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Summary 

While transactive energy, which is defined as an allocation of electricity based on dynamically discovered 
values or prices, has been extensively studied, its uptake and use has been slow. This report describes a 
tool, the transactive network template, which should hasten the creation and uptake of transactive energy 
networks. 

Some basic principles of transactive energy are familiar from existing wholesale electricity markets. 
Locational prices are calculated today for zones within bulk electric transmission systems. Locational 
prices differ while accounting for the locational costs of electricity generation and the losses and 
constraints incurred when electricity is transmitted from generators and distributed to consumers. A 
transactive energy network might include these transmission zones. However, current research strives to 
apply transactive energy also in electricity distribution circuits, buildings, and even for individual 
generating and consuming devices. At the same time, researchers explore how to apply transactive energy 
in real time during increasingly shorter time intervals. 

Automated computational agents become necessary as transactive energy becomes applied to smaller 
circuit zones and at faster dynamic timescales. A transactive energy network is an example of a multi-
agent system. Each zone in the network is represented by its transactive agent, which makes decisions for 
and acts on behalf of a business entity that is responsible for and manages one of the circuit regions. A 
transactive energy network is also an example of a decentralized, distributed control system. Control 
decisions and responsibilities are distributed among the network’s transactive agents. The transactive 
agents are independent; that is, there typically is no centralized authority or oversight function. Instead, 
transactive agents exchange transactive signals and thereby negotiate the prices and quantities of 
electricity that they will exchange. 

Initially, the circuit regions and responsibilities of transactive agents appear to be very dissimilar. Each 
circuit region may comprise transmission, distribution, or building-level circuits. Each has a unique 
position and electrical connectivity within the transactive energy network. Each possesses unique assets 
that either generate or consume electricity, and these (e.g., renewable energy generator, diesel generator, 
aggregate utility load, building load, space conditioning, refrigerator, etc.) may further differ in their price 
flexibility and in their strategies for responding to dynamic electricity prices. Given such diversity, an 
implementer’s first inclination might be to start from scratch to define all these devices and to engineer 
their seemingly unique interactions. 

Given that each implementer’s perspective may be narrow within a transactive energy network, it is 
unlikely that uniquely engineered systems would interact well. This is where the transactive network 
template is applicable. The transactive network template is a metamodel that has been developed to guide 
implementers as they configure their own transactive agent within a network of such agents. The object-
oriented design of the transactive network template provides basic code object types that may be used and 
extended by implementers to represent each of the assets in their circuit region. These objects further 
facilitate the transactive agent’s necessary computations, which are divided among responsibilities to 
schedule power usage, balance electric supply and demand, and coordinate the exchange of electricity 
with the other transactive agents. 

This report addresses the conceptual transactive network template design. Implementers are directed to 
more formal design documents and reference implementations. A Python™-based1 reference 
implementation of the transactive network template has been coded, and three implementations have been 
configured to represent a national laboratory and two university campuses. Version 2 of the transactive 
node template generalizes the market class and its methods to facilitate multiple, and more diverse market 

 
1 Webpage available at https://www.python.org. 
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coordination mechanisms than were facilitated by and demonstrated using Version 1. Version 3 includes 
new Appendix B, which addresses the designs of methods that would make dynamic prices track 
approved electricity rates. In the future, the author wishes to make the transactive network template more 
generally applicable to networks that require more accurate power flow. 

Development of the transactive network template is jointly funded by the U.S. Department of Energy 
(DOE) Energy Efficiency and Renewable Energy and the DOE Office of Electricity. In late 2015, one of 
the first projects to be funded by the DOE Grid Laboratory Modernization Laboratory Consortium was 
the Clean Energy and Transactive Campus project, led by Pacific Northwest National Laboratory. DOE 
funds were matched by an investment by the Washington Department of Commerce through its Clean 
Energy Fund.  The transactive network template was developed to guide the implementation of 
transactive energy networks within this project’s scope.
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Glossary and Acronyms 

 local asset A device or system that generates or consumes electricity and 
that is managed by a transactive agent. An object class within 
the transactive network template. A transactive agent knows 
all states and strategies of its local assets. A transactive agent 
schedules its local assets, but it does not transact with them. 

 locational marginal price Formal definitions exist in wholesale electricity markets. 
More generally, the change in cost that accompanies a change 
in electricity supply at a given location and time.  

 transactive agent An entity that manages a circuit region using an 
implementation of the transactive network template. A 
transactive agent must negotiate with other transactive agents 
to coordinate energy flow and value within its transactive 
energy network.  

 transactive energy network A set of transactive agents, plus the allowed transaction 
pathways between the transactive agents. 

 transactive neighbor Each member of a pair of transactive agents that transact with 
one another by exchanging transactive signals. 

 transactive network template An abstracted, object-oriented metamodel of one transactive 
agent’s perspective within a multi-agent transactive energy 
network. An extensible set of base object classes that was 
developed using the Unified Modeling Language®. A 
reference implementation of the transactive network template 
base classes has been instantiated in Python™1 for use with 
the VOLTTRON™2 platform. 

 transactive signal The information that transactive neighbors exchange. A set of 
records, each of which represents a pairing of price and 
quantity within a forecast time interval. 

UML® Unified Modeling Language A standard visual modeling language intended to be used for 
modeling business and similar processes, analysis, design, and 
implementation of software-based systems.3 The standard is 
maintained by the Object Modeling Group®. 

 

 
1 Webpage available at https://www.python.org. 
2 Webpage available at https://volttron.org/. 
3 Webpage available at https://www.uml-diagrams.org. 
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Introduction 

The transactive network template is an extensible set of base object classes that was developed using the 
Unified Modeling Language™ (UML).1 The transactive network template facilitates the configuration 
and operation of one agent within a cyber-physical network of such agents. It is designed to facilitate 
decentralized transactive energy systems, which automate and coordinate decentralized control decisions 
of distributed devices that generate or consume electricity.  

