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A B S T R A C T

The increasing integration of renewable energy and rising electricity demand highlight the importance of battery 
energy storage systems for peak shaving and demand response. Unlike prior approaches that overlook opera
tional impacts on degradation, this study proposes a Bayesian Optimization–Mixed Integer Linear Programming 
framework for optimal battery energy storage system sizing. In this framework, Mixed Integer Linear Pro
gramming determines short-term scheduling while a calibrated electrochemical model iteratively evaluates 
degradation. The central hypothesis is that the framework can efficiently identify optimal sizes that yield realistic 
and economically robust outcomes. The method is tested across three scenarios: peak shaving, peak shaving with 
energy-reduction demand response, and peak shaving with power-reduction demand response. Results show that 
the framework converge to the optimum within 20 iterations out of 150 possible sizes. Under baseline conditions, 
the framework consistently selects the smallest feasible system, minimizing unnecessary degradation costs from 
oversized storage. Sensitivity analyses reveal that larger systems are favored as demand rates or incentives in
crease. Comparisons of demand response programs indicate that power-reduction demand response offers greater 
economic benefits than energy-reduction demand response, although demand savings from peak shaving remain 
the dominant contributor to overall performance. This study demonstrates that the proposed framework balances 
computational tractability with degradation fidelity, identifies critical economic thresholds for investment, and 
offers a practical, flexible tool to guide industrial stakeholders in cost-effective battery energy storage system 
deployment.

1. Introduction

The global electricity system is undergoing a profound trans
formation, driven by factors such as population growth [1], economic 
expansion [2], widespread electrification [3], and the increasing pene
tration of renewable energy sources [4]. This evolution has resulted in a 
substantial rise in electricity demand across all sectors. Notably, in
dustrial electricity consumption is projected to increase significantly 
impacting existing grid infrastructure [5]. The challenges of this tran
sition are further exacerbated by the variability and unpredictability of 
renewable energy sources like solar and wind which are growing at 
unprecedented rates [6]. A critical issue in modern energy management 
is the mitigation of sudden spikes in energy demand, which can 

compromise the stability of the grid system by increasing the likelihood 
of system failures and degrading power quality [7]. Demand response 
(DR) programs have been introduced to alleviate these pressures, 
allowing consumers to support grid stability by reducing or shifting 
electricity usage during peak periods in exchange for incentives or time- 
based pricing [8]. Therefore, peak shaving (PS) is becoming an even 
more pressing research area. However, effective participation in PS 
often requires dynamic and flexible load adjustments, which may not be 
feasible for many end-users. This limitation highlights the growing 
importance of energy storage systems. Among available technologies, 
battery energy storage systems (BESSs) stand out as a viable solution due 
to their scalable capacity, minimal site constraints, and fast response 
capabilities.
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In recent years, BESSs have seen growing adoption in residential [9]
and utility-scale sectors [10]. However, their use within industrial ap
plications remains relatively limited due to several factors, including 
diverse load profiles, varying degrees of tolerance to uncertainty, mul
tiple rate structures, and stringent payback requirements [11]. 
Numerous studies have recently emerged to address these challenges. 
Billings et al. applied Gaussian process regression (GPR) coupled with 
Bayesian decision theory to manage BESS operations in industrial set
tings, explicitly addressing uncertainty in electrical loads [12]. Sanjari 
et al. developed an analytical closed-form strategy for optimal battery 
scheduling in energy systems under load demand uncertainty [13]. 
Carpinelli et al. considered both uncertain electricity prices and load 
demands for the sizing problem [14]. Hartmann et al. performed an 
economic analysis involving 21 commercial and industrial load profiles, 
concluding that cost reduction varies notably with different load profiles 
[15]. Despite these advancements, determining the appropriate capacity 
of a BESS for PS remains a critical initial step in industrial applications. 
An incorrect estimation of the required capacity could transform 
anticipated benefits into economic disadvantages. An oversized BESS 
may be economically impractical since capital expenditures and main
tenance costs are directly linked to the system size. In contrast, an un
dersized BESS might fail to deliver the intended advantages [16].

Studies have been conducted to address the challenge of determining 
the optimal sizing of BESS for PS. However, the size of the BESS is also 
determined by the operation. In other words, solving the BESS’s oper
ation problem is usually required to solve the optimal sizing problem. By 
building a correlation between the peak demand and energy usage based 
on the historical load profile, Chua et al. proposed a novel sizing method 
along with a rule-based control strategy to iteratively obtain the optimal 
size of the BESS to minimize the electricity bill for commercial and in
dustrial facilities [17]. Alexandre et al. utilized an “extrema” method 
where the objective function is evaluated for a set of BESS sizes, and 
BESSs are controlled with a dynamic programming (DP) algorithm [18]. 
Leadbetter et al. identified the optimal size of the BESS by finding the 
smallest BESS size that can achieve most of the PS event, which is 
determined by a manually calculated grid demand threshold without 
considering battery degradation [19]. By assuming the power capacity is 
predetermined, Lu et al. proposed a mixed-integer programming (MIP) 
model to minimize the power fluctuation without considering the BESS’s 
capital cost [20]. Similar approaches have been proposed by Inaolaji 
et al. with a mixed-integer linear programming (MILP) model [21] and 
by Martins et al. with a linear programming (LP) model [22], addressing 
both optimal sizing and optimal operation at once. On the other hand, 
Wankhade et al. proposed a framework that uses emperor penguin 
optimization to find the optimal BESS scheduling and uses battle royale 
optimization for optimal sizing [23]. Other studies also proposed 
methods to addressing the optimal size for PS with different conditions: 
uncertainty [14], location [24], and on-site renewable energy genera
tion [25].

