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The increasing integration of renewable energy and rising electricity demand highlight the importance of battery
energy storage systems for peak shaving and demand response. Unlike prior approaches that overlook opera-
tional impacts on degradation, this study proposes a Bayesian Optimization-Mixed Integer Linear Programming
framework for optimal battery energy storage system sizing. In this framework, Mixed Integer Linear Pro-
gramming determines short-term scheduling while a calibrated electrochemical model iteratively evaluates
degradation. The central hypothesis is that the framework can efficiently identify optimal sizes that yield realistic
and economically robust outcomes. The method is tested across three scenarios: peak shaving, peak shaving with
energy-reduction demand response, and peak shaving with power-reduction demand response. Results show that
the framework converge to the optimum within 20 iterations out of 150 possible sizes. Under baseline conditions,
the framework consistently selects the smallest feasible system, minimizing unnecessary degradation costs from
oversized storage. Sensitivity analyses reveal that larger systems are favored as demand rates or incentives in-
crease. Comparisons of demand response programs indicate that power-reduction demand response offers greater
economic benefits than energy-reduction demand response, although demand savings from peak shaving remain
the dominant contributor to overall performance. This study demonstrates that the proposed framework balances
computational tractability with degradation fidelity, identifies critical economic thresholds for investment, and
offers a practical, flexible tool to guide industrial stakeholders in cost-effective battery energy storage system
deployment.

1. Introduction compromise the stability of the grid system by increasing the likelihood

of system failures and degrading power quality [7]. Demand response

The global electricity system is undergoing a profound trans-
formation, driven by factors such as population growth [1], economic
expansion [2], widespread electrification [3], and the increasing pene-
tration of renewable energy sources [4]. This evolution has resulted in a
substantial rise in electricity demand across all sectors. Notably, in-
dustrial electricity consumption is projected to increase significantly
impacting existing grid infrastructure [5]. The challenges of this tran-
sition are further exacerbated by the variability and unpredictability of
renewable energy sources like solar and wind which are growing at
unprecedented rates [6]. A critical issue in modern energy management
is the mitigation of sudden spikes in energy demand, which can

* Corresponding author.
E-mail address: kody.powell@utah.edu (K.M. Powell).

https://doi.org/10.1016/j.enconman.2025.120947

(DR) programs have been introduced to alleviate these pressures,
allowing consumers to support grid stability by reducing or shifting
electricity usage during peak periods in exchange for incentives or time-
based pricing [8]. Therefore, peak shaving (PS) is becoming an even
more pressing research area. However, effective participation in PS
often requires dynamic and flexible load adjustments, which may not be
feasible for many end-users. This limitation highlights the growing
importance of energy storage systems. Among available technologies,
battery energy storage systems (BESSs) stand out as a viable solution due
to their scalable capacity, minimal site constraints, and fast response
capabilities.
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In recent years, BESSs have seen growing adoption in residential [9]
and utility-scale sectors [10]. However, their use within industrial ap-
plications remains relatively limited due to several factors, including
diverse load profiles, varying degrees of tolerance to uncertainty, mul-
tiple rate structures, and stringent payback requirements [11].
Numerous studies have recently emerged to address these challenges.
Billings et al. applied Gaussian process regression (GPR) coupled with
Bayesian decision theory to manage BESS operations in industrial set-
tings, explicitly addressing uncertainty in electrical loads [12]. Sanjari
et al. developed an analytical closed-form strategy for optimal battery
scheduling in energy systems under load demand uncertainty [13].
Carpinelli et al. considered both uncertain electricity prices and load
demands for the sizing problem [14]. Hartmann et al. performed an
economic analysis involving 21 commercial and industrial load profiles,
concluding that cost reduction varies notably with different load profiles
[15]. Despite these advancements, determining the appropriate capacity
of a BESS for PS remains a critical initial step in industrial applications.
An incorrect estimation of the required capacity could transform
anticipated benefits into economic disadvantages. An oversized BESS
may be economically impractical since capital expenditures and main-
tenance costs are directly linked to the system size. In contrast, an un-
dersized BESS might fail to deliver the intended advantages [16].

Studies have been conducted to address the challenge of determining
the optimal sizing of BESS for PS. However, the size of the BESS is also
determined by the operation. In other words, solving the BESS’s oper-
ation problem is usually required to solve the optimal sizing problem. By
building a correlation between the peak demand and energy usage based
on the historical load profile, Chua et al. proposed a novel sizing method
along with a rule-based control strategy to iteratively obtain the optimal
size of the BESS to minimize the electricity bill for commercial and in-
dustrial facilities [17]. Alexandre et al. utilized an “extrema” method
where the objective function is evaluated for a set of BESS sizes, and
BESSs are controlled with a dynamic programming (DP) algorithm [18].
Leadbetter et al. identified the optimal size of the BESS by finding the
smallest BESS size that can achieve most of the PS event, which is
determined by a manually calculated grid demand threshold without
considering battery degradation [19]. By assuming the power capacity is
predetermined, Lu et al. proposed a mixed-integer programming (MIP)
model to minimize the power fluctuation without considering the BESS’s
capital cost [20]. Similar approaches have been proposed by Inaolaji
et al. with a mixed-integer linear programming (MILP) model [21] and
by Martins et al. with a linear programming (LP) model [22], addressing
both optimal sizing and optimal operation at once. On the other hand,
Wankhade et al. proposed a framework that uses emperor penguin
optimization to find the optimal BESS scheduling and uses battle royale
optimization for optimal sizing [23]. Other studies also proposed
methods to addressing the optimal size for PS with different conditions:
uncertainty [14], location [24], and on-site renewable energy genera-
tion [25].

