
1 
 
 

 

Efficient Implementation of Monte Carlo 
Algorithms on Graphical Processing Units 

for Simulation of Adsorption in Porous 
Materials 

Zhao Liab*, Kaihang Shiac, David Dubbeldamd, Mark Dewingb, Christopher Knightb, Álvaro Vázquez-

Mayagoitiab*, Randall Q. Snurra* 

a Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, 

Evanston, Illinois 60208, United States 

b Computational Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, 

Illinois 60439, United States 

c Department of Chemical and Biological Engineering, University at Buffalo, The State University of 

New York, Buffalo, New York 14260, United States 

d Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH 

Amsterdam, the Netherlands 

Email:  

Zhao Li: zhaoli2023@u.northwestern.edu 

Álvaro Vázquez-Mayagoitia: vama@alcf.anl.gov  

Randall Q. Snurr: snurr@northwestern.edu  

 



2 
 
 

 

Abstract 

We present enhancements in Monte Carlo simulation speed and functionality within an open-source code, 

gRASPA, which uses graphical processing units (GPUs) to achieve significant performance 

improvements compared to serial, CPU implementations of Monte Carlo.  The code supports a wide 

range of Monte Carlo simulations, including canonical ensemble (NVT), grand canonical, NVT Gibbs, 

Widom test particle insertions, and continuous-fractional component Monte Carlo. Implementation of 

grand canonical transition matrix Monte Carlo (GC-TMMC) and a novel feature to allow different moves 

for the different components of metal-organic framework (MOF) structures exemplify the capabilities of 

gRASPA for precise free energy calculations and enhanced adsorption studies, respectively. The 

introduction of a High-Throughput Computing (HTC) mode permits many Monte Carlo simulations on a 

single GPU device for accelerated materials discovery. The code can incorporate machine learning (ML) 

potentials, and this is illustrated with grand canonical Monte Carlo simulations of CO2 adsorption in Mg-

MOF-74 that show much better agreement with experiment than simulations using a traditional force 

field. The open-source nature of gRASPA promotes reproducibility and openness in science, and users 

may add features to the code and optimize it for their own purposes. The code is written in CUDA/C++ 

and SYCL/C++ to support different GPU vendors. The gRASPA code is publicly available at 

https://github.com/snurr-group/gRASPA. 

Introduction 

Graphical processing units (GPU) have been extensively used in physics-based simulations. For 

those simulations that focus on molecular systems with classical mechanics, parallelization is 

usually done when evaluating pairwise interactions. Molecular-level simulations include 

molecular dynamics (MD) simulations, which integrate Newton’s equations of motion through 

time, and Monte Carlo (MC) simulations, which use a Markov chain for the evolution of the 
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system. Between MD and MC, parallelization in MD simulations is more common. Many 

biological systems are simulated using MD, ranging from protein folding1 to the study of 

Alzheimer's disease.2,3 These studies often use large system sizes with thousands to millions of 

particles, where the benefits of parallelization are most apparent.4 However, in MC, especially 

for studying adsorption in crystalline materials having periodic unit cells, researchers usually 

consider smaller system sizes, often with only a few thousand particles, which benefit less from 

parallelization and GPUs.  

Algorithmic differences between MC and MD also contribute to parallelization being more 

common in MD simulations than in MC. Although both classical MC and MD simulations 

evaluate pairwise energies, MD moves every particle in the system at each time step. 

Conventional MC, on the other hand, typically uses single-molecule moves, which means that 

only the energy change of a single molecule is needed at each MC step. For a system with N = 

1000 atoms, 𝑁 ∗ (𝑁 − 1)/2 = 499,500 pairs of energy evaluations are needed at each MD step, 

while only 𝑁 − 1 = 999 pairwise interactions are considered for each MC step. This makes it 

more challenging to efficiently parallelize an MC simulation. Efficiently parallelized MD codes 

such as NAMD5, AMBER6 and GROMACS7 are widely used in the biology community, and 

LAMMPS8 is popular for MD simulations of various material systems.  

Another factor leading to the larger number of parallelized codes for MD than for MC is that MC 

algorithms (and codes) tend to be more application-specific. MD simulations integrate the 

classical equations of motion, regardless of the type of system. MC simulations, on the other 

hand, use a much wider range of ensembles and move types, and MC moves can be invented 

specifically for the system of interest. For example, for computational studies for adsorption, 
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open ensembles like grand canonical Monte Carlo (GCMC) and Gibbs Monte Carlo are widely 

used. GCMC uses insertion and deletion moves to mimic the molecular transfers between phases 

in a chemical equilibrium. For adsorption systems, GCMC relies on an implicit bulk phase 

reservoir and only simulates the adsorbed phase, whereas Gibbs Monte Carlo explicitly simulates 

both the bulk and the adsorbed phases and utilizes Gibbs particle transfer moves to allow the 

phases to reach equilibrium. Similar to most other MC moves, GCMC insertion and deletion 

moves and Gibbs particle transfer moves are single-molecule moves. In addition to different 

ensembles, special Monte Carlo moves, especially biased MC moves,9 can be applied to enhance 

the MC sampling. For example, configurational-bias Monte Carlo10 (CBMC) was invented for 

efficiently sampling chain molecules in a variety of MC moves, while energy-bias insertion 

moves11 were invented for boosting the efficiency of simulations of adsorption in narrow pores. 

These moves speed up simulations for specific applications such as conformational sampling or 

gas adsorption but also hinder the generalization of MC codes.  

Despite these difficulties, MC codes that benefit from parallelization and GPUs have appeared in 

recent years. For example, HOOMD-blue is a Python package that enables GPU acceleration for 

MD and MC simulations.12 HOOMD-blue uses GPU parallelization for rigid body molecular 

dynamics and hard-particle MC simulations, which are well suited for studying the self-assembly 

of colloidal systems.13 Another example is the GPU-Optimized Monte Carlo code (GOMC),14 

which parallelized the energy evaluations. GOMC features multi-particle moves such as the 

force-bias multi-particle method.15 By using these multi-particle MC moves, more pairs are 

evaluated for each move, making the parallelization more beneficial. Kim et al.16–18 developed an 

in-house MC code to run multiple GCMC calculations on the GPU. Recently, they used their 
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code to screen metal-organic frameworks for methane adsorption.19 Their code uses tabulated 

energy data for accelerating GCMC simulations on the GPU, shifting the simulations from 

computation-intensive to memory-intensive. Although these advances in using parallelization for 

MC simulations have greatly accelerated computational discoveries in specific research fields, 

these GPU-enabled parallelization strategies, such as hard-particle MC or force-bias moves, are 

seldom applied in adsorption or phase equilibrium studies. The code by Kim et al.16–18 is not 

open-source and appears to be custom-designed for certain applications, such as methane 

storage19 and CO2 adsorption.20 Besides the codes mentioned above, there are other Monte Carlo 

codes that exploit CPU parallelization or other efficiency optimization strategies and aim at 

generalization of functionalities, such as Cassandra21 and Towhee.22 

In this work, we develop a GPU MC code, gRASPA (pronounced “gee raspa”), which is 

particularly focused on simulations of the adsorption of guest molecules in zeolites and metal-

organic frameworks (MOFs). It can also be used for simulating vapor-liquid equilibria and other 

phase equilibrium problems. The gRASPA code is written in CUDA/C++ with the C++ 20 

standard, and it includes the basic features of RASPA-2,23 a widely used serial CPU code 

designed for simulating molecular adsorption and diffusion in flexible nanoporous materials. The 

gRASPA code can perform various Monte Carlo moves, such as translation and rotation moves9 

and swap (insertion/deletion) moves9 using configurational-bias Monte Carlo (CBMC)10, as well 

as continuous-fractional component MC24 (CFC MC) and CFC with CBMC25 (CBCFC). The 

gRASPA code reduces the overhead of GPU calculations by minimizing data transfers between 

the CPU and the GPU and reusing the GPU pointers and allocated memories. We demonstrate 

the efficiency of the gRASPA code through benchmarking with RASPA-2 and RASPA-326, a 
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recent MC simulation program developed for better output formatting, code readability, and 

simulation performance compared to RASPA-2.  

In gRASPA, we also incorporated new features that take advantage of the GPU architecture and 

are not available in RASPA-2,23, such as an option to use machine learning (ML) potentials. We 

developed a MC move that combines the ML potential with CBMC and tested its applicability 

for argon and CO2 adsorption in Mg-MOF-74.27 In addition, new features such as semi-flexible 

framework moves, which allow for movements of certain portions of the framework or extra-

framework ions, and transition-matrix Monte Carlo28,29 (TMMC) are also included. In addition to 

offloading calculations to Nvidia devices via CUDA, we also translated gRASPA to SYCL/C++ 

for users wanting to perform calculations on non-Nvidia GPUs or even field programmable gate 

arrays. The gRASPA code is lightweight and can be easily deployed to run dozens of Monte 

Carlo simulations on one graphic card at the same time, dramatically increasing the throughput 

while still maintaining a fast speed. Finally, we pushed the desired throughput further and 

developed a high-throughput computing mode of gRASPA that can run hundreds to thousands of 

simulations on one graphic card. This mode can significantly benefit researchers interested in 

screening materials for applications such as carbon capture and water harvesting. The gRASPA 

codes are open source and publicly available at https://github.com/snurr-group/gRASPA. 

Methods 

General Design 

As Nejahi et al. pointed out in their papers about GOMC,14,30 simulations performed on the GPU 

suffer greatly from memory transfers between the CPU and the GPU. Although the GPU can 
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perform massively parallelized calculations quickly, the atomic data, including atom positions, 

charges, and atom types, are normally prepared and stored on the CPU and transferred to the 

GPU whenever they are involved in a calculation.  

Our gRASPA implementation focuses on reducing the memory transfers and their latencies 

between the CPU (host) and the GPU (device). This is done by storing most simulation data on 

the GPU instead of the CPU. Because of this, graphic cards that have higher memory bandwidth 

usually have better performance when performing calculations. At the beginning of the 

simulation, atomic data are read from the input and transferred to the GPU. A list of 10 million 

random numbers is pre-generated using the C++ standard random library on the CPU and then 

transferred and stored on the GPU for use during the entire simulation. This random number list 

can be extended when needed. The trial positions for the MC moves are generated on the GPU, 

and a trial translation, for example, consumes three random numbers for the displacements in the 

x, y, and z directions. Thus, we combine three random numbers into a double3 variable that is 

built-in in CUDA. This allows for much easier and more efficient use of the random numbers on 

the GPU. All system parameters, such as the number of molecules for each species, inverse 

temperature, and the transition matrices for transition matrix Monte Carlo simulations, are stored 

on the CPU.  