Despite these advancements in finding the optimal size for BESS to 
participate in PS, most of these studies overlook the degradation effect in 
BESS, which is a growing concern as the Li-ion battery is becoming more 
and more popular in BESS applications. However, in some studies, the 
impact of the degradation on the optimal sizing is overlooked. For 
example, Wankhade et al. only considered the battery’s SOC limit [23]. 
Ke et al. adopted a rule-based strategy to tune the size with consider
ation of the charge and discharge trigger point [25]. Without consid
eration of degradation, the size of the BESS might not be optimal, 
leading to a high payback period, which is not desirable for industrial 
applications as the cost of degradation is a significant cost driver [26]. 
Other studies utilized a predefined lifetime to account for the cost, for 
example Chua et al. [17], and Oudalov et al. [18] using a fixed cycle 
lifetime. However, the operation affects the Li-ion battery’s lifetime 
[27].

To address this problem, some studies adopted the levelized cost of 
storage (LCOE) concept to capture the relationship between usage and 

degradation [28]. For example, Lu et al. integrated the cost of storage 
into the objective function to factor in the operation’s impact on 
degradation by assuming the BESS will have a depth of discharge at 50 % 
[20]. Similar methods are also applied in other studies. Shi et al. 
addressed the battery cost with a fixed marginal cost which is calculated 
from a fixed cyclelife [29]. Englberger et al. use the ratio between the 
throughput energy and the expected throughput over the lifetime to 
reflect the degradation cost [30].

Compared to approaches that rely on a fixed lifespan for calculating 
BESS degradation expenses, a usage-based cost model more accurately 
reflects the impact of charging and discharging on system wear. How
ever, this method overlooks a degradation pattern of Li-ion battery: 
calendar aging. Calendar aging encompasses all mechanisms that 
degrade a battery cell regardless of charge–discharge cycle, such as the 
growth of electrode–electrolyte interfaces (SEI). It becomes especially 
significant in many Li-ion battery applications, where actual operating 
periods are notably shorter than the intervals of inactivity, such as BESS 
for PS [33]. To further capture the degradation effects, some studies 
adopted semi-empirical models. For example, Martins et al. solved the 
optimal sizing problem by considering both cycle aging and calendar 
aging. Calendar aging is tracked with a function that respects time and 
state of charge (SOC) while cycle aging is tracked by usage with a pre
defined cycle lifetime [22]. Hesse et al. adopted a similar approach to 
determine the optimal BESS size to minimize the energy cost for a 
household equipped with PV and BESS [26]. By using a rainfall algo
rithm and relationship between cyclelife and depth of discharge, Shi 
et al. is able to calculate a dynamic degradation cost [31]. Padmanabhan 
et al. extrapolated a cost function based on the changes of SOC and 
power [32]. Semi-empirical models rely on laboratory data, which 
narrows their flexibility and realism. The laboratory data are obtained 
with fixed test protocols that don’t reflect real-world operating 
conditions.

Despite the challenge in capturing the impact of degradation on 
BESS’s size, many studies have recently focused on developing optimal 
scheduling algorithms that allow the BESS to maximize the economic 
benefit by providing grid services. For example, by solving a joint 
optimization problem, BESS is used for frequency regulation, and peak 
shaving reduced the electricity bill by 11.24 % compared to just peak 
shaving by 1.76 % or just frequency regulation by 6.77 % [29]. Zhang 
et al. proposed a two-stage stochastic programming model to further 
handle the uncertainty [34]. Besides frequency regulation, BESS can also 
generate extra income by participating in event-based DR programs. 
Peng et al. proposed an optimized economic operation strategy consid
ering event-based DR incentives and peak load shaving [35]. Elio et al. 
proposed an optimal sizing strategy considering event-based DR in
centives [36]. However, the degradation is captured with a semi- 
empirical approach accounting for calendar and cycle aging sepa
rately. Still, it overlooks how time and usage interact to accelerate 
overall deterioration.

Though many studies have examined different methods to determine 
the optimal sizing for peak shaving without a comprehensive method to 
capture the impact of degradation, limited research has been conducted 
on optimal sizing for peak shaving and enrollment in event-based DR 
programs. This study proposes an optimal BESS sizing framework for PS 
and event-based DR incentives. This paper presents a novel contribution 
by addressing three critical research gaps that have been neglected in 
previous studies: 1) the impact of degradation on optimal size, 2) taking 
into account that the size of BESS is comprised of discrete elements, 3) 
how incentives and demand rates affect the optimal size. The novelties 
are summarized below: 

1. An optimal sizing framework for BESS to participate in PS and event- 
based DR program. This framework accounts for the battery degra
dation by utilizing a calibrated electrochemical model.

2. Demonstration that the demand rate and the load factor determine 
the optimal size for the PS only scenarios. As the demand rate 
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increases or the load factor decreases, the optimal size will have a 
higher power limit.

3. Two kinds of event-based DR programs: 1) energy-reduction DR, and 
2) power-reduction DR, are evaluated along with PS. We demon
strated that the economic benefit can be improved by participating in 
the event-based DR programs. However, demand saving from PS 
dominates the overall savings. Due to the difference in the calcula
tion of the incentives, the proposed framework responds differently 
as the demand rate and incentive increase.

The rest of this paper is as follows. The proposed framework is 
introduced in Section 2. The result of the proposed framework is given in 
Section 3. Finally, Section 4 concludes this paper.