Despite these advancements in finding the optimal size for BESS to
participate in PS, most of these studies overlook the degradation effect in
BESS, which is a growing concern as the Li-ion battery is becoming more
and more popular in BESS applications. However, in some studies, the
impact of the degradation on the optimal sizing is overlooked. For
example, Wankhade et al. only considered the battery’s SOC limit [23].
Ke et al. adopted a rule-based strategy to tune the size with consider-
ation of the charge and discharge trigger point [25]. Without consid-
eration of degradation, the size of the BESS might not be optimal,
leading to a high payback period, which is not desirable for industrial
applications as the cost of degradation is a significant cost driver [26].
Other studies utilized a predefined lifetime to account for the cost, for
example Chua et al. [17], and Oudalov et al. [18] using a fixed cycle
lifetime. However, the operation affects the Li-ion battery’s lifetime
[27].

To address this problem, some studies adopted the levelized cost of
storage (LCOE) concept to capture the relationship between usage and
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degradation [28]. For example, Lu et al. integrated the cost of storage
into the objective function to factor in the operation’s impact on
degradation by assuming the BESS will have a depth of discharge at 50 %
[20]. Similar methods are also applied in other studies. Shi et al.
addressed the battery cost with a fixed marginal cost which is calculated
from a fixed cyclelife [29]. Englberger et al. use the ratio between the
throughput energy and the expected throughput over the lifetime to
reflect the degradation cost [30].

Compared to approaches that rely on a fixed lifespan for calculating
BESS degradation expenses, a usage-based cost model more accurately
reflects the impact of charging and discharging on system wear. How-
ever, this method overlooks a degradation pattern of Li-ion battery:
calendar aging. Calendar aging encompasses all mechanisms that
degrade a battery cell regardless of charge-discharge cycle, such as the
growth of electrode-electrolyte interfaces (SEI). It becomes especially
significant in many Li-ion battery applications, where actual operating
periods are notably shorter than the intervals of inactivity, such as BESS
for PS [33]. To further capture the degradation effects, some studies
adopted semi-empirical models. For example, Martins et al. solved the
optimal sizing problem by considering both cycle aging and calendar
aging. Calendar aging is tracked with a function that respects time and
state of charge (SOC) while cycle aging is tracked by usage with a pre-
defined cycle lifetime [22]. Hesse et al. adopted a similar approach to
determine the optimal BESS size to minimize the energy cost for a
household equipped with PV and BESS [26]. By using a rainfall algo-
rithm and relationship between cyclelife and depth of discharge, Shi
et al. is able to calculate a dynamic degradation cost [31]. Padmanabhan
et al. extrapolated a cost function based on the changes of SOC and
power [32]. Semi-empirical models rely on laboratory data, which
narrows their flexibility and realism. The laboratory data are obtained
with fixed test protocols that don’t reflect real-world operating
conditions.

Despite the challenge in capturing the impact of degradation on
BESS’s size, many studies have recently focused on developing optimal
scheduling algorithms that allow the BESS to maximize the economic
benefit by providing grid services. For example, by solving a joint
optimization problem, BESS is used for frequency regulation, and peak
shaving reduced the electricity bill by 11.24 % compared to just peak
shaving by 1.76 % or just frequency regulation by 6.77 % [29]. Zhang
et al. proposed a two-stage stochastic programming model to further
handle the uncertainty [34]. Besides frequency regulation, BESS can also
generate extra income by participating in event-based DR programs.
Peng et al. proposed an optimized economic operation strategy consid-
ering event-based DR incentives and peak load shaving [35]. Elio et al.
proposed an optimal sizing strategy considering event-based DR in-
centives [36]. However, the degradation is captured with a semi-
empirical approach accounting for calendar and cycle aging sepa-
rately. Still, it overlooks how time and usage interact to accelerate
overall deterioration.

Though many studies have examined different methods to determine
the optimal sizing for peak shaving without a comprehensive method to
capture the impact of degradation, limited research has been conducted
on optimal sizing for peak shaving and enrollment in event-based DR
programs. This study proposes an optimal BESS sizing framework for PS
and event-based DR incentives. This paper presents a novel contribution
by addressing three critical research gaps that have been neglected in
previous studies: 1) the impact of degradation on optimal size, 2) taking
into account that the size of BESS is comprised of discrete elements, 3)
how incentives and demand rates affect the optimal size. The novelties
are summarized below:

1. An optimal sizing framework for BESS to participate in PS and event-
based DR program. This framework accounts for the battery degra-
dation by utilizing a calibrated electrochemical model.

2. Demonstration that the demand rate and the load factor determine
the optimal size for the PS only scenarios. As the demand rate
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increases or the load factor decreases, the optimal size will have a
higher power limit.

3. Two kinds of event-based DR programs: 1) energy-reduction DR, and
2) power-reduction DR, are evaluated along with PS. We demon-
strated that the economic benefit can be improved by participating in
the event-based DR programs. However, demand saving from PS
dominates the overall savings. Due to the difference in the calcula-
tion of the incentives, the proposed framework responds differently
as the demand rate and incentive increase.

