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Abstract We introduce stage-local partitioned two-step Runge-Kutta methods are an
extension of standard two-step Runge-Kutta methods, which are an alternative to the
standard additive two-step Runge-Kutta methods currently existing in the literature.
These new schemes are designed with an eye towards truly N-partitioned systems
and leverage local stage approximations to make several computationally interesting
approximations viable. Specifically, the focus on local stage approximations makes
possible the construction of truly asynchronous schemes, in the parallel sense, possi-
ble. In addition, we show that an implicit-explicit approach to these schemes can lead
to methods that require the inversion of only local nonlinear systems.

Keywords Two-Step Runge-Kutta - Time Integration - Asynchronous

1 Introduction
We consider the numerical solution of large initial value problems (IVPs) of the form

Y =f(), yt)=yeRY fiRIRY 1 <r<ty. (1.1)
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Such systems arise from the spatial discretization of important time-dependent phys-
ical systems that describe processes such as the dynamics of the atmosphere and
oceans, the behavior of materials, or the evolution of plasmas. As the scope and mag-
nitude of these simulations grow, so too does the complexity of the computational
resources required for their solution.

Modern algorithms for solving such large-scale systems are highly distributed,
making data communication costs a significant factor in time-to-solution. This situa-
tion is expected to become more extreme in next-generation supercomputers. Even in
the presence of perfect load balancing, the latency and unpredictability of communi-
cation can reduce parallel efficiency. As a result, there is increasing interest in finding
ways to eliminate the need for bulk synchronous communication, or to hide the com-
munication cost by overlapping productive computation with the communication.

It is natural to consider using data from a previous time-step when necessary
data at the current time-step has not yet arrived, thus reducing synchrony and mask-
ing communication overhead. Doing this naively has accuracy and stability conse-
quences, so most previous approaches have explored the modification of spatial sten-
cils to accommodate time-lagged data [4,1]. The derivation of such stencils has thus
far been limited to relatively simple PDEs (typically the heat equation) [10], and their
behavior has been studied with low-order, explicit time-stepping methods (typically
forward Euler)[1]. Future HPC architectures favor high-order methods, however.

In contrast, we propose to build into the time integration method itself tolerance
for the time-lagged data. In order to construct reasonable approximations with po-
tentially time-lagged information, we look to a class of methods that spans across
multiple time-steps, specifically, Two-Step Runge-Kutta (TSRK) methods [7]. Addi-
tionally, the ability to time-lag only some data requires the use of an additive type
TSRK scheme. We present a new class of TSRK schemes based on an N-partitioning
of the right-hand side f, according to the parallel distribution of the right-hand side
computation.

Consider an ODE whose state data is distributed across N processing elements
(PEs). We refer to the data owned by a given PE as local, while the data owned by
other PEs is non-local. In the context of PDEs, these two data sets are often called
“valid data” and “ghost data”, respectively. We propose an additive TSRK formula-
tion in which distinct TSRK methods are used to construct local approximations for
the valid and ghost data on each PE. The resulting scheme is a stage-local partitioned
two-step Runge-Kutta method (SLP-TSRK). We provide a general order condition
framework for schemes of arbitrary order, and show that preconsistency is the only
required coupling condition of the distinct TSRK schemes. This leniency in coupling
condition allows for relatively straightforward development of new schemes.

There are two natural sub-families of SLP-TSRK methods. In the first, the lo-
cal TSRK method is explicit: computation of stage s requires knowledge of stages
{1,...,s— 1}, while the non-local methods computation of stage s is super-explicit,
requiring only stages {1,...,s —2}. A given PE that knows its valid data up to stage
s — 1 and its ghost data up to s —2 may thus perform the computation of its local
stage approximation simultaneously with its receipt of stage-(s — 1) ghost data. This
construction enables overlapping at least some communication with computation. We
will refer to such a time-stepping scheme as asynchronous.
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In the second sub-family, the local method is implicit, while the non-local method
is (super-)explicit. An iterative solver may thus be used to update valid data, but com-
munication is only required once per stage, rather than once per iteration. This ver-
sion is referred to as locally implicit. There is tremendous potential for such a method
to mask communication costs behind non-linear, implicit solves that would be per-
formed entirely locally. This local-only inversion will inevitably impact the stability
of the overall method; however, lightly implicit methods, that leverage inexact ap-
proximations of the (non)linear system solutions, have been shown to be a valuable
approach to a wide range of problems [15,12,3].

Of course, stability is a concern in both sub-families. One cannot expect the asyn-
chronous scheme to have the same stability region as a well-optimized, synchronous
explicit scheme, just as a locally implicit scheme cannot match the stability of a fully
implicit scheme. We employ the framework of [8,9,13] to understand stability of the
new methods in simple contexts, and show that efficient schemes can be constructed
to balance the tradeoffs of step size versus computational cost.

We structure our presentation as follows. We begin in Section 2 by reviewing
standard TSRK methods and then define the new class of SLP-TSRK methods and
construct an order condition theory. Next, in Section 3, we describe in more detail the
two sub-families of SLP-TSRK introduced in Section 2. In Section 4, we describe
a framework for studying stability and use it to derive practical SLP-TSRK meth-
ods with favorable stability properties. We verify and explore the properties of these
new schemes on an advection-diffusion system in Section 6. Finally, in Section 7 we
conclude and discuss directions for future work.

