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Qudits offer the potential for low-overhead magic state distillation, although previous results for
asymptotically good codes have required qudit dimension q ≫ 100 or code length N ≫ 100. These
parameters far exceed experimental demonstrations of qudit platforms, and thus motivate the search
for better codes. Using a novel lifting procedure, we construct the first family of good triorthogonal
codes on the F22m alphabet with m ≥ 3 that lies above the Tsfasman-Vladut-Zink bound. These
codes yield a family of asymptotically good quantum codes with transversal CCZ gates, enabling
constant space overhead magic state distillation with qudit dimension as small as q = 64. Further, we
identify a promising code with parameters [[42, 14, 6]]64. Finally, we show that a distilled |CCZ⟩22m

can be reduced to a |CCZ⟩2n state for arbitrary n with a constant-depth Clifford circuit of at most
9 computational basis measurements, 12 single-qudit and 9 two-qudit Clifford gates.

I. INTRODUCTION

Quantum computation with higher-dimensional sys-
tems, or qudits, has emerged as a compelling alternative
to qubit-based architectures [1–3]. The enlarged Hilbert
space per quantum register leads to higher effective con-
nectivity by replacing entangling gates with single-qudit
rotations [4–8]. This alternative permits lower gate fideli-
ties for the same algorithmic fidelity [9–15], which in turn
would yield higher error thresholds for the prospect of
fault-tolerant computation. This promise has driven algo-
rithmic research in qudits across multiple fields, including
numerical optimization [16, 17], condensed matter [18–21],
and particle physics [22–30].

Complementing these theoretical efforts, recent ex-
periments on various physical platforms have demon-
strated both the capability and near-term potential of
large-dimension qudit quantum processors. In trapped-
ion systems, researchers have realized qudits with di-
mensions q = 7 [31], q = 8 [32], and q = 13 [33].
Transmon systems have further realized q = 8 [34] and
q = 12 [35], illustrating that the circuit quantum elec-
trodynamics naturally extends to larger local dimensions.
Molecular spins (q = 8 [36]), solid-state spin systems
(q = 10 [37], q = 16 [38]) and cold-atom experiments
(reaching q = 25 [39]) further demonstrate how diverse
hardware can support many-level encoding with promising
coherence and control properties. Notably, superconduct-
ing radio-frequency (SRF) cavities have demonstrated
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extremely large single-mode Hilbert spaces (q = 20 with
high fidelity [40] and up to q = 100 with lower fidelity [41]).
Altogether, these experiments point toward architectures
where large local dimensions are available.

Fault-tolerant computations on these architectures re-
quires new quantum error correcting codes and protocols.
Magic state distillation (MSD) is commonly proposed to
enable universal computation by preparing high-fidelity
resource states from several low-fidelity ones [42]. The re-
sulting resource state is used to implement a non-Clifford
gate to a desired accuracy. The number of noisy inputs
required to achieve an infidelity ϵ scales as ∼ logγ(1/ϵ),
where the exponent γ is called the MSD overhead.

In Ref. [43], it was shown that a quantum code with a
transversal non-Clifford gate may be used to distill the
corresponding resource with overhead equal to

γ = log (N /K)
log D

, (1)

where N , K, and D are the code length, code dimension,
and code distance of a quantum code [[N , K, D]]q over
q-dimensional qudit. The authors identified qubit codes
achieving γ = 1.585 and conjectured a lower bound γ ≥ 1.
Their construction relied on classical triorthogonal codes.

Since then, several efforts have been made to con-
struct quantum codes with transversal non-Clifford gates
and lower overhead γ. Quantum Reed–Muller codes
over prime dimensions allow implementation of some
transversal non-Clifford gates and γ < 1 [44–46]. An-
other code with γ ≤ 0.678 was found to be achievable
for q ≥ 258 [47]. Further, Calderbank-Shor-Steane (CSS)
codes constructed from Reed-Solomon codes could obtain
arbitrary small overhead (γ → 0) as q → ∞ [48]. Recently,
it was demonstrated that constant space overhead and
constant overhead are achievable with finite, albeit large,
q ≥ 26 and q ≥ 210 respectively by constructing asymp-
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totically good codes which are families of codes which as
the code length increases the encoding rate and relative
distance are bounded away from zero [49–51].

The existence of these codes naturally raises the ques-
tion of how much more efficient can the codes be. This can
partially be addressed by considering the efficiency of con-
stituent classical codes [n, k, d]q which can be quantified
by how large the encoding rate R = k

n can be for relative
distance δ = d

n , usually with respect to two lower bounds.
First is the Gilbert–Varshamov (GV) bound [52, 53] pro-
vides a non-constructive lower bound based on sphere-
packing arguments. Remarkably, randomly-drawn linear
code yields parameters that saturate the GV bound with
high probability [54], and therefore more efficient codes
should rely upon additional structure. When q ≥ 49, the
Tsfasman–Vladut–Zink (TVZ) bound [55] is tighter than
the GV bound on an interval around δ ∼ 0.4 which grows
larger with q. This latter bound is the one we will consider
here since for all our codes q ≥ 64. Codes meeting or
exceeding the TVZ bound have large R for their δ, a fea-
ture desirable for optimizing quantum-code performance.
While previous works [49, 50] did not demonstrate it,
Garcia–Stichtenoth towers can yield families of asymp-
totically good codes that satisfy the TVZ bound [55]; we
refer to such codes as TVZ codes. While no triorthogonal
TVZ code has been previous identified, TVZ codes with
iso-duality (a less-restrictive condition) exist [56].

In this work, we present a construction of triorthogonal
TVZ codes over q = r2, where r ≥ 8 is a power of
two. Our approach is based on a lifting method, which
we prove preserves triorthogonality from a base code.
Code lifting is a well-known technique to create new
codes from old codes; see e.g. Refs. [56–61]. In the
context of algebraic geometry (AG) codes, a similar lifting
method was employed [56, 57] to establish the existence
of iso-dual TVZ codes [56]. We adapt and extend the
lifting procedure to maintain triorthogonality, and obtain
triorthogonal TVZ codes. Thus, we find that despite
the strong algebraic constraints of triorthogonality, codes
exist with ‘very good’ parameters. We further show how
these classical codes can be used to construct quantum
codes with correspondingly improved MSD performance.

The rest of this article is organized as follows: Sec. II
summarizes our results. In Sec. III, we review the notions
of algebraic geometry, defining AG codes and their pa-
rameters, with particular focus on triorthogonal codes. In
Sec. IV we provide our construction of triorthogonal TVZ
codes, and in Sec. V we derive a corresponding family of
good quantum codes, explicit examples of which we pro-
vide in Sec. VI. Furthermore, in Sec. VII, we show how to
obtain |CCZ⟩ magic states for any 2n-qudit. Finally, we
summarize and reflect upon future directions in Sec. VIII.

II. SUMMARY OF RESULTS

Our approach to developing quantum codes introduces
a lifting method that generates larger triorthogonal codes

from smaller ones, while preserving the triorthogonality.
Using our lifting method, we prove the existence of asymp-
totically good families of triorthogonal codes defined over
the alphabet Fq with q = 22m and m ≥ 3, improving on
the result of Refs. [50] and Ref. [49] where it was required
m ≥ 4 and m ≥ 5, respectively. We further show that
our codes can exceed the TVZ bound [55].