The rest of this paper is as follows. The proposed framework is
introduced in Section 2. The result of the proposed framework is given in
Section 3. Finally, Section 4 concludes this paper.

2. Methods

As shown in Fig. 1, for an undersized BESS, limited capacity con-
strains PS savings, while an oversized BESS diminishes overall economic
benefits due to excessive cycling. To determine the optimal size for BESS
considering degradation, this section will introduce the proposed
Bayesian Optimization (BO)-MixInteger Linear Programming (MILP)
framework. The framework separates operation and degradation to
preserve computational tractability: the MILP determines the optimal
short-term scheduling, while a calibrated electrochemical model eval-
uates degradation ex-post. Embedding the full nonlinear electro-
chemical dynamics directly into the MILP would require solving a Mixed
Integer Nonlinear Program (MINLP), which is computationally prohib-
itive for the problem scale considered. To ensure that degradation feeds
back into scheduling decisions, the MILP is re-solved iteratively: at the
beginning of each month, the current battery state (SOC and SOH) is
updated based on the electrochemical simulation of the previous month,
and the MILP is solved again to produce an updated optimal schedule.
This monthly coupling allows operational decisions to adapt to pro-
gressive degradation while maintaining computational efficiency.
Moreover, oversizing is penalized indirectly through the ex-post
degradation cost, which reduces the net benefit of such solution. The
following three key components within the proposed framework will be
demonstrated: 1) the BO, 2) the electrochemical battery model, and 3)
the optimal scheduling algorithm.

2.1. Optimal sizing with Bayesian Optimization

As mentioned, the operation will affect the optimal size of BESS.
Therefore, in this study, a BO-MILP framework is proposed to separate
the whole problem into optimal sizing and operation. The proposed
framework is demonstrated in Fig. 2. By building a surrogate for the
objective function using a Bayesian machine learning technique, GPR,
and then using an acquisition function to decide where to explore, BO
provides an effective approach to find the optimal solution [37]. In this
study, to reflect the real-world BESS sizing constraints, the BESS’s size is

Optimal Size
Economic Mﬁw
Benefit
i
Size

5] 5 9]
3 5 g
a a . all

! Time ! Time ! Time

Fig. 1. Finding the optimal size to maximize the economic benefit of the BESS
with consideration of degradation.
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characterized by two parameters: 1) Maximum Power (Ppg) and 2)
Time Duration (tyq,) when discharged at Ppgy. Moreover, Ppgy and tpgx
are not continuous variables due to cell and pack design limitations.
Therefore, in this study, Ppq, ranges from 100 kW to 3000 kW with 100
kW steps, and tyq, ranges from 2 h to 10 h with 2 h steps, which covers a
total of 150 different sizes ranging from 200kWh (100 kW with 2 h
duration) to 30MWh (3000 kW with 10 h duration). The BO-MILP
framework will take the facility load profiles, BESS cost data, elec-
tricity rate, event-based DR incentives, and corresponding signals to
determine the optimal size. Indeed, the search space, which contains
150 different sizes, is limited, and other optimization techniques such as
enumerative search could be applied. However, in this study, the eval-
uation process is computationally intensive, as each candidate requires
solving a MILP and simulating with a calibrated electrochemical model.
BO can significantly reduce the number of required evaluations by
strategically selecting promising candidates through its surrogate model
and acquisition function [37].

The whole process is described in Fig. 2, in which it starts with n
initial sizes (Pmax;1> tmax,1)s (Pmax2> tmax,2)s ---» Pmaxons tmax,n)) which are
randomly drawn from the BESS’s design space. For each size, the BESS’s
operation is determined by solving a MILP to minimize the cost, and
then the optimal schedule is simulated with an electrochemical battery
model to capture the interaction between operation and degradation.
After simulation for a period T, which covers m months, (T={1,2, 3, ...,
m}), the objective function for BO (Eq. (1) is evaluated and used to
update the GPR-based surrogate model (f) which builds a relationship
between the input space (Ppqyx and tyq,) and the BO’s objective func-
tion’s value. In this study, total cost of saving for a period T (TCSy) is
used as the BO’s objective value, which is calculated with the demand
saving in month m due to reduced peak power demand (Skm, usage
saving in month m due to on-peak and off-peak electricity rate difference
(S',‘n“'h), incentives in month m due to response to the DR event, operation
and maintenance cost (Coym), and degradation cost (CI%ESS). Three infla-
tion factors are added for adjusting utility cost (i) [38], operation and
maintenance costs (i,) [38], and normal inflation (i) [39]. For a Li-ion
battery, the battery needs to be replaced once the state of health drops
below 80 %. Therefore, the cost of degradation is calculated with the
BESS’s state of health at the end of period T (SOH7) using Eq. (2). The
capital expenditures (CAPEX) for the BESS is calculated from existing
literature [40]. After updating the GPR-based surrogate model, the
evaluated BESS’s size has the highest BO’s objective value (TCS*r) and is
denoted as P*pax and t*max. If the TCS*r value remains the same for
consecutive k times exploration, then the corresponding BESS’s size is
the optimal size. Otherwise, the next step will be generating the next size
to be explored. An acquisition function is a mathematical tool used to
guide the selection of the next sampling point. The acquisition function
can guide the search efficiently by suggesting promising sizes and
reducing the number of function evaluations needed to find the optimal
size. There are three common acquisition functions: 1) Expected
Improvement, 2) Upper Confidence Bound, and 3) Probability of
Improvement (PI). Probability of Improvement is chosen in this study
because of its simplicity and risk-averse nature, making it ideal when
quick, reliable incremental improvements are preferred over riskier
exploratory moves. Therefore, the candidate BESS size to be explored
can be acquired by maximizing Eq. (3).

m
TGSy = GBS Z(Sﬁlw + SkWh - [PRY (1 + )12 —
meT (1 +1ip)?

