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MoE-Inference-Bench: Performance Evaluation of Mixture of
Expert Large Language and Vision Models

Abstract
Mixture of Experts (MoE) models have enabled the scaling of Large
Language Models (LLMs) and Vision Language Models (VLMs)
by achieving massive parameter counts while maintaining computa-
tional efficiency. However, MoEs introduce several inference-time
challenges, including load imbalance across experts and the addi-
tional routing computational overhead. To address these challenges
and fully harness the benefits of MoE, a systematic evaluation of
hardware acceleration techniques is essential. We present MoE-
Inference-Bench, a comprehensive study to evaluate MoE perfor-
mance across diverse scenarios. We analyze the impact of batch size,
sequence length, and critical MoE hyperparameters such as FFN di-
mensions and number of experts on throughput. We evaluate several
optimization techniques on Nvidia H100 GPUs, including pruning,
Fused MoE operations, speculative decoding, quantization, and vari-
ous parallelization strategies. Our evaluation includes MoEs from
the Mixtral, DeepSeek, OLMoE and Qwen families. The results
reveal performance differences across configurations and provide
insights for the efficient deployment of MoEs.

1 Introduction
Mixture of Experts (MoE) models have emerged as a powerful par-
adigm for scaling neural networks, particularly in the domain of
Large Language Models (LLMs). This approach offers a way to
increase model capacity without a proportional rise in computational
cost. MoE differs from dense models by using multiple specialized
sub-networks, where each input activates only a subset of experts (as
determined by a gating network). In contrast, dense models activate
all parameters for every input, making MoE architectures signifi-
cantly more parameter-efficient. Architectures such as the Switch
Transformer [13] and GShard [24], along with more recent open-
source MoE models like Mixtral [20], Llama4 [32], DeepSeekMoE
[9], and Kimi [42], exemplify the rapid advancements in MoE-based
systems These models leverage sparse weight activation, enabling
large networks to maintain inference efficiency. MoE models are
now widely used in applications such as text generation, retrieval-
augmented generation, and multimodal reasoning. However, despite
their computational advantages, MoE models also pose unique chal-
lenges in inference, training stability, memory usage, and hardware
utilization due to load imbalance and dynamic routing.

MoE Inference [27] plays a central role in modern AI applications,
as it involves executing the forward pass of a sparsely activated
model where only the top-k experts per token are evaluated. Efficient
inference is crucial for maximizing the benefits of sparsity in real-
world deployments. As MoE models continue to grow in scale and
complexity, optimizing inference is critical to achieve low latency
and energy-efficien execution on modern accelerators. This includes
mitigating expert load imbalance, reducing communication overhead
in distributed settings, and designing scheduling strategies that fully
exploit sparsity for throughput gains.

Self-Attention MoE FFN Embeddings

Total Params:
46.70B

(a) Mixtral-8x7B

Total Params:
6.92B

(b) OLMoE-1B-7B

Total Params:
14.32B

(c) Qwen1.5-MoE

Active Params:
12.88B

(d) Mixtral-8x7B

Active Params:
1.28B

(e) OLMoE-1B-7B

Active Params:
3.52B

(f) Qwen1.5-MoE

Figure 1: Layer-wise Total and Active Parameter Breakdown
for Mixtral-8x7B, OLMoE-1B-7B, and Qwen1.5-MoE

The MoE ecosystem has witnessed a convergence of three key
trends: the rise of open-source MoE models, advancements in AI ac-
celerators, and the development of inference frameworks like vLLM
[23] and FasterMoE [18] optimized for sparse execution. This syn-
ergy highlights the importance of robust benchmarking to evaluate
MoE performance across diverse hardware setups. Benchmarking
exposes critical trade-offs between throughput, latency, and memory
footprint, enabling informed decisions about model deployment and
architecture optimization.

The evolution of AI hardware such as GPUs and specialized AI
accelerators has been instrumental for the ever-rising computational
demands of MoE models. These accelerators offer high parallelism
and memory bandwidth, essential for models with billions of param-
eters and dynamic computation graphs. However, MoE architectures
also introduce new hardware challenges, such as expert placement,
routing overhead, and under-utilization due to sparse activations.
Addressing these hardware inefficiencies requires co-designing in-
ference systems that are both MoE-aware and hardware-efficient.
Figure 1 shows that MoE layers dominate both total and active pa-
rameters across different models, emphasizing their critical role in
computational cost and memory footprint. Since MoE layer weights
account for a substantial portion of the model, understanding the
MoE performance is essential for optimized deployment.