In MC simulations, temporary storage of data is needed. Monte Carlo simulations require spaces 

to hold both the trial (new) and current (old) positions since the fate of the trial configuration will 

be determined based on the acceptance criterion of the move. If the move is rejected, the trial 

configuration must be discarded, and the current configuration must be retained. One can see that 

declaring new pointers, allocating new spaces on the memory, and freeing them for each move 
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would be very inefficient.14 Thus, we reuse these pointers and allocations so that the new 

allocation of memory is minimized and, if possible, eliminated during the simulations.  

The MC moves are classified into three categories based on the parallelization of the energy 

evaluations. The moves that only involve one trial configuration are considered single particle 

moves and generalized into one function. These include translation, rotation, non-CBMC swap 

moves (including both insertion and deletion moves), and semi-flexible framework moves such 

as linker rotations. The second types are the CBMC-based moves. These include the swap 

moves, reinsertion moves, identity swap moves, and particle transfer moves in the Gibbs 

ensemble. These moves share the same CBMC backbone. Currently, the code only supports rigid 

adsorbate molecules, but MC moves for flexible molecules will be available in the near future. 

Finally, system-wide moves such as (constant total-volume) volume perturbations of the 

simulation boxes in the NVT-Gibbs ensemble or volume moves in the constant-pressure, 

constant-temperature ensemble are classified as the third type of move since these moves change 

the configuration of every atom in a system and thus involve the calculation of total energies. 

Having these three generalized categories of moves allows us to experiment with different ways 

of parallelization more easily.  

General Energy Evaluation 

Both pairwise and non-pairwise energy interactions are considered in gRASPA. Parallelized 

energy calculations are performed using blocks and threads. In parallel computing and 

programming with NVIDIA GPUs, a "CUDA block" refers to a group of threads that can 

cooperate and synchronize within the same block while executing a parallel task. Threads within 

a block can communicate with each other but cannot talk to threads from another block. Pinned 
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memory, also known as page-locked memory, is a type of memory that cannot be swapped to 

disk and remains in physical RAM. Because of this feature, GPU’s direct memory access engine 

can access the data on pinned memory directly without waiting for the operating system to load 

into physical memory, thus reducing memory transfer overhead. However, the downside of 

pinned memory is that it reduces the amount of memory available on the CPU for other 

processes. To minimize memory transfer and its latency while not abusing this feature, we 

allocate pinned memories for the data that needs to go back and forth between the CPU and 

GPU. This includes an array of floating point values for energy evaluations and an array of 

Boolean variables for indicating overlaps between pairwise interactions. If the simulation needs 

information on atom positions or partial charges on the CPU, for example for machine learning 

potentials, the memory related to these variables will also be allocated as pinned memory.  

During the energy evaluations, the various contributions to the energies are tracked separately to 

provide additional information to the user. Energies are reported as the sum of van der Waals 

(vdW), short-range Coulombic and long-range Coulombic interactions, each divided among 

intra-framework, framework-adsorbate, and adsorbate-adsorbate interactions. 

Pairwise Interactions 

In gRASPA, each thread handles one or more than one distance pair between two atoms for the 

energy calculation during a move, similar to the method documented by Mick et al.31  For each 

block, which is the bundle of threads, we perform parallel reduction (or summation) within the 

block on the energies each thread gives using the GPU's cache memory (or shared memory). 

This not only increases the utility of the graphic card but also minimizes the amount of data 

transfer between the device and the host. During the evaluation, threads that have super-high 
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repulsive pairwise interaction energies or have a very short pairwise distance are marked as 

“overlapped.” The user can set the threshold energy and threshold distance. The overlap Boolean 

variable will then be written into the pre-allocated array on the GPU and then copied to the CPU 

via the pinned memory. If there is an overlap, and the move is translation, rotation, or moves that 

do not use CBMC, then the whole move is stopped. If the move involves CBMC, then the energy 

evaluation step of the overlapped trial is skipped, and CBMC cannot select that trial. If there is 

no overlap for the single trial move or for the CBMC trial, then the block sums are copied to the 

CPU via the pinned memory, and the pairwise energy for the move is the sum of the block sums.  

To illustrate this implementation, Scheme 1 shows pseudo-codes for a non-CBMC insertion 

move running serial on the CPU vs. running on the GPU through gRASPA. We can see that 

instead of straight-forwardly looping over the atoms in the new molecule and atoms in the 

surroundings, for the GPU parallelization, one must unroll the for loops by first grouping 

pairwise interactions into threads, then grouping threads into CUDA blocks. Then, for each 

thread in each CUDA block, it loops over a number of pairwise interactions, and for each 

pairwise interaction, the thread solves for the index of the atom in the new molecule and of the 

surrounding atoms and calculates the distance and energy. If an overlap is found, instead of 

exiting the move completely, since threads are executed in parallel, an overlap flag is used for 

the CUDA block. Once every thread in a CUDA block finishes the calculation, the overlap flag 

is synchronized. For every energy summed over on each thread, shared memory is used to 

perform parallel reduction to generate a CUDA block sum. Once every CUDA block has 

finished calculation, the overlap flag first gets transferred to the CPU from the GPU. If the flag 
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reports an overlap, then the move is discarded. If not, the CUDA block energies are transferred 

to the CPU and then summed up to generate the total energy for this move.  
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Scheme 1. A non-CBMC insertion move on serial CPU vs. GPU 

 

Coulombic Interactions 

For long-range Coulombic interactions, the real-space part and the Fourier part of the energies 

are calculated using the Ewald method.9 For the single-particle and CBMC moves, each thread 

handles the energy difference computation and the change in the structure factors of each k-point 

for the Fourier part of the Ewald summation. The new structure factors are then stored in buffer 

storage and are updated if the move is accepted. If the move is accepted, the structure factors are 

adopted by swapping GPU pointers between the old storage and the buffer storage for the 

structure factors. 
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For MC moves that involve single particle movements, including translation, rotation, 

insertion/deletion, re-insertion, and Gibbs particle transfer, since only a single molecule has been 

moved, the difference in Fourier energies and structure factors is calculated. In this case, each 

thread handles the calculation of structure factors for one k-point to increase the amount of work 

each thread has and to reduce the usage of the GPU.  

For the initial and final stages of the simulation, where lack of energy drift needs to be verified 

on the GPU, and for MC moves such as NVT-Gibbs, which need the energy of the whole system, 

we use a CUDA block to calculate the structure factor of a k-point and parallelize over the atoms 

in the system.  

For the Fourier part of the Ewald summation, the intra-molecular and self-exclusion energies are 

crucial. Since single-molecule moves only change a small number of atoms, the intra-molecular 

and self-exclusion energies are calculated before the simulation starts, stored on the CPU, and 

used when a swap move is performed. This avoids the need to calculate this energy every time a 

molecule is swapped into or out of the system, thus eliminating the need to launch a CUDA 

kernel to calculate this for only one molecule. However, when calculating the total energy of the 

system, the self-exclusion and intra-molecular energies for all the molecules in the system are re-

calculated.  
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Results 

The simulations were performed on a local GPU workstation with an RTX 3090 GPU and an 

AMD Threadripper 3960X 3.8 GHz 24-core/48-thread processor CPU for all our test cases. 

Although the test cases were conducted on the local machine, the source code, the compilation, 

the setup files, and examples have also been prepared for supercomputer clusters such as 

Perlmutter of the National Energy Research Scientific Computing Center (NERSC) and Quest of 

Northwestern University.  

1. Benchmark Results for SPC/E Water 

As a first test, we calculated the reference energies for the four configurations of SPC/E water 

from the NIST reference calculations.32 The results summarized in Table 1 show that the 

gRASPA code is able to reproduce the energies of the given configurations. Details about the 

calculations are provided in the SI.  

Table 1. Energies (in Kelvin) for the four configurations of SPC/E water. 𝐸௦௘௟௙ and 𝐸ூ௡௧௥௔ represent the 

Coulombic energy of an atom with itself and between atoms in the same molecule, respectively. Values 

from the NIST reference calculations (Ref. 32) are shown for comparison.  

Configuration Configuration 1 Configuration 2 Configuration 3 Configuration 4 
Code NIST gRASPA NIST gRASPA NIST gRASPA NIST gRASPA 

𝐸௩ௗௐ/𝑘஻ (𝐾) 111992 111992 43286 43286 14403.3 14403.3 25025.1 25025.1 
𝐸்௔௜௟/𝑘஻ (𝐾) -4109.19 -4109.19 -2105.61 -2105.61 -1027.3 -1027.3 -163.091 -163.091 
𝐸ோ௘௔௟/𝑘஻ (𝐾) -727219 -727219 -476902 -476902 -297129 -297129 -171462 -171462 

Number of Wave 
Vectors 831 831 1068 1068 838 838 1028 1028 

𝐸ி௢௨௥௜௘௥/𝑘஻ (𝐾) 44677 44677 44409.4 44409.7 28897.4 28897.5 22337.2 22323.8 
𝐸௦௘௟௙/𝑘஻ (𝐾) -11581958 -11582033 -8686468 -8686525 -5790979 -5791017 -2895489 -2895508 

𝐸ூ௡௧௥௔/𝑘஻ (𝐾) 11435363 11435437 8576522 8576578 5717681 5717719 2858841 2858859 
𝐸௦௘௟௙ାூ௡௧௥௔/𝑘஻ (𝐾) -146595 -146596 -109946 -109947 -73298 -73298 -36648 -36649 

𝐸்௢௧௔௟/𝑘஻ (𝐾) -721254 -721255 -501259 -501259 -328153 -328153 -160912 -160912 
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2. GCMC Simulation of CO2 Adsorption in MFI Zeolite 

In this example, we used the adsorption of CO2 in MFI zeolite at 298 K as a test case to 

demonstrate the efficiency of gRASPA compared to RASPA-2, which has undergone extensive 

testing previously. The RASPA convention, adopted by RASPA-223, RASPA-333, and gRASPA, 

uses the number of cycles instead of steps for simulations, and each cycle consists of N steps, 

where N equals the maximum of 20 and the number of molecules in the system at the beginning 

of the cycle. Here, we performed 30,000 cycles for initialization of the system and 30,000 cycles 

for gathering the averages. Each move was chosen with equal probability among translation, 

rotation, reinsertion, and swap moves. For a swap move, an insertion or deletion is chosen with 

an equal probability. The force field parameters are summarized in Table S3. 