Com(1 +i,)12

~

(€3]

100% — SOH.
BESS __ (A PEXPESS T )
G =¢ " '100% — 80% @

PI(P,t) = Pr(f(P,t) > TCS;) 3

In this study, the initial size, n, is set to be 10 to ensure the initial points
cover a broad design space. The surrogate model was then iteratively
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Fig. 2. Workflow of the proposed BO-MILP framework used to find the optimal size.

updated with new evaluations, and the process was terminated after the
best objective value did not improve for three consecutive iterations.
Given the finite and low-dimensional design space of 150 sizes, this
strategy reduces the risk of entrapment in suboptimal regions.

2.2. Optimal operation with Mixed-Integer Linear Programming problems

Unlike residential consumers, which are usually billed by their
electricity usage, industrial consumers are generally billed for energy
and peak demand. The peak demand depends on the average value of
the highest electricity consumption over a defined time interval during a
billing period (usually 1 month). Therefore, for a month m, the elec-
tricity bill (Cp,) for an industrial consumer without BESS is calculated
using Eq. (4).

N
Cn=_oniPRiiaL+ o[V PP @
n
(YkWh : : : : load :
where o, is the energy price at time n in month m, Py, is the power
kW

that the industrial facility draws from the grid, At is the duration, op," is
the demand rate in month m, the PE? is the peak demand for month m. By
installing a BESS that is dedicated to peak shaving, the P> can be
reduced to Pﬁ,ESS’P D by solving the optimization problem (Egs. (5)-(10)).

IIliIlPZESS"PD(il:nW (5)

Pl'zfz':i + Pil.:"rfs,ch _ ng:s’Dis — Pﬁ)‘ifslaad vn (6)

ng:s.load X S};iikSPiESS.PD Vn (7)

EIESS PSSO g fFT ISP ¢ A= EIESS ®
'BESS

SOCminSWﬂSOHMSSOCmHX vn (C))

<P, PSP PSS v a0

where Pﬁf;fs":h is the BESS’s charging power, PE,}ESS’D* is the BESS’s dis-
charging power, Pﬁf?,sls’l”“d is the net industrial load, sﬁf‘,‘lk is a binary
variable to determine if time n in month m is in peak hours, EEE,‘?S is the
stored energy, 7" is the round-trip efficiency, C35% is the total capacity
of BESS, SOH,, is the state of health at the beginning of month m, Py, is
the maximum power for charging and discharging. By solving the
optimization problem monthly with updated SOH, a desired peak de-
mand with BESS is calculated and used as a threshold in a rule-based

control strategy to manage the charging and discharging behavior of
the BESS. During on-peak hours, the BESS discharges if the industrial
load exceeds PﬁlESS’P D and charges if the industrial load is lower than
PBESSPD The discharging and charging power can be calculated using
Eq. (11).

On - peak : Phss = parssPb _ pload yn an
Therefore, the new electricity bill with BESS focusing on peak shaving
for month m can be calculated using Eq. (12).

N
BESS Wh pBESS load W pBESS ,PD
Cm = Zo—fn,n Pﬁ,n o At+0—ﬁ1 Pﬁ

n

12)

By enrolling in event-based DR programs, a BESS can unlock extra in-
come, but dedicated control strategies are needed to maximize returns
while it handles both PS and DR. Utilities generally structure even-
t-based DR incentives in two ways [8]:

1. Energy-reduction DR rewards sites for cutting total energy usage
over the event window, independent of instantaneous power
demand.

2. Power-reduction DR pays only when the facility trims the power
demand by a specified kW amount during the event.

For the energy-reduction DR, the corresponding optimization prob-
lem can be formulated as Egs. (13)—(19).

minPPESSFD KW _ GDRAkWhZ ng; Z PESSDis Ay (13)
jeJ neT]PK
Pl + PSS — IS v as
pBBsSload Sﬁ,ﬁk <PEESSPD v (15)
PRESCIPIES (1 - sp8) Yn e T W e J a6)
S5+ PSSO A T — PHESOE ¢ Ar — EUS, i a7
BESS
SOCminSWJZSOHm<SOCmax vn (18)
N e a9

Compared to the previous optimization problem designed for PS, the
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objective function contains two terms: the first term represents the new
demand cost, and the second one represents the collected incentive by
participating in the event-based DR program. ¢”®*K"! js the DR’s
incentive with a unit in $/kWh. J represents the number of DR
happening within month m. TfR is the subset of time in which the jth DR
event happens. A constraint (Eq. (16) is added to ensure the BESS is not
charging if it decides to participate in the jth DR event.