2. Methods

As shown in Fig. 1, for an undersized BESS, limited capacity con
strains PS savings, while an oversized BESS diminishes overall economic 
benefits due to excessive cycling. To determine the optimal size for BESS 
considering degradation, this section will introduce the proposed 
Bayesian Optimization (BO)-MixInteger Linear Programming (MILP) 
framework. The framework separates operation and degradation to 
preserve computational tractability: the MILP determines the optimal 
short-term scheduling, while a calibrated electrochemical model eval
uates degradation ex-post. Embedding the full nonlinear electro
chemical dynamics directly into the MILP would require solving a Mixed 
Integer Nonlinear Program (MINLP), which is computationally prohib
itive for the problem scale considered. To ensure that degradation feeds 
back into scheduling decisions, the MILP is re-solved iteratively: at the 
beginning of each month, the current battery state (SOC and SOH) is 
updated based on the electrochemical simulation of the previous month, 
and the MILP is solved again to produce an updated optimal schedule. 
This monthly coupling allows operational decisions to adapt to pro
gressive degradation while maintaining computational efficiency. 
Moreover, oversizing is penalized indirectly through the ex-post 
degradation cost, which reduces the net benefit of such solution. The 
following three key components within the proposed framework will be 
demonstrated: 1) the BO, 2) the electrochemical battery model, and 3) 
the optimal scheduling algorithm.

2.1. Optimal sizing with Bayesian Optimization

As mentioned, the operation will affect the optimal size of BESS. 
Therefore, in this study, a BO-MILP framework is proposed to separate 
the whole problem into optimal sizing and operation. The proposed 
framework is demonstrated in Fig. 2. By building a surrogate for the 
objective function using a Bayesian machine learning technique, GPR, 
and then using an acquisition function to decide where to explore, BO 
provides an effective approach to find the optimal solution [37]. In this 
study, to reflect the real-world BESS sizing constraints, the BESS’s size is 

characterized by two parameters: 1) Maximum Power (Pmax) and 2) 
Time Duration (tmax) when discharged at Pmax. Moreover, Pmax and tmax 
are not continuous variables due to cell and pack design limitations. 
Therefore, in this study, Pmax ranges from 100 kW to 3000 kW with 100 
kW steps, and tmax ranges from 2 h to 10 h with 2 h steps, which covers a 
total of 150 different sizes ranging from 200kWh (100 kW with 2 h 
duration) to 30MWh (3000 kW with 10 h duration). The BO-MILP 
framework will take the facility load profiles, BESS cost data, elec
tricity rate, event-based DR incentives, and corresponding signals to 
determine the optimal size. Indeed, the search space, which contains 
150 different sizes, is limited, and other optimization techniques such as 
enumerative search could be applied. However, in this study, the eval
uation process is computationally intensive, as each candidate requires 
solving a MILP and simulating with a calibrated electrochemical model. 
BO can significantly reduce the number of required evaluations by 
strategically selecting promising candidates through its surrogate model 
and acquisition function [37].

The whole process is described in Fig. 2, in which it starts with n 
initial sizes ((Pmax,1, tmax,1), (Pmax,2, tmax,2), …, (Pmax,n, tmax,n)) which are 
randomly drawn from the BESS’s design space. For each size, the BESS’s 
operation is determined by solving a MILP to minimize the cost, and 
then the optimal schedule is simulated with an electrochemical battery 
model to capture the interaction between operation and degradation. 
After simulation for a period T, which covers m months, (T={1,2, 3, …, 
m}), the objective function for BO (Eq. (1) is evaluated and used to 
update the GPR-based surrogate model (f) which builds a relationship 
between the input space (Pmax and tmax) and the BO’s objective func
tion’s value. In this study, total cost of saving for a period T (TCST) is 
used as the BO’s objective value, which is calculated with the demand 
saving in month m due to reduced peak power demand (Skw

m ), usage 
saving in month m due to on-peak and off-peak electricity rate difference 
(Skwh

m ), incentives in month m due to response to the DR event, operation 
and maintenance cost (COM), and degradation cost (CBESS

T ). Three infla
tion factors are added for adjusting utility cost (ie) [38], operation and 
maintenance costs (io) [38], and normal inflation (in) [39]. For a Li-ion 
battery, the battery needs to be replaced once the state of health drops 
below 80 %. Therefore, the cost of degradation is calculated with the 
BESS’s state of health at the end of period T (SOHT) using Eq. (2). The 
capital expenditures (CAPEX) for the BESS is calculated from existing 
literature [40]. After updating the GPR-based surrogate model, the 
evaluated BESS’s size has the highest BO’s objective value (TCS*T) and is 
denoted as P*max and t*max. If the TCS*T value remains the same for 
consecutive k times exploration, then the corresponding BESS’s size is 
the optimal size. Otherwise, the next step will be generating the next size 
to be explored. An acquisition function is a mathematical tool used to 
guide the selection of the next sampling point. The acquisition function 
can guide the search efficiently by suggesting promising sizes and 
reducing the number of function evaluations needed to find the optimal 
size. There are three common acquisition functions: 1) Expected 
Improvement, 2) Upper Confidence Bound, and 3) Probability of 
Improvement (PI). Probability of Improvement is chosen in this study 
because of its simplicity and risk-averse nature, making it ideal when 
quick, reliable incremental improvements are preferred over riskier 
exploratory moves. Therefore, the candidate BESS size to be explored 
can be acquired by maximizing Eq. (3). 

TCST = CBESS
T +

∑

m∈T

(
SkW

m + SkWh
m + IDR

m
)
(1 + ie)

m
12 − COM(1 + io)

m
12

(1 + in)
m
12

(1) 

CBESS
T = CAPEXBESS ×

100% − SOHT

100% − 80%
(2) 

PI(P, t) = Pr
(
f(P, t) > TCS*

T

)
(3) 

In this study, the initial size, n, is set to be 10 to ensure the initial points 
cover a broad design space. The surrogate model was then iteratively 

Fig. 1. Finding the optimal size to maximize the economic benefit of the BESS 
with consideration of degradation.
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updated with new evaluations, and the process was terminated after the 
best objective value did not improve for three consecutive iterations. 
Given the finite and low-dimensional design space of 150 sizes, this 
strategy reduces the risk of entrapment in suboptimal regions.