Figure 1 shows that the three codes generate consistent results. Regarding the simulation time, 

we can see that gRASPA is 4 to 5 times faster than the single-core RASPA-3. RASPA-3 is 

already faster than RASPA-2, and our gRASPA code pushes this limit further, showing a 19-fold 

acceleration in computational efficiency compared to RASPA-2. When evaluating the short-

range pairwise interaction energies, the gRASPA code, by default, performs summation, or more 

technically speaking, reduction on four different values: framework-adsorbate vdW, adsorbate-

adsorbate vdW, framework-adsorbate short-range Coulombic, and adsorbate-adsorbate short-

range Coulombic interactions. This means four parallel reductions must be performed to 

calculate the sum of these different types of interactions correctly. For long-range interactions, 

there are two reductions for the framework-adsorbate and adsorbate-adsorbate long-range 

interactions. We designed a special version of gRASPA, referred to as “gRASPA-fast” in Figure 

1, which disables the separate reporting of the energies for individual interaction types. Using 
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this Fast Option, only the total energy, which is the sum of the six different types, is returned. 

Although this gRASPA-fast version disables some functionalities, it does not change the 

simulation result, such as the number of molecules or the trajectory of the Markov chain; it 

simply reduces the number of reductions that must be performed for the energy calculations. 

Thus, the computation time is reduced from 228.3 to 188.7 seconds for CO2 adsorption in MFI at 

298 K and 104 Pa, a 20% performance improvement compared to the default gRASPA 

implementation.  

 

Figure 1. Simulation time and average loading comparisons for GCMC simulation of CO2 

adsorption in MFI zeolite using 8 unit cells at 298 K using different MC software. “gRASPA-

fast” denotes the special version of gRASPA that disables the energy type separation. Data in 
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this figure is summarized in Table S4a. For the error bars reported in the table, we show the 95% 

confidence interval, which is two times the standard deviation of the block averages in the 

number of molecules.  

We also investigated the GPU usage and benchmarked gRASPA’s performance for simulations 

with only canonical moves (translation, rotation, and with/without reinsertion). The numbers are 

summarized in Table S4b for systems with 2.5 CO2 molecules per unit cell (and varying numbers 

of unit cells), which is the loading from the GCMC simulation shown in Figure 1 at 104 Pa. 

Table S4b shows that as the simulation size increases, the simulation time, GPU memory and 

GPU utility increase. When the size of the simulation increases by 16 times from 8 unit cells to 

128 unit cells, the number of MC steps per second only decreases by half.  

3. Use of Nvidia Multi-Process Service (MPS) 

Nvidia MPS is a binary-compatible implementation of the CUDA API that utilizes the multiple 

hardware queues to enable CUDA kernels from multiple processes to be offloaded to the same 

GPU without changing the code or re-compiling the executable. It is especially useful since the 

systems of interest for adsorption simulations are typically small, and a single gRASPA 

simulation underutilizes the GPU. We tested the performance of the CO2-MFI simulations using 

gRASPA and Nvidia MPS on one GPU at 298 K and 104 Pa using 5000 MC cycles. The 

simulation uses the same MFI structure and force field parameters as those in Sec. 2. As 

comparisons, a RASPA-2 and RASPA-3 simulation were also performed on a CPU core with the 

same simulation condition and number of cycles. Table 2 summarizes the performance metrics. 

Here, we call the number of simulations performed on a single GPU simultaneously the 

throughput. We can see from the table that by utilizing MPS, it is possible to have high 
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throughput with some sacrifice in the speed of each simulation: for example, with only one 

simulation on a GPU, it takes 17.9 seconds. Using MPS and running two simulations, we double 

the throughput but at the cost of making each simulation 3.3 seconds slower. This creates an 18% 

speed decrease for each simulation, but the throughput is doubled; thus, it is very profitable to 

increase the throughput further. To quantify this competing relationship between the throughput 

and the speed ratio, we call the product of number of simulations performed concurrently and the 

speed of each simulation compared to serial RASPA-3 the performance index (PI) of gRASPA 

for the current application: 𝑃𝐼 = 𝑁௦௜௠ ∗ 𝑆𝑝𝑒𝑒𝑑 𝑟𝑎𝑡𝑖𝑜, where 𝑆𝑝𝑒𝑒𝑑 𝑟𝑎𝑡𝑖𝑜 is defined to be the 

ratio of simulation time between serial RASPA-3 and gRASPA: 𝑆𝑝𝑒𝑒𝑑 𝑟𝑎𝑡𝑖𝑜 =

𝑇𝑖𝑚𝑒ோ஺ௌ௉஺ିଷ/𝑇𝑖𝑚𝑒௚ோ஺ௌ௉஺. 

Table 2. Speed comparisons of the gRASPA code using Nvidia-MPS versus single-CPU-core 

RASPA-2 and RASPA-3 for CO2 adsorption in MFI zeolite at 298 K and 104 Pa using 5000 MC 

cycles.  

Number of 
Simulations 

GPU Time  
[secs] 

GPU Time  
(gRASPA-fast) 

[secs] 
RASPA-2-Serial 
[secs/simulation] 

RASPA-3-Serial 
[secs/simulation] 

1 17.9 15.2 329.4 75.6 
2 21.2 16.4 
3 23.2 17.7 
5 29.6 20.9 
8 41.6 25.3 

10 49.8 29.1 
12 60.1 32.9 
15 76.5 38.7 
20 106.9 49.2 

24 135.8 57.8 
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Figure 2 shows that the Fast version (gRASPA-fast) gives a better PI than the gRASPA default 

option. For the GPU performances, the default option reaches maximum performance at ten 

simulations, while the Fast Option has not reached a maximum even at 24 simulations. Figure 2 

also shows the CPU baseline performance from RASPA-3 which represents the performance by 

running N serial CPU simulations independently. The CPU baseline outperforms the GPU PI 

after 15 simulations, meaning the GPU simulations are slower than serial CPU RASPA-3 if more 

than 15 simulations are performed simultaneously on one graphic card. However, the CPU 

performance is still below the Fast-Option GPU performance even at 24 simulations. Thus, for 

high-throughput screening studies where the requirement on the level of details for different 

types of energies is low, the user can switch to the Fast Option to take advantage of both the 

speed and the throughput. After initial screenings of materials, the user can switch back to the 

default option of the gRASPA code for better interpretability of thermodynamic properties and 

statistical averages. Another possible strategy is to run initialization and equilibration cycles for 

MOFs using MPS and the Fast version of the code, then run the production cycles to gather 

detailed adsorption properties using the default option of the code. 



20 
 
 

 

 

Figure 2. Performance index, defined by the speed ratio per simulation compared to serial 

RASPA-3 times the number of simulations running concurrently via Nvidia-MPS, versus the 

number of simulations running concurrently. The green line shows the baseline performance of 

RASPA-3 using a single CPU core. Since RASPA-3 is serial, there are no diminishing returns 

when multiple simulations are performed concurrently on multiple CPU cores. 
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4. Pure Component and Mixture Simulations for Separating CO2/CH4 in a Mixed Ligand 

Framework 

Besides simulating single component adsorption, the code can also simulate mixture adsorption via 

GCMC or Gibbs Monte Carlo. Here, we present GCMC simulations for CO2/CH4 separation in the MOF 

Zn2(NDC)2(DPNI) synthesized by Ma et al.,35 where NDC is 2,6-naphthalenedicarboxylate and DPNI is 

N,N‘-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide. Bae and co-workers conducted GCMC 

simulations using the MuSiC36 code at 296 K for an equimolar mixture of CO2 and CH4 in this MOF, and 

they predicted that it is a promising material for CO2/CH4 separations, especially for natural gas 

purification.37 We conducted the mixture calculation using the same system as Bae et al.37 For the single 

component and mixture calculations, the fugacity coefficients for each species were calculated using the 

Peng-Robinson equation of state.38 The fugacity coefficients are summarized in Table S5. For the 

molecular representations of CO2 and CH4, we used the TraPPE model39 and Goodbody et al.40 

parameters, respectively. The Lennard-Jones parameters for the framework atoms were from the 

DREIDING force field,41 and the partial charges were taken from Bae et al.37 Tables S6 and S7 

summarize the parameters used. 10 million initialization steps were used to equilibrate the system, and 10 

million production steps were used to generate the averages. Each step randomly chooses a move from 

translation, rotation (just for CO2), reinsertion, swap (insertion or deletion), and identity change move (for 

mixture simulation) with equal probabilities. The excess loadings for CO2 and CH4 are reported. The 

binary selectivity is defined as (
௫ಲ

௬ಲ
)/(

௫ಳ

௬ಳ
), where 𝑥௜ and 𝑦௜ are the mole fractions for component 𝑖 in the 

adsorbed and bulk phases, respectively. We report the binary selectivity for CO2. As a comparison, we 

also present the results at the same pressure using RASPA-2.23 For these RASPA-223 simulations, 20,000 

initialization and 20,000 production cycles were used, while the other simulation settings were the same 

as gRASPA. Other details about the simulation setup are summarized in the SI.  
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Figure 3a shows that the excess loadings for the single-component CO2 and CH4 adsorption calculated 

from gRASPA are within the error bars of those calculated with RASPA-2. Figure 3b shows that the 

loadings from the mixture simulations from the two codes are also in good agreement. The only 

difference can be observed for the selectivity, but selectivity is highly sensitive to small differences in the 

loadings of individual species, especially in the low pressure region where the loading of the species in 

the denominator of the selectivity equation is small. In our case, although the CH4 loadings between the 

two codes agree well, the tiny difference gets magnified and becomes noticeable in the selectivity.  
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Figure 3. GCMC simulations for (a) single-component and (b) equimolar mixtures of CO2 and CH4 in the 

MOF Zn2(NDC)2(DPNI) at 296 K. Stars are the CO2 loadings, squares are CH4 loadings, and circles are 
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the calculated selectivity of CO2 over CH4 from the excess loadings. Blue results are from gRASPA, red 

results are from RASPA-2. 