2 Two-Step Runge-Kutta Methods

A standard two-step Runge-Kutta method computes a numerical approximation to
the solution of (1.1) on a uniform grid ¢, =¢,_1 +h as

¥ = (1= ) yuot + iy
+h2(ai,jK,["]+bi,jK/['nil])» i=1,...5s, (2.12)
j_
(7]
ol (2.1b)
o= (1-6)yu-1+6yn2+
wy, (vl il V). o

J=1

where i is the stage number, s the number of stages, n the step number, and the specific
TSRK scheme is defined by the method coefficients u;, a;j, b;j, 0, v;, and w;. These



4 Paul Tranquilli et al.

coefficients are generally presented in a Butcher tableau as

ui|ai biabip - by
us|az1 azp by bap - by
uA/B | . . ) 22)
oNTIwl = | ¢ o T Do Do @.
Us|ds1 """ Ugs—1 Uss bs,l bsA,Z bs,s
9‘\/1 Voo Ve WL oWwa s Wy

An explicit TSRK will have a zero upper triangle of A, a;; = 0 Vj > i, while it is
standard for diagonally implicit methods to have a single value along the diagonal,
ai; = A, a;j = 0 Vj > i. Finally, to obtain asynchrony we employ the notion of a
super-explicit method in which both the main diagonal and first sub-diagonal are
zero, a; = 0 and a; ;1 = 0. In addition to these coefficients, which appear explicitly in
the TSRK formula, it is convenient to include the abscissa vector, ¢ = (A+B)e —u,
that describes the times where stage approximations Yi["] ~ y(t, + c;h) are computed.
Here, and throughout this manuscript, we use the convention that e = [1,1,---, l]T
and its dimension is determined by context.

A TSRK method (2.1) is said to have stage order ¢ if the stage vectors Yi["] are
g-order approximations of the true solution at ¢, + c;h,

Y =ty +cih) + O(h4TY), 2.3)

4

as h — 0. Similarly, the TSRK method is of global order p if the final approximation
Yngs Withny = tr/h, is of order p, that is to say that

Ynp = ¥(ty) + O(hP) (2.4)

as h — 0.

Order conditions for these methods are well known and are given in [7] when
g > p— 1. These conditions are split into two pieces, the so-called “stage” conditions,

¢ (=1)V Acv™!  B(c—e)!

hal _ — =0 2.5
vioovr T v (v ’ @5
and “step” conditions,
1 —1)V T v—1 T(n__a\V—1
(=1) Q,VC w' (c—e) o0, 2.6)

vl (v—1)!  (v=1)!

where the exponentiation is applied component-wise. The method (2.1) is of order p
iff (2.5) is satisfied for all v < g and iff (2.6) is satisfied for all v < p withg > p— 1.
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2.1 Stage-Local Partitioned TSRK

We consider methods for solving (1.1) via the component N-partitioning,

dy{m
):j f{m}( {l} ..7),{”1}’.“)){1\’})7 2.7
y(to) =yo, to<t<ts, m=1,...,N, (2.8)

with y"} € Rén_ fim} . R4 Rén and ¥.d,, = d. Without loss of generality and to
simplify the presentation, we assume throughout the rest of our discussion that each
yt} and £} are scalar, that is to say that d,, = 1 for all m € {1,...,N}.

We advance the numerical solution on a uniform grid according to

L R L hza{mz},{{f}[n]

+h2b{m”1({‘} =1, N, (2.92)
{m}n] m {m,1} ,{m2} {m.m} {m,N}
kM — gl }(Yj Ayl ) (2.9b)

y’{lm} _ (1 _ e{m}) yr{l"j}l + G{m}yr{l’fi +h Z vjm}K]{mHn]
=1

+h Y wimEml s =1 N, (2.9¢)
=1

where Y; 8} s the m-th partition’s local approximation of the /-th partition’s ghost-
stage solution at time #, + c;4. In other words, Y{m o ~ y{ (1, + c;h) and is used
exclusively in the construction of the m-th partition’s local solution. Similarly, the
valid stage solution at time 1, + c;4 is approximated by the vector Yi{m’m} ~yUm (i, +
cih). Readers seeking a more explicit expression may refer to the unrolling of the
form of the method, applied to a linear problem with N = 2, given in Equation 4.6. A
SLP-TSRK method can be represented by the general Butcher tableau,

alll) 12} L gV AL ATI2Y L AN B{LL B2} ... UL
w21 g22) L g2 AR AR2Y L. AN} Bi21) B22} ... B2}

A1) N2} L (NN AN AIN2) L ANV BN BIN2) L gINNY

o{lt {2t ... N} ‘ vit 2t Lo vV ‘ will w2 ... wM
(2.10)
Here and in the proofs that follow, each method {u{m*é} (Al gimty gim} yim} gim} }
is considered to be entirely distinct; however, throughout our discussion, we will fo-
cus on the case where the partitioning of (1.1) into (2.7) corresponds to the problem’s
parallel distribution across some distributed computation environment. In this case,
we generally only need to distinguish between the diagonal method that computes a
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local approximation of valid data, with {u{mm} Almm} gimm} gim} yim} wimi}
and the off-diagonal method that computes the local approximation of the ghost
stage solutions, with {u{mve},A{mvé},B{’"vg}} and m # [. Such a method would have

a Butcher tableau of the form

at) alt AR ALY . AT B BOY ..
ol al AT ALY L AT B B .

ul o gAY ALY AR B .. B

BT}
Bt}

2.2 Order Conditions of SLP-TSRK

@2.11)

To obtain a p-th order SLP-TSRK each sub-method in the tableau (2.11) must satisfy
independently the stage conditions (2.5) up to order ¢ > p — 1, the step conditions
(2.6) up to order p, and all of the methods must be consistent, that is to say that

cmt —cforallm,l € {1,...,N}.