In this paper, we introduce MoE-Inference-Bench, a comprehen-
sive benchmarking suite designed to systematically evaluate MoE
models across a wide range of optimization techniques. Our bench-
mark analyzes throughput, latency, and hardware utilization for state-
of-the-art MoE models, shedding light on the practical implications
of sparse inference and routing dynamics. Our comprehensive study
provides several insights for researchers aiming to deploy MoE mod-
els efficiently, and contributes to the broader goal of scalable and
cost-effective AI deployment in the era of massive model sparsity.
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The main contributions of our paper are as follows:

(1) Comprehensive MoE Benchmarking Suite: We propose
MoE-Inference-Bench to evaluate MoE performance under
diverse inference scenarios. Our suite spans models from
2B to 70B parameters, covering multiple architectures (Mix-
tral, DeepSeek, Qwen, Phi, OLMoE). Our study examines
multiple factors that significantly influence the inference
performance of MoEs, providing insights for future designs.

(2) Fine-Grained Hyperparameter Scaling Analysis: We per-
form an extensive exploration of key MoE layer hyperpa-
rameters, which include FFN dimension, total expert count,
and active expert ratio to quantify their individual and joint
impact on throughput and out-of-memory boundaries on
Nvidia H100 GPUs. Our results identify optimal MoE oper-
ating constraints and reveal clear trade-offs between model
size, expert sparsity and hardware efficiency.

(3) Inference Optimizations: We systematically assess multi-
ple inference-time acceleration techniques such as quantiza-
tion, intra and inter expert pruning, speculative decoding and
Fused MoE, highlighting their effectiveness across batch
sizes and sequence lengths. We also benchmark MoE in-
ference across Nvidia H100 GPUs, analyzing the effects of
tensor, pipeline, and expert parallelism strategies.

2 Background and Related Work
Large Language and Vision Models. Modern LLMs are predomi-

nantly built upon the transformer architecture [44], which comprises
stacks of decoder layers. These layers incorporate core components
such as token embeddings, positional encodings, multi-head self-
attention, and feed-forward networks. VLMs combine vision and
language capabilities to simultaneously process both visual data and
textual information, enabling them to perform multimodal tasks such
as image captioning and visual question answering.

Mixture-of-Experts LLMs . Dense architectures represent the con-
ventional LLM, where a single, monolithic neural network activates
all parameters for every token. This design facilitates comprehen-
sive information processing but incurs substantial computational
and memory costs [43]. Mixture-of-Experts (MoE) models [3, 38]
incorporates multiple specialized subnetworks within selected lay-
ers, typically the FFN blocks, as shown in Figure 2. A learnable
routing mechanism activates only a subset of experts per token,
improving parameter efficiency and potentially accelerating infer-
ence without proportionally increasing compute. Notable Examples
include Mixtral-8x7B [34], where expert specialization enables scal-
ing to larger total parameter counts while mitigating the runtime
overhead of dense activation. However, MoE architectures introduce
additional complexity in training stability and load balancing.

Benchmarking LLM Performance. LLM Benchmarking under
different optimizations is essential for assessing the computational
trade-offs of diverse architectures. Previous studies have evaluated
LLMs on leadership-class supercomputers [11, 49], LLM-specific
inference [5] and deep learning benchmark suites [12, 50], offering
insights into scalability, efficiency, and hardware utilization patterns.
To the best of our knowledge, this work is the first to present sys-
tematic, inference-focused benchmarking of state-of-the-art MoE
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Figure 2: Mixture of Expert (MoE) Design

models across a broad spectrum of optimizations, providing insights
into architectural and system-level performance trade-offs.

3 Experimental Setup
3.1 LLM Architectures
We evaluate MoEs across varying sizes and architectures, enabling
a comprehensive inference performance comparison. The models
include Mixtral-8×7B [20], Qwen-1.5-MoE [2], Qwen3-30B-A3B
[47], DeepSeek-V2-Lite [26], Phi-3.5-MoE [1], OLMoE-1B-7B
[35], DeepSeek-VL2-Tiny, DeepSeek-VL2-Small, DeepSeek-VL2
[46]. This set encompasses both LLM and VLM MoEs, covering
parameter scales from lightweight 7B parameter models to large-
scale 30B+ parameter networks. Table 1 summarizes the architecture
specifications of different MoE models in our evaluation.