 

5. Gibbs Ensemble and Constant-Pressure, Constant-Temperature Monte Carlo 

Simulations 

5.1 Gibbs Ensemble Monte Carlo for Phase Equilibrium Calculations 

Besides GCMC, another popular MC algorithm, Gibbs Ensemble Monte Carlo (GEMC)42 in either the 

canonical ensemble (NVT) or constant-pressure, constant-temperature ensemble (NPT), is also 

implemented in gRASPA for single components. The Gibbs ensemble allows for the direct determination 

of the phase equilibrium of fluids from a single simulation by explicitly simulating the two phases in two 

simulation boxes. In the canonical ensemble, GEMC fixes the total volume of the two boxes, the total 

number of molecules in the two boxes, and the temperature of both systems. During the simulation, in 

addition to the thermal equilibration moves in both boxes (e.g., translation and rotation), the two boxes 

also experience volume exchange moves and particle transfer moves in the NVT ensemble. The former 

move changes the volumes of both boxes while keeping the total volume of the two boxes fixed, and the 

latter move selects a particle in one box and attempts to transfer it to the other box. Using this method, the 

Siepmann group has developed the widely-used TraPPE models39,43 for a range of molecules by fitting the 

GEMC results to experimental values. For NPT-Gibbs, instead of the volume exchange move, the two 

boxes experience the NPT volume move independently, which randomly chooses a box and randomly 

perturbs the volume of the box. Here, we try to reproduce the vapor-liquid equilibrium for CO2 using 

GEMC and the TraPPE-UA39 model and compare the results against the experimentally reported VLE 

data44 and transition matrix Monte Carlo simulations from NIST.45 In addition to the Gibbs ensemble 
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simulations, we also performed single-box NPT (NPT MC) simulations for both the vapor and liquid 

phases as an additional validation.  

For the NVT-Gibbs Monte Carlo simulations, we used 10,000 initialization cycles and 10,000 production 

cycles to generate statistical averages. For each cycle, 𝑁 steps are performed, where 𝑁 =

max {20, 𝑁஻௢௫భ
, 𝑁஻௢௫మ

} and 𝑁஻௢௫భ
 and 𝑁஻௢௫మ

 are the numbers of molecules in the two boxes, 

respectively. For each step, a move is randomly chosen from translation, rotation, reinsertion, Gibbs 

particle transfer, and Gibbs volume moves with probabilities equal to 1:1:1:1:0.1. A cutoff of 15.0 Å for 

vdW and 15.0 Å for short-range Coulombic interaction was used for CO2. Tail corrections were used. The 

Lennard-Jones parameters of the pseudo-atoms in the CO2 molecule are summarized in Table S8a. Table 

S8b provides the initial setup of the CO2 NVT-Gibbs simulations, the average densities, and the timing 

benchmarks. Note that some of these calculations were performed on an Intel i9-14900KF CPU and an 

Nvidia GeForce RTX 4090 GPU, while some others were done on L40S and A100 GPUs. The GPU used 

for the simulations is labeled in Table S8b. 

The NIST computational data for CO2 also provided the equilibrium pressure for each temperature, and 

we used these equilibrium pressures45 for NPT-Gibbs simulations. The NPT-Gibbs simulations used 

10,000 initialization cycles and 10,000 production cycles. For each step, a move is randomly chosen from 

translation, rotation, reinsertion, Gibbs particle transfer, and volume change moves with probabilities 

equal to 1:1:1:1:0.1. As noted above, as a complement to Gibbs Monte Carlo, we also ran NPT MC 

simulations for the vapor and liquid phases separately. These simulations used 25,000 initialization and 

25,000 production cycles. Each MC step used a move that was randomly chosen from translation, 

rotation, reinsertion, and volume moves with probabilities equal to 1:1:1:0.1. Other details of the 

calculations are provided in the SI. All three sets of simulations (NVT Gibbs, NPT Gibbs, and single-box 

NPT) used the same force field parameters and cutoffs. Tables S8c and S8d provide the detailed initial 
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setup, the average densities, and the timing benchmarks of the NPT-Gibbs calculations and NPT MC, 

respectively.  

Figure 4 summarizes the VLE curves for CO2 simulated by gRASPA using NVT-Gibbs, NPT-Gibbs, 

single-box NPT MC, and simulation results from NIST using TMMC simulations with the same force 

field. 45 Experimental values reported by NIST 44 are also plotted as reference. Our calculated vapor and 

liquid densities are in good agreement with the NIST simulated and experimental values. This example 

demonstrates the ability of gRASPA to perform reliable Monte Carlo simulations in constant-pressure and 

constant-temperature Gibbs ensembles.  
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Figure 4.Vapor-liquid equilibrium (VLE) curves for CO2 using the TraPPE-UA model taken from Ref. 

39, while the simulated TMMC CO2 results are from Ref. 45, and experimental CO2 data replotted from 

Ref. 44. 

5.2 Timing Benchmarks and Profiling for NPT MC 

Single-box NPT simulations provide a useful way to benchmark a code's performance, because 

the cost of the energy calculations depends on the number of atoms, and the number of atoms is 

fixed in single-box NPT MC (unlike in GCMC or Gibbs MC). In addition, NPT MC can be used 

to measure the performance of the calculation of the total energy of the system since a volume 

change move is used. Here, we used Nsight compute, a profiling software by Nvidia to profile 

the performance for creating 700 CO2 molecules and performing 2,000 MC steps in an NPT MC 

simulation. The results including the average execution time for each CUDA function are shown 

in Table S8e and S8f. We can see that the total energy calculations take much more time than 

any other CUDA function. Besides the top three functions in terms of averaged time elapsed in 

that table, namely “TotalVDWRealCoulomb”, “TotalFourierEwald”, and 

“TotalFourierEwald_CalculateEnergy”, for the total energy calculations, the only other function 

that is involved in calculating the total energy is calculating the total intra-molecular and self-

exclusion energy, which is a part of the total Fourier energy.  

Comparing the short-range calculations between CBMC trial moves and non-CBMC moves 

shows that the “Calculate_Multiple_Trial_Energy_VDWReal” function, which handles CBMC 

trial energy calculation (15.35 𝜇seconds, 8 trial positions and 8 trial orientations used), is faster 

than “Calculate_Single_Body_Energy_VDWReal,” which handles non-CBMC moves (15.59 

𝜇seconds). This indicates that non-CBMC moves, such as translation and rotation, under-utilize 
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the GPU. While the CBMC trial energy move needs almost eight times more calculations 

compared to the non-CBMC move, it is on average 0.2 𝜇second faster due to its highly 

parallelized nature.  

Initialization of the wave vectors prior to the Fourier energy difference calculation, namely 

“Initialize_WaveVector_Reinsertion” and “Initialize_WaveVector_General”, also involves some 

overhead, and they are ranked the 5th and 6th in Table S8e among all the CUDA functions doing 

preparations. This is because of the overhead of serial initialization for wave vectors as the later 

wave vectors depend on the previous ones for each atom. This is a potential part of the code that 

could be further optimized. It is also worth noting that the Fourier energy difference calculation 

“Fourier_Ewald_Diff”, the function responsible for calculating the Fourier energy difference for 

single-particle MC moves, is the fastest CUDA function among all energy calculation functions. 

Despite the latency in preparing the wave vectors for the Fourier part, which are 

“Initialize_WaveVector_Reinsertion” and “Initialize_WaveVector_General”, the actual 

calculation can be highly parallelized. 

The sections above demonstrate functionalities of gRASPA that exist in RASPA-2 and other 

CPU Monte Carlo codes.23 Below, we demonstrate the development and the usage of new 

functionalities that take advantage of GPU parallelization. 

6. Machine Learning (ML) Potential for Modeling Gas Adsorption in Metal-Organic 

Frameworks 

Most molecular dynamics and Monte Carlo simulations rely on empirical force fields due to their 

computational efficiency. For vdW interactions, it is typical to assume pairwise interactions 
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between the atoms using the Lennard-Jones equation. Electrostatic interactions are commonly 

modeled using fixed point charges on the atoms. In addition to these non-bonded interactions, 

bonding terms are included for bond stretching, bond angle bending, and dihedral angles. 

Density-functional theory (DFT), which provides an approximate solution to the Schrödinger 

equation, is expected to be more accurate for calculating energies and forces than empirical force 

fields in many cases. There have been works that try to utilize first-principles calculations in MC 

simulations. For example, work by Fetisov et al.46 developed the First-Principles Monte Carlo 

(FPMC) method in the CP2K package47 to simulate the reaction equilibrium of a mixture of 

nitrogen and oxygen at high temperature and pressure to mimic the effect of atmospheric 

lightning strikes. They found that FPMC shows good agreement with the simulation results 

parametrized to experimental data. However, the computational cost of applying DFT in 

molecular simulation is tremendously high,48 as it scales cubically with the number of electronic 

degrees of freedom.49  

Recent advances in machine learning (ML) force fields or ML potentials provide a new route to 

strike a balance between computational expense and accuracy.50,51 The general idea of a ML 

potential is to use a ML model, such as a neural network,52 to learn the mathematical mapping 

from the atomic environment to the atomic forces and system energy by training the ML model 

using high-fidelity quantum mechanical data. Substituting the classical force field with such a 

ML potential model in molecular simulation allows for modeling molecular and material systems 

at larger spatial and temporal scales with ab initio level accuracy. Since the seminal work on ML 

potentials around 2010,52,53 ML potentials have been extensively studied and implemented in 

MD simulations.54  
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Compared to the popularity of ML potentials in MD, there are very few applications of ML 

potentials in Monte Carlo simulations to date. This wide difference in application can be 

understood from the following factors. Most ML potentials are parameterized to give the energy 

of the entire system, but most MC algorithms move one molecule at a time and thus only need 

the (change in) energy of a single molecule to accept or reject each move. By assuming pairwise 

additivity, the computational cost of evaluating the energy difference before and after a Monte 