In contrast to the energy-reduction DR, in which the incentive is
calculated based on the reduced energy usage, in the power-reduction
DR, the incentive is calculated based on the reduced power and the
number of responses to the DR signals. Therefore, the above optimiza-
tion problem can be formulated as Egs. (20)-(27).

minP,B;IESS‘PD dcnw _ O_DR,kWPBESS.DRZ 555‘ (20)
jel

Pl PO A — plESI vy @

Pfff&load % sﬁik SP’S;ESS‘PD vn (22)

PBESS.Ch  piESS (1 _ s]PR) vne T vjeJ (23

PiE.:S.DisZSjDR PBESSDR \/py < TJpRNj cJ 24)

IS 1 PBESSO g o — PHESPE ¢ A — B, i 25)

'BESS

SOCmin < m

<
G 5O <S0Cmax (26)

0P, PRSPPI v @7

The first term in the objective function represents the cost of the new
demand cost for month m, while the second term represents the in-
centives. 6”**W is the DR’s incentive price with a unit in $/kW per
participation. During the jth DR event, two constraints are added to
ensure the BESS only discharges at PPFSSPR which is a predetermined
power determined by the facility.

2.3. Electrochemical battery model

By solving the corresponding MILP problem, the operation of the
BESS can be determined. To capture the operation’s impact on degra-
dation, an electrochemical battery model is introduced to simulate the
electrochemical behavior of the Li-ion battery. Electrochemical battery
model that resolves ion transport, electrode kinetics, and potential fields
and can describe degradation in real-time. Here, we use a pseudo-2D
model that explicitly includes two key aging pathways: solid-electrolyte
interphase growth and irreversible lithium plating [41]. In this study,
the degradation rate is calibrated according to a report which states that
for Li-ion battery with lithium nickel manganese cobalt as cathode
material, the battery can last for 13 years during storage and has a
cyclelife of 1520 cycles [40]. This study follows calibration procedures
as described in [42]. The electrochemical model is chemistry-agnostic
and can be recalibrated by updating cell-specific parameters (e.g., ki-
netics, transport, aging coefficients), enabling the BO-MILP framework
to be applied to other battery cell types.

3. Result and discussion

The electricity rate schedule used in this study is shown in Table 1. As
for the energy-reduction DR, the incentive is priced at $2/kWh [43],
while the power-reduction DR is priced at $100/kW-Year [44]. For the
energy-reduction DR, the signal is determined by flex alert history in
2022 sent by CAISO, which has a total of eleven events annually with an
average duration of around 5 h [45]. On the other hand, in the power-
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Table 1
The facility’s electricity rate schedule.
On-peak’ Off-peak?
Demand Rate ($/kW-Month) 16.61 0.00
Usage Rate 5.15 2.62

(¢/kWh)

reduction DR, the signal is determined by the DR program offered by
Rocky Mountain Power, which has eight events annually with an
average duration of around 30 min [46]. For the power-reduction DR
program, at the beginning of each calendar year y, the facility must
decide how much power it will participate with in the program. Utility
companies typically require the power reduction to last at most 4 h.
Therefore, at year y, PPESSPR js calculated using Eq. (28).

Piax X tmax X SOHy, X (SOCmax — SOCin)
Tpr

PBESSDR _ min( , Prnax ) (28)

where SOH, is the state of health at year y, Tpr is the maximum duration
for the DR, which is 4 h, and SOCy,,qx and SOCp;p, are the upper and lower
limit of the state of charge, respectively.

1. From 6 am to 9 am, from 6 pm to 10 pm except on weekends in
October — May (winter schedule), and from 3 pm to 10 pm except on
weekends in June — September (summer schedule).

2. From 10 pm to 6 am and 9 am to 6 pm in October to May (winter
schedule), and from 10 pm to 3 pm in June to September (summer
schedule), with all hours on weekends being off-peak year-round.

Due to the variation of monthly electricity usage, distribution of DR
events, and nonlinear degradation of the BESS, the BO will try to
maximize the total cost of saving of the BESS in the first year
(TCS@1year). The BO will stop running if the optimal objective value is
not improved for three consecutive explorations. Then, the optimal BESS
size will be simulated until its end-of-life when its SOH drops below 80
%. The overall economic benefit of BESS that can be generated within its
lifespan can be captured by the net present value (NPV) which is
calculated using Eq. (29).

m
2

m=mgoL (GkW 4 GkWh 4 7d )\ (1 4 { %7(; 1 i \1
NPV — CAPEX+ Y (S + S™ + o) T ie)2 ~ Cou(1 +4)
m=1 (1 +1iy)12

29

Because the degradation is related to the operation, using Eq. (30), an

equivalent annual annuity (EAA) is adopted to compare BESS with

different lifetimes.

EAA = NPV x L (30)
1—(1+i,) 12

Internal return rate (IRR) is also a popular metric for comparing eco-
nomic performance between different projects. IRR is calculated using
Eq. (31).

m=mgoL, SkW SkWh Id 1 i % -C 1 i %
0=Y (S + Si™ + o) TR Comd T B)E cpppy (31
1 (1 +IRR)12

The proposed BO-MILP framework will be evaluated with three sce-
narios: PS, PS and energy-reduction DR, and PS and power-reduction
DR. The result for PS with different pricing and load profiles is
demonstrated in Section 3.1. Section 3.2 and Section 3.3 present the
results for PS and energy-reduction DR, and PS and power-reduction DR,
respectively.
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3.1. Result and discussion for peak shaving

Load factor is a measure of how efficiently electrical power is being
used over a period and is calculated using Eq. (32).