3.2 LLM Token Generation Parameters
The input length refers to the number of tokens present in a single in-
put prompt. The output size denotes the number of tokens generated
by the model sequentially until a stopping criterion or predefined
token limit is reached. The batch size corresponds to the number of
input & output pairs processed concurrently. In our evaluation, we
consider input and output lengths of 128, 256, 512, 1024, and 2048
tokens, and batch sizes of 1, 16, 32, and 64.

3.3 AI Hardware Platforms
We deploy MoEs on Nvidia H100 SXM5 80GB GPU [6] using the
vLLM [23] framework. The NVIDIA H100 GPU, built on TSMC’s
4N process with 80B transistors, optimized for trillion-parameter
LLMs. It features 80 GB HBM3 memory, 50 MB L2 cache, fourth-
generation Tensor Cores and NVLink. vLLM [23] is an open-source
inference framework known for its efficient memory management
and support across a wide range of AI accelerators. In a limited
study of Llama-4 Scout performance, we include a publicly-available
Cerebras cloud inference CS-3 model replica [4] in our evaluation.

3.4 Performance Metrics
We employ the following performance metrics in our evaluation: (a)
Time to First Token (TTFT) measures the time between receiving
an input prompt and generating the first output token. It reflects
the responsiveness of an LLM from the user’s perspective. TTFT is
obtained by limiting the maximum output length to a single token
and recording the generation time.

(b) Inter-Token Latency (ITL) is the average time interval be-
tween producing consecutive output tokens. It captures the model’s

2
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Table 1: Comparison of Mixture of Expert Model Architectures

Model Model Type Modality #Layers #Hidden Size #FFN Dimension #Experts #Active Experts Model Size Active Parameters
Mixtral 8x7B Transformer Text 32 4096 14336 8 2 47B 12.9B

Qwen 1.5 MoE Transformer Text 24 2048 5632 60 4 14.3B 2.7B
Qwen3-30B-A3B Transformer Text 48 5120 13824 128 8 30.5B 3.3B
DeepSeek V2 Lite Transformer Text 27 2048 1408 64 6 15.7B 2.4B

Phi 3.5 MoE Transformer Text 32 4096 6400 16 2 41.9B 6.6B
OLMoE-1B-7B Transformer Text 16 2048 8192 64 8 7.2B 1.3B

DeepSeek VL2 Tiny Transformer Text + Image 16 1536 8960 8 2 3B 1.0B
DeepSeek VL2 Small Transformer Text + Image 24 2048 11008 8 2 16B 2.8B

DeepSeek VL2 Transformer Text + Image 32 4096 14336 8 2 27B 4.5B

OLMoE-1B-7B
Qwen1.5-MoE-A2.7B

DeepSeek-V2-Lite
Qwen3-30B-A3B

Mixtral-8x7B
Phi-3.5-MoE
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Figure 3: TTFT, ITL and End-to-End Latency of LLMs for
Batch Size of 64 and Input & Output Length of 2048

per-token generation speed. ITL is computed as:

ITL =
End-to-End Latency−TTFT

Batch Size×Output Tokens−1
(1)

(c) Throughput indicates the processing efficiency of the hardware,
representing the total number of tokens (input and output) processed
per second. We first measure the end-to-end latency (time from
prompt submission to the generation of the final output token) and
convert it to throughput as follows:

Throughput =
Batch Size× (Input Tokens+Output Tokens)

End-to-End Inference Latency
(2)

(d) Samples per second: The metric for VLMs is the number of
input (image + text) samples processed per second.

4 MoE Inference Analysis
In this section, we first examine the breakdown of MoE prefill and de-
code phases, followed by examining the role of input/output lengths
and batch sizes on the inference throughput.

4.1 Prefill and Decode Breakdown
Figures 3 and 4 present a comparative analysis of TTFT, ITL, and
end-to-end latency across LLMs and VLMs. Among LLMs, OLMoE-
1B-7B achieves the fastest TTFT, outperforming DeepSeek-V2-Lite
by approximately 70%, while ITL varies by nearly 100% between
the best and worst performing models, and end-to-end latency shows
over a 120% gap. In VLMs, latency differences are more pronounced
as DeepSeek-VL2-Tiny attains a TTFT about 30% faster than the
DeepSeek-VL2 model, with ITL showing a 240% gap and end-to-
end latency exceeding a 260% difference. These results indicate
that while LLMs exhibit moderate variation in latency, VLMs incur
substantially larger performance gaps, mainly due to heavier com-
putational load and multimodal processing overhead in the vision
language inference pipeline.
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Figure 4: TTFT, ITL and End-to-End Latency of VLMs
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Figure 5: Impact of Batch Size on Varying Number of Active
Experts (TopK) on Nvidia H100 GPU for Context Length 2048