Development of the transactive network template is jointly funded by the U.S. Department of Energy 
(DOE) Energy Efficiency and Renewable Energy and the DOE Office of Electricity. In late 2015, one of 
the first projects to be funded by the DOE Grid Laboratory Modernization Laboratory Consortium was 
the Clean Energy and Transactive Campus project, led by Pacific Northwest National Laboratory. DOE 
funds were matched by an investment by the Washington Department of Commerce through its Clean 
Energy Fund.  The transactive network template was developed to guide the implementation of 
transactive energy networks within this project’s scope. 

MATLAB®2 and Python®3 reference implementations of the transactive network template were coded. 
The MATLAB implementation is useful for research exploration, but it is not suitable for field use. The 
Python reference implementation has been implemented on various VOLTTRON™4 communication 
platforms for use in actual networks. Furthermore, the Python reference implementation was used to 
configure three transactive energy network implementations—one representing a transactive energy 
network comprised of buildings on the Pacific Northwest National Laboratory campus and their upstream 
campus, municipality, and wholesale electricity suppliers; and two representing two U.S. university 
campuses.5 

The word template highlights the ability of the transactive network template to guide and facilitate 
specific agent implementations. Its object-oriented design enforces a degree of standardization, and its 
classes provide the standard properties that will be needed by an agent. Furthermore, needed behavioral 
methods are enforced to standardize inter-agent transactions and integration of the agent’s local assets. At 
the same time, extensibility is supported for the assets themselves, which often possess additional unique 
properties and energy behaviors. Extensibility is quite naturally supported when using object-oriented 
code design. Libraries of asset models (e.g., for specific building loads and demand-responsive assets) 
should evolve by inheritance and extension of the base transactive network template object classes. The 
base classes themselves should not be casually modified. 

This report is intended for a nontechnical reader, not the coder or implementer. It introduces concepts and 
features of the transactive network template, but it does not provide enough detail to create another valid 
reference implementation. It is important for the reader to understand why the transactive network 
template is a metamodel, but the reader is not expected within this report to interpret the UML 
diagramming which allowed its design as an object-oriented metamodel. If still more detail is needed, 
contact Donald J. Hammerstrom6 regarding the design document or Hung Ngo7 regarding the Python 
reference implementation code. 

 
1 Webpage available at https://www.uml-diagrams.org. 
2 Webpage available at https://www.mathworks.com/products/matlab.html. 
3 Webpage available at https://www.python.org. 
4 Webpage available at https://volttron.org/. 
5 Katipamula S, RG Lutes, S Huang, J Lian, H Ngo, and DJ Hammerstrom. 2019. Coordination of Behind-the-Meter 
Distributed Energy Resources for Transactive Grid Services: Multi-Building. PNNL-XXXXX, Pacific Northwest 
National Laboratory, Richland, Washington. 
6 Donald.Hammerstrom@pnnl.gov 
7 Hung.Ngo@pnnl.gov 
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Implementations of the transactive network template are intended to facilitate a single agent’s perspective 
within a multi-agent transactive network. That agent will be referred to in this report simply as “the 
agent” or “this agent.” When necessary, references to “other network agents” or “another network agent” 
or “neighboring agent” should be understood to refer to other members of the multi-agent network 
besides the one central to the given implementation. Terse, precise class names were used in the 
transactive network template, but more readable names and descriptions have been used in this report 
(e.g., a LocalAsset object is referred to as a “local asset object”). 

The structural and behavioral aspects of the transactive network template are addressed in Section 2, and 
further improvements to the transactive network template are suggested and discussed in Section 3. 
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The Transactive Network Template Metamodel 

The transactive network template is a metamodel in that it is a model of models. Its object-oriented UML 
design may guide reference implementations that may use different software code languages. Regardless, 
every reference implementation should reproduce the same transactive network template base classes and 
base class behaviors. In principle, transactive agents residing in the same transactive network may choose 
entirely different reference implementations of the transactive network template, and these agents should 
still properly exchange transactive signals and interact.1  

Object-oriented designs are separable into their structural and behavioral elements. Section 2.1 introduces 
base classes of the transactive network template, thereby providing a structural overview of the structural 
elements that are available to model an agent’s assets and position within a transactive network. Section 
2.2 introduces the most important behavioral responsibilities of the transactive agent and how those 
responsibilities are allocated among the available transactive network template classes. The three 
fundamental computational responsibilities of a transactive agent are to 1) to balance electrical power in 
the circuit region that is managed by the agent, 2) schedule the power to be generated or consumed by the 
agent’s local assets, which decisions may be price-responsive, and 3) conduct transactions and coordinate 
electricity exchanges with other agents.  

Sections 2.3 and 2.4 address what it means to configure and extend a transactive network template code 
implementation respectively. 

Base Transactive Network Template Code Classes 

This section introduces the structure of the transactive network template by introducing its base classes. 
These classes are the structural elements available to design, configure, and operate a transactive network 
template implementation. Objects must be instantiated from these base classes (or from classes whose 
parentage can be tracked back to these base classes) from the perspective of a single transactive agent and 
its electric circuit region that it represents.  

A transactive network template implementation provides useful object classes that one transactive agent 
may configure, specialize, and use to plan and manage electricity supply usage in the circuit region for 
which it is responsible. Three of the transactive network template’s most important code classes are 
shown in Figure 1. The market class manages the transactive agent’s balancing of electricity supply and 
demand. The local asset class interfaces with and schedules the devices and systems in the circuit region 
that the transactive agent manages. The neighbor class coordinates the transactions and manages the 
exchange of transactive signals with neighboring transactive agents. The neighbor and local asset classes 
may be specialized and instantiated as many times as is necessary to represent all the transactive agent’s 
assets and transactive neighbors. 