Theorem 2.1 Consider the class of Stage-Local Partitioned Two-Step Runge-Kutta

methods (2.9). If

— each individual method is zero stable,
— the starting values are of order p,

— each individual diagonal method, {u{’"*m},A{m*m])B{””m}7 9{’"}7v{”’},w{m}}, is

of order p,

— each individual method, {u{m’f},A{’”*E} Bimt} } is of stage order g > p — 1,

— and, each method is consistent with every other: clml} — cforallm,l€{1,...,N},

then the numerical solution converges with order p,

Yn—¥(tn) = O(h¥),Vn.

Proof We follow the strategy in [7] and [16]. Specifically, we will define some solu-
tion super vector Z,, and then write the method (2.9) as a so-called A-method

Zy = A Zy_ | +hBF(Z,).

First, we consider the following ordering and super-vectors

-y (L1
: (m ) )
w _ | YN [m ey " "
Y=o | Y= w=| s
y im0l o
Ly (Vv |

and Z,=

(2.12)

y [n—1]
y
Yn—1

Yn

(2.13)

b
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with Yl € RV)x1 y{mn] ¢ o<1y e RV*1 and Z, € RENs+2N)x1 We fur-
ther define the matrices U™} | Iy y ® €551 € RWS)*XN

u{mvl} 0 e 0 ..
yim — 0o . Coand Iyay®eng = |0 7
.. ulmnN} Sl e
as well as the super-matrices U,E € RN s)xN
uth INnyn @ esx1
vt Iy ® g1
U = . , E = . )
vV Inxn @ esxi

and the structurally similar @ € RV
6} 0
0= "
0 -.- eV}
Then we have that the matrix
On2.) x (V2-5) Tv2s) s (V2s) Ov2esy v O(wvzes) v
o — | Oy U E-U
0N><(N2-s) 0N><(N2.s) Oy Inxn
Onevzsy  Onsvze © InxN—0
We can, similarly to (2.13), define the super-vectors F (Y [”]) c RWV=s)x1 pim} (Y["]> €
Rsxl’ and F (Zn) c R(Z‘N»s+2~N)x1 as

Fil (y[n]) fim) (Yl{””l”"L " 7Y]{m7N}[n])
Flyh) = : . Fim(yll) = : ’
FiN} (Y[n]) Flm} (ys{m,l}w . %{m,N}[n])
(2.14)
and )
F (Y[n—1]>
F(zy=| F(r")
fn-1)
f(m)
We now define the matrices A"} BmH ¢ RW5)x(N-5)
Alm1} 05 - rgim.1} 0,
A{m} = (| I s B{m} = | Ogus 5
. AlmN} . ... BimM
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and A, B € RW*s)x(V-5)
ALY il

A= B=

Rk BV
In addition, we construct the structurally similar matrices V, W & RN*(N:s).
vill 0y, - wild 0y,
V=01 0|, W= [0

Yy L ww

Then, the matrix 4 is given by

0n2.5) 5 (v-5) Ov2.5)x (V-s) Ov2-s) kv Ov2.g) v

B — B A 0(N2~s)><N O(NZ-s)xN
Ovevs)  Ovxvs)y  Ovxn Onxwn
W \Y Onvsn  Onxn

Note that with these definitions of Z,, 7, 2%, and F, the method has the form of
(2.12) and is thus an A-method.
We now construct the supervectors for the exact solution. Specifically, we con-

struct the vectors yt<} (ti_1 +ch) € R! and y(t, | +ch) € R(NZ'S)XI, that contains
each y!*} N times:

[y{1} (th—1 JrCh)_

W
YW (t,—1 +ch)
y{k} (tn—l +C1h) .

Y (1 +eh) = : o Y(taer +eh) = !

", :
y th1+csh
( ) 0 (s 4 ch)

YV (1 +ch)
and FU (y (1,1 +¢ch)) € R**!, and F (y (t,_1 +ch)) € RVsx1

8y (tamt +1h)) FUY (y(ta1 +ch))
FU (y(t,_) +ch)) = : , F(y(ta-1+4ch) = : :
RO (1ot + b)) FIV (y(t,_1 +ch))
as well as z(t,), F (z(t,)) € R¥N-s+2:Nx1
0 Y (th—a +ch) F (y(thn—2+ch))
)= "y | = 5P| Feen =T
y(n) ¥ (t) F(y(tm))
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The local discretization error ad(z,) is the residual obtained when the numerical
approximation Z, is replaced by the exact solution z(z,,) in (2.12).