4.2 Impact of Batch Size
LLMs and VLMs demonstrate an increase in throughput with an
increase in batch size for the same context length. This is mainly due
to the simultaneous execution of all input prompts and the parallel
generation of output tokens of all batches. Figure 5 demonstrates that
throughput consistently decreases as the number of active experts
increases across DeepSeek-V2-Lite and Qwen1.5-MoE-A2.7B mod-
els and all batch sizes, with the performance degradation being more
pronounced at higher batch sizes. For DeepSeek-V2-Lite, increasing
the active experts from 1 to 32 results in an average throughput
drop of approximately 15-20% for large batch sizes (64 and 128),
whereas small batch sizes (1 and 16) incur only about a 5-8% reduc-
tion. Qwen1.5-MoE-A2.7B exhibits a similar trend but with slightly
lower relative losses (around 12-18% for large batches and 4-7%
for small batches), indicating a marginally better resilience to TopK
scaling. Across both models, throughput scales sub-linearly with
batch size: moving from batch size 1 to 128 increases throughput
by roughly two orders of magnitude, but larger batches increase the
throughput with more active experts.

Insight: The results suggest that while larger batch sizes maxi-
mize hardware utilization, they are more sensitive to increased expert
activation, highlighting a critical trade-off with batching and active
experts in MoE inference.

3
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Figure 6: Batch Size vs Input & Output Length on H100 GPU

4.3 Impact of Input/Output Sizes
Figure 6 illustrates throughput trends across varying batch sizes
and sequence lengths for DeepSeek-V2-Lite and Qwen1.5-MoE-
A2.7B. For both models, throughput scales linearly with batch size,
with increases exceeding 8× from batch 1 to 128. Shorter sequences
consistently outperform longer ones. For example, in both models, in-
put/output length of 128 achieves up to 30% higher throughput than
length of 2048 at large batches, and the performance gap between
shortest and longest sequences widens with batch size due to reduced
memory and compute demands. For DeepSeek-V2-Lite, interme-
diate lengths (256-512) show less than 10% drop compared to the
shortest length, indicating efficient handling of medium sequences,
whereas longer sequences (1024-2048) experience throughput degra-
dation exceeding 20%. Qwen1.5-MoE-A2.7B not only surpasses
DeepSeek-V2-Lite by 20–30% across all settings but also exhibits
a more gradual decline in throughput as sequence length increases,
reflecting better optimization for long-context inference.

Insight: Throughput decreases as the output generation tokens
increase. This is due to the increase in sequential token generation.
Also, throughput increases with an increase in input length, as there
is less opportunity for parallel processing. This reflects the funda-
mental difference between parallel input encoding and sequential
output generation in transformer architectures.

5 Fine Grained MoE Inference Analysis
5.1 Hyperparameter Setup
This section investigates the impact of scaling MoE hyperparameters
in a layer. We explore several possible combinations within our
predefined hyperparameter configuration, namely FFN dimension:
{1792,3584,7168,14336}, number of experts: {8,16,32,64}, and
number of active experts: {1,2,4,8}. The baseline skeleton model is
Mixtral-8x7B and we tweak the hyperparameters in each experiment.
All experiments are conducted on 4 H100 GPUs using vLLM. Any
missing data points in the results indicate OOM conditions.

5.2 Scaling FFN Dimension
Figure 7 illustrates the scaling of FFN dimension for a fixed num-
ber of experts. Across all expert configurations, throughput steeply
declines by 50% on average when FFN dimension increases from
1792 to 14336, with the steepest drops occurring in the transition
from 1792 to 3584. This performance degradation is particularly
acute for configurations with higher active expert counts, where 8
active expert scenarios consistently show the most throughput reduc-
tions. The impact of active experts becomes increasingly impactful
at higher FFN dimensions, with single active expert configurations

maintaining relatively stable throughput compared to multiple ac-
tive expert scenarios. At the largest FFN dimension (14336), the
performance gap between one active and eight active expert config-
urations reaches around 60%, highlighting the effect of increased
data movement and computation overhead. The asymptotic behavior
observed at the highest FFN dimensions across all configurations
suggests approaching the theoretical bandwidth limits of the H100
architecture.

