinement ratio does not have to be an integer or constant
(i.e., r12 ̸= r23). ASME V&V 20 [17] provides a more detailed
explanation of solution verification, which includes the recom-
mendation of generating more than three discrete solutions for
complex problems. The overdetermined problem can be solved
using the least-squares solution of Eqn. (5) per the work done by
Eça and Hoekstra [18]. Section 4.2 discusses this least-square
approach as one of robust error estimation methods. Ref. [19]
interprets the ASME V&V 20 guidance as an iterative procedure
and provides additional guidelines, which forms the basis for the
solution verification software CFDverify [20] used to compute
fits to the power law model in this work.

2.2 Example of Use
Figure 1 plots the power law model of the problem posed

in Eqn. (6) for a synthetic second-order (p = 2) problem. The
SRQ values are 9.97, 9.88, and 9.52 for mesh sizes of 0.1, 0.2,
and 0.4, respectively. This data set results in p̂ = 2, α =−3, and
f∞ = 10.0. Note that Fig. 1 depicts an ideal convergence behav-
ior (p̂ = p), which is unlikely for practical CFD applications due
to violations of the underlying assumptions of RE. Section 3 lists
the pollutants in RE-based error estimates and explains the effect
of the pollutants on the power law model described in Eqn. (5).
This work also aims to investigate the underlying noise distribu-
tions due to these pollutants.
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FIGURE 1. EXAMPLE OF RICHARDSON EXTRAPOLATION-
BASED SOLUTION VERIFICATION.

3 POLLUTANTS IN RICHARDSON EXTRAPOLATION-
BASED ERROR ESTIMATES
The underlying assumptions of RE are usually not fully sat-

isfied in practical CFD settings. Although minor deviations from
these assumptions may be acceptable, RE-based error estimates,
like Eqn. (5), become less reliable with increasing deviations.
Sources of pollutants in RE-based error estimates include:

1. The presence of discontinuities or irreducible first-order er-
rors in the solution (e.g., α1 ̸= 0),

2. Failure to obtain discrete solution in the asymptotic region
of convergence (i.e., αh2 ̸≫O(h3) for second-order accurate
schemes),

3. Pollution from iteration errors,
4. Nonuniform mesh refinement (i.e., r is not constant for all

cells or elements), and
5. Switching between computational models (e.g., flux limiters

and turbulence models) at different mesh refinement levels.

The following subsections discuss the implications of violating
each of these assumptions.

3.1 Pollutants #1 & #2: Missing Terms in the Power
Law Model

In the presence of discontinuities (e.g., shocks and sharp
corners) the solution can not be expanded by a Taylor series,
so Eqn. (5) is not a valid description of the discretization error.
Likewise, irreducible first-order errors (e.g., straight approxima-
tions of curved surfaces) mean the first-order term in Eqn. (2)
does not vanish. Hence, Eqn. (5) is missing an α1h term and is
again an incomplete description of the discretization error. These
additional errors can lead to nonmonotonic convergence behav-
ior. For example, Roy employed a mixed-order model containing
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both first- and second-order terms to account for the missing first-
order terms in a problem with shocks and curved surfaces which
caused oscillating convergence [21]. However, Roy also showed
that in some cases, a first-order model alone could outperform
the mixed-order model.

When constrained by computational costs, one level of the
mesh refinement may be too coarse, causing the CFD simulation
to fall short of the asymptotic regime. Like the issue with discon-
tinuities discussed above, falling short of the asymptotic regime
indicates that there are missing terms in Eqn. (5). For second-
order accurate schemes, αh2 ̸≫ O(h3), meaning the higher or-
der terms in Eqn. (2) are now non-negligible. Consequently, the
simplification of Eqn. (2) to (4) is no longer valid. Therefore,
Eqn. (5) must include the higher order terms.