2ty) = Fz(ty—1) + hBF (z(t,)) + hd(t,). (2.15)

We partition &d into stage and full step residuals as follows:

Expanding out the residuals we have that

hdgta)ge( ta) = Y(ta—2+h) = y(tn—2+¢ch) =0
Qe (tn) = Y(ta—1 +¢h) — (E —U) y(t—1)
—hAF (y (11 +¢h)) — hBF (y(tn—1 + (¢ —€) )
1Al (t) = Y(ta—1) = Y(ta-1) = 0
) (t2) = y(tn) = (1= ©) y(t—1) — O(t_2)
—hVF (y(ty_1 +¢h)) — h'WF (y(t,_1 + (c— ) )

Expanding in a Taylor series around ¢#,_;, we see that

1,1
Z Cs{tage}vhv {1} (tnfl)

v>1 dt v
1 1
Zcimg’i}vhv 3™ (t1) Y Clth " )
v>1 v>1
hdi e (1) = zcj;;gvhv W, )| and Rl
v>1

y ciflgvhv Y™ (g,o1)

v>1

y cs{{:g?}vhv Y (t,1)

Lv>1

where the coefficients Cs{tzg v and Cs{te}p v are given by

i,j -1 i,j v—1
Cg{tle;jiv = g* (_1)Vll{i'j}*A{ et *B{ ) (c—e) )
& v! v! (v—1)! (v—1)!

cli) 1 (71)\,9{1}7[‘,{1‘}]%%1 [VV{[}}T(C—Q)W1

2.17)

Sepy = U1 T v T oD (2.18)
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These are the standard stage (2.5) and step (2.6) order conditions for a TSRK method,
with no extra coupling conditions present.

The global error after n; steps is due to the accumulation of local discretization
errors (2.15). To analyze the error propagation, we subtract the discrete method (2.12)
from its continuous analogue (2.15), which leads to the linear error recurrence rela-
tion,

q(ty) = dq(ty—1) + hPBr(t,) + hd(t,), n=2,...,ns, (2.19a)
where
qstage(tl) 0
q(n) = *tage(”) _ ploten -yl (2.19b)
step(tl) y( ) Yo
qstep tl) y( ) Y1
qstage(tn Y(ty—o +ch) —yl=1]
q(ta) = qsrag (1) fn+°h —rh n>2,
step(tn) tn 1 yn 1
qstep(tn)
and
i) [+ = (v2)
r(t,) = “‘age(t") = F(y(tn +ch)) — Y[n]) , n>2.
?t;)p( n) F(y(ta-1)) = F(yn-1)
step(tn) F(y(ta)) = F (yn)

The solution to (2.19) is given by
n—1 n—1
a(t) = ") +h Y " () +h Y " B,
I=1 I=1

It is shown in Appendix ?? that, when the individual methods are zero-stable (—1 <
6 < 1), powers of o* take the form

gt =

where Ot,Ef; ) and ﬁk(‘; ) are uniformly bounded. Following the arguments in [7] and

assuming that the starting values are approximations of order p and that the method
has order of consistency p, we find that the global error of the method after n steps
can be written

Gstep = hwrgtzgge (t"*] ) + thglza)ge (t’l)
+h(1—O)WVrle(tn1) +h(1 — OYWES . (t1—2)

stage

+hZB D (W 1) + Vil (1))
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ash — 0.

The assumption that the method has order of consistency p, is equivalent to
(2.18); if we in addition require (2.17), then g2, = @(h9*!) = G/(h?) as h — 0.

step —

Remark 2.1 (Startup procedure for SLP-TSRK schemes.) It is not enough to only
define the coefficients of the integrator, absent some strategy for obtaining the start-
ing values with appropriate accuracy. Fortunately, since we consider only schemes
for which ¢ > p — 1, there are two well known, and straightforward, approaches to
obtaining such values [14,6,7]. The first and most efficient, is the application of a
continuous output Runge-Kutta scheme of appropriate order. A single timestep of the
continuous Runge-Kutta method can compute from yg, both y; and all ¥;. A simple
application of the RHS to the Y;’s to produce K;’s is sufficient to start the SLP-TSRK
scheme. Alternatively, a discrete Runge-Kutta method can be repeatedly applied to
compute y; and the ¥;’s from yy.

3 Subfamilies of SLP-TSRK

The leniency in coupling conditions allows for a tremendous amount of freedom
in the construction of an SLP-TSRK. Here we outline two computationally rele-
vant families of SLP-TSRK schemes. The first are referred to as asynchronous SLP-
TSRK in which the diagonal method is either explicit or implicit, while the oft-
diagonal scheme is super-explicit, requiring only time-lagged ghost data. The sec-
ond is the so-called locally-implicit SLP-TSRK. This scheme employs an implicit
diagonal method, along with a (super-)explicit off-diagonal scheme, requiring only
(non-)linear solves depending on valid data.
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3.1 Asynchronous SLP-TSRK

An asynchronous SLP-TSRK on an individual processing element is given as Move
paragraph below to here

yt = (1 {1})yr{11}1+u{ﬂ {1} +h2a{”K”””]

+h):b{”1<{”[" 1 (3.1a)

L

7 = (1=l )yl ) +h2a{*}1<{ i

h Y B e, (3.1b)
=1
kI = pl) (Yi{*},Yi{”) fori=1,...,s, 3.1¢)

37 = (1-800)57 0t sy o i
j=1

+h lej.*}l(j*”"*”, (3.1d)
]:

(3.1e)

where once again * denotes a valid (Data owned by PE * and computed on PE x) solu-
tion, T denotes a ghost (Data owned by PE § and computed on PE x) solution, and the
computation is applied to all processing elements simultaneously. We note that the
quantities y{"} and K}T} are computed on some other PE and communicated to the
local PE, where the reduced internal stage dependency in (3.1a) versus (3.1b) guar-
antees we have an entire stage calculation to obscure the cost of that communication.
This discrepancy is essential to the underlying strategy of overlapping computation
with communication. Each local approximation of the ghost data requires only infor-
mation that is an entire stage behind the approximation being computed for the valid
solution. In this way, we have an entire stage worth of computation with which to
obscure the communication costs. In order to guarantee asynchrony, in addition to
time-lagging by a single stage we must also require that u{T} 1 and bﬂ} =0, so
that the first valid stage approximation does not depend on ghost data of the current
timestep or the final stage of the previous timestep. Such a scheme would have a
Butcher tableau of the form

1 biibip--- 0
up b1 by by

u{T}‘A{T}‘B{ i} — uslas by b3y by (3.2)

Us|ds,] * dss5-2 bs71 bs,Z bs,s

and its implementation is illustrated in detail in Algorithm 1.
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Algorithm 1 A single step of an asynchronous SLP-TSRK

: for each stage i € {1,...,5s—1} do

1
2
3 if i== 1 then .