Insight: The convergence of throughput, regardless of active
expert count at extreme FFN sizes, indicates that memory bandwidth
saturation overrides computational parallelism benefits. This finding
has critical implications for MoE deployment strategies, suggesting
that practitioners should carefully balance FFN capacity against
throughput requirements.

5.3 Scaling Number of Experts
Figure 8 illustrates the scaling of the number of experts for a fixed
FFN dimension. The scaling patterns with total expert count show
a complex non-linear relationship that varies significantly based on
FFN dimension and active experts. For smaller FFN dimensions
(1792, 3584), increasing the total number of experts from 8 to 64
generally maintains or slightly improves throughput, with improve-
ments ranging from 5-15% in optimal configurations. However, this
positive scaling behavior becomes increasingly constrained at larger
FFN dimensions, where the additional expert capacity cannot be
effectively utilized due to memory bandwidth limitations. The in-
teraction between total experts and active experts shows a resource
allocation challenge that becomes more complex with increasing
scale. Configurations with higher active expert counts (4, 8) show di-
minishing returns more rapidly as total experts increase, particularly
evident in the flattening throughput curves beyond 32 total experts.

Insight: As number of experts grow, routing and communication
overhead can overshadow computational gains, while memory limits,
especially in high FFN configurations, cause out-of-memory fail-
ures. Effective MoE deployment should optimize the total parameter
budget rather than maximize expert count, with extreme scale con-
figurations likely needing distributed placement across multi-node
architectures for efficient resource use.

5.4 Scaling Number of Active Experts
Figure 9 illustrates the scaling of the number of active experts for a
fixed FFN dimension. The active expert scaling reveals a consistent
throughput degradation as the number of active experts increases
from 1 to 8 across all configurations. Single active expert configu-
rations consistently deliver 50-80% higher throughput compared to
8 active expert scenarios, representing an efficiency optimization
opportunity in MoE deployment strategies. This substantial per-
formance difference reflects the fundamental relationship between
sparse activation benefits and multi-expert overhead, particularly ev-
ident in the linear throughput degradation patterns observed across
different total expert and FFN configurations. The consistency of
this degradation across varying total expert counts suggests that
active expert management represents a primary optimization level
for inference production deployments. The scaling behavior across
FFN dimensions reveals that active expert overhead is not uniformly
distributed across different settings. At smaller FFN dimensions, the
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Figure 7: Throughput vs. FFN Dimension for Batch Size 16 and Input/Output Length 2048 on 4 H100 GPUs on Mixtral-8x7B Variant
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Figure 8: Throughput vs. #Experts for Batch Size 16 and Input/Output Length 2048 on 4 H100 GPUs on Mixtral-8x7B Variant
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Figure 9: Throughput vs. #Active Experts for Batch Size 16 and Input/Output Length 2048 on 4 H100 GPUs on Mixtral-8x7B Variant

throughput gap between 1 active and 8 active configurations remains
relatively modest (20-30%), while at larger FFN dimensions this
gap expands dramatically (60-80%). The interaction suggests that
high-capacity MoE configurations may benefit from dynamic active
expert allocation strategies that adjust based on computation and
memory availability.

Insight: MoE throughput drops sharply with more active experts,
with single expert setups delivering up to 80% higher performance
at larger FFN sizes. Jointly tuning expert count, FFN dimension,
and activation strategy is essential, as smaller FFNs allow flexibility
while larger ones require conservative activation to avoid OOM.

To summarize our findings on scaling the number of experts, ac-
tive experts, and FFN dimensions , the data reveals clear operating
regimes where different parameter combinations provide optimal
throughput characteristics, with smaller FFN dimensions (1792-
3584) enabling more flexible active expert usage while larger dimen-
sions (7168-14336) require more conservative activation strategies
to maintain acceptable throughput. The systematic OOM bound-
aries observed at extreme configurations provide deployment guide-
lines for hardware-constrained environments, indicating that current

H100-based systems can effectively support MoE models up to spe-
cific parameter budgets before requiring distributed architectures.

6 MoE Algorithm Optimizations
6.1 Quantization
Quantization [17] is a method to reduce model size by lowering
the precision of weights and activations. LLMs can be operated in
lower precisions, such as FP8 [22], using GPTQ [14] and AWQ [25]
without compromising the model quality. Figure 10 compares the
performance of Mixtral-8x7B under FP16 and FP8 precisions using
vLLM on H100 GPU with varying batch sizes and input/output
lengths. Across both settings, FP8 outperforms FP16 in throughput,
with the performance gap widening under larger batch sizes and
remaining stable across varying sequence lengths. Specifically, FP8
achieves up to 25–30% higher throughput than FP16 at the highest
batch size, indicating superior scalability with parallel workloads. In
the input/output length variation analysis, FP8 sustains a throughput
advantage of around 20–25% over FP16 across all tested lengths,
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Figure 10: Performance Comparison of Mixtral-8x7B with
FP16 and FP8 precisions on Nvidia H100 GPUs

suggesting that the benefit of lower precision is robust to changes in
sequence length and not limited to small context inference.