Using our triorthogonal codes, we have constructed a
family of good quantum codes with transversal CCZ gate
on qudit q = 22m where m ≥ 3, enabling magic state
distillation with constant space γ = 0 overhead following
e.g. the protocol in Ref. [50]. Further, we have identified
a low-overhead γ ≈ 0.613 code [[42, 14, 6]]64. Finally, we
show that we can obtain the |CCZ⟩2n state for any n
with a constant-depth Clifford circuit given the ability to
distill a |CCZ⟩22m (m ≥ 3). This result may be viewed as
a generalization of a result in Ref. [49] where a 210-qudit
magic state is converted to qubit |CCZ⟩ states.

TABLE I. Asymptotically good triorthogonal classical codes.

q = r2 limj→∞

(
kj

nj
+ dj

nj

)
Wills et al. [49]a ≥ 210 Not determined

Nguyen [50] ≥ 28 ≥ 1
2

b

Present work ≥ 26 ≥ 1 − 2r+3
3r(r−1)

c

a A different notion of triorthogonality from [49, Definition A.3].
b Deduced from [50, Theorem 3.6].
c Above the TVZ bound, i.e. 1 − 1/(r − 1) for alphabet size q = r2.

Theorem 1 (Informal version of the main results). (1)
Suppose the code Cj+1 := CL(Dj+1, Gj+1) is the lifted
code of Cj := CL(Dj , Gj) in the sense of Def. 8. Then,
if Cj is triorthogonal, so is Cj+1.

(2) For every r = 2m with m ≥ 3 and q = r2, there
exists a family of classical triorthogonal AG codes {Cj}
over alphabet size q with parameters [nj , kj , dj ] such that

lim
j→∞

(
kj

nj
+ dj

nj

)
≥ 1 − 2r + 3

3r(r − 1) > 1 − 1
(r − 1) . (2)

Note that the latter inequality of Eq. (2) is the TVZ bound
for codes on Fr2 . We summarize this result and compare
with Refs. [49, 50] in Tab. I.

(3) These classical codes yield a family of good quantum
codes over the alphabet q = r2 for r = 2m ≥ 8 with
parameters [[Nj , Kj , Dj ]]q

Nj = rj(r2 − r) − Kj

Kj = x1 rj

(
(r + 1)

⌊
r − 2

3

⌋
− 2r

)
+ x2 v(r, j)

Dj ≥ (1 − x1) rj

(
(r + 1)

⌊
r − 2

3

⌋
− 2r

)
+ (1 − x2) v(r, j) (3)
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where

v(r, j) :=
{

4r
j+1

2 if j is odd
2r

j
2 (1 + r) otherwise,

the constants x1 ∈ (0, 1) and x2 ∈ [0, 1] are chosen
such that Kj is an integer. We compare this result with
Refs. [49–51] in Tab. II.

(4) Finally, given the ability to distill a state |CCZ⟩22m

(where m ≥ 3), we can obtain the state |CCZ⟩2n for
arbitrary n using a constant-depth Clifford circuit with
at most nine computational basis measurements, twelve
single-qudit, and nine two-qudit Clifford gates.

TABLE II. Asymptotically good triorthogonal quantum codes:
minimum qudit dimension qmin, bounds on encoding rate
R, and minimum code length Nmin. Previous works present
various state and alphabet reduction procedures that allow for
smaller q.

qmin R Nmin

Wills et al. [49] 210 5
118 ≤ R ≤ 5

114 932,090
Nguyen [50] 28 < 1

4
a Not determined

Golowich et al. [51] 26 > 1
100 Not determined

Present work 26 < 1
2

b ≤ 55
a Deduced from [50, Corollary]
b Obtained in the limit x → 1, although at x = 1 Dj = 0

III. BASIC NOTIONS OF ALGEBRAIC
GEOMETRY CODES

Algebraic geometry (AG) codes are a class of error-
correcting codes constructed from the framework of alge-
braic curves over finite fields. For a detailed review, we
point readers toward Refs. [56, 57, 62], and we will further
adopt notation following Refs. [49, 50]. The basic idea is
to exploit the structure of a curve — specifically, its ratio-
nal points and the associated function field — to define
codewords. In particular, by evaluating chosen functions
at a set of rational points, one obtains linear codes whose
parameters can surpass classical bounds. The theory
draws on concepts from algebraic geometry to systemati-
cally relate the properties of the curve to the performance
of the code. This interplay between geometry and coding
theory has led to highly efficient classical codes, including
ones that achieve the TVZ bound [55]. Many of the same
ideas can be adapted to quantum error-correcting codes
by using the CSS construction combined with classical AG
codes to achieve high rates and large distances. This con-
nection allows algebraic geometry to inform the design of
quantum codes, enabling quantum analogues that inherit
favorable properties from their classical counterparts.

FIG. 1. The blue curve corresponds to a function field Fj .
Then n pairwise distinct points Pi correspond to rational
places of Fj . The divisor Gj specifies the Riemann-Roch
space L(Gj). The points Pi on the curves and the divisor Gj

specify an AG code of which the codewords are the vectors
(f(P1), ..., f(Pn)) where f ∈ L(Gj). The yellow curve Fj+1 is
an extension of Fj . An arrow Pi → P ′

j indicates that P ′
j lies

above Pi. This relation allows us to lift the code on Fj into a
code on Fj+1 while preserving triorthogonality. Then, we lift
the Riemann-Roch space similarly by taking the conorm map
of Gj+1 = ConFj+1/Fj

(Gj) to specify the lifted code. This
builds sequences of triorthogonal codes by successive liftings.

III.1. Algebraic Geometry

Before proceeding, let us define some preliminary no-
tation that will be used throughout the paper. These
concepts are well-known and basic to the field of algebraic
geometry, and so describing our problem in these terms
will allow us to borrow major results from that field to
develop provably efficient AG codes for MSD purposes.
Definition 1 (Algebraic Function field). An algebraic
function field F/K of one variable over K is an extension
field F ⊇ K such that F is a finite algebraic extension of
K(x) for some element x ∈ F that is transcendental over
K. Associated with F is a non-negative integer g := g(F ),
called the genus.

We consider only the case where K = Fq is the full field
of constants. From a function field we may build maximal
ideals called “places” as well as divisors thereupon, which
will serve as the central mathematical objects of AG code
constructions. A place P is uniquely related to a valuation
ring OP of the function field; such a ring satisfies:

1. Fq ⫋ O ⫋ F , and

2. If x ∈ F , then x ∈ O or x−1 ∈ O.
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Definition 2 (Places). A place P is the maximal ideal
of a valuation ring O. The set of all places of F will be
denoted P(F ). We note the following attributes:

1. A place P has degree deg(P ) = [FP : Fq] where
FP := OP /P , the residue field. The place P is
called rational if deg(P ) = 1.

2. The valuation vP associated with a place P is a
function evaluated on x ∈ F as follows:

• If x ≠ 0 then, for any t ∈ P such that P = tOP ,
there exist unique n ∈ Z and u, u−1 ∈ OP such
that x = tnu; define vP (x) := n.

• Define vP (0) := ∞ otherwise.

3. For x ∈ F , a place P is a zero of order m if vP (x) =
m > 0; P is a pole of order m if vP (x) = −m < 0.

4. A place P ′ of a function field extension F ′ lies
above a place P of F if OP ′ ∩ F = OP (equiva-
lently P ′ ⊇ P ), and we denote P ′ | P . The ram-
ification of P ′ over P is e(P ′|P ) ≥ 1 such that
vP ′(x) = e(P ′|P )vP (x) for all x ∈ F .