4 MPI_WAIT() for K7}~

5: else if i == 2 then

6: MPLWAIT() for K<™/ ~" and y!7
7 else if i > 2 then )

8 MPI_WAIT() for k}1"

9:  endif

0

—_

1 Yi{f}:(l {T})y{‘r} ufTy, +hza{f},<{ )l +hzme{mn 1]

> Wait for required (time lagged) information

> Compute ghost stage approximation

12: > Compute valid stage approximation

3 x0 = (1)l +hza{ s }[n]+h2b{ SRl

14: > Compute local stage vector

150 KOS 0 (v 5 0)

16: > Send valid data to appropriate non-local processing elements

17 MPLIsend (k")

18 MPLIrecy(k/ )
19: end for

20: > Compute final stage and new step

21: MPLWAIT() for K '}1"

s=2 s
oyl AL 1) 1) At}
22: 7 = (1=l ™)y }yifﬁh):af.j}lff M L bis
Jj=

- Ys{*}:@ ”)yi }1+u{ }){}Jrhza{ ) (0 +h2b{ ) (]

25: y,{z*} — (1 _9{*})yii}l+9{*}),’{1i}2+hz‘,§*}Kj{*}[n]+,1ZW§*}K,{*}[H]
j=1 =1

26: > Send valid data to appropriate non-local processing elements

27: MPusend(K{*” ]) MPL Isend(y{ })
28: MPIJrecv( (i ]) MPurecv( {”)

3.2 Locally-Implicit SLP-TSRK

A locally-implicit SLP-TSRK for an individual processing element is given as
AT (MU UMW UN U hila{]} K0
j=
+h Zb{T}K{ 3= 1]
Yi{*} _ (1 _ u;{*}) y;{i}l ul* }yl{%} +h Z a{*}K{*}[ n]
+th{*}K{*}" 1] hai{j}f{*} (Yi{*},Yi{T})’
K = ) (Yl.{*},Yi{T}> fori=1,....s,

37 = (1-001)57, 0T,y o
j=1

S (5} - 1]
+hzle K; ,
=

(3.3a)

(3.3b)

(3.3¢)

(3.3d)

(3.3¢)
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where the computation of the above method is applied to all processing elements
simultaneously, and K* values are computed as K* on non-local PEs and then com-
municated to the current PE as K. We note that the local stage approximation of the

ghost data Yi{ﬂ is explicit, while the local stage approximation of the valid data is im-

plicit, though only in the valid data Yi{*} itself. This arrangement provides tremendous
computational advantage since the cost of standard implicit methods is dominated by
the need for global communication at each iteration of a nonlinear solver. In addi-
tion to any parallel benefits, it also leverages the time-honored tradition in numerical
analysis of saving computational effort by solving many small systems instead of a
single large system.

Remark 3.1 (Relative cost of SLP-TSRK versus standard TSRK) We note here that
explicit SLP-TSRK schemes are only slightly more expensive than standard explicit
TSRK schemes in both storage and computation. Specifically, explicit SLP-TSRK
schemes require computing — and storing — local approximations of ghost data (that
would be computed nonlocally and communicated to the current PE, in a standard
TSRK) on each PE. The amount of extra computation and storage is problem de-
pendent, relying entirely on the choice of partitioning in Equation (2.7). Fortunately,
these methods benefit from keeping the ratio of ghost to valid data small, a feature that
is already sought in the parallel decomposition of most PDEs. Additionally, implicit
SLP-TSRK schemes benefit from their need to solve only N small, locally-implicit
nonlinear systems, versus the standard implicit schemes single large implicit solve.
Putting everything together, an SLP-TSRK scheme is about as costly per-timestep
as a standard TSRK scheme, but its potentially asynchronous nature will lead to im-
proved parallel scaling.

4 Stability of SLP-TSRK

A standard approach to the stability of a time integrator looks at the initial value
problem (1.1) from which we started and reduces this problem to the much simpler
linear ODE

Y =Ly, yto)=y €R? LeR™ 1 <t<t. (4.1)

We then further assume that L can be diagonalized, and then that the action of this
diagonalizable matrix can be approximated in some sense by a single scalar value.
This string of assumptions leads us to the standard linear, scalar valued Dahlquist test
problem

y = Ay. 4.2)

Unfortunately, here we are interested in the stability of a method that inherently
depends on a component partitioning of the test ODE. This structure leads us to make
the choice that our test problem should be vector valued, since the scalar problem is
not reasonable. Instead, we once again reduce our test problem from non-linear to
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linear; then for simplicity, consider a scheme with only two partitions so that our
linear operator can be written in block form as

L1 Lip
L= ’ “. 4.3
[Lzl Ly 2] “-3)

3

Finally, we make our last, and potentially least reasonable, assumption that the action
of each submatrix can be in some sense approximated by a single scalar. This line of
reasoning leads to the stability problem we consider here,

)L],l Al.,2:| y (4'4)

= Ay=
Y Y [12,1 oy

where we partition the system according to the two components of y.