In either case, the missing terms in the power law model
of the traditional RE (Eqn. (5)) indicate that there are missing
convergence behaviors not captured in the single-term power se-
ries [17]. The current standard practice in the presence of pol-
lutants #1 and #2 is to rely on the CFD analyst or practitioner
to determine whether the fit based on the power law model is
sufficient for reasonably estimating the discretization errors. Un-
fortunately, the CFD analyst or practitioner often finds it difficult
to determine which solution data points are in the asymptotic
regime, and more troubling, the discretization errors may be non-
monotonic outside the simulated discretizations [22]. Hence, a
“robust” regression in the presence of pollutants #1 and #2 would
imply that the regression procedure includes model selection cri-
teria [23] to determine if a simple model like Eqn. (5) outper-
forms a model with additional terms.

3.2 Pollutants #3 & #4: Fitting to Noise and Uncer-
tainties

Discrete solutions ( fh) are inherently polluted by numerical
errors such as round-off errors, iteration errors, and transported
discretization errors. In a modern double-precision computation,
round-off errors are usually nonsignificant, but iteration errors
(pollutant #3) can be significant. The general practice is to re-
duce iteration errors to two or three orders of magnitude less
than discretization errors [17, 24, 25]. In a calculation requir-
ing only three significant digits of precision, the discretization
errors should be of the order 10−4 of the SRQ. This means that
the iteration errors should at least be of the order 10−6; in the au-
thors’ experience, most CFD analysts or practitioners would re-
quire this level of iterative convergence to deem a solution “good
enough.” However, reducing iteration errors to the desired level
can be difficult, and hence, iteration errors can pollute fh.

Nonuniform mesh refinement (pollutant #4) is the primary
concern of this work. As explained in Section 2.1, RE requires
fh from a family of uniformly refined meshes. Indeed, Eqn. (5)
shows that each fh is associated with a characteristic mesh size
(h), which accounts for all cell or element sizes in the computa-

tional domain. For RE, the specific h value is not important, but
the refinement ratio (r) between successive meshes in a family is
important. Ideally, a constant r is applied to the entire domain so
that all cells or elements experience the same discretization error
reduction as the mesh is refined. For structured meshes, the pre-
scribed point distributions are usually modified uniformly with
an integer or noninteger r. For unstructured meshes, cells or ele-
ments are subdivided uniformly, although this often leads to large
meshes, making the problem very expensive. Hence, in practice,
CFD analysts or practitioners often apply uniform refinement to
the mesh controls, knowing that the resulting meshes will not be
precisely geometrically similar. This practice violates the under-
lying assumptions of RE. However, the mesh “families” are often
“good enough” to conduct RE because the change in discretiza-
tion error overshadows the noise from imprecise refinement. The
limits of what constitutes a mesh family are not well studied. One
study conducted by Carl Ollivier-Gooch on meshes generated for
the Third American Institute for Aeronautics and Astronautics
(AIAA) Drag Prediction Workshop (DPW III) defined a refine-
ment size quality to compare the geometrical similarities of two
meshes [26] and to assess the mesh pair appropriateness for mesh
refinement study. This paper takes a different approach by inves-
tigating the impacts of noise from nonuniform mesh refinement
on RE. Thus, “robust” regression in the presence of pollutants #3
and #4 would mean that the regression procedure considers the
underlying statistics of imperfect refinement.

3.3 Pollutant #5: Changing the “True” (Exact) Solu-
tion

CFD solvers may switch between computational models at
different mesh refinement levels. Consider the example of hybrid
large-eddy simulation (LES)/Reynolds-averaged Navier–Stokes
(RANS) as an example. The hybrid approaches use blending
functions to switch from RANS in the near-wall regions to LES
in the outer part of the boundary layer and locally separated flow
regions [27]. These blending functions may depend on the mesh
scale and the wall distance. Although this approach could re-
duce the cost of LES, switching between computational models
can be problematic for RE. First, the “true” (exact) solution ( f∞)
in Eqn (5) varies depending on the turbulence model used. Sec-
ond, the dependence on the mesh scale and wall distance means
that computational models may change at different mesh refine-
ment levels, thus creating inconsistencies between meshes from
the same family. All these factors violate the underlying assump-
tions of the traditional RE and can pose robustness issues. In the
presence of pollutant #5, a “robust” regression would indicate
that the regression procedure includes methods to bound f∞.