The transactive network template features more object classes than the important ones featured in Figure 
1. High-level information about all the transactive network template base classes is summarized in Table 
1. The first column gives both the base class name (bold, italicized) and its brief description. The second 
column lists properties that the base class manages on behalf of the transactive agent, and the third 
column lists the classes’ most important behavioral responsibilities. 

 
1 More precisely, the transactive records should interoperate at the business and syntactic levels. The transactive 
network template is agnostic about interoperability in physical communication layers. Neighboring agents may have 
to negotiate their choice of communication carrier and choose from available low-level communication protocols. 
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Figure 1. Simplified Representation of a Transactive Agent’s Transactive Network Template Code 
Implementation and Its Interfaces to the Transactive Agent’s Local Assets and Transactive 
Neighbors 

1.1 Scheduling, Balancing, and Coordination Objectives 

There are three very important computational responsibilities managed by transactive agents that 
implement the transactive network template: 1) balancing, 2) scheduling, and 3) coordination. The 
transactive network template has been designed to make these three computations as separable and 
independently achievable as possible. 

1.1.1 The Balancing Responsibility 

Many readers will possess conceptual understanding of the market principles that are central to the 
balancing objective. Given updated power schedules and price flexibilities of all the agent’s local assets 
and neighbors, an agent’s market object calculates an electricity price that balances supply and demand 
among all electricity entering and exiting the agent’s circuit region.  

The agent’s circuit region is treated as a “copper plate,” which means it possesses undifferentiated 
electrical circuit properties and incurs no transport losses within the circuit region. There may be only one 
voltage in the circuit region. While exchanges with neighbor objects may be modified to reflect electricity 
that is lost upon importing electricity into the circuit region, local assets reside in the circuit region and 
typically will not incur transport losses.1 The current transactive network template version addresses only 
real electric power transactions and the balancing of real power.2 

 

 
1 These “copper-plate” principles are intentional and should not be violated. Electricity must have one unit price 
across the agent’s entire circuit region at any given time. If an implementer feels compelled to assign multiple 
electricity prices within one agent’s circuit region, the regions should be separated and granted their own agents and 
transactive network template implementations. 
2 Future versions should address reactive power and voltage management, which would require successively 
detailed calculations of both real and reactive power generation and consumption within the agent’s circuit region 
and complex power transport between agents and their circuit neighbors. Effects like transport losses can be 
estimated until such new transactive network template versions can be completed. These future versions are 
addressed in Section 3.0. 

Transactive Agent Implementation 
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Table 1. Important Properties and Responsibilities of Transactive Network Template Base Class Objects 

Class Object Important Properties Responsibilities 
myTransactiveNode—The agent’s 
transactive node. It represents an 
agent’s perspective from within its 
circuit region. 

 Lists of information source, 
local asset, market, meter, and 
neighbor objects that the asset 
must interact with. 

 None. 

LocalAsset and LocalAssetModel(a)—A 
local device or system that must be 
scheduled by the transactive agent―a 
generation or load device that lies 
within the agent’s circuit region and is 
“owned by” the asset. The transactive 
agent knows the asset’s entire status 
and strategy.  

 Cost parameters for 
calculating production costs. 

 Default and active vertices for 
representing the asset’s 
flexibility to the locational 
price. 

 Lists of meter and information 
sources. 

 The object’s name and 
description. 

 The asset’s default, minimum, 
maximum, and scheduled 
powers. 

 The asset’s production, total 
production, dual, and total 
dual costs. 

 Given forward electricity prices, 
an asset schedules its own 
power and its flexibility to 
change its electric power 
generation or consumption in 
response to changes in those 
forward prices.  

 Given the asset’s scheduled 
powers, the asset updates its 
production and dual costs, 
which are used by the market 
object to determine convergence 
of the transactive agent’s 
balancing objective. 

Neighbor and 
NeighborModel―Locations outside the 
agent’s circuit region with which the 
agent may exchange electricity. 
Transactive neighbor objects are further 
managed by other transactive agents of 
the transactive network and expect to 
exchange transactive records with this 
agent. 

 The neighbor’s default, 
minimum, maximum, and 
scheduled powers. 

 Cost parameters that may be 
used to calculate production 
costs.(b) 

 Default and active vertices 
that are used to represent 
neighbor flexibility on a 
marginal supply or demand 
curve. 

 Demand-charge parameters. 
 Lists of meter and information 

sources. 
 The object’s name and 

description. 
 Production, total production, 

dual, and total dual costs. 
 Ready, sent, and received 

transactive records. 
 Boolean indicator stating 

whether neighbor is 
transactive or not. 

 Transport loss factor that may 
be used to estimate transport 
losses for electricity imported 
from the neighbor. 

 Given a series of forward 
electricity prices, the Neighbor 
schedules its own power and its 
flexibility to changes in those 
forward prices. 

 Given the neighbor’s scheduled 
powers and forward prices, the 
neighbor updates its production 
and dual costs. 

 For every neighbor object, the 
agent must prepare, send, 
receive, and check for 
convergence among transactive 
record signals. 

 If demand charges are in play 
for the neighbor object, it must 
update the thresholds and 
impacts of the demand charges. 
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Class Object Important Properties Responsibilities 
Market  Aggregate flexibility is stored 

as a list of aggregate active 
vertices. 

 Aggregated generation total 
generation, demand, total 
demand, and net powers. 

