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Executive Summary
We propose a modification to the Hodgkin-Huxley model to reduce the numerical stiffness of the equations by intro-
ducing an explicit voltage threshold. When this threshold is crossed, the voltage and the gating variables are reset to
constant values. It is found that, for all of the current stimuli considered, the proposed model accurately reproduces
the behavior of the baseline Hodgkin-Huxley model while bypassing the fast dynamics of spiking. Specifically, the
model accurately reproduces the spike times and, between spikes, the time courses of the membrane potential and
gating variables.
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1 Introduction
The Hodgkin-Huxley (HH) model is a biophysically inspired model that can capture a vast array of observed spiking
behaviors of biological neurons upon calibration of the model’s coefficients E. Izhikevich 2004. This suggests
that the HH model could be used as a data-driven model for various types of biological neurons and biophysically
realistic neuron devices. Large spiking neural networks of these neuron models could provide insights about the
impact of neuron behavior on system-level dynamics in brains or biophysically realistic neuromorphic computers
and accelerators.

However, the HH model is often thought to be too computationally expensive for use in large simulations since
integrating it involves about 240 times as many floating point operations (flops) as the integrate and fire model
E. Izhikevich 2004. Models that can also reproduce complex neuron spiking phenomena but with significantly
fewer flops have been proposed such as the Izhikevich (Izh) model E. M. Izhikevich 2003, albeit with diminished
biophysical interpretability.

In the modern era of high-performance computing, flop counting is no longer the focus due to the widespread use
of parallel computing and advances in CPU and GPU technology. This implies that, today, perhaps the biggest
drawback with using spike resolving models such as the HH or Izh models is that fast timescales associated with
spike initiation lead to numerical stiffness, i.e., the need to take small time steps to resolve fast timescales. Implicit
integration schemes can ensure stability but not accuracy. Adaptive time stepping enables larger time steps between
spiking events. However, in simulations of larger networks, the odds increase that, at any point in time, at least one
neuron is in a spiking state and requires a small time step thus eroding the savings from adaptive time stepping.
Most importantly, the computational cost associated with time step restrictions typically cannot be diminished with
additional computational resources since simulations typically cannot be parallelized in time.

One potential solution to this problem is the use of the quasi-steady-state approximation (QSSA) to bypass the time
scale of the fast sodium activation gate m in the HH model Hodgkin and Huxley 1952. The QSSA approach replaces
the ordinary differential equation (ODE) for the m variable with a voltage-dependent steady-state value m∞(Vm). As
will be shown, this approach results in a model that does not quantitatively recover the behavior of the HH model and
does not decrease the fast changes in membrane potential with respect to time.

This motivates the present work, which aims to reduce the numerical stiffness of the HH equation system by bypass-
ing the fast time scale of the sodium activation gate with an explicit voltage threshold and reset of the voltage and
gating variables.
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2 Model
The Hodgkin-Huxley (HH) model Hodgkin and Huxley 1952 describes membrane potential dynamics via

Cm
dVm

dt
= Iext− INa− IK− IL, (2.1)

INa = ḡNam3h(Vm−ENa), (2.2)

IK = ḡKn4(Vm−EK), (2.3)
IL = ḡL(Vm−EL). (2.4)

Here, Cm is the membrane capacitance, Vm is the neuron membrane potential, Iext is an externally applied current,
and I(·), ḡ(·), and E(·) are the currents, conductances, and reverse potentials, respectively associated with sodium,
potassium, and an ion leak. The gating variables m and h control activation and inactivation of sodium channels,
while n controls potassium activation. The gating variables m,h,n are governed by

dx
dt

= αx(Vm)(1− x)−βx(Vm)x, x ∈ {m,h,n}, (2.5)

with voltage-dependent rates

αm =
0.1(−40−Vm)

e(−40−Vm)/10−1
, βm = 4e−(Vm+65)/18, (2.6)

αh = 0.07e−(Vm+65)/20, βh =
1

e(−35−Vm)/10 +1
, (2.7)

αn =
0.01(−55−Vm)

e(−55−Vm)/10−1
, βn = e−(Vm+65)/80/8. (2.8)

The typical HH model coefficients are employed: Cm = 1 µF/cm2, ḡNa = 120mS/cm2, ḡK = 36mS/cm2, ḡL =
0.3mS/cm2, ENa = 50mV, EK =−77mV, EL =−54.4mV.

Our contribution is the introduction of a voltage threshold for spiking, which triggers a reset of the voltage as well as
all gating variables. We integrate the HH equations above with the additional condition

if Vm >−35mV then


Vm← EK,

m← 0.0,
h← −0.27,
n← 1.08.