3.4 Illustration of Impact on Overall Robustness
Figure 2 shows an example of deviations from the nominal

model when normally distributed noise with a standard deviation
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of 0.1% of f∞ is present. In practice, the noise level and distri-
bution are unknown, thus posing additional challenges in provid-
ing conservative discretization uncertainty estimates. Reducing
noise in the error estimate requires either reducing the noise in
the data or generating more data to quantify the noise. When
uniform mesh refinement makes the problems computationally
intractable, CFD analysts or practitioners must settle for other
methods to create the best possible family of meshes and opt to
generate more data. Regardless, more data points do not elim-
inate the noise from the nonuniform mesh refinements. Hence,
there are benefits to understanding mesh noise and modifying
traditional RE methods to account for the effects of mesh noise.
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FIGURE 2. EXAMPLE OF RICHARDSON EXTRAPOLATION
APPLIED TO NOISY DATA.

4 CURRENT ROBUST ESTIMATION METHODS
In the presence of pollutants, CFD analysts or practitioners

need more than three solution data points to solve Eqn. (5) for the
three unknowns: α , p̂, and f∞. Thus, instead of solving Eqn. (6)
exactly, CFD analysts or practitioners are solving an overdeter-
mined system through regression. Statistical treatment of data,
including regression, requires an estimator, which is a procedure
to obtain an estimate (i.e., a statistical solution) [28]. A “robust”
estimator reduces sensitivity to minor deviations from the un-
derlying assumptions [29]. This work seeks a robust estimator
against noise resulting from nonuniform mesh refinements. The
following subsections briefly review current methods to obtain
robust RE-based error estimates.

4.1 Strategic Resampling (Jackknifing)
The simplest way to obtain robust RE-based error estimates

based on four or more meshes is to resample the data into triplets
(i.e., a subset of three) and solve them exactly; this approach is
known as jackknifing [29]. To the best of the authors’ knowledge,

the first detailed study using this method is from 1997 by Celik
and Karatekin [30], which qualitatively assesses the results of six
triplets to ensure p̂ and f∞ are consistent. Ensuring p̂ and p are
consistent is also common when discussing the GCI method [17,
31]. Jackknifing can be performed systematically by evaluating
the complete set of mesh triplets and drawing statistics from the
final distribution. However, this method is sensitive to outliers;
for example, three out of four jackknifed samples in a four-mesh
study will be polluted by a single outlier.

4.2 Least-Squares Fitting
Eça and Hoekstra proposed a least-squares error (LSE) esti-

mator to solve Eqn. (5). Compared to the jackknifing approach
(Section 4.1), their LSE approach handles the coarsest mesh
better [18], and it includes limits on p̂, a factor of safety, and
weights [32]. Their weighted LSE approach assigns weights of
wi =

1/hi
∑

N
i=1 1/hi

, or the normalized reciprocal of the mesh size, to

give greater weighting to finer meshes, thus providing a bias to
reduce the errors of the finest mesh more than those of the coarse
mesh. However, their study does not demonstrate that finer
meshes have less noise when the family of meshes is nonuni-
formly refined. Furthermore, when SRQs on coarser meshes are
more polluted than on finer meshes, the pollution may be from
the missing terms in the standard power law model caused by
not achieving the asymptotic regime (see Section 3.1 discussion
of pollutant #2). In this case, development of model selection cri-
teria is necessary, but only after the noise caused by nonuniform
refinement is taken into account.

4.3 Ensemble of Regularization Strategies
Rider et al. proposed a method based on constrained op-

timization to improve the reliability of RE-based error esti-
mates [33]. Their method focused on taking the “art” out of so-
lution verification by employing an ensemble of regularization
strategies to produce a robust estimate. For improved robustness,
the method uses the median as the measure of central tendency
and the median deviation as the uncertainty measure. This ap-
proach has a critical weakness in that it creates a fit by treating
multiple norms equally. For example, if the underlying data have
a Laplacian distribution, an estimate provided by an L∞-norm es-
timator is likely to be poor because of the presence of outliers.