 Aggregated production, total 
production, dual, and total dual 
costs. 

 Convergence criterion 
threshold concerning the 
agent’s balancing objective. 

 Convergence status. 
 Default and actual marginal 

electricity prices. 
 Market forecast horizon and 

clearing schedule. 
 Time interval duration. 
 Current market state. 
 Identity of preceding and any 

corrected markets. 

 The market object must balance 
electric supply and demand for 
the agent, which includes these 
following responsibilities. 

 Initiate updating of and sum 
local assets’ and neighbors’ 
production and dual costs. 

 Initiate updating of and sum of 
local assets’ and neighbors’ 
powers and flexibility 
scheduling. 

 Maintain a current list of active 
market time intervals. 

 Instantiate new successive 
market objects as they become 
needed and relevant. 

 Manage market lifetime and 
event timing using a state 
machine. 

TimeInterval—A time interval object.(c)  Market object in which the 
time interval is relevant. 

 The object’s name. 
 The interval’s starting, 

duration, activation, and 
clearing times in the given 
market object, as well as its 
calculation timestamp. 

 Update market state. 
 A construction method exists to 

enforce class structure. 

IntervalValue—Measured or calculated 
data that belong within their specified 
time interval. For example, forecasted 
price and power data must have their 
respective time interval specified. 

 Market object in which the 
value is relevant. 

 Object name identifier. 
 Source class and object that 

created value. 
 The value and its measurement 

type and units of measure. 
 Time interval in which the 

value resides. 

 A construction method exists to 
enforce class structure. 

TransactiveRecord—transactive 
record. A set of these records constitute 
a signal between this agent and one of 
its transactive neighbors. 

 Tuple of cost, marginal price, 
and power, and the time 
interval in which the tuple is 
relevant.(d) 

 Indicator whether the record 
represents scheduled power or 
an inflection point on a 
piecewise linear supply or 
demand curve. 

 A construction method exists to 
enforce class structure. 

Vertex—An inflection point between 
lines of a piecewise linear marginal 
supply or demand curve. 

 Tuple of cost, marginal price, 
and power. 

 A construction method exists to 
enforce class structure. 

MarketState—Enumeration of possible 
market states. 

 The set {Inactive, Explore, 
Tender, Transaction, Delivery, 
Publish, and Expired} 

 None. 
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Class Object Important Properties Responsibilities 
MeterPoint—A meter source of data.(e)  Meter description and name. 

 Measurement value and type 
and unit of measure. 

 Sample time and interval and 
next scheduled sample time. 

 Store time, storage interval, 
and next scheduled repository 
store time. 

 Read a meter. 
 Store meter data. 

InformationServiceModel—
Information service or, more generally, 
a source of information other than a 
simple meter.(f) 

 Information source  
(e.g., service and its location). 

 Information type and units of 
measure. 

 Object name. 
 Sample time and duration, and 

next scheduled sample time. 

 Update information (e.g., 
forecast outdoor temperature 
from a weather forecasting 
service). 

(a) Two classes of types object and model were used for various base classes of the transactive network template. 
The intention was to group object properties that reside with objects in static time and behavioral properties and 
methods that reside modeled with objects in predicted time series. There is some value to this approach, but the 
distinction will be mostly ignored within this report. 

(b) Fueled generator cost functions are the basis for most theory underlying wholesale electricity markets. The 
transactive network template therefore facilitates calculation of production costs using a quadratic function of 
power. Interestingly, these conventional cost functions are not particularly useful for determining the production 
costs of other distributed generation resources. 

(c) Time interval objects, once instantiated, remain affixed to their delivery time period. The time interval object 
can therefore keep track of a market’s status, which facilitates potentially rich market timing practices. The 
transactive network template should be resilient to missed calculations and system down times because of the 
persistence of time interval objects. 

(d) Many additional tuple elements were defined for a transactive record to support anticipated future 
functionality. Unimplemented, untested features will not be discussed in this report. 

(e) As for InformationServiceModel, reference implementations are tending to ignore this class. It was hoped that 
this class would facilitate platform independence. 

(f) The reference implementations largely ignore this class. Access to some information sources will be found to 
have been provided by a communication platform, as was the case with VOLTTRON. It was hoped that this 
class would facilitate platform independence. 

All suppliers, consumers, importers, and exporters of electricity are treated similarly and symmetrically 
by the transactive network template. A consistent sign convention is enforced from the perspective of the 
agent and its circuit region that the agent manages. Power and electricity entering the agent’s circuit 
region via generation or importation are assigned positive values; power and electricity exiting the agent’s 
circuit region via consumption or exportation have negative values. Bidirectional power flows and energy 
storage assets are permitted and supported. The transactive network template allows an electricity 
consumer to become a generator or an exporter to become an importer from one time interval to the next. 
An important consequence of this sign convention is that, from the agent’s perspective, electric power 
balance has been achieved if the sum of all electricity generation, consumption, importation, and 
exportation is zero. 

The balancing process is initiated upon the agent’s market object inviting all its neighbor and local asset 
objects to update their schedules, price flexibilities, and production and dual costs. These scheduling 
computations by the transactive network template neighbor and asset objects are precisely the 
responsibilities that are to be discussed in Section 0. The market object sums the objects’ responses to 
determine net power balance, net available price flexibility, and various costs that indicate whether the 
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balancing process has converged.1 Template Version 1 facilitated only an iterative consensus negotiation 
mechanism that could be solved using either of two alternative solution methods: Method 1 conducts a 
sub-gradient search, in which each time interval’s price is nudged up or down based on the magnitude and 
sign of the calculated duality gap. This first method requires many iterations, but it becomes necessary 
when objects cannot, or choose not to, reveal the flexibility of their scheduled powers to price changes. 
The balancing process ends when the duality gap has been driven to a suitably small magnitude. The 
simpler, preferred Method 2 requires many fewer iterations. If all transactive network template neighbor 
and asset objects reply to their market object with accurate, piecewise linear representations of their price 
flexibility for each active time interval, then the clearing price may be accurately determined through 
interpolation, thus requiring few if any iterations. The duality gap still is used by Method 2 to indicate 
convergence, but very few iterations were needed for the simple reference implementations to date.  