5. A place P splits completely in an extension F ′/F
if e(P ′|P ) = 1 for all P ′ | P (thereby ensuring∑

P ′|P e(P ′|P ) = [F ′ : F ] places P ′ lie above P ).

From places we can construct certain collections called
divisors, which will be the fundamental structures of our
AG codes.

Definition 3 (Divisors). A divisor is a linear combi-
nation of places M =

∑
P cP P , with degree deg(M) =∑

P cP deg(P ) and support supp(M) = {P : cP ≠ 0}.
Informally, we will say a place P is in a divisor M if
P ∈ supp(M). We say M ≥ 0 if cP ≥ 0 for all P in M .
We note the following kinds that will be used later:

1. The canonical divisor associated with a differential
ω is:

(ω) =
∑

P ∈P(F )

vP (ω)P, (4)

where vP (ω) := vP (z) given any decomposition ω =
z dt with z ∈ F and tOP = P .1

2. The conorm of a divisor M =
∑

P cP P over F with
respect to a function field extension F ′/F is

ConF ′/F (M) =
∑

P

∑
P ′|P

e(P ′|P )cP P ′, (5)

also a divisor.

1 (For further reading, see Ref. [62, Chapter 5] and Ref. [54, Chapter
12]).

3. The cotrace CotrF ′/F (ω) := ω′ of a differential ω
with respect to F ′/F is the unique differential sat-
isfying ω′(α) = ω(TrF ′/F (α)), where α is a map
P(F ′) → F ′ such that αP ′ = αQ′ ⇐⇒ P ′ ∩ F =
Q′ ∩ F . Moreover, the cotrace divisor is

(ω′) = ConF ′/F ((ω)) + Diff(F ′/F ), (6)

in terms of the well-known, “different” divisor
Diff(F ′/F ) ≥ 0. (For more details, see Ref. [62,
Chapter 3].)

The well-known Riemann-Roch space of a divisor then
constitutes a subspace of functions that we will use to
realize the encoding in our AG codes.

Definition 4 (Riemann-Roch Space). For a divisor G,
the associated Riemann-Roch space denoted L(G) is the
vector space

L(G) = {x ∈ F : (x) + G ≥ 0} ∪ {0}. (7)

Following the Riemann-Roch theorem [62], the Riemann-
Roch space L(G) is characterized by the degree deg(G)
and the genus g(F ).

III.2. Codes from Algebraic Geometry

Using the essential objects of algebraic geometry, we
are ready to introduce generic AG codes.

Definition 5 (Algebraic geometry code). Let F/Fq be an
algebraic function field. Let D = P1 + · · ·+Pn be a divisor
consisting of pairwise distinct rational places, and let
G =

∑
P ′ cP ′P ′ be another divisor of F/Fq disjoint from

D. The AG code CL(D, G) associated with the divisors
D and G is the subspace

CL(D, G) := {(f(P1), . . . , f(Pn)) | f ∈ L(G)} (8)

mapped by function field elements in the Riemann-Roch
space L(G).

Later, we will see that to construct suitable codes for
MSD, it will be convenient to also characterize the dual
of the AG code defined above. From Ref. [63], the dual
to the AG code CL(D, G) is also an AG code, see the
proposition below reproduced without proof.

Definition 6 (Dual code). For a code C ⊆ Fn
q , the dual

C⊥ is

C⊥ :=
{

c′ ∈ Fn
q :

n∑
i=1

cic
′
i = 0 for all c ∈ C

}
. (9)

Proposition III.1 (Dual of CL(D, G) [63]). For an AG
code CL(D, G), there exists a differential η ∈ ΩF with
simple poles at each Pi ∈ supp(D) such that its residue
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at each Pi is resPi
(η) = 1. Moreover, the dual of the code

CL(D, G) is

CL(D, G)⊥ := CL(D, D − G + (η)) (10)

where (η) is the canonical divisor associated with η. Fi-
nally, it follows from the Weak Approximation Theo-
rem [62, Theorem 1.3.1], that there exists z ∈ F such that
the valuations vPi

(z) = 1 for all Pi ∈ supp(D). Then,
one choice of η is the logarithmic differential

η := dz

z
. (11)

Clearly, vPi
(η) = −1 and resPi

(η) = 1 for all Pi ∈
supp(D). Such a function z ∈ F can be found when the
function field F = Fq(x). Our procedure only requires
computing η explicitly in the rational function field.

The parameters [n, k, d] of the AG codes C := CL(D, G)
and C⊥ = CL(D, G)⊥ can be calculated or bounded
from the divisors D and G and the genus g := g(F ). If
2g − 2 < deg(G) < n, then k and d of C satisfy

k = deg(G) + 1 − g

d ≥ n − deg(G). (12)

The distance of the dual code, d⊥, satisfies

d⊥ ≥ deg(G) − (2g − 2). (13)

Details can be found in Ref. [62, Corollary 2.2.3 and
Theorem 2.2.7].

III.3. Triorthogonal codes

Triorthogonal codes were first proposed in [43] with the
explicit purpose of making qubit magic state distillation
more efficient. They are the most general stabilizer codes
with transversal T gates, and important because they
have low-overhead (γ = log2(3) ≈ 1.6) for universal qubit
fault-tolerant quantum computing.

A triorthogonal code is a stabilizer code that comes
from a special kind of matrix G with two orthogonality
conditions: pairwise orthogonality between any two rows
and triple orthogonality where the product of any three
rows is 0. Subsequent research extended the triorthogonal
code framework to qudits [64–66]. For triorthogonality it
is more practical formulate it via the star (⋆) product of
codes following Ref. [48, 50] where a code C⋆2 is given by

C⋆2 := C ⋆ C = {c ⋆ c′ | c, c′ ∈ C} (14)

and c ⋆ c′ is the point-wise product of codewords c and c′,

c ⋆ c′ = (c1c′
1, . . . , cnc′

n). (15)

A code C ⊆ Fn
q satisfies the star-square property if C⋆2 ⊆

C⊥ and is equivalent to triple orthogonality. In addition
to triple orthogonality, requiring the code to contain the
constant word (1, . . . , 1) ensures the code has pairwise
orthogonality.

Definition 7 (Triorthogonal code). A linear code sat-
isfying the Star-square property i.e. triple orthogonality
i.e. triple orthogonality and containing the constant word
(1, . . . , 1) i.e. pairwise orthogonality is triorthogonal.

In Lemma 2.3 of Ref. [50], it is shown that a classical tri-
orthogonal code yields a quantum code Q : [[N , K, D]]Fq

where the transversal (CCZ)⊗N gate implements the log-
ical CCZ

⊗K gate. Following Refs. [49, 50], it is possible
to construct triorthogonal AG codes. From e.g. Ref. [50],
there is a sufficient condition for an AG code to be tri-
orthogonal for power of two qudits, q = 2m. For com-
pleteness, we will present this sufficient condition using
Prop. III.2 and Lemma 1.

Proposition III.2 (Some useful properties of AG codes).
Let C := CL(D, G) and C ′ := CL(D, G′) be two AG
codes with duals C⊥ := CL(D, D − G + (η)) and (C ′)⊥ :=
CL(D, D − G′ + (η′)) respectively. Then

1. If G ≤ G′ then C ⊆ C ′

2. C⋆2 ⊆ CL(D, 2G).

Proof. The first statement simply follows from the fact
that G ≤ G′ implies L(G) ⊆ L(G′). Then, every code-
word (f(P1), ..., f(Pn)) ∈ C must also be in C ′. Similarly,
the second statement follows from the fact that for every
pair f, g ∈ L(G), the product fg is in L(2G).