2.2. Optimal operation with Mixed-Integer Linear Programming problems

Unlike residential consumers, which are usually billed by their 
electricity usage, industrial consumers are generally billed for energy 
and peak demand. The peak demand depends on the average value of 
the highest electricity consumption over a defined time interval during a 
billing period (usually 1 month). Therefore, for a month m, the elec
tricity bill (Cm) for an industrial consumer without BESS is calculated 
using Eq. (4). 

Cm =
∑N

n
σkWh

m,n Pload
m,n Δt+ σkW

m PPD
m (4) 

where σkWh
m,n is the energy price at time n in month m, Pload

m,n is the power 
that the industrial facility draws from the grid, Δt is the duration, σkW

m is 
the demand rate in month m, the PPD

m is the peak demand for month m. By 
installing a BESS that is dedicated to peak shaving, the PPD

m can be 
reduced to PBESS,PD

m by solving the optimization problem (Eqs. (5)–(10)). 

minPBESS,PD
m σkW

m (5) 

Pload
m,n +PBESS,Ch

m,n − PBESS,Dis
m,n = PBESS,load

m,n ∀n (6) 

PBESS,load
m,n × speak

m,n ⩽PBESS,PD
m ∀n (7) 

EBESS
m,n +PBESS,Ch

m,n × Δt × ηRT − PBESS,Dis
m,n × Δt = EBESS

m,n+1 ∀n (8) 

SOCmin⩽
EBESS

m,n

CBESS × SOHm
⩽SOCmax ∀n (9) 

0⩽PBESS,Ch
m,n ,PBESS,Dis

m,n ⩽PBESS
max ∀n (10) 

where PBESS,Ch
m,n is the BESS’s charging power, PBESS,Dis

m,n is the BESS’s dis
charging power, PBESS,load

m,n is the net industrial load, speak
m,n is a binary 

variable to determine if time n in month m is in peak hours, EBESS
m,n is the 

stored energy, ηRT is the round-trip efficiency, CBESS is the total capacity 
of BESS, SOHm is the state of health at the beginning of month m, Pmax is 
the maximum power for charging and discharging. By solving the 
optimization problem monthly with updated SOH, a desired peak de
mand with BESS is calculated and used as a threshold in a rule-based 

control strategy to manage the charging and discharging behavior of 
the BESS. During on-peak hours, the BESS discharges if the industrial 
load exceeds PBESS,PD

m , and charges if the industrial load is lower than 
PBESS,PD

m . The discharging and charging power can be calculated using 
Eq. (11). 

On - peak : PBESS
m,n = PBESS,PD

m − Pload
m,n ∀n (11) 

Therefore, the new electricity bill with BESS focusing on peak shaving 
for month m can be calculated using Eq. (12). 

CBESS
m =

∑N

n
σkWh

m,n PBESS,load
m,n Δt+ σkW

m PBESS,PD
m (12) 

By enrolling in event‑based DR programs, a BESS can unlock extra in
come, but dedicated control strategies are needed to maximize returns 
while it handles both PS and DR. Utilities generally structure even
t‑based DR incentives in two ways [8]: 

1. Energy–reduction DR rewards sites for cutting total energy usage 
over the event window, independent of instantaneous power 
demand.

2. Power–reduction DR pays only when the facility trims the power 
demand by a specified kW amount during the event.

For the energy-reduction DR, the corresponding optimization prob
lem can be formulated as Eqs. (13)–(19). 

minPBESS,PD
m σkW

m − σDR,kWh
∑

j∈J
sDR
m,j

∑

n∈TDR
j

PBESS,Dis
m,n Δt (13) 

Pload
m,n +PBESS,Ch

m,n − PBESS,Dis
m,n = PBESS,load

m,n ∀n (14) 

PBESS,load
m,n × speak

m,n ⩽PBESS,PD
m ∀n (15) 

PBESS,Ch
m,n ⩽PBESS

max

(
1 − sDR

m,j

)
∀n ∈ TDR

j ,∀j ∈ J (16) 

EBESS
m,n +PBESS,Ch

m,n × Δt × ηRT − PBESS,Dis
m,n × Δt = EBESS

m,n+1 ∀n (17) 

SOCmin⩽
EBESS

m,n

CBESS × SOHm
⩽SOCmax ∀n (18) 

0⩽PBESS,Ch
m,n ,PBESS,Dis

m,n ⩽PBESS
max ∀n (19) 

Compared to the previous optimization problem designed for PS, the 

Fig. 2. Workflow of the proposed BO-MILP framework used to find the optimal size.
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objective function contains two terms: the first term represents the new 
demand cost, and the second one represents the collected incentive by 
participating in the event-based DR program. σDR,kWh is the DR’s 
incentive with a unit in $/kWh. J represents the number of DR 
happening within month m. TDR

j is the subset of time in which the jth DR 
event happens. A constraint (Eq. (16) is added to ensure the BESS is not 
charging if it decides to participate in the jth DR event.

In contrast to the energy-reduction DR, in which the incentive is 
calculated based on the reduced energy usage, in the power-reduction 
DR, the incentive is calculated based on the reduced power and the 
number of responses to the DR signals. Therefore, the above optimiza
tion problem can be formulated as Eqs. (20)–(27). 

minPBESS,PD
m σkW

m − σDR,kWPBESS,DR
∑

j∈J
sDR
m,j (20) 

Pload
m,n +PBESS,Ch

m,n − PBESS,Dis
m,n = PBESS,load

m,n ∀n (21) 

PBESS,load
m,n × speak

m,n ⩽PBESS,PD
m ∀n (22) 

PBESS,Ch
m,n ⩽PBESS

max

(
1 − sDR

j

)
∀n ∈ TDR

j ,∀j ∈ J (23) 

PBESS,Dis
m,n ⩾sDR

j PBESS,DR ∀n ∈ TDR
j ,∀j ∈ J (24) 

EBESS
m,n +PBESS,Ch

m,n × Δt × ηRT − PBESS,Dis
m,n × Δt = EBESS

m,n+1 ∀n (25) 

SOCmin⩽
EBESS

m,n

CBESS × SOHm
⩽SOCmax ∀n (26) 

0⩽PBESS,Ch
m,n ,PBESS,Dis

m,n ⩽PBESS
max ∀n (27) 

The first term in the objective function represents the cost of the new 
demand cost for month m, while the second term represents the in
centives. σDR,kW is the DR’s incentive price with a unit in $/kW per 
participation. During the jth DR event, two constraints are added to 
ensure the BESS only discharges at PBESS,DR which is a predetermined 
power determined by the facility.