The authors strongly advocate for the simpler Method 2. One of its assumptions is that all objects’ 
production (and consumption) costs are represented by quadratic, monotonically increasing cost 
functions. An implication of this common assumption is that the derivative of the quadratic cost 
function—its marginal supply or demand curve―is affine. Any power function comparable to marginal 
prices is therefore piecewise linear, as demonstrated by Error! Reference source not found., which 
shows a cleared balancing between a price-responsive supplier and an inflexible consumer. 

 

Figure 2. A Simple Example Clearing between a Flexible Supplier and Inflexible Consumer 

The price-sensitive supplier’s offer is represented by three line segments: It will never produce electricity 
at any price below $0.01/MWh. It will produce a linearly increasing power between that price and 
$0.035/MWh. Finally, it can produce no more than 25 MW at any price higher than that. In this case, only 
two inflection points, or vertices, were needed to represent a relatively sophisticated price-responsive 
production offer from the supplier.  

Curves’ tails are always presumed to extend horizontally from the smallest priced vertex to negative 
infinity and from the greatest priced vertex to positive infinity. The price-inflexible consumer in  
Error! Reference source not found. is represented by a single horizontal line at -15 MW. This entire bid 
from the consumer may  
be represented by the single vertex (∞, -15).  

Net power is calculated by adding powers at each marginal price. In fact, if the curves are all piecewise 
linear, only power at vertex marginal prices must be added, and the power at all other marginal prices 

 
1 More precisely, the magnitude of the duality gap, which is a difference between primal and dual costs, indicates 
whether the agent has converged upon a satisfactory balance of supply and demand throughout a set of forecast time 
intervals. 
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may be found by interpolation. The corresponding clearing price occurs where the net power curve (again 
piecewise linear) is zero, meaning that supply and demand are of equal magnitude (i.e., balanced). 

Incidentally, the transactive network template allows and supports negative marginal prices. A negative 
marginal price indicates that balancing clears to the left of $0/MWh, which requires that a supplier was 
willing to reduce its production, or a consumer was willing to increase its consumption, as marginal price 
became negative. While marginal price remains negative, suppliers must pay to produce, and consumers 
must be paid to consume electricity. 

Startup and Future Balancing Issues  

System startup of transactive network template processes creates interesting challenges for the balancing 
process. The market object must supply default marginal prices to the agent’s local asset and neighbor 
objects, which any price-responsive object will require if it is to schedule its power. While this might 
seem to be an issue only during system startup, new future time interval objects are constantly being 
spawned as the system marches through time, and a default marginal price must be assigned to these new 
time intervals as well to jumpstart the balancing of power in the new time intervals. 

Base transactive network template classes may possess additional class properties and methods that are 
not discussed in this report. In most cases, these features were included in the transactive network 
template to support anticipated future functionality. We list some anticipated functionality here but warn 
the reader that these capabilities are not tested and may be incomplete: 

 Reserve margins. Given an increasing interest in grid resilience, properties have been proposed to 
help keep track of aggregate system reserve margin. Unused, super marginal production capacity  
(and potentially unengaged demand reduction, as well) might be claimed as reserve margin. The 
available aggregate reserve margin might indicate the transactive network’s resilience. Alternatively, 
a requirement might be stated for a minimum allowable reserve margin, and the market class clearing 
process might be extended to account for the achievement and cost of this requirement. 

 Asset engagement. Wholesale electricity markets perform unit commitment to preplan whether large 
generators need be engaged (ready) or not. This practice is particularly important for assets that take a 
long time to start up and shut down or that incur costs upon doing so. 

 Fixed and fixed, avoidable costs. Fixed production costs are not typically used for unit commitment 
and dispatch, but fixed costs comprise a substantial fraction of final electricity bills. And some 
wholesale electricity markets are finding ways to re-compensate producers for fixed, avoidable 
expenses (e.g., startup cost) they might incur. For these and other reasons, transactive systems may 
need to harmonize discrepancies and unfairness due to fixed and fixed, avoidable costs. 

The Scheduling Responsibility 

Given a series of forward prices, each neighbor and local asset object must be able to 1) predict its power 
generation or consumption, 2) calculate its predicted flexibility to change its schedule in response to 
changes of said forward prices, and 3) calculate its various production and dual costs, which may include 
the costs of both electricity and utility. These responsibilities are referred to here as scheduling. Each 
local asset and neighbor object should be able to independently schedule itself. Each object acts in its self-
interest on behalf of its transactive agent. 

The scheduling process is initiated when the local asset or neighbor objects are invited by the transactive 
network template market object to schedule themselves. The scheduling processes differ slightly for 
neighbor and local asset objects, as will be addressed in the next two subsections. 
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Scheduling of a Neighbor Object 

Because the neighbor object represents a neighboring agent and its remote circuit region, this agent 
(meaning the one central to the transactive network template) knows little about the remote circuit region 
and its motivations and therefore uses a more standardized, hard-coded approach in its scheduling of the 
neighbor object. The neighbor object maintains a copy of the last supply or demand curve that was 
received from the neighboring agent in the form of a transactive signal. These curves are represented by 
the inflection vertices, as has already been discussed in conjunction with Error! Reference source not 
found.. Therefore, the scheduled power is simply the power at which the neighbor object’s saved supply 
or demand curve intersects the current marginal price in its respective time interval. The neighbor’s price 
flexibility is precisely represented by the neighbor object’s saved supply or demand curve that it received 
also from the neighbor transactive agent via a received transactive signal. The production cost (or its 
equivalent gross consumer surplus), excluding a constant term, may be calculated by integrating the 
neighbor object’s saved supply or demand curve over the object’s viable power from its minimum 
production (maximum consumption) to maximum production (minimum consumption). The dual cost is 
equal to the calculated production cost (gross consumer surplus), less the energy income (outflow). 