Using Proposition III.2, requiring CL(D, 2G) ⊆
CL(D, G)⊥ ensures C⋆2 ⊆ C⊥. The lemma below will
present sufficient conditions on the divisor G to obtain a
triorthogonal AG code.

Lemma 1 (Triorthogonal AG code). Let C := CL(D, G)
with dual C⊥ = CL(D, D − G + (η)) where η is as given
in Prop. III.1. If

G ≥ 0 and 3G ≤ D + (η), (16)

then (1, ..., 1) ∈ C and C⋆2 ⊆ C⊥.

Proof. The first statement follows from the fact that for
G ≥ 0, the constant function f = 1 is in L(G) since it
has no poles (and no zeros). The second statement arises
from the fact that 2G ≤ D − G + (η) ⇔ 3G ≤ D + (η).
Therefore, under this condition, we have CL(D, 2G) ⊆ C⊥

(Prop. III.2, first statement) and consequently C⋆2 ⊆
C⊥(Prop. III.2, second statement).

III.4. Tsfasman-Vladut-Zink bound

One of our main results is that our triorthogonal codes
are the first to exceed the TVZ bound [55]. Below, we
review asymptotic bounds of classical codes and the TVZ
bound. For an [n, k, d] classical code C over Fq, the ratios:

R(C) := k

n
and δ(C) := d

n
(17)
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are called encoding rate and relative distance respectively.
The set

Vq := {(δ(C), R(C)) | C is a code over Fq} ⊆ [0, 1]2
(18)

contains all possible points (δ(C), R(C)) where C is a
code over Fq. The asymptotic behavior of codes over Fq

can be understood by studying the set of limit points of
Vq, denoted Uq. That is, a point (δ, R) ∈ [0, 1]2 is in Uq if
and only if there exists a sequence of codes {Ci}i≥0 such
that as i → ∞,

ni → ∞, R(Ci) → R and δ(Ci) → δ. (19)

There exists a continuous function αq such that 0 ≤
R ≤ αq(δ) for all δ. αq satisfies αq(0) = 1 and αq(δ) = 0
for 1 − 1/q ≤ δ ≤ 1. The exact value of αq(δ) in the
interval 0 < δ < 1 − 1/q is unknown. However, there
are bounds. Lower bounds are important because a non-
zero lower bound guarantees the existence of good codes.
One lower bound is the GV bound which random codes
typically exceed. A significant achievement of algebraic
geometry code construction is that it yields an improved
bound, the so-called TVZ bound. For a square q = r2,
the TVZ bound is

αq(δ) ≥ 1 − 1
r − 1 − δ. (20)

For q ≥ 49 – which is for all codes we consider – the
TVZ bound is larger than the GV bound for an increasing
interval around δ ∼ 0.4, showing that there are AG codes
better than random codes. We will show that despite the
extra algebraic constraint imposed by the triorthogonality
requirement, our codes satisfy the TVZ bound. We call
our codes triorthgonal TVZ codes.

IV. CLASSICAL CODE CONSTRUCTIONS

Following Refs. [49, 50], we construct a good family of
triorthogonal codes {Cj}j→∞ on qudits with dimension
q = r2 where r ≥ 8 is a power of two. A “good” code
means that both its rate kj/nj and the relative distance
dj/nj do not vanish as j → ∞. Since we preserve the
triorthogonal property, this family of good classical codes
will yield quantum codes with transversal CCZ gates for
qudits of dimensions q ≥ 82.

Our construction is recursive. We consider a tower of
function fields W = (F0, F1, ...), where F0 = Fq(x0) is the
rational function field, Fj is an extension of Fj−1 (for j ≥
1), and Fq is the full field of constants for each function
field Fj . Each code Cj is an AG code Cj := CL(Dj , Gj),
where each Dj and Gj are disjoint divisors in Fj and the
places in Dj are rational.

The simplicity of our construction is that we only need
to construct the base code C0 explicitly. This construc-
tion is straightforward since F0 is the rational function
field. Then, we present our lifting procedure (Sec. IV.1) to

obtain the code Cj+1 using the Cj code. Remarkably, we
will show that this lifting procedure preserves triorthog-
onality (Thm. 2). Another convenient property of our
construction is that the parameters of the Cj codes can
be derived or bounded using the parameters of C0.

IV.1. Code lifting

Let the function field Fj+1 be an extension of the func-
tion field Fj . We assume that both function fields have
the same field of constants Fq. We can now use the
conorm divisor defined in Eq. (5) with respect to these
field extensions to lift codes recursively.

Definition 8 (Code lifting). Let Cj := CL(Dj , Gj) where
Dj = P1 + · · · + Pnj

includes only places that split com-
pletely in the extension Fj+1/Fj. Set

Dj+1 := ConFj+1/Fj
(Dj),

Gj+1 := ConFj+1/Fj
(Gj). (21)

Then Cj+1 := CL(Dj+1, Gj+1) is the lifting of Cj.

Note that Cj+1 is a valid AG code (Sec. III) because

1. Since each place P ∈ supp(Dj) splits completely in
the extension Fj+1/Fj , the places P ′ ∈ supp(Dj+1)
are rational places of Fj+1.

2. Since Dj and Gj are disjoint, so are Dj+1 and Gj+1.

Moreover, we can relate C⊥
j+1 to C⊥

j .

Lemma 2 (C⊥
j+1 code). Let Cj := CL(Dj , Gj). Suppose

z ∈ Fj is as in Prop. III.1 so that C⊥
j = CL(Dj , Dj −

Gj + (ηj)) where ηj = dz/z. Regarding z as an element
of Fj+1, let us set ηj+1 = dz/z, a differential in Fj+1.
Then, C⊥

j+1 = CL(Dj+1, Dj+1 − Gj+1 + (ηj+1)).

Proof. To prove this statement, we observe that any place
P ′ ∈ supp(Dj+1) lies above some place P ∈ supp(Dj).
Then, vP ′(z) = e(P ′|P )vP (z) = vP (z) = 1. Therefore,
this choice of ηj+1 satisfies Prop. III.1.

Now, we have all the ingredients to establish one of our
main results. More precisely, we show that our lifting
operation preserves the multiplication property C∗2 ⊆
C⊥.

Theorem 2 (Lifting theorem). Suppose the code Cj :=
CL(Dj , Gj) is as in Lemma 1, i.e.

Gj ≥ 0 and 3Gj ≤ Dj + (ηj). (22)

Then, so is the lifted code Cj+1.

Proof. To prove this theorem, we observe that Gj+1 ≥ 0
is trivial since the Conorm of a positive divisor is also a
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positive divisor. The rest is to establish that 3Gj+1 ≤
Dj+1 + (ηj+1). In fact, one can derive the formula

3Gj+1 − Dj+1 − (ηj+1))
= ConFj+1/Fj

(3Gj − Dj − (ηj)) − Diff(Fj+1/Fj) (23)

by identifying our lifted differential with the cotrace of
the lower differential, ηj+1 = CotrF ′/F (ηj), and using
the cotrace divisor formula of Eq. (6). By assumption,
we have 3Gj − Dj − (ηj) ≤ 0. Then, since the different
divisor is positive, we arrive at 3Gj+1 −Dj+1 −(ηj+1) ≤ 0,
concluding the proof.