Carlo move is reduced in simulations using a classical force field because only the pairwise 

energies related to the moved molecule (instead of the total energy of the configuration) are 

required. However, for MD simulations, the total energy of the system and the forces on all 

atoms are evaluated at every step. This makes MD better suited for ML potentials with many-

body features. However, MC is the most popular method for predicting adsorption properties and 

vapor-liquid equilibria. Especially in GCMC, which mimics an open system where the number 

of adsorbate molecules changes during the simulation using swap moves,9,34 MC moves are more 

direct and intuitively understandable compared to MD in the grand canonical ensemble.55–57  

Attempts to implement ML potentials in Monte Carlo simulations, specifically GCMC for 

modeling gas adsorption in MOFs, appeared very recently. Current implementations of GCMC 

with an ML potential largely rely on a customized Python script58 and the GCMC functionality 

in the LAMMPS simulation software.59,60 While LAMMPS implements the GCMC algorithm 

with standard MC moves, such as translation, rotation and exchange moves (insertion and 

deletion), advanced biased moves, such as configurational bias and energy bias moves, are 

missing in LAMMPS. These biased MC moves are essential for efficient simulations of large 

molecules and for systems with strong specific interactions, such as water adsorption in MOFs.  
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gRASPA works with ML potential models that are developed using either TensorFlow61 or 

PyTorch.62 To demonstrate gRASPA’s compatibility with TensorFlow, we implemented a simple 

neural network ML potential developed by Li-Chiang Lin and co-workers (referred to as the “Lin 

model” hereafter).63 The Lin model was designed particularly for adsorption systems. The model 

takes transformed pair distances as input and predicts the adsorption energy between adsorbate 

molecules and a framework. They found that their model can predict Henry’s constants of 

adsorbates such as CO2 and H2O in Mg-MOF-74.27 In addition to the Lin model, we also 

implemented a state-of-the-art ML potential model, the Allegro model, in gRASPA to 

demonstrate the compatibility with PyTorch. The Allegro model64 is an equivariant neural 

network interatomic potential for predicting system energy and atomic forces based on the local 

atomic environment in the simulation box. The Allegro model was able to reproduce the 

properties of ab initio MD, such as the radial distribution function for lithium thiophosphate.64 

Due to its localized atomic features, the Allegro model demonstrated exceptional scalability to 

large systems through parallel computation. Recently, Allegro’s scalability was illustrated by a 

nanoseconds-long MD simulation for a 44-million atom structure of a complete, all-atom, 

explicitly solvated HIV capsid.65  

We used both the Lin model63 and the Allegro model64 to calculate adsorption isotherms of argon 

and CO2 in Mg-MOF-74. The code incorporates the ML potential into every MC move used for 

GCMC simulations, including CBMC. We benchmarked the accuracy and speed of the two 

models and point out the bottleneck that limits the usage of ML potentials in MC simulations. 
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6.1 General Setup 

We implemented a hybrid scheme for modeling gas adsorption66 where the host-guest 

interactions are modeled using a ML potential while guest-guest interactions are still modeled 

using a classical force field since the TraPPE force field is well-tuned for capturing the phase 

equilibrium of adsorbates.43 Adopting this hybrid modeling scheme is helpful to effectively 

reduce the required amount of training data for the ML potential. In this case, only 

configurations with one adsorbate molecule are needed for producing training data; otherwise, 

training data should contain MOF structures at multiple loadings of adsorbate molecules so as to 

enable the ML potential to predict the entire adsorption isotherm accurately.   

For non-CBMC moves, such as translation moves, the classical energies are evaluated first. This 

includes the vdW, short-range and long-range Coulombic interaction energies for framework-

adsorbate and adsorbate-adsorbate pairs. Then, the classical framework-adsorbate energies are 

discarded and re-evaluated using the ML potential. Although the classical framework-adsorbate 

energies are unused for the acceptance criteria, they are used for determining whether the trial 

positions overlap with the framework. If there is an overlap when evaluating the classical 

framework-adsorbate energies, the expensive ML evaluation can be skipped.  

For CBMC moves, such as the swap insertion move, the classical vdW and real part of the 

Coulombic energies are used to select which of the trial positions is chosen for the adsorbate 

molecule. Here, we denote the Rosenbluth weight as 𝑊௥ (see SI for detailed formula). The 

framework-adsorbate (FA) vdW and real part of the Coulombic energies for the selected trial 

configuration are 𝐸௩ௗௐ,ி஺ and 𝐸஼௢௨௟௢௠௕ି௥௘௔ ,ி஺. Once one of the trial configurations is selected, 

the Fourier part of the Coulombic energy of the adsorbate molecule for the selected trial 
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configuration 𝐸஼௢௨௟௢௠௕ିி௢௨௥ ,ி஺ is calculated, and its contribution to the Rosenbluth weight is 

added to the current value of 𝑊௥ (for more information about the Rosenbluth weight, please refer 

to the Monte Carlo moves section in the SI): 

 𝑊௥ = 𝑊௥ ∗ exp (−𝛽𝐸஼௢௨௟௢௠௕ିி௢௨௥௜௘௥,ி஺) (1) 

The ML potential is then calculated for the selected trial configuration, and the ML-corrected 

Rosenbluth weight 𝑊௥,ெ௅  is calculated as follows: 

 𝑊௥,ெ௅ = 𝑊௥ ∗ exp (−𝛽Δ𝐸ெ௅) (2) 

where 𝛽 is the inverse temperature (1/𝑘஻𝑇, where 𝑘஻ is Boltzmann’s constant), and Δ𝐸ெ௅ is the 

difference in energy between the ML potential and the classical interaction for the framework-

adsorbate: 

 Δ𝐸ெ௅ = 𝐸ெ௅ − (𝐸௩ௗௐ,ி஺ + 𝐸஼௢௨௟௢௠௕ି௥௘௔௟,ி஺ + 𝐸஼௢௨௟௢௠௕ିி௢௨௥௜௘௥,ி஺) (3) 

Once 𝑊௥,ெ௅ is calculated, it is plugged into the acceptance rules for CBMC moves, including the 

swap insertion, swap deletion, and reinsertion moves, to determine the fate of the move:  

 
𝑃௔௖௖

ூ௡௦௘௥௧௜௢௡ = min ൬1,
𝑊௥,ெ௅,ே௘௪𝛽𝑉

𝑁 + 1

𝑓

〈𝑊ூீ〉
൰ , 

𝑃௔௖௖
஽௘௟௘௧௜௢௡ = min ቆ1,

𝑁

𝑊௥,ெ௅,ை௟ௗ𝛽𝑉

〈𝑊ூீ〉

𝑓
ቇ , 

𝑃௔௖௖
ோ௘௜௡௦௘௥௧௜௢௡ = min ቆ1,

𝑊௥,ெ௅,ே௘௪

𝑊௥,ெ௅,ை௟ௗ
ቇ, 

(4) 

where 𝑊௥,ெ௅,ே௘௪ and 𝑊௥,ெ௅,ை௟ௗ are the ML-corrected Rosenbluth weights for the new and old 

configurations, 𝑉 is the volume of the simulation box, 𝑓 is the imposed fugacity of the GCMC 
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simulation, and 〈𝑊ூீ〉 is the averaged Rosenbluth weight of an isolated molecule in the gas phase 

evalulated using the classical force field. For a rigid molecule, 〈𝑊ூீ〉 is set to 1.10,67  

6.2 Lin model 

For the implementation of the Lin model, every adsorbate-framework atom pair type is 

considered. For each type of pairwise interaction, the nine smallest distances are sorted in 

ascending order. Then, for each of the nine smallest distances, the raw pairwise distance 𝑟 is 

transformed into six features, i.e., exp(−𝑟), 1/𝑟, 1/𝑟ସ, 1/𝑟଺, 1/𝑟଼, and 1/𝑟ଵ଴. For example, for 

CO2 adsorption in Mg-MOF-74, there are eight guest-host atom pair types, i.e., C-Mg, C-O, C-C, 

C-H, O-Mg, O-O, O-C, and O-H, where the first atom type is from the guest molecule (CO2) and 

the second is from the MOF material. For each type of pair, say C-Mg, we pick the first nine 

smallest distances {𝑟ଵ, 𝑟ଶ, … , 𝑟ଽ} in ascending order. Then for each distance, we calculate the six 

distance features, e.g., for distance 𝑟ଵ, we have {exp(−𝑟ଵ), 1/𝑟ଵ, 1/𝑟ଵ
ସ, 1/𝑟ଵ

଺, 1/𝑟ଵ
଼, 1/𝑟ଵ

ଵ଴}. 

Therefore, for each atom type pair, we have 9 × 6 = 54 features. Because there are eight unique 

pairs, the total number of input features for a single CO2 configuration is 54 × 8 = 432. An 

illustration of this featurization process is available in Figure S4. With these features calculated, 

the model can then make predictions. Since it is a shallow model with only five hidden layers 

(see SI for more details), we performed the predictions on the CPU instead of the GPU to avoid 

latencies in loading data to and from the GPU.  

6.3 Allegro model 

The implementation of the Allegro model64 in LAMMPS8 is based on the neighbor list for each 

atom in each subdomain. The use of subdomains is a technique for handling large systems of 

atoms using message-passing interface (MPI) processes by dividing the simulation box into 
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parts. Then, each CPU core can handle a subdomain efficiently. Atoms from neighboring 

subdomains are stored as “ghost” atoms for each subdomain. In gRASPA, to reproduce the effect 

of the ghost atoms, we generate 26 (3 x 3 x 3  1) replica cells that are exact copies of the central 

cell and surround the central cell, where the central cell is the framework structure used for 

generating the training data for ML potential. A detailed description of the featurization process 

for using the Allegro model is summarized in the SI.  

6.4 Results 

We implemented the Lin model and the Allegro model in gRASPA for two test cases: (1) Ar 

adsorption in Mg-MOF-74 at 77 K, where the model was trained using classical force fields for 

all interactions. This case was chosen to check if ML potential models can reproduce the 

adsorption isotherm of reference classical simulations; (2) CO2 adsorption in Mg-MOF-74 at 313 

K, where guest-host interaction energies were predicted by the ML potential at ab initio 

accuracy. This case highlights the superiority of the ML potential in modeling challenging gas 

adsorption systems where classical force fields fail to match experimental data.   