Scheduling a Local Asset Object 

During the scheduling process for local asset objects, the market object expects the same calculated 
results as from neighbor objects, but the scheduling of local asset objects may be much more diverse and 
complex and highly specialized. This complexity can be accommodated for the local asset objects, 
however, because the status of a local asset object is always fully transparent to its agent. Any strategy of 
a local asset is fully known by its agent and should exist to serve the interests of the agent, as well.  

Consider a battery energy storage site as an example local asset represented by its corresponding local 
asset object. An asset’s owner might pose a strategy to optimize the arbitrage value of the energy to be 
stored into batteries (negative power and energy, by the transactive network template sign convention) 
and released back to the electric power grid (positive power and energy). This is certainly feasible to do 
given a series of forward electricity prices. However, the optimization strategy must consider the site’s 
limited energy storage capacity, the inverters’ charge and discharge power capacities, and the batteries’ 
current state of charge. This optimization is very challenging, but the optimization strategy might still be 
configured to suit not only this example, but also the needs of other battery energy storage owners who 
have similar basic objectives. More sophisticated battery owners might further value battery lifetime, 
backup reserve capacity, maintenance periods when battery availability is to be limited, and so on.1 The 
potential objectives are unbounded. Therefore, many local asset battery energy storage objects will 
become further specialized to address permutations of more and more operational objectives, resulting in 
increasingly richer optimization strategies. For these reasons, the transactive network template establishes 
an interface by which local asset objects must respond their power generation or consumption schedules, 
but the transactive network template must not formalize or standardize the means by which the optimal 
power schedule is calculated.2  

We continue the battery energy storage example and consider its responsibility to calculate its price 
flexibility. Assume that an optimal power schedule has been found. Further define residual flexibility as a 

 
1 Upon including valued objectives in addition to electricity cost and income, one is now optimizing a utility cost 
function. 
2 In fact, many empirical and simplified heuristic methods and decision functions have evolved for predicting 
transactive power schedules from prices. Analytical optimization should be preferred for power scheduling when 
explicit forward prices exist, as is the case today for the transactive network template. Simplified approaches should 
strive to approximate the results of a true optimization strategy. 
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trajectory on the marginal price plane if one time interval’s price were to be perturbed while leaving all 
other forward prices unchanged. The point at the scheduled power value and current locational electricity 
price is necessarily a member of the residual flexibility curve. All the other points on the trajectory may 
be found while using the same optimization strategy as was used to find the scheduled power. 

The opportunities represented by the residual flexibility curve are therefore respectful of the opportunities 
the asset has in the other time intervals because the multi-period optimization principals are retained 
unchanged. It is important for implementers to understand this ideal approach (using perturbation to 
determine residual flexibility) even if shortcuts are taken.1  

Regardless how residual flexibility is calculated, it should become represented by its piecewise linear 
supply or demand curve. Doing so takes advantage of concise storage and simple calculations, as was 
discussed in conjunction with Error! Reference source not found.. 

The final scheduling objective for the local asset object, to calculate production cost (gross consumer 
surplus) and dual cost, proceed as for neighbor objects as discussed earlier.  

Much as the transactive network template market object provided default prices to facilitate bootstrap 
startup of the transactive network template balancing process, both local asset and neighbor objects must 
supply a default scheduled power and default active vertices to ensure startup and resiliency of the 
scheduling processes. If an agent’s transactive network template implementation is to successfully start 
up, then there must exist a feasible initial solution to the balancing computation—there must exist a price 
at which summed supply and load balance one another. 

These default values are particularly needed by a neighbor object, which lacks knowledge of the 
neighboring agent’s power needs (or offers) and price flexibility until that neighbor agent choses to reveal 
such information by finally sending its transactive signal. Local asset objects are less dependent on these 
defaults during bootstrap startup, but the defaults may still be used should scheduling calculations fail. 

The Coordination Responsibility 

Pairs of transactive neighbor agents transact; that is, they exchange transactive signals. In doing so, each 
agent plays its role in the coordination of energy allocation throughout the entire transactive network of 
decentralized, independent transactive agents. Neighboring transactive agents should be independent. 
Each has its own unique local assets and its own unique position within the transactive network. A 
neighboring transactive agent cannot even be expected to have been derived from the same transactive 
network template reference implementation or to have been coded using the same computer language. A 
transactive agent can decide when to send its own computed transactive signal to one of its neighboring 
agents, but it cannot insist and control precisely when that neighboring transactive agent shall reply with 
its (i.e., the neighboring agent’s) transactive signal. The transactive network template coordination and 
signaling processes must therefore be flexible to accommodate other agents’ independence. 