Load Factor = Paverage (32)
Peak

where Pgyerqge represents the average power during the on-peak hours,
calculated by dividing the total energy consumption during the on-peak
hours by the total duration of those hours. Ppeq is the maximum demand
observed during the on-peak period. The BO-MILP is applied to an in-
dustrial site (site A) with an average load factor of 0.81.

Given the electricity rate schedule and load profile, after testing 16
different sizes, the proposed method determined that the optimal size of
BESS has a maximum power at 100 kW with a duration of 2 h, as shown
in Fig. 3. This figure presents the predicted TCS@1lyear for different
sizes by utilizing the surrogate model within the BO. It is worth noting
that the values of TCS@1year across all 150 sizes are negative because
the Li-ion battery will undergo a fast degradation at the beginning of its
life. However, as seen horizontally in Fig. 3, the BESS will have a better
economic performance with a short duration even with the same
maximum power limit. As shown in Fig. 4a, as the duration increases
from 2 h to 4 h, the BESS can generate more demand savings. However,
as the duration further increases, the benefit is saturated. Because Site
A’s peak power demand doesn’t last long. Therefore, the extra capacity
cannot contribute to the PS remaining underutilized. On the other hand,
in Fig. 4b, even though the SOH of the BESS increases slightly from
95.95 % with 2 h to 96.82 % with 10 h, for BESS with long duration, the
underutilized capacity still undergoes the calendar aging, which
significantly reduces the economic benefit. For example, 97.89 % of the
lost active Li-ion comes from the calendar loss for the BESS with 10 h
duration in contrast to 95.13 % for BESS with 2 h duration. Therefore,
given the same maximum power, BESS with a short duration has a better

2900
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900 A

500 A
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economic performance than that with a long duration. Such trends can
also be observed in the vertical direction. The values of TCS@1lyear
gradually decrease as the maximum power increases, given the same
duration. To investigate the impact of maximum power on the values of
TCS@1year, three BESS sizes with different maximum powers (100 kW,
1000 kW, 2200 kW) and the same duration (2 h) were selected. As
shown in Fig. 5a, the demand saving increases with the Py, increase.
However, according to Fig. 5b, the discharged capacity increased from
173kWh to 10,734kWh by a factor of 62, while the demand saving
increased from $17,451 to $146,802 by a factor of 8.4. The difference
between these two factors can be explained by Fig. 5c. Compared to
reducing the peak to 2441 kW, reducing the peak to 2213 kW and to
1998 kW required shifting more energy from off-peak hours to on-peak
hours. For a Li-ion battery, charging and discharging will incur degra-
dation. The total loss of active Li-ion increases from 0.15Ah/cell to
0.17Ah/cell, while the ratio of the loss of active Li-ion caused by the Li
plating increases from 4.86 % to 32.59 %, increasing the overall
degradation by 14.40 %. Therefore, the BO-MILP will prefer a BESS with
a smaller Pp,q. With the optimal BESS size, the BESS can last 139
months, generating an NPV of $85,237 with a corresponding EAA of
$8,583/year and an internal return rate of 13.82 %.

To further validate the performance of the proposed method, a
sensitivity analysis is conducted with the demand rate increases from
$16.61/kW-Month to $49.83/kW-Month. The predicted TCS@1year is
normalized in each scenario and demonstrated in Fig. 6. As the demand
rate increases, the number of iterations and the tendency to search the
lower left corner increases. However, the optimal size remains the same,
and the demand rate is increased by 2.5 times. This is because site A has
a relatively high load factor every month, meaning saving for PS is
limited. Therefore, if the demand rate is not high enough to justify the
extra cost brought by the cycle degradation, the proposed method re-
mains choosing the smallest size.

Similar studies are conducted on sites B and C with load factors at
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0.77 and 0.40, respectively, as shown in Fig. 7a. Regardless of the dif-
ference in load profile and demand rate, the optimal BESS always results
in a duration of 2 h. Given the same capacity (in kWh), a short duration
BESS can provide a larger Ppq, than a long duration BESS, leading to
more savings by performing PS. However, the load factors affect the
optimal Pp,q, as the demand rate increases. As shown in Fig. 7b, when
compared to site A which has the highest load factor, at site C the Py
increases much faster as the demand rate increases, while for site B, the
Ppax increases at a moderate rate. The difference in optimal Py
response to demand rate changes can be attributed to the difference in
load factor, as demonstrated in Fig. 7a. Generally, a BESS with high P,
is preferred for a site with a low load factor and high demand rate. The
economic benefits for these three sites with different demand rates are
summarized in

Table 2. In all the scenarios, the NPV, EAA, and IRR increase as the
demand rate increases. This demonstrates that the proposed BO-MILP
framework is able to determine the optimal size of the BESS to maxi-
mize the economic benefit from participation in PS under different load
profiles and electricity rate schedules by capturing the operation’s
impact on degradation.