2.3. Electrochemical battery model

By solving the corresponding MILP problem, the operation of the 
BESS can be determined. To capture the operation’s impact on degra
dation, an electrochemical battery model is introduced to simulate the 
electrochemical behavior of the Li-ion battery. Electrochemical battery 
model that resolves ion transport, electrode kinetics, and potential fields 
and can describe degradation in real-time. Here, we use a pseudo‑2D 
model that explicitly includes two key aging pathways: solid‑electrolyte 
interphase growth and irreversible lithium plating [41]. In this study, 
the degradation rate is calibrated according to a report which states that 
for Li-ion battery with lithium nickel manganese cobalt as cathode 
material, the battery can last for 13 years during storage and has a 
cyclelife of 1520 cycles [40]. This study follows calibration procedures 
as described in [42]. The electrochemical model is chemistry-agnostic 
and can be recalibrated by updating cell-specific parameters (e.g., ki
netics, transport, aging coefficients), enabling the BO-MILP framework 
to be applied to other battery cell types.

3. Result and discussion

The electricity rate schedule used in this study is shown in Table 1. As 
for the energy-reduction DR, the incentive is priced at $2/kWh [43], 
while the power-reduction DR is priced at $100/kW-Year [44]. For the 
energy-reduction DR, the signal is determined by flex alert history in 
2022 sent by CAISO, which has a total of eleven events annually with an 
average duration of around 5 h [45]. On the other hand, in the power- 

reduction DR, the signal is determined by the DR program offered by 
Rocky Mountain Power, which has eight events annually with an 
average duration of around 30 min [46]. For the power-reduction DR 
program, at the beginning of each calendar year y, the facility must 
decide how much power it will participate with in the program. Utility 
companies typically require the power reduction to last at most 4 h. 
Therefore, at year y, PBESS,DR is calculated using Eq. (28). 

PBESS,DR = min
(

Pmax × tmax × SOHy × (SOCmax − SOCmin)

TDR
,Pmax

)

(28) 

where SOHy is the state of health at year y, TDR is the maximum duration 
for the DR, which is 4 h, and SOCmax and SOCmin are the upper and lower 
limit of the state of charge, respectively. 

1. From 6 am to 9 am, from 6 pm to 10 pm except on weekends in 
October – May (winter schedule), and from 3 pm to 10 pm except on 
weekends in June – September (summer schedule).

2. From 10 pm to 6 am and 9 am to 6 pm in October to May (winter 
schedule), and from 10 pm to 3 pm in June to September (summer 
schedule), with all hours on weekends being off-peak year-round.

Due to the variation of monthly electricity usage, distribution of DR 
events, and nonlinear degradation of the BESS, the BO will try to 
maximize the total cost of saving of the BESS in the first year 
(TCS@1year). The BO will stop running if the optimal objective value is 
not improved for three consecutive explorations. Then, the optimal BESS 
size will be simulated until its end-of-life when its SOH drops below 80 
%. The overall economic benefit of BESS that can be generated within its 
lifespan can be captured by the net present value (NPV) which is 
calculated using Eq. (29). 

NPV = CAPEX+
∑m=mEOL

m=1

(
SkW

m + SkWh
m + Id

m
)
(1 + ie)

m
12 − COM(1 + io)

m
12

(1 + in)
m
12

(29) 

Because the degradation is related to the operation, using Eq. (30), an 
equivalent annual annuity (EAA) is adopted to compare BESS with 
different lifetimes. 

EAA = NPV ×
in

1 − (1 + in)−
m
12

(30) 

Internal return rate (IRR) is also a popular metric for comparing eco
nomic performance between different projects. IRR is calculated using 
Eq. (31). 

0 =
∑m=mEOL

m=1

(
SkW

m + SkWh
m + Id

m
)
(1 + ie)

m
12 − COM(1 + io)

m
12

(1 + IRR)
m
12

− CAPEX (31) 

The proposed BO-MILP framework will be evaluated with three sce
narios: PS, PS and energy-reduction DR, and PS and power-reduction 
DR. The result for PS with different pricing and load profiles is 
demonstrated in Section 3.1. Section 3.2 and Section 3.3 present the 
results for PS and energy-reduction DR, and PS and power-reduction DR, 
respectively.

Table 1 
The facility’s electricity rate schedule.

On-peak1 Off-peak2

Demand Rate ($/kW-Month) 16.61 0.00
Usage Rate 

(¢/kWh)
5.15 2.62
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3.1. Result and discussion for peak shaving

Load factor is a measure of how efficiently electrical power is being 
used over a period and is calculated using Eq. (32). 

Load Factor =
PAverage

PPeak
(32) 

where Paverage represents the average power during the on-peak hours, 
calculated by dividing the total energy consumption during the on-peak 
hours by the total duration of those hours. Ppeak is the maximum demand 
observed during the on-peak period. The BO-MILP is applied to an in
dustrial site (site A) with an average load factor of 0.81.