5 PROPOSED ROBUST ESTIMATION METHOD
This work proposes that robust RE-based error estimates for

nonuniform mesh refinements should use MLE with the likeli-
hood function chosen to match the expected distribution of SRQ
values under nonuniform refinement. A thorough literature re-
view revealed the lack of readily available methods to derive this
distribution. As such, this work conducts an exploratory study of
a SRQ distribution through experiment. The following subsec-
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tions describe the statistical characteristics (i.e., mean, variance,
skewness, and kurtosis) and noise distributions considered.

5.1 Characteristics of Distribution Functions
The mean of a distribution is its expected value, µ ≡

E[SRQ], or the arithmetic average of the data [34]. Of interest
to this work is whether the mean of the data from nonuniformly
refined meshes is the same as of uniformly refined meshes. If not,
RE-based error estimates on nonuniform meshes contain a bias.
If a bias is present, the median of the data should be used instead
of the mean because the median measures the central tendency
and minimizes the maximum bias in the estimate [29].

The variance of the data, σ2 = E
[
(SRQ−µ)2

]
, measures

the amount of noise from nonuniform mesh refinements that
RE-based error estimates can handle before they become unre-
liable [34]; the variance is the square of the standard deviation.
Based on prior work on iteration errors, a variance of two or-
ders of magnitude or less than the discretization error is expected
to have negligible effect [24], whereas the variance in the order
of the discretization error will likely lead to unreliable results.
This allowable variance applies to data obtained on the finest
mesh and SRQs showing first-order convergence. For higher-
order convergence, the allowable variance will scale with the
mesh size.

Skewness is the third moment about the mean of a distribu-
tion, (SRQ− µ)3, denoted by g1, and it represents the asymme-
try of the data. Data with positive skewness extend far above the
mean, whereas data with negative skewness extend far below the
mean [34]. Data with no skew are symmetric, like the normal
distribution; for normally distributed data, the mean and the me-
dian will be the same. Hence, the magnitude of the skewness can
determine when the median will be more robust than the mean.

Finally, the kurtosis — (SRQ−µ)4, denoted as g2 — of the
data is informative to understand the best likelihood estimator
to use for regression. In this work, excess kurtosis is used, or
the raw kurtosis minus the kurtosis of a normal distribution [34].
Positive kurtosis implies that the distribution is leptokurtic and
has fatter tails than the normal distribution; the Laplacian distri-
bution is the canonical leptokurtic distribution. Negative kurtosis
implies the distribution is platykurtic and has thinner tails; the
uniform distribution is the canonical example.

5.2 Uniform Noise
A uniform distribution has finite support, zero skew, and is

platykurtic. Uniformly distributed data has less extreme outliers
than a normal distribution for the same variance and does not
have a peak at the mean. The MLE for a uniform distribution
minimizes the maximum error or the L∞ norm of the data. A
uniform distribution is described by Eqn. (7) with a as the lower

bound and b as the upper bound.

f (x) =

{
1

b−a , for a ≤ x ≤ b
0, for x < a or x > b,

(7)

5.3 Normal Noise
A normal distribution is described by Eqn. (8),

f (x) =
1√

2πσ2
e
−(x−µ)2

2σ2 , (8)

where µ is the distribution mean, and σ is the standard devi-
ation of the process f of variable x. A normal distribution is
commonly observed in many real processes and is the canonical
distribution function. Through visual inspection, the distribution
of the refinement size quality between a pair of National Ad-
visory Committee for Aeronautics (NACA) 0012 meshes in the
work by Ollivier-Gooch [26] is normal. The MLE for a normal
distribution minimizes the squared error or L2 norm of the data.