6.4.1 Ar adsorption in Mg-MOF-74 

In this test case, we generated data to train the ML model using an NVT MC simulation at 

80,000 K using classical force fields with only one Ar molecule in the unit cell of Mg-MOF-74. 

Using such a high temperature was intended to generate a training data set containing diverse 

configurations. ML potentials were trained to regress the classical Ar binding energy for a given 

Ar configuration. Once the ML models were validated, we performed GCMC simulations using 

gRASPA to test the performance of the ML potential models in reproducing the classical force 

field. Details for training data generation, ML training, and GCMC simulations including the 
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classical force fields are available in Section S5.1. Simulation and ML training input files are 

also available in our github repository: https://github.com/snurr-group/gRASPA/tree/main/Examples. 

In this simple case, both the Lin and Allegro models can regress the classical force field well. 

The mean absolute errors (MAE) for the Lin and Allegro models are 1.64 kJ/mol and 0.77 

kJ/mol (equivalently, 17.00 meV and 7.98 meV), respectively, based on 1,000 testing points. 

Parity plots showing the performance of both models on testing data are available in Figures S1 

and S2. As shown in Figure 5, the simulated adsorption isotherms of Ar in Mg-MOF-74 at 77 K 

using both ML potential models agree quantitatively with the reference classical simulations 

within the statistical error of the simulations. The consistent results confirm the correct 

implementation of the ML potential functionalities in gRASPA and the validity of the Lin and 

Allegro models for simple Lennard-Jones systems.  
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Figure 5. Simulated adsorption isotherms for Ar in Mg-MOF-74 at 77 K. A reference adsorption 

isotherm was generated using the classical force field shown in Table S9 and is shown in red. 

Adsorption isotherms predicted by the Lin and Allegro models are shown in green and blue, 

respectively. 

6.4.2 CO2 adsorption in Mg-MOF-74 

In the presence of open metal sites in MOFs, classical force fields, such as the Universal Force 

Field (UFF)68 and DREIDING41, typically fail to reproduce the strong binding energies of 

adsorbate molecules at low pressure. CO2 adsorption in Mg-MOF-74 is a well-known example of 

this kind. In previous studies, tailored analytical force fields were developed to capture the strong 

interactions of CO2 with the open Mg site.69 In our work, without restricting the potential energy 
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surface to a specific, analytical form, we used ML to model the complex potential energy surface 

of a single CO2 molecule interacting with the MOF to a high accuracy. We generated training 

data of CO2 binding energies in the unit cell of Mg-MOF-74 using DFT (see details in the SI). 

Following the ML architecture, the Lin model was trained with only the energy data, while the 

Allegro model was trained using both the energy and force labels with equal weights, as 

recommended in the original work.64,70 We found that training with additional force information 

benefited the overall accuracy of the Allegro model but also increased the training time. If the 

training time permits, we suggest training the Allegro model using both energy and force data, 

even though only the output energy is useful in GCMC simulations. With both the Lin and 

Allegro models ready, we performed GCMC simulations using gRASPA to predict CO2 

adsorption in Mg-MOF-74 at 313 K and compared simulated results to experimental values. 

Details of training data generation, ML training, and GCMC simulations are available in Section 

S5.2, and the necessary input files are also provided in the SI as well as the GitHub repository at 

https://github.com/snurr-group/gRASPA/tree/main/Examples.  

Figure 6 shows the comparison among simulated adsorption isotherms and experimental data. 

The Lin and Allegro models agree with each other very well, as expected, since they were 

trained on the same DFT data. Both the Lin and Allegro models predict adsorption isotherms that 

are in much better agreement with the experimental data than the simulations using a classical 

potential. The ML potential simulations especially outperform the classical simulations at low 

pressures (<50,000 Pa), where strong interactions between CO2 molecules and the open Mg sites 

dominate the adsorption. Deviations of ML predicted adsorption loadings from the experimental 

data may be attributed to limitations of the DFT functionals58 or possible defects in the 
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experimental samples. These results show the great promise of ML potentials for simulating 

challenging adsorption systems where classical force fields fall short.  

 

 

Figure 6. Adsorption isotherms for CO2 in Mg-MOF-74 at 313 K. Simulated adsorption 

isotherms using the classical force field, the Lin model, and the Allegro model are shown in red, 

green, and blue, respectively. The experimental isotherm from Mason et al. (Ref. 71) is shown in 

black as a comparison. 

6.4.3 Benchmarking simulation time 
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Finally, we benchmarked the simulation time using the ML potentials compared to classical 

force fields in gRASPA. For the Lin model, we first measured the time for calculating 10,000 

energies. We wrote a small C++ program to call the model prediction 10,000 times on the same 

input features. We found that by running the model on the CPU instead of loading it and running 

it on the GPU, the model prediction is 4 times faster (Table S10). We also benchmarked the time 

for performing 10,000 Monte Carlo steps using both ML potentials for predicting argon 

adsorption in Mg-MOF-74 at 77 K and 100 Pa. The results are shown in Table 3. In this table, 

we divided the time into three categories: classical calculation time (pairwise distances, LJ), 

feature preparation time (sorting pairwise distances, generating neighbor lists), and prediction 

time (time spent by the ML model). It is worth noting that for the Lin model, when we further 

decomposed the preparation time for the features, we found that sorting the nine smallest 

pairwise distances between argon and the MOF is the most time-consuming step. It took 0.67 

seconds using the “std::sort” function with CPU parallelism via the keyword “stdpar=multicore” 

during the compilation. Thus, we can recommend that for future development of fast ML 

potential models for MC simulations, developers should take the performance of their model as 

well as the feature preparation into consideration to develop a model that is both accurate and 

cost-effective to be deployed in MC simulation software. 

Table 3. Benchmarking the performance of 10,000 Monte Carlo steps using the Lin and Allegro 

models for argon adsorption in MgMOF-74 at 77 K and 100 Pa. The Lin model prediction is 

performed on the CPU, while the Allegro model prediction is performed on the GPU.  



41 
 
 

 

Model Classical Time 

[s] 

Preparation Time 

[s] 

Prediction Time 

[s] 

Total Time  

[s] 

Lin 0.43 0.91 1.44 2.78 

Allegro 0.43 0.69 316.11 317.23 

 

In summary, the Allegro model shows much lower MAE than the Lin model (Figures S6 and S7) 

thanks to Allegro’s equivariant architecture for describing the detailed local environment of non-

spherical molecules. Although, in general, the Allegro model would be recommended due to its 

state-of-the-art accuracy, training of an Allegro model is more time-consuming (around tens of 

hours on an Nvidia A100 graphic card) compared to the Lin model (several minutes on a single-

core CPU). In addition, due to its simplicity,  the Lin model executes much faster than the 

Allegro model during GCMC simulations (Table 3). Thus, the Lin model could be used to 

generate preliminary results.  

 

7. Transition-Matrix Monte Carlo in the Grand Canonical Ensemble (GC-TMMC) 

GC-TMMC is a powerful tool for obtaining relative free energies and relative probabilities of 

observing different states in phase coexistence72 and studying adsorption phase equilibrium. It 

was originally proposed by Fitzgerald et al.28,29 and then further developed by Errington et al.72 

for efficient implementation in GCMC using an additional bias that helps the system sample the 

less-probable states with higher frequencies. Recently, Siderius et al.73 have used it to study the 

adsorption of CO2 in IRMOF-1 and argon in carbon nanotubes, and Shen et al.74 extended the 

GC-TMMC method to mixture simulations.  
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Here, we implemented GC-TMMC and tested it on TraPPE CO2 vapor-liquid equilibrium39 and 

then on ethane adsorption in hypothetical MOF #66775 at 179 K.76 We calculated the free energy 

versus density or loading for both systems and compared them against the results reported by 

NIST and by Li et al.,76 respectively. The force field parameters are reported in Table S11 and 

Table S12 for CO2 and for ethane in MOF #667, respectively.  

In GC-TMMC simulations, for each Monte Carlo move, the collection matrix 𝐶 is updated according to 

the acceptance probability for the Monte Carlo move: 

 𝐶(𝑂𝑙𝑑 → 𝑁𝑒𝑤) = 𝐶(𝑂𝑙𝑑 → 𝑁𝑒𝑤) + 𝑃஺௖௖(𝑂𝑙𝑑 → 𝑁𝑒𝑤) 

𝐶(𝑂𝑙𝑑 → 𝑂𝑙𝑑) = 𝐶(𝑂𝑙𝑑 → 𝑂𝑙𝑑) + 1 − 𝑃஺௖௖(𝑂𝑙𝑑 → 𝑁𝑒𝑤) 

(5) 

where 𝑜𝑙𝑑 and 𝑛𝑒𝑤 represent the old and the new macrostates for the attempted Monte Carlo move, and 

𝑃஺௖௖ is the acceptance probability of the move. We defined macrostates by the number of molecules in the 

system, 𝑁. In the grand canonical ensemble, there are three possible directions in the macrostate space for 

a Monte Carlo move, which are +1 for insertion moves, 0 for canonical ensemble moves such as 

translation and rotation that do not change the number of molecules, and -1 for deletion moves. We 

denote the new macrostate as 𝑁ᇱ, so 𝑁ᇱ can be either 𝑁 − 1, 𝑁, or 𝑁 + 1. Then, the probability in the 

transition matrix for 𝑁 → 𝑁ᇱ can be derived from the elements in the collection matrix 𝐶: 

 
𝑃ே→ேᇲ =

𝐶(𝑁 → 𝑁ᇱ)

𝐶(𝑁 → 𝑁 − 1) + 𝐶(𝑁 → 𝑁) + 𝐶(𝑁 → 𝑁 + 1)
 

(6) 

From the probabilities in the transition matrix, the probability for each macrostate π can be calculated as  

 
lnΠ(𝑁 + 1;  𝜇, 𝑉, 𝑇) =  lnΠ(𝑁;  𝜇, 𝑉, 𝑇) +  ln ൬

𝑃ே→ ேାଵ

𝑃ேାଵ→ ே
൰, 

(7) 

and each macrostate has a related bias 𝜂 = −lnΠ(𝑁; 𝜇, 𝑉, 𝑇) that helps the GC-TMMC simulation sample 

the less probable states more frequently. The bias for each macrostate was updated every 1 million steps, 
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and a total of 100 million MC steps were performed. More details about GC-TMMC can be found in the 

work of Hatch, Siderius, Shen, and Errington.72,73,77  

To sample the free energies with higher efficiency, we adapted a divide-and-conquer approach 

suggested by Siderius et al.73 by dividing the space of the macrostates (number of molecules in 

the simulation box) into different ranges and running a separate simulation for each range. Each 

simulation samples only the number of molecules within its range, and all insertion or deletion 

moves that try to move out of the range are rejected. This naturally works with the Nvidia-MPS 

discussed in Section 2.  