A transactive record pairs a forecast time interval with a record number, price, and electricity quantity.2 
Neighboring transactive agents must agree on the format of a transactive record so that exchanged records 
may be accurately interpreted by both neighbors. Better yet, an entire transactive network should agree 
upon and enforce a standard transactive record format (along with compliant transactive network template 

 
1 Again, if optimization principles were not applied while calculating a power schedule, then there is no strong 
support for calculating price flexibility. The local asset’s intertemporal constraints may be lost and violated. 
2 The transactive network template transactive record class currently includes other properties such as reactive 
power and voltage that will be needed for future transactive network template capabilities and versions. 
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reference implementations) as a condition of joining a transactive energy network. The transactive 
network template specifies content information and structure of transactive records, but it is agnostic 
concerning low-level communication protocols that must be negotiated between transactive neighbors. 

At least one transactive record must be sent for each active time interval, thus revealing the agent’s 
aggregate electric power that, according to its computations, is scheduled to be exchanged. This record is 
assigned as “Record 0”. When only this one single transactive record is sent, the sender is saying it can 
offer no flexibility to change its scheduled power as a function of the time interval’s electricity price. 

If additional transactive records are sent concerning an active time interval, these records are numbered 
successively using integers {1, 2, …}. These additional transactive records represent the agent’s residual 
flexibility—inflection points (“active vertices”) of the agent’s supply or demand curve in the active time 
interval. At least two inflection points are necessary to represent residual flexibility.1 

Neighboring transactive agents must agree which time intervals are eligible for transactions and should 
therefore be represented among the transactive records that are sent and received.2 The set of transactive 
records for all the active time intervals is the transactive record signal.  

If the transactive signals between neighbors can be represented by relatively few transactive records, each 
representing an inflection point of a piecewise linear supply or demand curve, then the transactive signals 
remain small and should not require much communication bandwidth. The transactive network template 
is agnostic concerning the choice of communication carrier. An agent may be, but is not necessarily, 
internet connected. Future transactive network template reference implementations should not specify or 
require any one single communication protocol. 

The coordination process is driven by the agent’s decision to send its transactive signal to a neighboring 
transactive agent. It should do so upon recognizing either of two events: 1) local conditions have 
significantly changed since a transactive signal was last sent or 2) the agent and its neighboring agent 
disagree concerning the price or average electric power that is to be exchanged.  

To determine these events, the agent saves and compares three versions of the transactive signal: 1) the 
last transactive record signal that was sent, in fact, by this transactive agent to the neighboring transactive 
agent, 2) the current transactive signal that is up-to-date and ready to be sent to the neighboring 
transactive agent, but has not yet been sent, and 3) a copy of the most recent transactive record signal 
received by this transactive agent from the neighboring transactive agent. The transactive agent should 
send its transactive signal if the prepared and sent transactive record signals differ by more than a 
configurable threshold magnitude. The agent should also resend its transactive signal if the prepared and 
received transactive signals differ by more than another configurable threshold magnitude, providing the 
neighbor’s transactive signal has been received since one was last sent. The transactive agent believes 
coordination between itself and its neighboring agents has converged while neither event compels it to 
resend its transactive record signal.3 

 
1 Specifically, this means there may be sets of transactive records numbered {{0}; {0, 1, 2}; {0, 1, 2, 3}; …}, but 
never {0, 1}, for a given active time interval. 
2 This determination concerning active time intervals and other attributes and timing of the transactions are specified 
by the transactive network template market object. Neighboring agents must therefore agree on transaction rules as 
specified by their respective transactive network template market objects. 
3 This fully event-driven design is very flexible and forgiving. The system can ride through temporary 
communication outages, but it cannot distinguish satisfied neighbors from those experiencing failed 
communications. Therefore, a recommended practice is for an agent to send a transactive signal at least once during 
each market time interval. Future transactive network template versions should also discount the reliability of stale 
transactive signals that were not updated when expected. 
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The process and timing of inter-agent signaling, as directed by the market object, defines whether a 
transactive negotiation is a bilateral auction, consensus negotiation, or other negotiation mechanism. The 
transactive network templates base classes must provide methods and properties that are flexible and 
sophisticated enough to facilitate many different mechanisms. This flexibility was enhanced in Version 2, 
to be discussed later in this report. Had Version 1 focused on only bilateral auctions, which have intrinsic 
assumptions concerning a direction of power flow and one-time price discovery, it may have been 
impossible to later extend the facilitation to deep multi-agent networks and iterative negotiation 
mechanisms. 

Also central to the facilitation of alternative negotiation mechanisms is the exchange of net supply and 
demand curves between neighboring agents. The net supply or demand curve is the sum net flexibility of 
all an agent’s neighbor and local asset objects, excluding the transactive neighbor agent to which the 
transactive record signal pertains. This practice comes quite naturally to those conducting bilateral 
auctions in that electric load is aggregated and bid into a supply market. But this aggregation must also 
take place in the creation of supply bids if alternative diverse, iterative, decentralized negotiations are to 
be facilitated. The principle may be exemplified using Error! Reference source not found., which 
shows a supply, demand, and summed net curve. If the supply curve is that revealed by a neighboring 
agent that supplies this agent, then its transactive signal would exclude the supply curve, leaving only the 
constant demand curve to be included in the transactive record signal. The points are that 1) coordination 
may occur between two transactive neighbors independently from any aggregation and 2) the timing of 
signal exchanges is not necessarily limited to prescribed market periods, power flow direction, or 
heartbeat dependencies. 

If an agent and a neighboring agent are to initiate successful transactions, each must configure generous 
default representations of the other’s power capacity range. Each neighbor has an assigned minimum and 
maximum power capacity that represents such capacity. The electric power received from or sent to a 
neighbor may be constrained either by the abilities of the two neighbors to generate and consume 
electricity or by the capacity of the electricity transport elements (e.g., conductor, transmission line, 
distribution line, transformer, fuse, breaker, etc.) between the two neighbors. The capacity range may be 
narrowed to powers either above or below zero if a neighbor agent is anticipated to always be an 
electricity supplier or consumer.  