4.1 Solving the stability problem

We seek here a solution of the stability problem, specifically of the form
Yn =Myn_1.

In this way, we can determine the stability of the system, where the system is stable
if p(M) < 1 and unstable otherwise. We build the supervectors

y{in y(2) y v
yiin— | .| oy | L | yeno | | yeas
Yy{i"'} Ys{i,z} Ys{é’]} Yy{é’z}
| @5)
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so that when we apply the method (2.9) to the test problem we obtain
ylln — (e _u{u}) Vil a4 Al (M’ly{lvl}[ﬂ] Ml’zy{l,z}m)

+hB{1 (M’lY{“}[”*” +/11,2Y{‘=2}[”*”) (4.62)
yl{12in) — (e _ u{l,z}) Y a2y 4 A (2) ( A Y21 )Lz’zy{2»2}["])
a2 (lz’ly{ll}[nfl] +h12,zy{2,2}[n71]> (4.6b)
y{2uhl — (e_u{Z,l})yi'}l +u{2"'}y,{1],}2+hA{2’1} (/ll,lY{lvl}[”] +)‘172y{1»2}["])
+HB (2 oy W01 oy (12H01]) (4.6¢)
y{223n — (efu{2’2}> {2} | +uf22y {2} L hAR2) (3, y 200, ZY{z,z}[n})
1 nB(22 (lzﬁly{Z,l}[nfl]_|_2127zy{2,2}[n 1]) (4.6d)
y ( {1}) {1 +9{1} {1} +h( {'})T(Al_lY{l’l}[’l]—i—M 2Y{l,z}[n])
( {1}) ()LHY{”}" 042y oy {124 ”) (4.6¢)
Y2 ( 9{2}) 2 o2 1) (V{2}> (hly{zl}m n )LZ’ZY{ZZH"])
th (w{z}) (,1211/{21}" 14 2,y 220 ”) (4.60)
If we define the vector _ )
{1}
ynz}
o
y{l}l
2
A = yif}l , 4.7
y{L1}n
y {12} ]
y{z1}n
y{2.2}]
then it is possible to write (4.6a),(4.6b), (4.6¢), and (4.6d) as
y{L1}
{1,2}[]
Ay | =B% 1, AN peRb ), (4.8)
y {22}
with
(1 —hA AT —pAg AT 0 0
A 0 I —hAy AT p, ALY 9)
B —hll’lA{z’l} —h)L]gA{z’l} 1 0 ’ ’

0 0 —h2o 1 A2} (I —hap ,AT22))
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and
(e—ulll}) 0 ulth o aa B LB 0 0
B 0 (e—ull2) o ull? 0 0 hig B2 hay B2
~ | (e—ufzl}) 0 ul>lh 0 pay B2 pA LB 0 0
0 (e—ul22) o W22 o0 0  hiy B2Y na,,B122
(4.10)
The solution to (4.8) can then be written as
y L1}
{12}[n]
)Y/{Z’l}[n] =C%,_;, C=A"'BeR¥ &4 “4.11)
y{2.2}0n)

Let us now label the 4, s-row, components of C so that

G
e
c=\al (4.12)
Cy
and
yUihl =y, Y2 =y, yEU =, y3h=c, .
(4.13)
From this it is clear that we can rewrite the solution to (4.6) as
By =M1, M2, M1, Ao, 1) Py, Mg RUSH)X (st (4.14)
where
M M,
M_{C}+{0} (4.15)
with
(-0 0o o o Ay (W) mu,wHT 0 0
M—| 0 (1-6) 0 6 0 0 oy (W hias (w2
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
(4.16)
and ’
h (V{l}) (M,1C1+ A1 2Co)
T
M, = [A(VH) (MG + 222G | | (4.17)
0
0
The matrix M is the SLP-TSRK iteration matrix, and the method is stable iff
p(M(A,h)) < 1. (4.18)

The stability result is equally valid for implicit or explicit methods, and for asyn-
chronous or locally-implicit methods.
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4.2 Leveraging the stability problem

Here, we follow the approach presented in [8,9, 13] to leverage (4.4) to gain an un-
derstanding of the relative stability properties of our new methods. We restrict our
interest to the case where 411,42, < 0 and

Mgl

§ = 2721
Moo

<1,

so that the eigenvalues of the matrix A have negative real parts. Then as in [8], the
parameter & can be considered a measure of the coupling between the partitions, and

A

K =222 >1

A
can represent the relative stiffness of the partitions. In [13] it is shown for the nu-
merical method they are studying that the iteration matrix M depends only on the
quantities hA; 1, hA 2, and det (hA ), and so the stability region can be considered as
depending only on the quantities k¥ > 1 and

E= 1 €(-1,0) and n=

=T € (—1,1). (4.19)

1)
2—-96
Unfortunately, here we do not have access to the same theoretical result; however,
empirically it appears to be the case. This is confirmed by the fact that we obtain
the same results as in Figures 5.1, 5.2, and 5.3 independent of our choice of how to
generate a A and £ from the triplet (k,&, 7).