In other words, our lifting procedure allows one to
obtain new triorthogonal codes from existing ones. Next,
we relate the parameters of the Cj+1 code to those of Cj .
Lemma 3 (Parameters of Cj+1). Let Cj = CL(Dj , Gj)
and Cj+1 = CL(Dj+1, Gj+1) , where Dj+1 =
ConFj+1/Fj

(Dj) and Gj+1 = ConFj+1/Fj
(Gj). Then

1. Length nj+1 satisfies

nj+1 = deg(Dj+1)
= [Fj+1 : Fj ] deg(Dj)
= [Fj+1 : Fj ]nj . (24)

2. Let gj := g(Fj) and gj+1 := g(Fj+1) be the genera of
the two function fields respectively. Suppose 2gj+1 −
2 < deg(Gj+1) < nj+1. Then, the dimension kj+1
is

kj+1 = deg(Gj+1) + 1 − gj+1

= [Fj+1 : Fj ] deg(Gj) + 1 − gj+1. (25)

3. Distance dj+1 satisfies

dj+1 ≥ nj+1 − deg(Gj+1)
= [Fj+1 : Fj ] (nj − deg(Gj)) . (26)

Proof. These statements follow from 12 and from the fact
that for a divisor A ∈ Div(Fj), deg(ConFj+1/Fj

(A)) =
[Fj+1 : Fj ] deg(A).

To end this discussion, we point that out there exists
an alternative lifting method (provided in Appendix B)
similar to that used in Ref. [57]. While such a lifting
improves the dimension of the code, this improvement
will be sub-leading for the family of codes we will build.
Therefore, we will use the simpler lifting to analyze the
asymptotic behavior of our codes.

IV.2. The Family of Codes

The family of codes {Cj}j→∞ is constructed from a
tower W of function fields over Fq with q = r2. Using this
tower, we show that for r ≥ 8, there exists a good family
of codes {Cj}j→∞ in which each code Cj is triorthogonal.
The tower we use is described in Refs. [54, 62].

Definition 9. Let W = (F0, F1, F2, . . .) be the tower of
function field over Fq with q = r2 where

1. F0 := Fq(x0) is the rational function field.

2. Fj+1 := Fj(xj+1) and each xj and xj+1 satisfy the
relation

xr
j+1 + xj+1 =

xr
j

xr−1
j + 1

. (27)

Many useful properties of this tower are already
known [54, Chapter 7].
Proposition IV.1 (Properties of tower). Consider the
tower W in Definition 9.

1. For each j ≥ 0, the extension Fj/F0 has degree
[Fj : F0] = rj.

2. The rational places in F0 form the set

Z := {Pα : α ∈ Fr2\Fr} , (28)

and each splits completely in all extensions Fj/F0.
This set has cardinality |Z| = r(r − 1).

3. The ramification locus of the tower is

V := {Pα : α ∈ Fr} ∪ {P∞}. (29)

This set has cardinality |V| = r + 1.

4. The genus gj := g(Fj) of the function field Fj is

gj =


(

r
j+1

2 − 1
)2

if j is odd(
r

j
2 − 1

)(
r

j+2
2 − 1

)
otherwise

(30)

Often, we will use the expression

1 − gj =
{

−rj+1 + 2r
j+1

2 if j is odd
−rj+1 + r

j
2 (1 + r) otherwise,

(31)

which can be derived from Eq. (30).
Now, we are ready to present our family of triorthogo-

nal codes. Our construction is recursive in a simple form:
we first use the rational function field F0 := Fq(x0) to con-
struct the base code C0, and then obtain each subsequent
code Cj+1 from Cj via the triorthogonality-preserving
lifting operation. Moreover, the parameters of all codes
in the sequence can be computed or bounded from those
of C0. We summarize this result in the theorem below.
Theorem 3 (Good family of triorthogonal codes). For
r = 2m with m ≥ 3, there exists a good family of triorthog-
onal codes {Cj}j→∞ over the alphabet Fr2 with parameters
[nj , kj , dj ] given by

nj = rj(r2 − r)

kj = rj(r + 1)
⌊

r − 2
3

⌋
+ 1 − gj

dj ≥ 2
3rj(r2 − r + 2). (32)
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One explicit family realizing these parameters is defined
recursively by

C0 = CL(D0, G0),
Cj+1 = CL(ConFj+1/Fj

(Dj), ConFj+1/Fj
(Gj)), (33)

where

D0 =
∑

Pα∈Z
Pα, G0 =

⌊
r − 2

3

⌋ ∑
Qα∈V

Qα. (34)

and Fj ∈ W, the tower of Def. 9.

Proof. We prove this theorem by construction. By Thm. 2,
it is sufficient to explicitly construct the base code C0 :=
CL(D0, G0). We use the set Z to construct the divisor
D0 and the set V to construct G0. Set

D0 :=
∑
P ∈Z

P G0 :=
∑
Q∈V

aQQ (35)

where the coefficients aQ ∈ Z will be chosen so that C0 is
triorthogonal.

From Ref. [62, Prop. 8.1.2], a differential η0 as in
Prop. III.1 is given by

η0 := dt0

t0
, t0 :=

∏
α∈Z

(x0 + α). (36)

A direct calculation gives the canonical divisor (outlined
in Appendix A)

(η0) = −D0 + (r − 2)
∑
Q∈V

Q. (37)

Therefore, we can ensure C0 is triorthogonal by setting
aQ := ⌊(r − 2)/3⌋ for r ≥ 8. Hence, the base code is
C0 := CL(D0, G0) with

D0 =
∑
P ∈Z

P,

G0 =
⌊

r − 2
3

⌋ ∑
Q∈V

Q. (38)

The parameters of C0 are

n0 = r(r − 1),

k0 = deg(G0) + 1 = (r + 1)
⌊

r − 2
3

⌋
+ 1,

d0 = r(r − 1) − (r + 1)
⌊

r − 2
3

⌋
. (39)

For example, for r = 8, C0 is a triorthogonal code with
parameters [56, 19, 38]82 .

We now define the family by successive lifting. Since
P ∈ Z and Q ∈ V , we can ensure that for each j:

1. Every place in supp(Dj) splits completely in the
extension Fj+1/Fj .

2. The divisors Dj+1 and Gj+1 are disjoint.

Therefore, each Cj can be lifted to Cj+1 by Def. 8:

C0 = CL(D0, G0),
Cj+1 = CL(ConFj+1/Fj

(Dj), ConFj+1/Fj
(Gj)), (40)

with Fj ∈ W. By Thm. 2, each Cj is triorthogonal.
Lemma 3 in combination with Eq. (39) and

degGj > 2gj − 2 for r ≥ 8. (41)

make clear that Eq. (32) holds.
Now, it is easy to show that this family is asymptotically

good, i.e. the ratios dj/nj and kj/nj do not vanish.

lim
j→∞

dj

nj
≥ lim

j→∞

rj(r2 − r + 2)
rj(r2 − r)

= 2
3 + 4

3r(r − 1) (42)

For the dimension, we can use Eq (31) to get

lim
j→∞

kj

nj
= lim

j→∞

rj
[
(r + 1)

⌊
r−2

3
⌋

− 1
]

rjr(r − 1)

≥ 1
3 − 2r + 7

3r(r − 1) > 0 for r ≥ 8. (43)

These limits show that our codes have very good en-
coding rates for their relative distance. More precisely,
these codes explicitly satisfy the TVZ bound for r ≥ 8:

lim
j→∞

kj

nj
+ dj

nj
≥ 1 − 2r + 3

3r(r − 1) > 1 − 1
r − 1 . (44)

Thus, there exists a good family of triorthogonal codes
{Cj} exceeding the TVZ bound on finite Fields Fr2 for
r ≥ 8. Moreover, it can be verified by direct computations
that these codes are also above the GV bound, thereby
scaling better than random codes in all regimes. As we
will see, such large encoding rates are beneficial when
converting to quantum codes. Indeed, the dimension of
the quantum code will be K ≤ k and the length N = n−K.
Hence, a large encoding rate in the classical code yields
the possibility of quantum codes with correspondingly
large encoding rates. In fact, a large encoding rate in
the classical code will result in a large flexibility to either
increase the distance of the quantum code or increase its
dimension instead, as desired.