(2.9)

We refer to the use of this additional equation as the hard-reset Hodgkin-Huxley (hrHH) model.

The reset values are chosen by the following logic. The membrane potential after the reset is EK such that IK = 0
as indicated by (2.3), and m is reset to 0 such that INa = 0 as indicated by (2.2). These currents will remain small as
long as the membrane potential remains near the reset value because of (2.3) and because m will remain near zero
in this case due to (2.5) and the value of αm. These conditions imply that shortly after the reset, the evolution of Vm
is governed by Iext and IL, which are typically relatively weak currents and thus reinforce the assumption that the
membrane potential remains near the reset voltage for some time after the spike.

The independence of the membrane potential on h and n after the reset allows some freedom in how the reset values
of these gating variables are set. The nearly constant membrane potential implies that the evolution of h and n will
be fairly independent to the current stimulus and may generalize well for various current stimuli. The values of -
0.27 and 1.08 are determined through manual calibration to lead to agreement between the HH and hrHH models
response to a current step function. These and other results will be shown in the following chapter.
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3 Results
To evaluate the accuracy of the hrHH model in recovering the dynamics of the baseline HH model, we analyze the
voltage response of the model to various current stimuli. An analysis of the time evolution of the gating variables, a
discussion of why constant reset values seem to generalize well, and preliminary evidence of the impact of the model
on numerical stiffness will also be presented in this chapter. For reference, the voltage response of the QSSA and Izh
models are also presented. For the former, the original formulation in Hodgkin and Huxley 1952 is used rather than
the sigmoid approximation, e.g., used in Rinzel and Ermentrout 1998. For the latter, the coefficients for a “regular
spiking" neuron are adopted E. M. Izhikevich 2003. Simulations are performed using the Brian2 simulator Stimberg,
Brette, and Goodman 2019 and the following initial values are prescribed: Vm,0 =−65mV,m0 = 0.05,h0 = 0.60,n0 =
0.32.

In Fig. 1, we consider the models’ voltage response to an applied current step function which is 7 µA and turns off at
10 ms. We define the spike-to-trough interval as beginning with the crossing of -35 mV from below and ending with
the local minimum voltage occurring after the next local maximum. The hrHH model is designed to avoid resolving
the fast dynamics of Vm and m during the spike-to-trough interval; thus, those intervals are shaded in gray to focus
attention on the remaining intervals. By construction, the hrHH model registers a spike right at the start of the shaded
region. Meanwhile, the QSSA model initiates a spike (exceeds -35 mV) too early the Izh model too late with respect
to the HH model. Perhaps surprisingly, the after-trough behavior of the hrHH model almost exactly matches the
HH model. The QSSA has only minor errors in this region, and the Izh model is less accurate as it tends towards a
resting voltage that is below that of the other models.

In Fig. 2, the response to an applied current of a linear pulse is considered. The applied current linearly increases
from 0 to 6 µA from 5 to 8 ms and then returns to zero for the duration. The pulse ends 2 ms before the HH model
spike initiates, which makes this case a delayed excitation unlike the prior stimulus considered. Again the hrHH
model exactly recovers the HH model dynamics outside of the spike-to-trough interval. For the QSSA model, the
spike initiates right after the pulse ends, which leads to an early spike. The Izhikevich model does not spike as the
voltage decreases monotonically after the pulse ends indicating an inability to capture the delayed excitation.

In Fig. 3, the response to an applied current of a quadratic pulse is considered. The applied current obeys Iext =
10t2/49− 3 µA for 14 ms and then is zero for the duration. The hrHH model exactly tracks the voltage of the HH
model outside of the spike-to-trough interval. Once again the QSSA model spikes early and the Izh model spikes
late. The Izh model also emits two subsequent spurious spikes, the latter of which is a delayed excitation.

3.1 Waveforms and gating variables
Next, the response to two different waveforms is considered to analyze the accumulation of errors in time. Also,
time series for the ion gating variables are analyzed to provide additional context on the model dynamics. Since
the Izh model has been shown to have different dynamics for a single pulse and does not have gating variables, it
is omitted from the following analysis. In Fig. 4, we consider the response to a linear sawtooth waveform current,
which linearly increases from 0 to 7 µA over 10 ms and repeats. The HH and hrHH models agree well outside of the
spike-to-trough intervals. The QQSA model on the other hand produces two spurious spikes near 20 and 40 ms and
misses the spike at 30 ms. This behavior can be explained by examining the gating variable dynamics.