5.4 Laplacian Noise
A Laplace distribution is described by Eqn. (9),

f (x) =
1

2b
e−

|x−µ|
b , (9)

where µ is the location parameter and equal to the mean, and b
is the scale parameter and equal to b =

√
σ2/2. The Laplace

distribution can be thought of as two exponential distributions
placed back to back along the mean. Like the normal distribution,
the Laplace distribution is symmetric with zero skew; however, it
is leptokurtic. The MLE for a Laplacian distribution minimizes
the absolute error or L1 norm of the data.

6 THEORETICAL MODELS OF MESH NOISE
The noise from nonuniform mesh refinement in the RE-

based error estimates can be studied more effectively if the noise
can be modeled mathematically. Two mesh noise models are
hypothesized and tested on 2D planar Poiseuille flow. This pro-
cess is neither analytic or exhaustive, but it should provide some
evidence of the type of noise generated in these off-normal ap-
plications of RE-based solution verification methods.

Firstly, the noise can be modeled as constant across a given
problem for all mesh resolutions. Equation (10),

fh = f∞ +αhp̂ +δ , (10)
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describes this behavior, where δ is a random process. This ran-
dom process would be described by a specific probability distri-
bution. This distribution may theoretically be of any form and
may be unique for every problem; if this is true, then developing
generic robust regression methods is extremely difficult. How-
ever, if most CFD distributions can be well described by a com-
mon function, like those presented in Section 5, then developing
a robust method is more tractable. Per this first hypothesized
model, the variance in the SRQ values is expected to be the same
for all mesh refinement levels.

The second hypothesized model is given in Eqn. (11),

fh = f∞ +αhp̂ +αδ hp̂δ , (11)

where αδ is a random noise constant. In contrast to Eqn.( 10),
δ = αδ hp̂δ , or δ varies with mesh refinement levels. Equa-
tion (11) still approaches the impacts of mesh noise on RE as
the addition of a random process; however, the random process
is also a function of the mesh refinement itself. Note that the
model assumes the functional relationship is the same as for the
discretization error, though the mesh noise may have a unique
order (p̂δ ̸= p̂).

This analysis considers these two noise models to determine
whether it is more likely that the noise generated from nonuni-
form mesh families is a function of refinement or not. It is rea-
sonable that the functional relationship will not be exactly hp̂ if
the noise is a function of the mesh size. However, literature does
not reveal other orders or bases for the functional relationship.

7 RESULTS
This work uses a 2D planar Poiseuille flow to study the un-

derlying mesh noise distributions. The channel is 1 m long and
0.1 m tall (dh = 0.2 m). It is filled with a unit density fluid
(ρ = 1 kg/m3) with a kinematic viscosity of ν = 0.002 m2/s,
a thermal conductivity of k = 0.0001 W/m-K, and a specific heat
capacity of cp = 0.05 J/kg-K. The resulting flow has a Reynolds
number (Re = uL/ν) of 10 and a Prandtl number (Pr = cpµ/k)
of 1. The SRQ of interest is the temperature at the center of the
channel. The thermal entrance length for a laminar flow is given
by lt = 0.05RePr and is 0.5 m for this flow; as such, the flow
is fully developed at the SRQ point. Figure 3 shows a diagram
of the geometry with dimensions, boundary conditions, and the
point of interest at [0.5,0] m. The laminar inlet boundary con-
dition specifies the velocity at the inlet using a fully developed
laminar flow profile at a constant temperature of 300 K.

The flow was solved using VERTEX-CFD, an incompress-
ible Navier-Stokes solver developed at Oak Ridge National
Laboratory (ORNL) [35]. VERTEX-CFD uses a continuous-
Galerkin method to discretize the governing equations and ar-
tificial compressibility to couple the pressure and velocity fields.

1 m

0.05 m

Pressure
Outflow:
1 Pa

No-slip: 300 K

Laminar
Inlet x

y

[0.5,0] m

FIGURE 3. DIAGRAM OF PLANAR POISEUILLE FLOW.