We used the same setup of the GC-TMMC simulation for bulk CO2 using the TraPPE model39 as 

reported by NIST. Thus, we used a 30 x 30 x 30 Å3 cubic box and performed the GC-TMMC 

simulations at temperatures between 230 K and 300 K. More details of this set of simulations can 

be found in the SI. We first located the equilibrium fugacity where the probabilities of observing 

the gas and liquid phases are equal. Then, the average density of a phase 𝛼 is defined by:  

 
〈𝜌〉 =

1

𝑉

∑ 𝑁Π(𝑁; 𝜇, 𝑉, 𝑇)ே∈ఈ

∑ Π(𝑁; 𝜇, 𝑉, 𝑇)ே∈ఈ
, 

(8) 

where 𝑁 is the number of molecules, and the summation is over the values of 𝑁 that fall within 

the range of phase 𝛼, and 𝑉 is the volume of the simulation box. In addition to equilibrium 

loadings, the equilibrium pressures can also be calculated from the grand potential Ω. The grand 

potential for phase 𝛼, Ωఈ = −(ln(𝛴ே∈ఈ𝛱(𝑁; 𝜇, 𝑉, 𝑇)/Π(0; 𝜇, 𝑉, 𝑇)).73 The pressure for phase 𝛼, 

𝑝ఈ =
௞ಳ்

௏
(ln(𝛴ே∈ఈ𝛱(𝑁; 𝜇, 𝑉, 𝑇)/Π(0; 𝜇, 𝑉, 𝑇)). At phase equilibrium for phases 𝛼 and  𝛽, the 

grand potentials are equal: Ωఈ = Ωఉ. These pressures are also summarized in Table 4. From 
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Table 4, we can see that the densities of the two phases, as well as the equilibrium pressures 

calculated by gRASPA, are very close to the NIST values, showing that gRASPA can generate 

the vapor-liquid equilibrium of TraPPE CO2. 

Table 4. Summary of equilibrium vapor-liquid densities of TraPPE CO2. The values outside and 

inside the parentheses are generated from gRASPA and obtained from NIST (Ref. 45), 

respectively.  

T (K) 
𝜌௩௔௣ ൬

𝑚𝑜𝑙

𝐿
൰  𝜌௟௜௤ ൬

𝑚𝑜𝑙

𝐿
൰ 

Equilibrium 

Fugacity (Bar) 

Equilibrium 

Pressure 

(Bar) 

230 5.000*10-1  

(5.015*10-1) 

2.540*101 

(2.551*101) 

7.812*100 8.588*100 

(8.625*100) 

240 7.173*10-1  

(7.199*10-1) 

2.462*101 

(2.464*101) 

1.102*101 1.245*101 

(1.248*101) 

250 1.006*100  

(1.009*100) 

2.371*101  

(2.371 *101) 

1.499*101 1.744*101 

(1.748*101) 

260 1.389*100  

(1.390*100) 

2.261*101 

(2.270*101) 

1.977*101 2.378*101 

(2.381*101) 

270 1.891*100  

(1.896*100) 

2.160*101 

(2.158*101) 

2.531*101 3.156*101 

(3.165*101) 

280 2.575*100  

(2.582*100) 

2.030*101 

(2.029*101) 

3.167*101 4.112*101 

(4.123*101) 
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We then simulated ethane adsorption in hypothetical MOF #667 at 179 K as the next test case. 

The saturation loading of ethane at 179 K in MOF #667 is 289 molecules per unit cell (375 

cm3/cm3). So, we took the range of number of molecules from zero to 320 and divided the range 

into five individual simulations and ran them in parallel using Nvidia-MPS. Each simulation 

handled a range of 64 ethane molecules. Additional details about the simulations are summarized 

in the SI.  

Figure 7 shows that there are three local minima in the free energy profile. They correspond to 

the one stable and two metastable loadings at the given pressure on the “canonical” isotherm, 

which was obtained in previous work by performing Widom test particle insertions at various 

loadings,76 as shown in Figure S12. From the adsorption isotherm in Figure S12, there are three 

plateaus and two steps. At 27,500 Pa, three solutions exist on the stable and metastable regions 

along the canonical isotherm, having loadings of 41.5 cm3/cm3 (32 molecule/uc), 140.2 cm3/cm3 

(108 molecule/uc), and 358.4 cm3/cm3 (276 molecule/uc). We can see that the loadings for the 

circled points on the canonical isotherms in Figure S12 and the local minima in the free energy 

profile in Figure 7 match well, validating our implementation of GC-TMMC in gRASPA.  

Such free energy profiles provide a rapid way to obtain the adsorption isotherm since one can 

easily access the free energy profiles via histogram reweighting:  

 
ln Πே,ఓᇲ = ln Πே,ఓ +

𝑁(𝜇ᇱ − 𝜇)

𝑘஻𝑇
, 

(9) 

where 𝜇 and 𝜇ᇱ are the current and desired chemical potential. By plugging in the definition of 

fugacity 𝑓 =
ௐ಺ಸ௞ಳ்ே

௏〈ௐೝ〉
, where 𝑊ூீ is the ideal chain Rosenbluth weight, 𝑉 is the volume of the 
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simulation box, and 〈𝑊௥〉 is the averaged Rosenbluth weight, and the definition of excess 

chemical potential 𝜇௘௫ = −𝑘஻𝑇𝑙𝑛〈𝑊௥〉, equation 9 can be rewritten as 

 
ln Πே,௙ᇲ = ln Πே,௙ + 𝑁 ln ቆ

𝑓ᇱ

𝑓
ቇ , 

(10) 

where 𝑓 and 𝑓ᇱ are the current and desired fugacities. The free energy profile at different pressures 

yields the loadings of the most probable states at these pressures, and the free energies can 

provide insights into the adsorption system.  
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Figure 7. Free energy profile for ethane in MOF #667 at 179 K and 27,500 Pa calculated 

through GC-TMMC in gRASPA. The three local minima are 40.3 cm3/cm3 (31 molecules/uc), 

142.8 cm3/cm3 (110 molecules/uc), and 358.4 cm3/cm3 (276 molecules/uc).  

8. Framework Semi-Flexibility Move 

In the original CPU RASPA convention, the framework is considered one component and one 

“molecule.” Although this convention is straightforward and intuitive, it imposes some limitations on 

MOFs because it does not take advantage of their modular construction from metal nodes and organic 

linkers. For example, this convention makes it difficult to incorporate a MC move that moves only a part 

of the framework, such as rotating one or more linkers or rotating a functional group on a linker or on a 

node. To overcome this problem, in the gRASPA code we enabled the separation of MOF components to 

make the framework more modular. In the simulation input file, the user can specify the parts of the MOF 

to be separated into different components. Each framework component can then be assigned different MC 

moves.  

Using this capability, we considered para-xylene adsorption in NU-200078 at 298 K and 3800 Pa. We used 

the same LJ parameters and partial charges as used by Idrees et al.78 (Table S13). We used a cutoff of 12 

Å for both the vdW and the real part of the Coulombic interactions. The vdW potentials were shifted so 

that they reach zero at the cutoff. Although the original LJ parameters and partial charges were derived 

for a fully flexible framework model, just to show how our semi-flexible move works, we did not 

consider the bonding, angle, and dihedral terms for this example. For p-xylene, translation, rotation, 

reinsertion, and swap (insertion and deletion) moves were attempted with equal probabilities. We also 

included a linker rotation move that rotates a randomly chosen linker around its linker axis to a random 

angle. Similar to a translation or rotation move in the canonical ensemble, the acceptance probability 

(𝑃௔௖௖) of this move is 
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 𝑃௔௖௖ = min {1, eିఉ୼ா}, (11) 

where 𝛽 is the inverse temperature, and Δ𝐸 is the energy difference between the newly rotated and the 

original state of the selected linker. We used 100 million MC steps for the simulation, which roughly 

equals 3.3 to 5 million MC cycles in the RASPA terminology. We compared the results with and without 

linker rotation (i.e., in a fully rigid NU-2000 framework) using the same number of MC steps.  

Table 5 shows the simulated result with the linker rotations compared to using a fully rigid framework 

model. We can see from Table 5 that the linker rotation move yields a much higher loading of p-xylene 

than the fully rigid model. Compared to the experimental saturation loading, which is 1.88 mol/kg, the 

simulations with the linker rotation move are in excellent agreement.  

 

Table 5. Comparison of p-xylene adsorption in NU-2000 at 298 K and 3800 Pa between the semi-flexible 

model of NU-2000 where linker rotation move is used and the fully rigid model. 

 Loading 

[molecule/uc] 

Loading  

[mol/kg] 

Linker Rotation 29.0 1.88 

Fully Rigid 19.8 1.29 

 

Figure 8 shows that the linker rotation move has a big effect on the framework structure and the adsorbed 

p-xylene configurations. It allows for denser packing of p-xylene molecules in the channels. In the rigid 

framework, the p-xylene molecules cannot efficiently utilize the space in the channels. Thus, the rigid 

representation of NU-2000 leads to a lower loading than the semi-flexible framework simulation. The 

results show that utilizing just a linker rotation move, which focuses on one type of motion of the 
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framework, can lead to the same conclusion as in the original work with NU-2000,78 where the authors 

developed a fully flexible framework model for NU-2000.  