3.2. Result and discussion for peak shaving and energy-reduction demand
response

Stacking demand savings and incentives from energy-reduction DR
can increase the BESS’s economic performance, making it more viable.
However, an optimal size needs to be determined to maximize the
economic benefit. In this section, with the load profile from site A and
the $2/kWh for participating in the energy-reduction DR program, after
evaluating 16 different sizes, the BO-MILP method determined that the
optimal BESS has a P, at 100 kW and 2 h duration, which is the same
size in the PS scenario. In the first year, participation in the energy-
reduction DR reduces the demand saving from $17,451 to $16,874.
However, such loss is covered by the incentives from the DR program at
$2,913, leading to an increase of $2,335 or 13.35 % in the first year. The
predicted TCS@1lyear is shown in Fig. 8. Compared to the previous
scenario, BESS with large capacity is not recommended even with the
available incentive from the energy-reduction DR. As shown in Fig. 9a,
with Ppq, at 100 kW, the PS saving increases as the duration increases
from 2 h to 4 h. The demand saving is saturated and remains the same
while the duration increases to 6 h and 8 h. However, as the t;q in-
creases, the overall capacity increases, and more energy can be dis-
charged during the DR event, leading to increasing incentives. The total
saving increases from $19,823 to $30,303. Most of the incremental
savings come from the DR program. However, because of the P4y, only
parts of the capacity can contribute to the demand savings. Indeed,
excessive capacity can contribute to the energy-reduction DR generating
extra revenue. However, for Li-ion battery, the degradation also comes
from the calendar aging. The extra revenue from the DR program is not

Table 2
The economic performance of the BESS with the optimal size under different
demand rates.

Demand NPV($) | EAA($/year) | IRR(%)
(3;]_ Site A Site B Site C
Month)
16.61 85,237 | 8,583 | 72,413 | 7,478 | 91,139 | 9,121 |
13.82 12.50 14.13
24.91 188,282 | 18,960 | 169,079 | 17,461 | 1,371,655 | 140,750
25.42 23.88 | 23.61
33.22 291,372 29,336 | 1,483,764 | 157,281 3,894,043 | 485,303
36.44 | 24.44 | 29.32
41.52 554,679 | 56,917| 2,257,953 | 240,948 5,540,547 ‘ 690,501
35.56 | 32.08 [ 39.39
49.83 876,217 | 89,911 | 2,943,556 | 314,108 7,187,051 | 895,699
36.96 | 40.31 | 49.38
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Fig. 8. The predicted TCS@1lyear for PS and energy-reduction DR using the
surrogate model.

enough to cover the cost of degradation. On the other hand, as shown in
Fig. 9b, more demand saving and incentive can be collected by
increasing the P4y, and the total saving increases from $19,823 to
$207,111. However, due to the excessive cycle for PS, the BESS cost
increases much faster from $23,660 to $527,912. Therefore, the pro-
posed method determined the optimal size of BESS has a Py,q, at 100 kW
with a tyey at 2 h duration, which can achieve an NPV of $93,698, an
EAA of $10,134/year, and an IRR of 16.09 %.

To demonstrate that the proposed framework can work with
different demand rates and incentives, a sensitivity analysis is conducted
with incentive ranges from $2/kWh to $6/kWh, and demand rate ranges
from $16.61/kW-Month to $49.83/kW-Month, leading to a total of 25
different scenarios. The optimal maximum power, duration, and ca-
pacity are presented in Fig. 10. In general, as the demand rate and the
incentive increase, the proposed method tends to select a BESS with
large capacity either by increasing the maximum power, duration, or
both to maximize the economic benefit. However, for the scenario with a
demand rate of $49.83/kW-Month and an incentive of $2/kWh, the
proposed method chooses a larger capacity than the scenario with a
demand rate of $49.83/kW-Month and an incentive of $3/kWh. This
inconsistency may be caused by the BO process’s early termination,
leading to a suboptimal result. One-way Analysis of Variance (ANOVA)
was conducted on the optimal Py,q, and tqy. The result reveals that the
demand rate is the dominant factor for the optimal Py, and tpqy. These
results correspond to the high percentage of the saving that comes from
demand saving, as shown in Fig. 11, wherein in all the scenarios, the
demand saving accounts for more than 60 % of the total saving.

3.3. Result and discussion for peak shaving and power-reduction demand
response

In this scenario, the objective of the proposed BO-MILP framework is
to find the optimal size such that it can maximize the total economic
benefit by doing PS along with participation in power-reduction DR.
Given the load profile from Site A and real-world DR signal, after
evaluating 17 different sizes, the optimal size for performing both PS
and power-reduction DR is BESS with Pp,q, at 100 kW and duration at 2 h
as shown in Fig. 12. With the same size as the previous scenarios, by
participating in the power-reduction DR program, in the first year, the
total saving is $21,013, which increases by 20.15 % and 6.00 % with
respect to the PS scenario and PS energy-reduction DR scenario,
respectively. As shown in Fig. 13a, as the duration increases, the demand
saving first increases and then saturated. However, unlike the energy-
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Fig. 12. The predicted TCS@1lyear for PS and power-reduction DR using the
surrogate model.