The flow solutions were obtained using a set of linear basis func-
tions to achieve second-order (p = 2) theoretical convergence.
VERTEX-CFD is a transient solver, so solutions were obtained
at a final time of t = 100 s with steady-state behavior establishing
at approximately 20 s for an initial velocity field of [0.1,0] m/s.
Iterative convergence was determined based on a mean L2-norm
over the mass and momentum equations of 1 × 10−10 at each
time step. Time steps were chosen adaptively with an initial time
step ∆t = 1×10−2 s and a maximum Courant–Friedrichs–Lewy
(CFL) limit of 100.

7.1 Uniform Mesh Refinement
Reference results were obtained on 40 uniformly refined

square quadrilateral meshes. The mesh spacing was set by the
number of divisions for the channel height (∆s) and ranges from
10 to 49 for the uniform refinement study. Each uniform mesh
has a total of ∆s × 10∆s elements. Figure 4 shows the excel-
lent fit of the power law model to the data with p̂ = 2.0196
and f∞ = 300.1497 K. The estimated error for the finest mesh
(∆s = 49) is εh = 2.1992×10−4 K.
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FIGURE 4. UNIFORM MESH REFINEMENT CONVERGENCE
OF TEMPERATURE AT CENTER OF CHANNEL.
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7.2 Nonuniform Mesh Refinement
Nonuniform meshes were generated with HUMOR (High-

order Unstructured Mesh for Oak Ridge), a meshing tool devel-
oped at ORNL by Steve Karman. HUMOR distributes mesh
points through a particle interaction model before tessellating
them into a mesh [36]. Critical to this work, HUMOR can pro-
duce unique meshes of nearly identical quality. To create unique
meshes of consistent quality, odd-numbered spacing intervals
were chosen, the “jiggle” operation was applied during refine-
ment, and the number of smoothing steps between mesh refine-
ment operations was varied between 490 and 510. The frequency
of refinement steps has a minor impact on the total element count,
but it was essential to creating unique meshes.

A vertex was placed at [0.5,0] m to eliminate interpolation
errors in the extracted SRQ values for each mesh. For mesh-
ing, the geometry was divided into upper and lower blocks with
a line along y = 0 m divided at x = 0.5 m. This forced HU-
MOR to mesh the channel as two blocks with coincident ver-
tices along the channel centerline. The mesh blocks were then
combined before solving the flow solutions. As in the uniform
mesh refinement test case, the mesh size was set relative to the
channel height with edge spacings of ∆s = [9,11,13,17,27,49].
No volume growth rate was applied, so the mesh was gener-
ated with a uniform Riemannian metric field of size ∆s. Ele-
ments in the generated meshes are close to isotropic triangles,
whereas the elements in the uniform refinement study are ex-
clusively square quadrilaterals. For each mesh size, 20 distinct
nonuniform meshes were created and solved.

Figure 5 shows the individual data points for each of the
nonuniform mesh solutions; the resulting RE parameters are
p̂ = 2.61 and f∞ = 300.1498 K with an estimated error of εh =
1.11× 10−6 K at ∆s = 49. Note, the observed order (p̂ = 2.61)
is much higher than the theoretical order (p = 2) and exceeds the
ad hoc limits used in many solution verification methods [32,33]
to prevent nonconservative error estimates. The estimated error
for the finest mesh level (∆s = 49) is εh = 1.5545×10−4 K; this
is 29% lower than the uniform refinement case and likely due to
the higher observed order. Also, unlike the uniform refinement
case, scatter is seen in the convergence data due to the nonuni-
form refinement of the domain. The most obvious result from
Fig. 5 is that Eqn. (11) better describes the noise than Eqn. (10).
This is supported by the summary statistics reported in Tab. 1,
which shows that the standard deviation decreases with mesh re-
finement. The power law, Eqn. (5), was fit to the standard devia-
tions in column 4 of Tab. 1 to estimate the final term in Eqn. (11);
the resulting RE parameters are p̂δ = 4.14 and f∞ = 9×10−6 K.
Compared, p̂δ is 59% higher than p̂.