Given the electricity rate schedule and load profile, after testing 16 
different sizes, the proposed method determined that the optimal size of 
BESS has a maximum power at 100 kW with a duration of 2 h, as shown 
in Fig. 3. This figure presents the predicted TCS@1year for different 
sizes by utilizing the surrogate model within the BO. It is worth noting 
that the values of TCS@1year across all 150 sizes are negative because 
the Li-ion battery will undergo a fast degradation at the beginning of its 
life. However, as seen horizontally in Fig. 3, the BESS will have a better 
economic performance with a short duration even with the same 
maximum power limit. As shown in Fig. 4a, as the duration increases 
from 2 h to 4 h, the BESS can generate more demand savings. However, 
as the duration further increases, the benefit is saturated. Because Site 
A’s peak power demand doesn’t last long. Therefore, the extra capacity 
cannot contribute to the PS remaining underutilized. On the other hand, 
in Fig. 4b, even though the SOH of the BESS increases slightly from 
95.95 % with 2 h to 96.82 % with 10 h, for BESS with long duration, the 
underutilized capacity still undergoes the calendar aging, which 
significantly reduces the economic benefit. For example, 97.89 % of the 
lost active Li-ion comes from the calendar loss for the BESS with 10 h 
duration in contrast to 95.13 % for BESS with 2 h duration. Therefore, 
given the same maximum power, BESS with a short duration has a better 

economic performance than that with a long duration. Such trends can 
also be observed in the vertical direction. The values of TCS@1year 
gradually decrease as the maximum power increases, given the same 
duration. To investigate the impact of maximum power on the values of 
TCS@1year, three BESS sizes with different maximum powers (100 kW, 
1000 kW, 2200 kW) and the same duration (2 h) were selected. As 
shown in Fig. 5a, the demand saving increases with the Pmax increase. 
However, according to Fig. 5b, the discharged capacity increased from 
173kWh to 10,734kWh by a factor of 62, while the demand saving 
increased from $17,451 to $146,802 by a factor of 8.4. The difference 
between these two factors can be explained by Fig. 5c. Compared to 
reducing the peak to 2441 kW, reducing the peak to 2213 kW and to 
1998 kW required shifting more energy from off-peak hours to on-peak 
hours. For a Li-ion battery, charging and discharging will incur degra
dation. The total loss of active Li-ion increases from 0.15Ah/cell to 
0.17Ah/cell, while the ratio of the loss of active Li-ion caused by the Li 
plating increases from 4.86 % to 32.59 %, increasing the overall 
degradation by 14.40 %. Therefore, the BO-MILP will prefer a BESS with 
a smaller Pmax. With the optimal BESS size, the BESS can last 139 
months, generating an NPV of $85,237 with a corresponding EAA of 
$8,583/year and an internal return rate of 13.82 %.

To further validate the performance of the proposed method, a 
sensitivity analysis is conducted with the demand rate increases from 
$16.61/kW-Month to $49.83/kW-Month. The predicted TCS@1year is 
normalized in each scenario and demonstrated in Fig. 6. As the demand 
rate increases, the number of iterations and the tendency to search the 
lower left corner increases. However, the optimal size remains the same, 
and the demand rate is increased by 2.5 times. This is because site A has 
a relatively high load factor every month, meaning saving for PS is 
limited. Therefore, if the demand rate is not high enough to justify the 
extra cost brought by the cycle degradation, the proposed method re
mains choosing the smallest size.

Similar studies are conducted on sites B and C with load factors at 

Fig. 3. The predicted TCS@1year using the surrogate model.
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Fig. 4. a) the composition of tcs@1year for bess with the same Pmax at 100 kW but with different durations. b) As the tmax increases, the SOH becomes higher due to 
some capacity being underutilized.

Fig. 5. a) The composition of tcs@1year for bess with the same tmax at 2 h but with different Pmax. As the Pmax increased, the demand saving also increased pro
portionally. However, the BESS cost increases much faster due to the b) growing usage. c) With a higher Pmax, more energy needs to shift from off-peak hours to peak 
hours, leading to excessive cycling.
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Fig. 6. The predicted normalized TCS@1year and the selected optimal sizes with demand rate at a) $24.91/kW-Month, b) $33.22/kW-Month, c) $41.52/kW-Month, 
and d) $49.83/kW-Month. As the demand rate increases, the optimal size will have a higher Pmax.

Fig. 7. a) The monthly load factor for site a, site b, and site c. b) The optimal Pmax for each site under different demand rates.
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0.77 and 0.40, respectively, as shown in Fig. 7a. Regardless of the dif
ference in load profile and demand rate, the optimal BESS always results 
in a duration of 2 h. Given the same capacity (in kWh), a short duration 
BESS can provide a larger Pmax than a long duration BESS, leading to 
more savings by performing PS. However, the load factors affect the 
optimal Pmax as the demand rate increases. As shown in Fig. 7b, when 
compared to site A which has the highest load factor, at site C the Pmax 
increases much faster as the demand rate increases, while for site B, the 
Pmax increases at a moderate rate. The difference in optimal Pmax 
response to demand rate changes can be attributed to the difference in 
load factor, as demonstrated in Fig. 7a. Generally, a BESS with high Pmax 
is preferred for a site with a low load factor and high demand rate. The 
economic benefits for these three sites with different demand rates are 
summarized in

Table 2. In all the scenarios, the NPV, EAA, and IRR increase as the 
demand rate increases. This demonstrates that the proposed BO-MILP 
framework is able to determine the optimal size of the BESS to maxi
mize the economic benefit from participation in PS under different load 
profiles and electricity rate schedules by capturing the operation’s 
impact on degradation.