5 Constructing Practical SLP-TSRK

The order conditions of SLP-TSRK methods are fairly straightforward. It is possible
to take any collection of existing internally consistent TSRK schemes and combine
them to obtain a convergent SLP-TSRK scheme. Here we seek to do more. Specif-
ically, we seek to construct the two-partition schemes from Section 3. To do so we
find pairs of TSRK schemes that satisfy equations (2.17) and (2.18) while optimizing
for stability as discussed in Section 4.

To construct such an optimized pair we must first build an objective function over
which to optimize. We begin by considering the stability test problem (4.4), as well as
aset of triplets (k,&, 7). Then for each triplet (k, &, 1), we construct a corresponding
matrix, A, and stepsize, h. The objective function for a given scheme is then evaluated
as the total number of triplets (k,&,7) at which the scheme is stable. In addition to
optimizing our objective function the new scheme is subject to the constraints of the
order conditions (2.17) and (2.18).

Note that these order conditions are linear as long as the abscissa is fixed, and
so are straightforward to solve. We therefore choose the abscissa among our op-
timization parameters, and employ a direct solve to obtain the rest of the method
coefficients. The optimization is then performed using the genetic algorithm Python
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c= [0.19357073 0.50352658 0.97750613]

1.86133177 0 0 0
ut*t = |1.74652867| Al = | 0.3258515912186877 0 0
1.429326 0.27635351287871057 0.5142499678827194 0

0.8006509363957107 0.292478352224931 0.8310743757572607

" 0.7503417276510276 0.5854449264336774 0.7191158460866666
BV =
0.5771618722770031 0.12769222141061487 0.9113745608482877

0.4317772 0.06333613
ot} =0.34725408186734763 v} = |0.30848125|, wi* = |0.24224691
0.26559022 0.03582237
1 0 00
ul™t = | 1.44566481| Al = 0 00
1.20800457 1.0104785400466718 0 0
—0.3591187218675605 1.5526894489850318 0
B{} = | 0.23169899162496854 0.7818501907175646 0.9356422138568928
0.10951478068520126 0.4421260380601868 0.6233913464486004

Table 5.1: Asynchronous SLP-TSRK of order 3 with stage order 2.

package PyGAD [5]. Tables 5.1 and 5.2 give specific values for both an asynchronous
and a locally-implicit asynchronous SLP-TSRK scheme of method order three with
stage order two. The coefficients with only eight decimals of precision were chosen
by the optimizer, while those with 16 decimals of precision were determined by the
preceding choices.

It is possible to leverage this optimization process to derive SLP-TSRK schemes
that are advantaged for specific problems. For instance, if one seeks a scheme that
is extremely stable for diffusion type problems, one might only consider symmetric
A’s or A’s in Equation (4.4) that have strictly negative real eigenvalues. Here we
considered a sequence of A’s arising from the triplets (x,&, 1), where k € 1,10, 100
and & and 1 come from an equispaced grid of 150 points on (—1,0) and (—1,1)
respectively.

Figures 5.1, 5.2, and 5.3 show the stability plots for a 3rd order method of Jack-
iewicz [7, §5.6.1], as well as our new asynchronous explicit and locally implicit meth-
ods. We note that our new asynchronous scheme is slightly less stable then the exist-
ing scheme by Jackiewicz, but has the advantage of potential asynchronicity. This re-
duced stability is unsurprising since the off-diagonal methods are super-explicit and
so extrapolate solutions over larger time distances. More interestingly, the locally-
implicit method shows improved stability over the explicit methods, with its stability
depending only weakly on the relative stiffness k.
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c= [0.15265147 0.90761924 0.02019072]

2.02516075 0.7172893606610329 0 0
ut = 246213121 A" = [0.8354777291752487 0.7172893606610329 0
2.01005038 0.2975360872161591 —0.23506310031758615 0.7172893606610329

B = [0.7277487605615025 0.09708637871388748  0.992148222147617
0.932350179294266 0.2821133184774526 0.031220858701790255

0.9193994118623637 0.22404633133217688 0.3170771210792589 }

61} =0.3192982358106409, vi*} = [

1
ut™t = | —1.68698949

0.79801812

0.5058042991717454 0.6468471713514119

Al =

0.18727826
0.44043672
0.37155417

]

0.24427559

0.00983038
0.06592312

00
00

—0.2881064983723251 0 0

B{T} = |0.7684348382234261 0.43942628779667814 —1.9872313768468894
0.2979157830695197 0.7771786982185928 0.031220858701790255

Table 5.2: Locally-Implicit Asynchronous SLP-TSRK of order 3 with stage order 2.

0.75
0.50
0.25

< 0.00
—0.25
—0.50
—0.75

(@A) k=1

(b) k=10

(c) k=100

Fig. 5.1: Stability regions (dark) for Jackiewicz 3rd order TSRK for k¥ = 1,10, 100.
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—0.25
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(@) k=1
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0.50
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< 0.00
—0.25
—0.50
—0.75

(b) k=10
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< 0.00
—0.25
-0.50
-0.75

(c) Kk = 100

Fig. 5.2: Stability regions (dark) for 3rd order asynchronous SLP-TSRK with stage

order 2, for k¥ = 1,10, 100.
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(@) k=1 () k=10 (c) k = 100

Fig. 5.3: Stability regions (dark) for 3rd order locally-implicit asynchronous SLP-
TSRK with stage order 2, for k = 1,10, 100.

6 Numerical Results

Here we present some numerical experiments that verify the order condition theory
presented in section 2.2 and illustrate the stability results of Section 4.