V. QUANTUM CODES

In this section, we outline how to obtain qudit CSS
codes from the previously constructed family of classical
triorthogonal codes that support a transversal CCZ gate.
We first briefly review the basic elements of quantum
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computation on qudits of dimension q = 2m, m ≥ 1, that
are needed for constructing error-correcting codes.

The single-qudit Hilbert space is simply

Hq := span {|α⟩ | α ∈ Fq} . (45)

The qudit Pauli gates Xβ and Zβ (β ∈ Fq) act as

Xβ |α⟩ = |α + β⟩ ,

Zβ |α⟩ = (−1)TrFq/F2 (αβ) |α⟩ . (46)

Here, we have used the field trace operator TrFrn /Fr
(·) :

Frn → Fr defined by

TrFrn /Fr
(x) := x + xr + xr2

+ · · · + xrn−1
(47)

to describe these phase gates. These gates generate the
qudit Pauli group P ⊂ U(q), whose elements take the
form iaXαZβ where a ∈ {0, 1, 2, 3} and α, β ∈ Fq. The
normalizer of the qudit Pauli group is the qudit Clifford
group C:

C =
{

U ∈ U(q) | UPU† ∈ P for all P ∈ P
}

. (48)

This qudit Clifford group and a non-Clifford gate ele-
ment form a universal gate set for qudit-based quantum
computation. For our construction of quantum codes, we
consider the CCZ gate, a non-Clifford gate defined by

CCZ |x⟩ |y⟩ |z⟩ = (−1)TrFq/F2 (xyz) |x⟩ |y⟩ |z⟩ . (49)

This gate lies in the third level of the Clifford hierarchy,
implying a |CCZ⟩ state given in H⊗3

q by

|CCZ⟩ := CCZ |+⟩ |+⟩ |+⟩

= 1
q3/2

∑
x,y,z∈Fq

(−1)TrFq/F2 (xyz) |x⟩ |y⟩ |z⟩ , (50)

where |+⟩ is the uniform superposition of basis states. The
state |CCZ⟩ can be injected using a Clifford circuit via
gate teleportation [67]. So, the task of MSD in this paper
is to distill this state. The next sections will describe the
quantum codes that we will build for this procedure.

We can then discuss how to obtain a quantum code Q
with parameters [[N , K, D]]r2 from a triorthogonal code
C : [n, k, d]r2 following a standard procedure [48, 50]. In
short, the k × n generator matrix of a triorthogonal code
C can be put in the convenient form

G(C) =
(

1K H1

0 H0

)
, (51)

where K ≤ k. Because C is triorthogonal, the row
vector subspaces, H0 := rowspace(H0) and H1 :=
rowspace(H1), are orthogonal (see, e.g., Ref. [50]). Let
H := rowspace(H0, H1), so H0 ⊂ H. From the qudit
Pauli gates defined in Eq. (46) combined with these spaces,
we can define the quantum CSS code

Q = CSS
(
X, H0; Z, H⊥) , (52)

which has a transversal CCZ [50, Lemma 2.3].
The parameters N , K, and D of this quantum code can

be estimated from those of the classical code. Clearly, the
length is N = n − K, and K is the dimension. As a CSS
code, its distance is given by D = min(DX , DZ) where

DX = minf∈H\H0 |f | ≥ dist(H) ≥ d − K,

DZ = minf∈H⊥
0 \H⊥ |f | ≥ dist(H⊥

0 ) (53)

and d is the distance of the classical code. Assuming
2g − 2 < deg G < n, Eq. 12 yields

DX ≥ n − deg G − K. (54)

Along with this, we can lower bound DZ . As explained
in Ref. [50], the code H0 can be viewed as an AG code

H0 = CL(D′, G′). (55)

Here the divisor D′ =
∑n

i=K+1 Pi corresponds to punc-
turing K positions, and G′ = G −

∑K
i=1 Pi. Equivalently,

H0 is obtained by restricting the Riemann–Roch space
L(G) to functions that vanish at all punctured positions,
so that L(G′) ⊂ L(G). Then, using Eq. (13), we obtain

DZ ≥ dist(H⊥
0 ) ≥ deg(G′) − (2g − 2)

= deg(G) − K − (2g − 2). (56)

In our case, we will show DZ < DX , implying that the
distance of each of our quantum codes satisfy

D ≥ deg(G) − K − (2g − 2). (57)

In particular, we may derive a family of quantum codes
Qj from the triorthogonal codes Cj constructed in Sec. IV.
We summarize our quantum codes below:

Theorem 4 (Good quantum codes with a transversal
CCZ gate). There exists a good family of quantum codes
{Qj} with transversal CCZ gates on qudits with dimension
q = r2 = 22m for m ≥ 3. Each code Qj has parameters

Nj = rj(r2 − r) − Kj

Kj = x1 rj

(
(r + 1)

⌊
r − 2

3

⌋
− 2r

)
+ x2 v(r, j)

Dj ≥ (1 − x1) rj

(
(r + 1)

⌊
r − 2

3

⌋
− 2r

)
+ (1 − x2) v(r, j) (58)

where

v(r, j) :=
{

4r
j+1

2 if j is odd
2r

j
2 (1 + r) otherwise

and the constants x1 ∈ (0, 1) and x2 ∈ [0, 1] are chosen
such that Kj is an integer.

Proof. We show the proof in App. C.
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FIG. 2. Bounds on γ vs. R for quantum codes Qj at different
levels of the lifting for q = 26 = 64. For Q0, we present two-
sided bounds, while for the rest we have only upper bounds.

VI. EXPLICIT CODE CONSTRUCTIONS

Having demonstrated the existences of new families
of asymptotically or nearly asymptotically good codes,
in this section we undertake to present explicit results
for the properties of some Qj = [[Nj , Kj , Dj ]]q for low q
and j. In particular, we are interested in understanding
what overheads γ and encoding rates R = Kj/Nj are
achievable. For reference in this discussion, comparisons
will be made to the canonical code used in qubit MSD of
QBK = [[15, 1, 3]]2 with γ ≈ 2.46 and R ≈ 0.07 [68].

While R is straightforward once the code is constructed,
computing the minimum-weight logical operator—and
therefore the distance–for an arbitrary stabilizer code is
NP-complete. For the large q codes that we will be con-
sidering, we thus have to suffice with bounds for now. For
lower bounds Dmin

j , we use Eqs. (3) and (C1). To esti-
mate upper bounds, for Q0 we can leverage the qLDPC
code available at [69] with a workstation. We leave the
study of larger codes to future work.

The lowest q for which we can construct asymptotically
good codes is the family of codes with q = 26. Their
investigation is further motivated by the experimental
demonstration of q = 64 state preparation, suggesting
MSD with these codes is nearer to realization than larger
q. For j ≤ 4, the bounds on γ are presented as a function
of R for all possible codes in our family with q = 26 in
Fig. 2. The first point to observe is that γmax → 0 as
j → ∞ (as anticipated for an asymptotically good family).
Moreover, all codes outperform QBK . In particular, the
best performing code in Q0 is [[42, 14, 6]]64, which has
R = 1

3 and γmax ≈ 0.613. The codes within each Qj with
the lowest γmax are tabulated in Table III.