Insight: These results show FP8’s potential to deliver substan-
tial efficiency gains in both compute-bound and memory-bound
scenarios on H100 GPUs.

6.2 MoE Pruning
Inter-expert pruning [29] removes an entire expert along with their
routing/gating weights, lowering memory usage while keeping the
same number of active experts per token during inference. Intra-
expert pruning [48] reduces the FFN Dimension inside each expert,
keeping the number of experts unchanged but lowering the com-
putation per expert. In our experiments, we apply pruning ratios
of {12.5%, 25%, 50%}. For example, 12.5% inter-expert pruning
removes 18 of the experts in each layer, while 25% intra-expert
pruning reduces the FFN dimension in each expert by 14. We
evaluate TopK values from 1 up to the baseline pretrained top-k:
{1,2, . . . ,TopKbaseline}.

The results in Figure 11 show that throughput generally decreases
as the number of active experts increases, with intra- and inter-expert
pruning exhibiting distinct trends across models. For OLMoE-1B-
7B, higher pruning ratios (e.g., 50%), particularly intra-expert prun-
ing tend to sustain or even improve throughput for larger TopK,
likely due to reduced per-expert computation enabling better hard-
ware utilization. In contrast, Qwen1.5-MoE-A2.7B is more sensitive
to pruning, where aggressive intra-expert pruning at low TopK sig-
nificantly degrades throughput, indicating greater vulnerability to
load imbalance. On NVIDIA H100 GPUs, these effects are amplified
because the GPU’s high compute-to-memory bandwidth ratio and ad-
vanced scheduling mechanisms make performance more sensitive to
expert load balancing; when token-to-expert routing is imbalanced,
some experts become bottlenecks, reducing the overall parallel effi-
ciency despite the available compute capacity.

Insight: Low pruning percentages (12.5% or 25%) of inter and in-
tra expert pruning can cause an inverse effect and reduce throughput,
while 50% pruning can significantly improve throughput.

6.3 Speculative Decoding Study
Speculative decoding is a technique to accelerate LLM inference
by generating multiple tokens in parallel and verifying them. The
process involves a small and lightweight draft model that generates
several future tokens in a single step, followed by a verification
step using the larger, more accurate model to validate or reject the
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Figure 12: Comparison of Speculative Decoding Performance
on Target Model Qwen3-30B-A3B using four Draft Models

sequence. This approach reduces the number of sequential forward
passes required, significantly improving decoding throughput while
maintaining output quality. Recent implementations integrate specu-
lative decoding with advanced scheduling and KV cache manage-
ment, making it particularly effective for real-time and large-scale
deployment scenarios. A key limitation of speculative decoding is
that the main model and the draft model must share an identical vo-
cabulary. Consequently, the two models are typically selected from
the same family, Qwen, to ensure compatibility.

Figure 12 compares the speculative decoding performance of
Qwen-30B using four draft models from the same family, Qwen3-
0.6B, Qwen3-1.7B, Qwen3-4B and Qwen3-8B. Qwen-30B as the
target model shows that Qwen3-1.7B delivers the highest throughput,
exceeding Qwen3-8B by up to ∼20% at short inputs and retaining a
∼15% lead over Qwen3-4B at long inputs, while Qwen3-0.6B lags
by ∼25-35% across all lengths. Throughput drops with increasing
input length for all models, but the decline is smaller (∼15%) for
Qwen3-1.7B compared to ∼25% for Qwen3-8B and Qwen3-4B,
indicating better scalability. As draft tokens increase, throughput
decreases monotonically due to higher validation overhead, with
Qwen3-1.7B maintaining a ∼5-10% advantage over Qwen3-4B
and ∼10% over Qwen3-8B at higher counts, while Qwen3-0.6B
remains over ∼30% slower than the leader. These trends highlight
that medium-sized draft models balance accuracy and efficiency best,
while very small or large drafts incur greater latencies.