As expected, the linker rotation move makes the simulation slower. The simulation with linker rotation 

moves took 6.5 hours, while the rigid framework simulation took 3.2 hours for the same number of MC 

steps. This is mainly because there are more pX molecules for the linker rotation simulation, and intra-

host non-bonded interaction energies must be considered. In addition, the energy calculation takes longer 

because the linkers of NU-2000 are also subject to MC moves. However, with GPU acceleration, the 

current gRASPA simulation time is much less than that using RASPA-2. Thus, by incorporating a 

modular framework representation and semi-flexible framework moves, gRASPA can facilitate the 

development of molecular models and new force fields that take advantage of the modular nature of 

MOFs.  
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Figure 8. Comparison between semi-flexible (a, b) and fully rigid (c, d) framework simulations for p-

xylene adsorption in NU-2000 at 298 K and 3800 Pa. Periodic boundary conditions were applied to the 

snapshots to wrap all atoms into the simulation box. The red, white, gray, cyan, yellow, and blue pseudo-

atoms are oxygen, hydrogen, carbon, aluminum, carbon on the benzene ring, and methyl group, 

respectively. To show the linker rotation of the framework more clearly, in b and d, we deleted the p-

xylene molecules from the snapshots.  
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9. High-Throughput Calculations using CUDA Blocks 

By default, each gRASPA simulation utilizes multiple CUDA blocks for computation (see also Method 

section). To enable a high-throughput calculation (HTC) on a single graphics card, we can assign one 

independent MC simulation to each block on a GPU. Since every block contains a group of threads, these 

threads can be used for parallel evaluation of pairwise interactions and the Fourier part of the Ewald 

summation for the simulation. Here, we used 128 threads per block and ran different numbers of 

concurrent MC simulations to compare the speed and test the optimal operation condition of this type of 

simulation. We call this special version of the code gRASPA-HTC. Note that this gRASPA-HTC version 

is different from gRASPA or gRASPA-fast versions. gRASPA and gRASPA-fast benefit from the use of 

Nvidia MPS. gRASPA simulations using MPS are parallel processes, and each one uses one CPU core 

and offloads heavy calculations to the GPU. In this way, MPS is limited by the number of cores on the 

CPU. For our case, its limit is 24 simulations simultaneously. However, the block-based gRASPA-HTC 

runs the whole GCMC simulation on the GPU. This includes random selection of particles and moves, 

preparation of trial positions, and the Metropolis algorithm for accepting or rejecting a move. This 

naturally increases the throughput of simulations beyond 24. Similar ideas have been implemented by 

Kim et al.;17 however, their work is not open-source, and their simulations rely on tabulating the energy 

calculations, including the Lennard-Jones, the real part and the Fourier part of the Ewald summations.17 

Our code performs real-time calculations of pairwise interactions and Ewald summation, aiming for 

higher accuracy.  

We tested this HTC mode of gRASPA on an MC simulation of bulk methane. To perform a head-to-head 

comparison, we ran the HTC mode of gRASPA and a single-thread RASPA-2 simulation starting from 

the same initial configuration but different random seeds with 400 methane molecules in a 30 x 30 x 30 

Å3 cubic box at 95 K.  Each simulation ran for 1,000 MC cycles, and each cycle only performed 

translation moves. The force field parameters are summarized in Table S14. The speed comparison in 
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Table 6 shows that the time required for the simulations remains nearly constant, whether executing a 

single simulation or up to 50 simulations simultaneously on a single graphics card using gRASPA's HTC 

mode. However, as the number of concurrent simulations surpasses approximately 250 to 500, the 

graphics card becomes saturated, causing the simulation time to increase. To show the ability of the code 

to calculate isotherms, we performed a GCMC simulation of bulk methane at 298 K in a 30 x 30 x 30 Å3 

cubic box at fugacities from 1 bar to 1000 bar. For the fugacities, 500 values were selected linearly in the 

log10 space between 1 and 1000 bar. For reference, we also conducted RASPA-2 GCMC simulations in 

this fugacity range. The results are shown in Figure 9 and show excellent agreement between the 

gRASPA-HTC code and RASPA-2. 

 

Figure 9. GCMC isotherms of bulk methane at 298 K simulated via RASPA-2 (blue circles) and 

gRASPA using the HTC mode (red triangles).  
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We also tested the performance of the HTC mode of gRASPA versus the normal RASPA-2 for CO2 

adsorption in MFI zeolite at 298 K and 104 Pa. This simulation used translation, rotation, and swap 

(insertion and deletion) moves. Note that we did not use CBMC for this example. We used a 12.8 Å 

cutoff for the Lennard-Jones interactions and a 12.0 Å cutoff for the short-range part of the Coulombic 

interactions. Ewald summation was used to calculate the Fourier part of the Coulombic interactions. We 

used 10-6 for the Ewald precision. The performance is summarized in Table 7, which shows that using the 

same amount of time, the methane case performed 400,000 MC steps while the CO2 case performed 

40,000 steps. This is because compared to running methane simulations, CO2 adsorption in MFI 

simulations is more complicated and involves Ewald summation. For the CO2 adsorption case, when 

running 50 GCMC simulations concurrently, each simulation is at least three times faster than a single-

core RASPA-2 simulation. When running 500 simulations concurrently on a single graphics card, the 

performance per simulation is 1.5 times slower than that of a single-core RASPA-2 simulation, but this 

trade-off translates to a remarkable throughput gain of 500 times. Executing these 500 concurrent GCMC 

simulations on one graphic card took 36.1 seconds, while executing these 500 simulations on CPUs 

would require at least 21 CPU chips, assuming each is equipped with 24 cores, such as the AMD 

Threadripper processor used in this study, and assuming each RASPA-2 simulation takes one CPU core. 

Such an undertaking is typically accomplished by submitting CPU jobs to a large, centralized computing 

cluster. Using the HTC mode of gRASPA, researchers with limited computational resources (for example, 

just a laptop with an RTX 3090 GPU) can explore the adsorption space as quickly as someone with access 

to a large CPU cluster, expanding access to computational materials discovery. People with access to 

supercomputers can also benefit from the HTC mode of gRASPA. For example, to screen the CoRE-

MOF 2019 database79 for CO2 capture, a mere 25 RTX 3090 GPUs, each handling 500 MOFs, are 

sufficient to concurrently compute the adsorption properties of all 14,142 MOF structures within the 
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database, a task easily accomplished by the multi-GPU nodes available on modern clusters. Furthermore, 

the projected release of new generations of Nvidia GPUs and technologies such as NVLink and PCIe 

connections between GPUs are expected to amplify the speed of gRASPA's HTC mode. Despite the 

maximized throughput of the HTC mode, in terms of speed of a single GCMC simulation, it is slower and 

less capable than the gRASPA base code. For the CO2 case at 298 K, 104 Pa with 40,000 MC steps and no 

CBMC, the base gRASPA code takes 5 seconds to finish, compared to the values in Table 7, which is 6.2 

seconds for one simulation. Also, the HTC mode currently only performs non-CBMC moves, while 

CBMC is important for many GCMC simulations. The user can use the HTC mode to quickly explore 

materials with fewer compute resources, then refine the calculated result using the non-HTC code.  

 

Table 6. Run times for multiple concurrent simulations using CUDA blocks in the HTC mode of 

gRASPA for bulk methane at 95 K. The system contains 400 methane molecules, and 1000 MC cycles 

(equal to 400,000 MC steps) are performed. As a comparison, the same simulation with RASPA-2 using a 

single core took 6.73 seconds. 

Number of concurrent 
simulations 

gRASPA-HTC time [seconds] 

1 6.00 
2 6.01 
5 6.01 

10 6.06 
20 6.04 
50 6.09 

100 10.52 
200 15.26 
250 20.20 
500 35.28 

1000 65.35 
5000 311.43 
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Table 7. Run times for multiple concurrent simulations using CUDA blocks in the HTC mode of 

gRASPA for CO2 adsorption in MFI zeolite at 298 K and 104 Pa for 40,000 MC steps. As a comparison, 

the same simulation with RASPA-2 using a single core took 20.81 seconds. 

Number of concurrent 
simulations 

gRASPA-HTC time [seconds] 

1 6.24 

2 6.26 

5 6.30 

10 6.30 

20 6.27 

50 6.42 

100 10.7 

200 15.57 

400 26.03 

500 36.15 

1000 66.71 

 

Conclusions 

We have developed an open-source Monte Carlo simulation code, gRASPA, that runs on GPUs 

and shows substantial speed-ups compared to serial, CPU implementations of Monte Carlo. The 

utilization of Nvidia MPS significantly enhances the throughput of gRASPA simulations on a 

graphics card, with the Fast version displaying much better scalability for high-throughput 

screening. The additional HTC mode of gRASPA expands the limit of high-throughput materials 

discovery by allowing users to run a large number of GCMC simulations on a single GPU 

device. In addition to improved speed for MC simulations of adsorption, the code can integrate 

ML force fields for improved accuracy. We demonstrated that GCMC simulations with ML 

potentials trained on DFT data show improvements in adsorption isotherm predictions for CO2 

adsorption in Mg-MOF-74 compared to classical force fields. GC-TMMC is implemented in 
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gRASPA for calculating free energy profiles, which allows complete adsorption isotherms to be 

obtained very quickly. The code also allows users to specify different components of MOF 

structures (for example, nodes and linkers) and to incorporate different Monte Carlo moves for 

different components, which we demonstrated for simulations of p-xylene adsorption in NU-

2000 with rotation moves for the MOF linkers.  

Beyond these features, the code supports other MC simulations, including NVT-Gibbs Monte 

Carlo, Widom test particle insertions, and continuous-fractional component (CFC) Monte Carlo, 

and we have demonstrated its use for vapor-liquid equilibrium simulations. We plan to continue 

adding features and enhance the performance of the code, and since the code is open-source 

other users may add their own capabilities. 

 

Associated Content 

 Details about the timings of RASPA-2, RASPA-3, and gRASPA, training of ML potential and 

hyperparameters tuning, force field parameters used, and other supporting figures and tables 

(PDF) 

 The default code of gRASPA is available at https://github.com/snurr-group/gRASPA. 

 gRASPA-fast version, gRASPA translated to SYCL, and gRASPA-HTC are available as releases 

at https://github.com/snurr-group/gRASPA/releases.  

 Simulation input and force field files for the examples in this work are available at 

https://github.com/snurr-group/gRASPA/tree/main/Examples.  

 gRASPA documentation is available at https://zhaoli2042.github.io/gRASPA-mkdoc/.  
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