Increasing the qudit dimension to q = 28; Nj , Kj , and
Dmin

j all grow by factors of 3-4. While the best code
in Q0, [[188, 52, 18]], demonstrates a smaller overhead
at γmax = 0.445 than the best code in Q4 of d = 26,
it also comes at a cost of less efficient encoding rate R
(See Table III). When j > 0, all Qj have lower overhead
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q = 28

FIG. 3. Bounds on γ vs. R for quantum codes Qj at different
levels of the lifting for q = 28 = 256. For Q0, we present two-
sided bounds, while for the rest we have only upper bounds.
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FIG. 4. Bounds on γ vs. R for quantum codes Qj at different
levels of the lifting for q = 210 = 1024. For Q0, we present two-
sided bounds, while for the rest we have only upper bounds.

γmax than any code we have constructed with d = 26 and
greater encoding rates by a factor of 3.

The final qudit dimension for which we explicitly con-
struct codes is q = 210, so that we may compare with
the family of asymptotically good codes identified in
Ref. [49]. In that work, the codes had R ≤ 5

114 ≈ 0.04 and
N ≥ 932, 090 were identified. In contrast, our families
have R ≥ 0.319 and γmax ≤ 0.236 for the best codes in
all Qj . Further, it is only in Q2 where our codes begin
to exceed N = 932, 090. Instead, our best code in Q0
requires only N = 708.

In all such cases considered here, we find low overhead
costs to TVZ codes that we have constructed explicitly
per the methods of Secs. IV and V. Typically, when con-
structing codes, one aims to guarantee constant overhead
by choosing a sufficiently large code from a family, so that
only a single round of MSD is required. However for prac-
tical implementation this task may be too ambitious and
less cost-efficient overall. Indeed, we have constructed
codes that are sufficiently small such that they would
contribute a low cost even with overhead over multiple
rounds of MSD.
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One outstanding question is the error threshold for dis-
tillation of CCZ from these codes. Prior work on qutrits
and ququints found low-overhead codes with thresholds
to depolarizing noise as large as ϵ ≈ 0.1 exist [46, 64, 66].
Given the higher dimension of the qudits here, the many
error channels likely result in lower thresholds, which
would degrade the benefits from the codes proposed here.
Therefore error thresholds should be investigated while
varying R. Another question would be to quantify the
codes’ maximum stabilizer weight checks, as prior work
has shown them to be potentially non-constant in N .

TABLE III. Summary of the codes Qj for three values of r
with the upper bound γmax on their overhead. Reported are:
the number of physical qudits used Nj , the number of logical
qudits encoded Kj , and a lower bound on the code distance
Dmin

j , and the encoding rate R.

r j [[Nj , Kj , Dmin
j ]] R γmax

8

0 [[42,14,6]] 0.333 0.613
1 [[422,26,22]] 0.062 0.902
2 [[3416,168,104]] 0.049 0.649
3 [[27851,821,459]] 0.030 0.575
4 [[222850,6526,2818]] 0.029 0.444

16

0 [[188,52,18]] 0.277 0.445
1 [[3361,479,161]] 0.143 0.383
2 [[53447,7993,1767]] 0.150 0.254
3 [[855756,127284,21196]] 0.149 0.191
4 [[13632492,2096148,271852]] 0.154 0.150

32

0 [[708,284,48]] 0.401 0.236
1 [[24072,7672,968]] 0.319 0.166
2 [[762355,253453,21043]] 0.333 0.111
3 [[24292183,8213673,506711]] 0.338 0.083
4 [[774113521,266073871,12914929]] 0.344 0.065

VII. STATE REDUCTION

In Thm. 4, we have constructed good quantum codes
allowing constant-overhead MSD on qudits of dimension
q = r2, where r ≥ 8 is a power of two. What remains
is to construct a protocol yielding a magic state for an
arbitrary q = 2n. Following Ref. [49], we treat each r2-
qudit as two r-qudits. Then, for a r ≥ 8, we use our codes
to distill a |CCZ⟩r2 state. This state can reduced with a
constant-depth Clifford circuit into a |CCZ⟩r. Below, we
derive this state reduction procedure and show how any
|CCZ⟩2n may be obtained with this procedure.

Lemma 4. Given a state |CCZ⟩r2 , one can obtain the
state |CCZ⟩r using a Clifford circuit (Fig 5) consisting
of 4 single-qudit gates and 3 two-qudit gates.

Proof. We choose a normal basis {θ, θr} of Fr2 over Fr,
which can always be chosen such that θ + θr = 1. In this

|CCZ⟩ on r2-qudits Clifford corrections

|x0⟩

|CCZ⟩r2

x0

|y0⟩
y0

|z0⟩
z0

|x1⟩ Zηy0z0 Mγ

|y1⟩ Zηx0z0

|z1⟩ Zηx0y0

=

|CCZ⟩ on r-qudits

|x1⟩

|CCZ⟩r|y1⟩

|z1⟩

FIG. 5. Reduction of state |CCZ⟩r2 to a state |CCZγ⟩r where
γ := 1 + η, η := θr+1 and {θ, θr} is a normal basis of Fr2 over
Fr such that θ + θr = 1.

way, we can write

x = x0θ + x1θr, y = y0θ + y1θr, and z = z0θ + z1θr

(59)

where xi, yi, zi ∈ Fr. Then, we can exploit the composi-
tion of field traces

TrFr2 /F2(xyz) = TrFr/F2 ◦ TrFr2 /Fr
(xyz). (60)

to rewrite

|CCZ⟩r2

∝
∑
x,y,z

(−1)TrFr/F2 ◦ TrF
r2 /Fr (xyz) |x0, y0, z0,⟩r |x1, y1, z1⟩r .

(61)

and evaluate only the first trace,

TrFr2 /Fr
(xyz) = γ(x0y0z0 + x1y1z1) + η

∑
i+j+k=1,2

xiyjzk

where γ := 1 + θr+1, η := θr+1. (62)

Thus, while the measurements in Fig. 5 fix the values of
x0, y0, and z0, the Clifford corrections cancel all phases
proportional to η, so only the phase γx1y1z1 remains with
the phase γx0y0z0 now a global one. These steps produce
the state |CCZγ⟩r. Then, applying to register |x1⟩r the
Clifford gate Mγ given by

Mγ |v⟩r = |γv⟩r for v ∈ Fr, (63)

we recover the |CCZ⟩r state.

Theorem 5. Suppose the state |CCZ⟩22m for any m ≥ 3
can be distilled (at constant space overhead with the codes
of Thm. 4). Then, any |CCZ⟩2n can be obtained with a
constant-depth Clifford circuit.

Proof. We have a few cases to consider.
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1. n is even and n ≥ 6: set r = 2n/2 ≥ 8 and use our
codes to distill |CCZ⟩2n .

2. n > 2 is odd or n = 4: set r = 2n ≥ 8 and distill
|CCZ⟩r2 . Then, Fig. 5 is used to obtain |CCZ⟩2n .

3. n ≤ 2: set r = 16 and distill |CCZ⟩r2 . Then,
Fig. 5 is used twice to obtain |CCZ⟩4 or thrice for
|CCZ⟩2.