7 Hardware Optimizations
7.1 GPU Parallelism
Tensor Parallelism (TP) [39] distributes layer weight tensors across
multiple devices in either row-wise or column-wise fashion. Devices

6



Unp
ub

lis
he

d work
ing

dra
ft.

Not
for

dis
tri

bu
tio

n.

2 4
Number of GPUs

619

1383

2147

2910

Th
ro

ug
hp

ut

Mixtral-8x7B

1 2 4
Number of GPUs

4800

5503

6206

6909

Th
ro

ug
hp

ut

OLMoE-1B-7B

TP (w/o EP)
TP (w EP)

PP (w EP)
PP (w/o EP)
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communicate to share input and output activations. TP works most
effectively within single nodes due to faster intra-node communi-
cation, enabling the distribution of large tensors that exceed single-
device memory capacity. Expert Parallelism (EP) [36] distributes
MoE models by assigning groups of expert blocks to individual
devices. This approach exploits the independent nature of experts in
MoE layers, though it can suffer from load-balancing issues when
assigned experts remain inactive. Hybrid Parallelism (HP) [41] com-
bines multiple parallelism strategies (TP, PP and EP) to achieve
efficient scaling and improved hardware utilization. While HP pro-
vides greater flexibility by allowing different parallelism techniques
per layer, it introduces complexity in managing simultaneous paral-
lelism strategies and coordinating work distribution across devices.

Figure 13 illustrates the performance of the Mixtral-8x7B model
and OLMoE-1B-7B models under different settings of TP, PP and EP.
The results show that TP without EP delivers the highest throughput
scaling as the number of GPUs increases, achieving performance
gains of over 2× from 1 to 4 GPUs on the H100. TP with EP
exhibits lower scaling efficiency, while PP with EP shows minimal
throughput improvement, and PP without EP remains almost flat,
indicating poor scalability. This phenomenon on the H100 GPU
arises because its high intra-node bandwidth (via NVLink) strongly
benefits communication-intensive TP, allowing large weight tensors
to be efficiently split and aggregated across devices. In contrast,
PP suffers from stage imbalance and synchronization overheads,
and EP’s load-balancing and dispatch costs offset potential gains,
especially for smaller expert activations.

Insight: Tensor parallelism over the entire model is more effective
than pipeline or expert parallelism. This is due to better utilization of
all available GPU devices, whereas expert and pipeline parallelism
often result in underutilization of resources.

7.2 Fused MoE
Fused MoE is an optimized execution for MoE layers that merges the
expert selection, routing, and FFN computation into a single fused
GPU kernel, reducing intermediate memory transfers and kernel
launch overhead. Fused MoE minimizes synchronization costs and
improves GPU utilization by batching token routing decisions and
executing only the active experts in one pass, leading to significantly
higher throughput compared to a naive MoE implementation where
routing and expert computation are separate stages. Figure 14 depicts
the performance of the Mixtral-8x7B model with and without the
Fused MoE mechanism, both varying batch size and input/output
lengths. Across both settings, Fused MoE consistently outperforms
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Figure 14: Performance Comparison of Mixtral-8x7B with and
without Fused MoE Configuration on 4 H100 GPUs

the non-fused version, with performance gains becoming more pro-
nounced at higher context lengths and prompts. When scaling batch
size, Fused MoE achieves approximately 15–20% higher throughput,
with the relative advantage widening as the batch size increases, indi-
cating superior GPU utilization and reduced kernel launch overhead.
In the input/output length variation experiment, Fused MoE main-
tains a throughput advantage of roughly 12–18% across all sequence
lengths, while the non-fused baseline exhibits a sharper decline at
longer sequences.

Insight: These results highlight that kernel fusion not only boosts
throughput but also sustains efficiency under increasing computa-
tional and memory demands, aligning with its design goal of min-
imizing synchronization costs and intermediate memory transfers.

7.3 Hardware Benchmarking
Figure 16 compares latency for the Llama-4-Scout-17B-16E model
on H100 GPU and Cerebras cloud CS-3 systems across varying
input/output lengths and batch size. The CS-3 model replica stores
most weights at FP8 precision to reduce memory footprint, though
KV cache values and all computation is performed at FP16 precision
to ensure maximum accuracy. The latency increases more steeply
on H100 as context length increases, with a sharp rise beyond 1024
tokens, while the CS-3 maintains significantly lower and more grad-
ual latency growth, indicating better scalability for longer sequences.
CS-3 inference benefits from the WSE-3 having multiple orders of
magnitude memory bandwidth and decreased inter-device commu-
nication than GPU solutions, enabling rapid inference pipelining
slowed only slightly by infrequent cross-node pipelining. We se-
lected Llama-4 Scout for evaluation as it is the only model with
stable support across H100 and CS-3 systems, thereby enabling a
fair and consistent comparison.