Looking closer at the data, the mean and median SRQ for
each refinement level match closely, and the skewness does not
have a definitive trend with three levels showing slight nega-
tive skewness and three slight positive skewness. Hence, the re-
sults indicate that the underlying distributions of the noise due

to nonuniform mesh refinement are not asymmetric. Finally, the
kurtosis data in Tab. 1 suggests that the data is platykurtic with
all six refinement levels showing negative excess kurtosis. How-
ever, both of these observations are far from conclusive; further
analysis is necessary.
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FIGURE 5. NONUNIFORM MESH REFINEMENT CONVER-
GENCE OF TEMPERATURE AT THE CENTER OF CHANNEL.

Next, bootstrapping is necessary for analyzing the effects
of nonuniformly refined meshes in a typical solution verifica-
tion study, where only one mesh per discretization level is used.
Table 2 shows the statistics for 10,000 bootstrapped samples; a
mesh was randomly selected from the six refinement levels and
sampling with replacement was employed. First, the mean and
median of p̂ are close to the order achieved with the full data
set, as shown in Tab. 1. However, the standard deviation of p̂ is
relatively high at 10% of the nominal value. The skewness of p̂
is slightly negative and its excess kurtosis is negative. Taken to-
gether, the average bootstrapped p̂ matches the full data set with
a wide distribution but few outliers. In contrast, f∞ and εh show
significant variation, skew, and outliers. The standard deviation
of εh is 61% of the mean value or the same order of magnitude.
Also, f∞ and εh have higher skewness than p̂ and are leptokurtic.
As such, the estimated errors of the CFD solutions have asym-
metric distributions and tend to have outliers than normally dis-
tributed data despite p̂ and the meshes not showing this behavior.

8 CONCLUSION
This work hypothesizes that RE-based discretization error

estimators can be more robust for nonuniform mesh refinements
(including unstructured meshes) by choosing a particular distri-
bution for the mesh noise and employing MLE. To do so, sources
of pollutants in the RE-based error estimates were classified, and
their impacts on the power law model, as shown in Eqn. (5), an-
alyzed. A literature review revealed the lack of foundation for
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TABLE 1. STATISTICS OF TEMPERATURE (IN KELVIN) FOR 20 NONUNIFORMLY REFINED MESHES

∆s µ Median σ g1 g2

9 300.15867 300.15857 7.28997×10−4 −0.05432 −0.50248

11 300.15376 300.15366 2.10783×10−4 0.20261 −1.53316

13 300.15238 300.15238 1.09618×10−4 −0.27529 −0.24374

17 300.15088 300.15088 4.69596×10−5 0.11888 −0.79217

27 300.15017 300.15017 4.90417×10−6 −0.24046 −0.66211

49 300.15000 300.15000 5.59710×10−6 0.15673 −0.72344

TABLE 2. STATISTICS OF BOOTSTRAPPED DISCRETIZATION ERROR SAMPLES

Parameter µ Median σ g1 g2

p̂ 2.59677 2.60125 0.26368 −0.12117 −0.33962

f∞ [K] 300.14983 300.14984 1.03599×10−4 −0.64712 0.37075

εh [K] 1.69664×10−4 1.56109×10−4 1.03652×10−4 0.64652 0.37021

studying mesh noise in the context of RE-based solution verifica-
tion for CFD, so two theoretical models of mesh noise were pro-
posed and analyzed under the context of MLE. An exploratory
study of nonuniform refinement for a 2D planar Poiseuille flow
suggests that mesh noise is a random process which decreases
with mesh refinement. Further, while the underlying noise due to
nonuniform mesh refinement appears symmetric with few out-
liers, the estimated errors in CFD solutions show asymmetry and
significant outliers. All in all, this work indicates that modeling
mesh noise may improve the robustness of RE-based methods.
However, further analysis is needed to determine the exact un-
derlying distribution of mesh noise.
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