reduction DR, with the power-reduction DR, the incentive will stop
increasing once the duration increases from 6 h to 8 h. This is because
the committed power, PBESSDR reaches the Ppgy limit. A BESS with short
duration is favored by the proposed methods. As the duration increases
from 2 h to 8 h the total saving increases by 82.46 % while the BESS cost
increases by 186.93 %. As the duration increases, the increased capacity
is not fully utilized while still undergoes degradation. Interestingly, a
BESS with a high Ppqy is not preferred. Even though more demand
saving and incentive for DR can be collected with a high Py, as shown
in Fig. 13b. The saving increases from $21,013 to $ 241,817. However,
the BESS cost increased faster, from $25,771 to $529,995. The reason is
similar to the PS only scenario. The degradation caused by the excessive
cycle outnumbers the increased economic benefit of the PS and power-
reduction DR. The excessive cycle increases the loss of active Li-ion from
8 mAh/cell to 57 mAh/cell. As for the savings, unlike the PS only sce-
nario in which the savings only increase from $17,451 to $146,802 with
Prax increases from 100 kW to 2200 kW, the savings increase at a faster
rate from $21,013 to $241,817. Because the incentive collected from the
power-reduction DR is directly related to the size of the BESS. However,
the increased savings cannot match the increased cost. Therefore, the
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proposed method tends to select the smallest size with an NPV of
$122,486, an EAA of $12,411/year, and an IRR of 18.34 %. Compared to
PS only and PS with energy-reduction DR, PS with participation in
power-reduction DR offers better economic benefit than the other two
scenarios.

The same sensitivity analysis was performed. The optimal size in
each scenario is presented in Fig. 14. As the demand rate and incentive
increase, the proposed method tends to increase the Ppqy or/and tyqx to
capture more economic benefit. ANOVA is conducted on the optimal
Prax- The analysis reveals that for the Ppgy, the demand rate is a
dominant factor corresponding to the result that, for most of the sce-
narios, the demand saving accounts for more than 50 % of the total
savings, as shown in Fig. 15a. With the original demand rate, as the
incentive increases, the BO-MILP tends to select a BESS with a longer
duration, and the same Ppq, results in a larger capacity, which can
capture more incentive. Once the incentive increases from $200/kW-
Year to $250/kW-Year, due to a larger capacity, the ratio between the
incentives and total savings increases from 27.52 % to 45.57 %. A
similar step change can be observed with the demand rate at $24.91/
kW-Month once the incentive rate increases from $150/kW-Year to
$200/kW-Year. However, even if the incentive and demand rate are
high enough, proposed methods will always choose a BESS with P, at
1900 kW. This behavior can be explained by Fig. 15c¢ which shows the
ratio of Ppqy and peak demand. Unlike the energy-reduction DR pro-
gram, the power-reduction DR program focuses on the reduced power
that must last at most 4 h. A proper P, needs to be selected to serve
both PS and power reduction. For site A, 1900 kW is around 78.84 % of
the average peak demand. According to the load profile, on average,
only 38.14 % of the time has a power demand higher than 1900 kW.
Therefore, increasing the Ppq, cannot justify the cost, leading to a
saturation effect of 1900 kW. From the BESS’s duration perspective,
once the DR incentive and demand rate are high enough, the proposed
algorithm will choose the 4 h duration. The electricity rate schedule and
the power-reduction DR program can explain this. According to the
electricity rate schedule in Table 1, most peak hours last less than or
equal to 4 h. A BESS with 4 h duration is enough for PS. Moreover, for
the selected power-reduction DR program, the utility company requires
the power reduction to last at most 4 h. Therefore, given the same Py,qy @
longer duration is unnecessary.

4, Conclusion

This study introduced a BO-MILP framework for degradation-aware
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sizing of BESS participating in PS and DR programs. By coupling opti-
mization with an electrochemical degradation model, the framework
bridges economic and physical fidelity-identifying cost-optimal designs
that remain durable under realistic cycling conditions. The results reveal
that under current cost and rate structures, a minimal storage duration
(2 hr) and 100 kW power capacities are most economical, but as demand
rates or incentive levels rise, larger and longer-duration systems become
favorable. These findings highlight a clear economic threshold for viable
BESS investment and demonstrate how incentive design and rate
structure affect the optimal storage size. Beyond quantitative optimi-
zation, the study offers following practical insights:

e System sizing depends on load characteristics and rate structures.
Low load factors or high demand rates justify higher power limits,
while high load factors favor smaller systems to avoid degradation.

e Stacking DR incentives with PS enhances profitability, though de-
mand savings typically dominate under current pricing.

e Power-reduction DR participation yields the highest benefit among
scenarios but is limited by program constraints on capacity and
duration.

Looking ahead, incorporating stochastic and risk-aware formulations
would enable investment decisions resilient to uncertain tariffs, load
fluctuations, and DR participation. Load forecast uncertainty can influ-
ence both peakshaving performance and optimal sizing, and adding
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scenario-based or chance-constrained extensions would help make the
framework more robust. Embedding degradation dynamics directly
within the MILP could further align short-term operations with long-
term health. The proposed BO-MILP framework thus not only informs
optimal sizing and incentive design but also provides actionable heuri-
stics—such as duration caps aligned with peak hours—that can guide
industrial adopters and policymakers. Ultimately, this framework ad-
vances degradation-aware optimization from theoretical analysis to-
ward a practical decision-support tool for accelerating BESS deployment
and supporting the energy transition.
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