3.2. Result and discussion for peak shaving and energy-reduction demand 
response

Stacking demand savings and incentives from energy-reduction DR 
can increase the BESS’s economic performance, making it more viable. 
However, an optimal size needs to be determined to maximize the 
economic benefit. In this section, with the load profile from site A and 
the $2/kWh for participating in the energy-reduction DR program, after 
evaluating 16 different sizes, the BO-MILP method determined that the 
optimal BESS has a Pmax at 100 kW and 2 h duration, which is the same 
size in the PS scenario. In the first year, participation in the energy- 
reduction DR reduces the demand saving from $17,451 to $16,874. 
However, such loss is covered by the incentives from the DR program at 
$2,913, leading to an increase of $2,335 or 13.35 % in the first year. The 
predicted TCS@1year is shown in Fig. 8. Compared to the previous 
scenario, BESS with large capacity is not recommended even with the 
available incentive from the energy-reduction DR. As shown in Fig. 9a, 
with Pmax at 100 kW, the PS saving increases as the duration increases 
from 2 h to 4 h. The demand saving is saturated and remains the same 
while the duration increases to 6 h and 8 h. However, as the tmax in
creases, the overall capacity increases, and more energy can be dis
charged during the DR event, leading to increasing incentives. The total 
saving increases from $19,823 to $30,303. Most of the incremental 
savings come from the DR program. However, because of the Pmax, only 
parts of the capacity can contribute to the demand savings. Indeed, 
excessive capacity can contribute to the energy-reduction DR generating 
extra revenue. However, for Li-ion battery, the degradation also comes 
from the calendar aging. The extra revenue from the DR program is not 

enough to cover the cost of degradation. On the other hand, as shown in 
Fig. 9b, more demand saving and incentive can be collected by 
increasing the Pmax, and the total saving increases from $19,823 to 
$207,111. However, due to the excessive cycle for PS, the BESS cost 
increases much faster from $23,660 to $527,912. Therefore, the pro
posed method determined the optimal size of BESS has a Pmax at 100 kW 
with a tmax at 2 h duration, which can achieve an NPV of $93,698, an 
EAA of $10,134/year, and an IRR of 16.09 %.

To demonstrate that the proposed framework can work with 
different demand rates and incentives, a sensitivity analysis is conducted 
with incentive ranges from $2/kWh to $6/kWh, and demand rate ranges 
from $16.61/kW-Month to $49.83/kW-Month, leading to a total of 25 
different scenarios. The optimal maximum power, duration, and ca
pacity are presented in Fig. 10. In general, as the demand rate and the 
incentive increase, the proposed method tends to select a BESS with 
large capacity either by increasing the maximum power, duration, or 
both to maximize the economic benefit. However, for the scenario with a 
demand rate of $49.83/kW-Month and an incentive of $2/kWh, the 
proposed method chooses a larger capacity than the scenario with a 
demand rate of $49.83/kW-Month and an incentive of $3/kWh. This 
inconsistency may be caused by the BO process’s early termination, 
leading to a suboptimal result. One-way Analysis of Variance (ANOVA) 
was conducted on the optimal Pmax and tmax. The result reveals that the 
demand rate is the dominant factor for the optimal Pmax and tmax. These 
results correspond to the high percentage of the saving that comes from 
demand saving, as shown in Fig. 11, wherein in all the scenarios, the 
demand saving accounts for more than 60 % of the total saving.

3.3. Result and discussion for peak shaving and power-reduction demand 
response

In this scenario, the objective of the proposed BO-MILP framework is 
to find the optimal size such that it can maximize the total economic 
benefit by doing PS along with participation in power-reduction DR. 
Given the load profile from Site A and real-world DR signal, after 
evaluating 17 different sizes, the optimal size for performing both PS 
and power-reduction DR is BESS with Pmax at 100 kW and duration at 2 h 
as shown in Fig. 12. With the same size as the previous scenarios, by 
participating in the power-reduction DR program, in the first year, the 
total saving is $21,013, which increases by 20.15 % and 6.00 % with 
respect to the PS scenario and PS energy-reduction DR scenario, 
respectively. As shown in Fig. 13a, as the duration increases, the demand 
saving first increases and then saturated. However, unlike the energy- 

Table 2 
The economic performance of the BESS with the optimal size under different 
demand rates.

Demand 
Rate 

($/kW- 
Month)

NPV($) | EAA($/year) | IRR(%)

Site A Site B Site C

16.61 85,237 | 8,583 | 
13.82

72,413 | 7,478 | 
12.50

91,139 | 9,121 | 
14.13

24.91 188,282 | 18,960 | 
25.42

169,079 | 17,461 | 
23.88

1,371,655 | 140,750 
| 23.61

33.22 291,372 | 29,336 | 
36.44

1,483,764 | 157,281 
| 24.44

3,894,043 | 485,303 
| 29.32

41.52 554,679 | 56,917 | 
35.56

2,257,953 | 240,948 
| 32.08

5,540,547 | 690,501 
| 39.39

49.83 876,217 | 89,911 | 
36.96

2,943,556 | 314,108 
| 40.31

7,187,051 | 895,699 
| 49.38

Fig. 8. The predicted TCS@1year for PS and energy-reduction DR using the 
surrogate model.
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Fig. 9. a) The composition of TCS@1year for BESS with the same Pmax at 100 kW but with durations ranging from 2 h to 8 h. b) The composition of TCS@1year for 
BESS with the same tmax at 2 h but with Pmax ranging from 100 kW to 2200 kW.