6.1 Verifying order of accuracy via Lorenz 96 with 2 partitions

We make use of the Lorenz-96 model [11] to verify our order condition theory on
a standard ODE test problem. This chaotic model has N = 40 variables, periodic
boundary conditions, and is described by the following equations:

dy;j .
—ZF =i 02 =yn) —YHF, j=1N, (6.1)

Y-1 =YN-1, YO=IYN, JYN+1=D)1-

The forcing term is F = 8.0+ 4cos (47rt), with 7 € [0, 1.5], and y;(0) = —2+4/39-
(i — 1). Here, we separate the system into two partitions, each with 20 variables, so
that yU' = {y;,...,y20} and yI = {y51,...,y40}.

Figure 6.1 shows the convergence of both the asynchronous explicit and locally-

implicit SLP-TSRK methods given in Tables 5.1 and 5.2. Both schemes obtain the
expected order.
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0
10 T
—— Asynchronous SLP-TSRK (order 2.93
L
—O— Locally-implicit SLP-TSRK (order 2.95)
10tF Third order reference
102
8
i
102 F
10
10°

10° 10°
Number of Timesteps

Fig. 6.1: Precision diagram for Lorenz 96, showing convergence order of methods
using 2 partitions.

6.2 Locally-implicit SLP-TSRK schemes exhibit better than explicit stability.

Here we consider the 2-dimensional advection-diffusion system with periodic bound-
ary conditions

du

5 ta Vu=0oVu (6.2)
solved via MFEM [2]. Specifically, we use a discontinuous Galerkin discretization
with third-order polynomial basis functions in each element. The advection term is
treated via standard upwinding, and the diffusion term is treated via a symmetric
interior penalty discretization. The system is separated into partitions corresponding

to MFEM’s choice of data distribution across the available processing elements.

-=+¥-+- Jackiewicz, N = 1 (order 2.98)
| ¥ ASLP-TSRK, N = 1 (order 3.00)
107 ASLP-TSRK, N = 4 (order 2.99)
—€— ASLP-TSRK, N = 16 (order 2.99)
—>—ASLP-TSRK, N = 32 (order 2.99)
10°¢F LISLP-TSRK, N = 108 (order 3.28)
=G LISLP-TSRK, N = 144 (order 3.29)
—===Third order reference

10° s
10
Number of timesteps
Fig. 6.2: Precision diagram for the advection-diffusion equation with o = 0.00005
and a variable number of partitions.

Figure 6.2 shows a convergence diagram for SLP-TSRK schemes applied to
the above problem with o = 0.00005, a = (1/2/3,/1/3), x € [-1,1] x [-1,1],
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t € [0,0.125], 147,456 unknowns and periodic boundary conditions. These schemes
obtain the full, expected order of convergence regardless of the number of partitions,
once again verifying the formal order condition theory of section 2.2. In addition,
Figure 6.2 illustrates the relative stiffness of this problem, where the explicit meth-
ods are unable to obtain low-accuracy (large timestep) solutions due to stability con-
straints, as well as demonstrates the ability of the locally-implicit scheme to obtain
stable solutions with larger than explicit timesteps, thus verifying the stability results
of section 4, even while employing a relatively large number of partitions. Recall that
as the number of partitions is increased the relative stability of the locally-implicit
schemes should decrease, since a larger proportion of the system is being handled
explicitly. Considering only the ASLP-TSRK results in Figure ?? we note a modest
rise in the local error as the partition count is increased.

7 Conclusion

We have constructed a new class of N-partitioned, additive, two-step Runge-Kutta
methods called stage-local partitioned two-step Runge-Kutta (SLP-TSRK) schemes,
as well as a corresponding order condition theory. We presented two families of SLP-
TSRK methods: asynchronous schemes that allow for the communication of ghost
stage data to be masked behind the computation of the valid stage data; and locally
implicit schemes that require the solution of only local (non-)linear systems and so
avoid costly communication in the solver. We discussed the stability of SLP-TSRK
schemes, and presented both an asynchronous and locally implicit SLP-TSRK that
have been optimized for stability in some sense. We have further verified numerically,
the theoretical properties of these schemes.

Future work will focus on specific implementation details, such as a variable step-
size formulation and continuous output, as well as study the computational impact of
the local implicitness and asynchronicity of the methods in a large scale parallel set-
ting.
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Appendix A Bounding Powers of &/

Theorem A.1 Consider the matrix

070 0
00U Vv
=000 1 | (A-D

00071-06
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where @ € RN*N s a diagonal matrix with entries 0; € (—1,1], then powers of </*
take the form

00clt) aft)
oo ool
008 l’j) ﬁélfz

with (X,ELIU and ﬁk“ll ) uniformly bounded. (The streamlined version of the proof below

was suggested by one of the anonymous referees.)

Proof Consider the partitioning of .o/ as

A A
o = [ 0 Azz} , (A2)
with
01 00 0 I
A= {0 0] , A= [U V} , An = [@ I@} ; (A.3)
then it can be shown inductively that
~1
gt — |0 (A11A12+AF1LQA22)A‘212 7 (A4)
0 A5,

for integer p > 1, where

% Tu]v S =(U+0) [0+ (-6)] (A5)

Az = { T =(+0)" [1-(-0)"]

Su+1 Tyt

Powers of Ay, and thus .27, are bounded whenever those of ® are, i.e., if 6; € (—=1,1].
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