m is the sodium activation channel. QSSA predicts the shape of the rapid rise and fall qualitatively correct, but this
happens early, which is consistent with the early spike. For hrHH, the initial rise of m at spike initiation is accurately
captured, a spike is registered and m is reset to zero, which roughly corresponds to the after-trough value observed
in HH. In this way, the rapid rise and fall of m is bypassed by jumping to the after-trough slow dynamics for which
the value of m remains near zero. For the sodium deactivation gating variable h and the potassium activation gating
variable n, the early spike in the QSSA model leads to early relaxation of these spike-suppressing variables to their
resting (spike-permitting) values, which allows for the spurious spike at 20 ms. For hrHH, the reset values of h and n
given in (2.9). These values are just such that it takes the full time until the trough for h and n to relax to the trough
values observed with the HH model. This leads to the accurate voltage trajectory for subsequent spikes.

In Fig. 5, a linear pulse waveform current is applied, which linearly increases from 0 to 7 µA over 3 ms, is off for
4 ms, and repeats. The hrHH model correctly predicts that one spike forms shortly after the first linear pulse. The
QSSA predicts spurious spikes for every second subsequent pulse. Near the supurious spike initiations, the values
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Figure 1. The membrane potential response to a step function applied current for the HH,
hrHH, QSSA, and Izh models. The spike-to-trough interval is shaded for the HH reference data.
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Figure 2. The membrane potential response to a linear pulse applied current for the HH, hrHH,
QSSA, and Izh models. The spike-to-trough interval is shaded for the HH reference data.
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Figure 3. The membrane potential response to a quadratic pulse applied current for the HH,
hrHH, QSSA, and Izh models. The spike-to-trough interval is shaded for the HH reference data.
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Figure 4. The response of the membrane potential and gating variables to the applied current of a linear sawtooth
waveform for the HH, hrHH, and QSSA models. The spike-to-trough intervals are shaded for the HH reference data.
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Figure 5. The response of the membrane potential and gating variables to the applied current of a linear pulse
waveform for the HH, hrHH, and QSSA models. The spike-to-trough intervals are shaded for the HH reference data.

of m, h, and n are fairly similar across the models, so it is possible that the spurious spikes predicted by the QSSA
model are the result of the model’s use of an algebraic relation for m∞ instead of solving the m ODE as in the hrHH
or HH models.

It is remarkable that for all of the applied pulses and waveforms considered, the hrHH model, deployed with the hard
reset conditions given in (2.9), is accurate outside of the spike-to-trough intervals. To understand why the model is
generalizing well without recalibration for different current stimuli, we revisit the assumption made in the model
development. Indeed, it is observed that Vm ≈ EK across the spike-to-trough intervals for all stimuli considered.
This implies n and h evolve approximately independently of Vm during these intervals and obey nearly constant
coefficient exponential relaxation governing equations (2.5), which have simple dynamics that do not depend on Iext
and essentially track the expiration of the refractory time. Meanwhile, in the HH model, Vm varies rapidly over these
intervals (due to rapid variations in m and large Vm−EK) which leads to relatively complex dynamics for n and h.
Since the trough values of n and h are observed to not be varying appreciably between cases with different current
stimuli, the simplified dynamics are sufficient to recover these constant trough values through a simple exponential
relaxation trajectory as long as predicting the spike-to-trough behavior is not of interest.

As a proxy for quantifying the degree to which the hrHH model reduces the numerical stiffness of the system of
equations, without making conclusions that are specific to a particular numerical integration method, the reduction
in the maximum membrane potential slope is investigated. For all stimuli considered, the reduction in the maximum
slope is between 3.3 and 3.5 times for the hrHH model with respect to the HH model, which implies that the hrHH
model avoids the fastest dynamics of the HH model as desired. For the QSSA and Izh models, the slope increases by
a factor of 10 and by 10%, respectively, which implies that the dynamics are even faster in these models than in the
HH model.
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4 Conclusions
The hard reset Hodgkin-Huxley (hrHH) model is proposed. It uses a voltage threshold to detect spikes and resets
the voltage and gating variables. The model bypasses the fast time dynamics of spike-to-trough intervals and almost
exactly recovers the baseline HH model’s voltage and gating variable time series outside of these intervals for all
pulses and waveforms considered. The model decreases the maximum voltage slope by a factor between 3.3 to 3.5
with respect to the HH model, which is a proxy for a reduction in numerical stiffness. This suggests that larger time
steps could be used when integrating the hrHH model while remaining quantitatively accurate with respect to the HH
model outside of spike-to-trough intervals.
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