Thus the reduction circuit is used at most thrice. As a
result, any |CCZ⟩2n gate may be obtained with at most
12 single-qudit and 9 two-qudit Clifford gates.

This procedure generalizes the result of Ref. [49] where
it was shown how a non-Clifford single-qudit gate on
210-qudit can be converted to qubit |CCZ⟩ gates.

VIII. CONCLUSIONS

In this work, we have presented explicit constructions
of low-overhead magic state distillation protocols for qu-
dits with dimensions 22m with m ≥ 3 using triorthogonal
codes that are asymptotically good. In this, we have
identified a new family of triorthogonal codes that sat-
isfy the TVZ bound through a lifting method. Of the
codes identified, some can be implemented on d = 26

qudits – the same dimension as in Ref. [50] and smaller
than in Ref. [49]. These are attractive design targets
for qudit-based platforms like SRF-cavities where single
d ≤ 100 qudits have been demonstrated at varying levels
of sophistication [40, 41] including a [[42, 14, 6]]64 code.

Looking beyond these results, there are a number of
interesting avenues of research. First, it is critical to
identify within our family of codes those best suited for
current and future qudit-based platforms in more detail.
Numerics should be employed to determine the distill-
able states and regions with their thresholds. Further,
continued exploration of the properties of single codes or

families with smaller 2n-dimension along the lines pursued
for prime dimensions in [46] would be valuable. While
they do not belong to a family of codes, we can construct
a [[25, 7, ≥ 6]]32 and a [[7, 1, 3]]8 codes with transversal
CCZ gate, enabling protocols with low space footprint
albeit higher overhead which are potentially practical on
qudit-based platforms or even on qubit-based platforms
with a small constant factor overhead. Another open ques-
tion is whether qLDPC codes for qudits [70–73] can have
low overhead. Finally, recent work has suggested that
mildly relaxing the requirement for asymptotically good
codes can improve the locality of the weight checks [74].
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Appendix A: Canonical divisor (η0)

In this section, we compute the canonical divisor (η0)
for

η0 := dz0

z0
with z0 :=

∏
α∈Z

(x0 + α), (A1)

where Z are the rational places in F0 = Fq(x0). To
perform this computation, we observe that for a finite
field Fq, ∏

α∈Fq

(x − α) = xq − x (A2)

and that Fr2\Z = Fr. Then, noting that our fields have
characteristics 2, we find that

z0 = xr2

0 + x0

xr
0 + x0

. (A3)

where we have used the fact that Fr2\Z = Fr. Computing
the differential dz0,

dz0 = xr2

0 + xr
0

(xr
0 + x0)2 dx0

= (xr
0 + x0)r

(xr
0 + x0)2 dx0

= (xr
0 + x0)r−2dx0

=
∏

α∈Fr

(x0 + α)r−2 dx0. (A4)

So far, we have used only ordinary calculus and recognized
terms multiplied by r to be trivial. Putting the canonical
divisor together,

η0 = dz0

z0
=

∏
α∈Fr

(x0 + α)r−2∏
α∈Z

(x0 + α) dx0, (A5)

it is clear now that
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• The places Pα for α ∈ Z are simple poles of η0 with
multiplicities 1.

• Each place Qα for α ∈ Fr is a zero of η0, each with
multiplicity r − 2.

• The place at infinity Q∞ has valuation

vQ∞(η0) = (r2 − r) − r(r − 2) − 2
= r − 2. (A6)

Thus, the divisor (η0) is

(η0) = −D0 + (r − 2)
∑

α∈Fr

Qα + (r − 2)Q∞

= −D0 + (r − 2)
∑
Q∈V

Q. (A7)

Appendix B: Alternative Lifting Procedure

In Sec. IV, we demonstrate how a base AG code may
be lifted repeatedly to generate a family of AG codes
explicitly with good parameters. Here, we outline a similar
lifting method, which offers some improvements upon
these parameters, although their asymptotic behavior is
the same.

This alternative lifting method is similar to that of
Ref. [57]. As in our earlier method, the definition and the
lifting of our first divisor Dj remain the same. Instead,
we may lift the Gj divisor by

Gj+1 := ConFj+1/Fj
(Gj) + ∆(Fj+1/Fj) (B1)

where

∆(Fj+1/Fj) :=
∑

P ∈P(Fj)

∑
P ′|P

⌊
d(P ′|P )

3

⌋
P ′ (B2)

and d(P ′|P ) is the different exponent of P ′|P , defined as
follows:

Definition 10 (Different exponent). The different ex-
ponent of a place P ′|P is d(P ′|P ) = −vP ′(t) ≥ 0 for
t forming the complementary module tO′

P = CP :=
{x ∈ F ′ | TrF ′/F (xO′

P ) ⊆ OP } of the integral closure
O′

P :=
⋂

P ′|P OP ′ of OP .

The divisors Dj+1 and Gj+1 are disjoint by construc-
tion, because a place P ′ ∈ supp Dj+1 has d(P ′|P ) =
e(P ′|P ) − 1 = 0 by Dedekind’s different formula (Thm.
3.5.1 in Ref. [62]). Therefore, this lifting provides a valid
AG code Cj+1 := CL(Dj+1, Gj+1). Crucially, it is also
triorthogonality-preserving since

3∆(Fj+1/Fj) ≤ Diff(Fj+1/Fj), (B3)

where the different divisor Diff is related to the different
exponent via the definition:

Diff(F ′/F ) :=
∑

P

∑
P ′|P

d(P ′|P )P ′. (B4)

Appendix C: Proof of Good Quantum Codes’
Parameters (Thm. 4)

To prove this theorem, we will explicitly derived the
quantum codes from our triorthogonal codes following
the discussion in Sec. V. First, we note that Eq. (57),

Dj ≥ deg Gj − Kj − (2gj − 2) (C1)

can be verified simply by comparing the lower bounds on
DX and DZ . Then, in light of Eq. (C1), we must ensure

Kj ≤ deg(Gj) + 2(1 − gj), (C2)

which we may achieve simply by requiring

Kj < rj

(
(r + 1)

⌊
r − 2

3

⌋
− 2r

)
+ v, (C3)

where v(r, j) is a positive function given by

v(r, j) :=
{

4r
j+1

2 if j is odd
2r

j
2 (1 + r) otherwise

.

(Recall here that degGj = rjdegG0 = rj(r + 1)
⌊

r−2
3
⌋
,

and our genus gj is given in terms of our dimension r by
Eq. (31).) Fixing r ≥ 8, our strategy is to equivalently
choose

Kj = x1 rj

(
(r + 1)

⌊
r − 2

3

⌋
− 2r

)
+ x2 v(r, j), (C4)

where x1, x2 are constants such that 0 < x1 < 1, 0 ≤ x2 ≤
1 and that Kj < kj is an integer. Clearly, such constants
always exist for r ≥ 8, e.g. x1 = 1/2 and x2 = 0.

Having chosen Kj , it follows then that

Nj = nj − Kj

= rj

[
r2 − r − x1

(
(r + 1)

⌊
r − 2

3

⌋
− 2r

)]
− x2 v(r, j) (C5)

and the distance satsifies

Dj ≥ (1 − x1) rj

(
(r + 1)

⌊
r − 2

3

⌋
− 2r

)
+ (1 − x2) v(r, j) (C6)

completing the proof. Note that the constants x1 and x2
have different roles. For example, x1 /∈ {0, 1} guarantees
that both the distance and the dimension are Θ(rj+2).
The constant x2, however, may be chosen to either in-
crease the distance or the dimension.