8 Model Accuracy Comparison
8.1 Language Understanding Tasks
We benchmark LLMs on nine widely adopted language understand-
ing tasks from the lm-eval [16] suite: ARC-c [8], ARC-e [8], BoolQ
[7], HellaSwag [53], MMLU [19], OpenBookQA [33], RTE [45],
WinoGrande [37]. Figure 17 compares throughput, latency, and av-
erage accuracy (across the all the lm-eval tasks) across six LLMs,
revealing distinct trade-offs between efficiency and performance.
OLMoE-1B-7B achieves the highest throughput, over 40% higher
than the next best model, while maintaining lower accuracy than
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Figure 15: Expert Activation Frequency map of MolmoE-1B and DeepSeek VL2 family Models on MME task
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MoE models such as Mixtral-8x7B and Qwen3-30B-A3B. Con-
versely, Qwen3-30B-A3B and Mixtral-8x7B deliver the highest
accuracies but incur 60–100% higher latency and 30–50% lower
throughput than the most efficient models. Medium-sized MoE vari-
ants like DeepSeek-V2-Lite and Qwen1.5-MoE-A2.7B lie in a bal-
anced region, with moderate accuracy and efficiency. Phi-3.5-MoE
exhibits the lowest throughput and highest latency despite competi-
tive accuracy. These results highlight a clear performance–efficiency
frontier, where small models excel in throughput and latency, while
large MoEs dominate accuracy at the cost of runtime efficiency.
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Figure 17: (a) Throughput vs Accuracy and (b) Latency vs.
Accuracy for LLMs

8.2 Vision Language Model Tasks
We evaluate VLMs on datasets and tasks from VLMEvalKit [10]:
MME [51], TextVQA [40], AI2D [21], DocVQA [31], MMMU
[52], InfoVQA [30], RealWorldQA [54], ScienceQA [28]. Figure
18 compares throughput and latency against average accuracy for
all the tasks for the DeepSeek-VL2 Tiny, Small, and Base models.
DeepSeek-VL2-Tiny achieves the highest throughput but the lowest
accuracy, highlighting its suitability for speed-critical applications
with reduced precision requirements. Conversely, DeepSeek VL2
delivers the highest accuracy but suffers from the lowest throughput
and highest latency, making it more appropriate for accuracy-focused
scenarios. DeepSeek VL2 Small offers a balanced trade-off, with
moderate accuracy, throughput, and latency, serving as a middle
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Figure 18: (a) Throughput vs Accuracy and (b) Latency vs.
Accuracy for VLMs

ground between the Tiny and Base variants. This trend underscores
the inherent trade-off between computational efficiency and predic-
tive performance in VLMs.

8.3 Expert Activation Frequency Study
Figure 15 depicts the expert activation frequency (number of times
each expert is selected during inference) heatmap for the DeepSeek-
VL2 family and MolmoE-1B models on the MME task dataset [15].
DeepSeek-VL2 family models show a relatively uniform activation
pattern across experts and layers, whereas MolmoE-1B exhibits a
more sparse activation pattern, with certain experts being triggered
far more often. The activation frequency in MolmoE-1B reaches up
to 1M for specific experts, in contrast to DeepSeek-VL2 models,
which peak around 290K. This difference arises because DeepSeek-
V2 [26] incorporates an auxiliary loss during training to balance
expert utilization, ensuring that all experts are activated more evenly.
Consequently, activation frequency alone is not a dependable metric
for assessing expert importance in well-balanced models.

9 Conclusion
This paper introduces MoE-Inference-Bench, a comprehensive bench-
marking suite that systematically evaluates the inference perfor-
mance of several state-of-the-art Mixture of Experts (MoE) mod-
els across diverse hardware and algorithm optimization strategies.
Through extensive evaluation of MoE models ranging from 2B to
70B parameters, mainly on Nvidia H100 GPU, we demonstrate
that hyperparameter configuration, and algorithmic optimizations
significantly impact MoE inference efficiency. Key findings reveal
that the Nvidia H100 delivers superior performance with FP8 quan-
tization, providing 20-30% throughput improvements over FP16,
active expert count represents the primary optimization lever with
single-expert configurations achieving 50-80% higher throughput,
and vision-language models exhibit substantially larger latencies
compared to text-only models.
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