Fig. 10. The optimal a) Pmax, b) tmax, and c) capacity are determined by the BO-MILP framework under different demand rates and DR incentives.
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reduction DR, with the power-reduction DR, the incentive will stop 
increasing once the duration increases from 6 h to 8 h. This is because 
the committed power, PBESS,DR, reaches the Pmax limit. A BESS with short 
duration is favored by the proposed methods. As the duration increases 
from 2 h to 8 h the total saving increases by 82.46 % while the BESS cost 
increases by 186.93 %. As the duration increases, the increased capacity 
is not fully utilized while still undergoes degradation. Interestingly, a 
BESS with a high Pmax is not preferred. Even though more demand 
saving and incentive for DR can be collected with a high Pmax, as shown 
in Fig. 13b. The saving increases from $21,013 to $ 241,817. However, 
the BESS cost increased faster, from $25,771 to $529,995. The reason is 
similar to the PS only scenario. The degradation caused by the excessive 
cycle outnumbers the increased economic benefit of the PS and power- 
reduction DR. The excessive cycle increases the loss of active Li-ion from 
8 mAh/cell to 57 mAh/cell. As for the savings, unlike the PS only sce
nario in which the savings only increase from $17,451 to $146,802 with 
Pmax increases from 100 kW to 2200 kW, the savings increase at a faster 
rate from $21,013 to $241,817. Because the incentive collected from the 
power-reduction DR is directly related to the size of the BESS. However, 
the increased savings cannot match the increased cost. Therefore, the 

proposed method tends to select the smallest size with an NPV of 
$122,486, an EAA of $12,411/year, and an IRR of 18.34 %. Compared to 
PS only and PS with energy-reduction DR, PS with participation in 
power-reduction DR offers better economic benefit than the other two 
scenarios.

The same sensitivity analysis was performed. The optimal size in 
each scenario is presented in Fig. 14. As the demand rate and incentive 
increase, the proposed method tends to increase the Pmax or/and tmax to 
capture more economic benefit. ANOVA is conducted on the optimal 
Pmax. The analysis reveals that for the Pmax, the demand rate is a 
dominant factor corresponding to the result that, for most of the sce
narios, the demand saving accounts for more than 50 % of the total 
savings, as shown in Fig. 15a. With the original demand rate, as the 
incentive increases, the BO-MILP tends to select a BESS with a longer 
duration, and the same Pmax results in a larger capacity, which can 
capture more incentive. Once the incentive increases from $200/kW- 
Year to $250/kW-Year, due to a larger capacity, the ratio between the 
incentives and total savings increases from 27.52 % to 45.57 %. A 
similar step change can be observed with the demand rate at $24.91/ 
kW-Month once the incentive rate increases from $150/kW-Year to 
$200/kW-Year. However, even if the incentive and demand rate are 
high enough, proposed methods will always choose a BESS with Pmax at 
1900 kW. This behavior can be explained by Fig. 15c which shows the 
ratio of Pmax and peak demand. Unlike the energy-reduction DR pro
gram, the power-reduction DR program focuses on the reduced power 
that must last at most 4 h. A proper Pmax needs to be selected to serve 
both PS and power reduction. For site A, 1900 kW is around 78.84 % of 
the average peak demand. According to the load profile, on average, 
only 38.14 % of the time has a power demand higher than 1900 kW. 
Therefore, increasing the Pmax cannot justify the cost, leading to a 
saturation effect of 1900 kW. From the BESS’s duration perspective, 
once the DR incentive and demand rate are high enough, the proposed 
algorithm will choose the 4 h duration. The electricity rate schedule and 
the power-reduction DR program can explain this. According to the 
electricity rate schedule in Table 1, most peak hours last less than or 
equal to 4 h. A BESS with 4 h duration is enough for PS. Moreover, for 
the selected power-reduction DR program, the utility company requires 
the power reduction to last at most 4 h. Therefore, given the same Pmax a 
longer duration is unnecessary.

4. Conclusion

This study introduced a BO-MILP framework for degradation-aware 

Fig. 11. The ratio of the a) demand saving and the b) DR incentive over the total saving.

Fig. 12. The predicted TCS@1year for PS and power-reduction DR using the 
surrogate model.
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Fig. 13. a) The composition of TCS@1year for BESS with the same Pmax at 100 kW but with durations ranging from 2 h to 8 h. b) The composition of TCS@1year for 
BESS with the same tmax at 2 h but with Pmax ranging from 100 kW to 2200 kW.

Fig. 14. The optimal a) Pmax, b) tmax, and c) capacity are determined by the BO-MILP framework under different demand rates and DR incentives.
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sizing of BESS participating in PS and DR programs. By coupling opti
mization with an electrochemical degradation model, the framework 
bridges economic and physical fidelity-identifying cost-optimal designs 
that remain durable under realistic cycling conditions. The results reveal 
that under current cost and rate structures, a minimal storage duration 
(2 hr) and 100 kW power capacities are most economical, but as demand 
rates or incentive levels rise, larger and longer-duration systems become 
favorable. These findings highlight a clear economic threshold for viable 
BESS investment and demonstrate how incentive design and rate 
structure affect the optimal storage size. Beyond quantitative optimi
zation, the study offers following practical insights: 

• System sizing depends on load characteristics and rate structures. 
Low load factors or high demand rates justify higher power limits, 
while high load factors favor smaller systems to avoid degradation.

• Stacking DR incentives with PS enhances profitability, though de
mand savings typically dominate under current pricing.

• Power-reduction DR participation yields the highest benefit among 
scenarios but is limited by program constraints on capacity and 
duration.

Looking ahead, incorporating stochastic and risk-aware formulations 
would enable investment decisions resilient to uncertain tariffs, load 
fluctuations, and DR participation. Load forecast uncertainty can influ
ence both peakshaving performance and optimal sizing, and adding 

scenario-based or chance-constrained extensions would help make the 
framework more robust. Embedding degradation dynamics directly 
within the MILP could further align short-term operations with long- 
term health. The proposed BO-MILP framework thus not only informs 
optimal sizing and incentive design but also provides actionable heuri
stics—such as duration caps aligned with peak hours—that can guide 
industrial adopters and policymakers. Ultimately, this framework ad
vances degradation-aware optimization from theoretical analysis to
ward a practical decision-support tool for accelerating BESS deployment 
and supporting the energy transition.
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