Each agent may compute a still narrower power range to represent its residual flexibility range, wherein it 
could be enticed to operate given correspondingly enticing prices. The agent’s residual flexibility may 
extend to either or both the capacity constraints. On the other hand, if the transactive agent truly has no 
price flexibility, its residual flexibility becomes a single scheduled power within the allowed power 
capacity range.  

The relationships of these various hard and soft power constraints are shown in Eq. (1). Bars below and 
above average powers 𝑝 represent minima and maxima, respectively, of the indicated ranges.1 Transactive 
records should represent the scheduled power and soft price flexibility range, if any. An agent should 
offer as much price flexibility as it can (and will) via its transactive records. A transactive record between 
two transactive neighbor agents should never be computed to lie outside the hard capacity constraint 
range that they share. The logic of this paragraph defines and enforces the impacts of price-
responsiveness and capacity constraints during the transactive network template’s coordination of power 
exchange between neighboring transactive agents. 

 
1 Observe that the transactive network template sign convention applies here. The minimum pcapacity for a 
neighbor object that consumes electricity from this agent is a negative number that represents its 
maximum average electric power consumption during the time interval, a negative number.  
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𝑝capacity ≤ 𝑝flexibility ≤ 𝑝scheduled ≤ 𝑝flexibilityᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
price flexibility range

≤ 𝑝capacity
ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫ

power capacity range

 (1) 

Discussion has thus far avoided the interpretation of the agent’s electricity price. For implementations that 
support only a shallow network (e.g., utilities bidding their aggregate local asset flexibilities into a 
wholesale electricity market), the interpretation might not matter much. Local asset objects will schedule 
themselves given any forward price schedule, regardless of its interpretation. However, for deep, greatly 
decentralized networks, the interpretation of the price must be consistent with the market process and 
determines whether assets are meaningfully coordinated among the many levels of the transactive 
network. Marginal price is the preferred interpretation of a transactive agent’s price. It is the locational 
marginal price that meaningfully compares resource opportunities and determines which distributed 
resources should be dispatched.1  

Whereas local assets were said to reside on a lossless copper plate representation of the agent’s circuit 
region, neighbor objects are remote, do not lie on the lossless copper plate, and should account for any 
losses that are incurred as electricity is imported into the agent’s circuit region. A parameter of the 
neighbor class allows an implementer to configure the full-load percentage loss when importing pcapacity 
from the corresponding neighbor object. The lost electricity may then be estimated for any imported 
average electric power magnitude.2 

Losses should be applied to only imported (i.e., purchased) electricity. The importer must account for 
electricity losses and the cost impacts of energy losses.3 The average power to be imported from the 
neighboring transactive agent must be decremented by the anticipated electricity power loss. The effective 
local price of the imported electric power must be increased because more power must be purchased than 
will, in fact, be received. 

Transactions between neighboring transactive agents may also address demand charges if such practices 
exist between them. Neighbor class properties have been provided to configure and apply such demand 
charges. Specific practices may differ, but the typical practice is to add substantial monthly charges based 
on the highest demand that one agent is supplied by another during the prior calendar month. The demand 
charges attributable to relatively few high-demand periods in the month often constitute a substantial 
fraction of the electricity customer’s monthly bill. The base transactive network template neighbor object 
monitors the actual demand power and compares it with highest demand power thus far in the calendar 

 
1 Marginal price has a formal definition in wholesale electricity markets, but the definition should be relaxed 
somewhat for use with decentralized transactive networks. Here, we simply refer to the marginal price function that 
results upon differentiation of utility cost functions. Marginal prices differ by location and time. The important point 
is that transactive network template prices should be derived everywhere using principles of cost minimization and 
should not include arbitrary factors or offsets that are not founded in market principles. 
2 The first version of the transactive network template does not account for reactive power flow, so losses may only 
be estimated while presuming constant power factor. 
3 Having the agent that imports electricity incur losses and the costs of lost energy may be politically offensive, but 
it is computationally much more straightforward and advantageous. An agent’s electricity price exists for electricity 
at that agent’s location. Losses are a cost of moving the electricity. If the exporter were to account for losses, it 
would need to keep track of not only its locational price, but also all the shadow prices that would accompany the 
values of electricity that might be exported to many neighboring agents. If the electricity importer accounts for 
energy losses, it must simply compare and choose from among the values of locally generated power resources and 
the corrected (increased) price of importing a neighbor’s electricity. A buyer naturally should make such resource 
decisions. 
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month. The demand-charge price is added to the marginal price at and above the power demand that 
would exceed the month’s prior peak demand.1 

What It Means to Configure a Transactive Network Template Code 
Implementation 

When an implementer configures a transactive network template implementation, he establishes an 
agent’s perspective and initializes the behaviors and properties of the market, neighbor and local asset 
objects with which the agent must interact. This process might eventually become somewhat automated, 
but the first implementations have had few, relatively time-invariant neighbor and asset objects, so 
automating their registry has not been needed. Instead, these objects can be instantiated and configured 
once using a script. 

If an existing class adequately represents a needed object and its capabilities, the implementer may simply 
instantiate that class with the new object’s name and configure its properties. If new properties or 
methods are needed to represent a needed object and its capabilities, an existing class must be specialized. 

What It Means to Specialize a Class 

A class may be specialized by creating a new class that inherits properties and methods from another. All 
the inherited properties and methods may be used by an object of the new, specialized class. However, the 
parent class’s inherited properties and methods may be redefined to suit the needs and capabilities of the 
new class. Specialization is to be used by the transactive network template to extend its usage to new and 
unique objects. For example, the transactive network template base local asset class may be specialized to 
represent battery energy storage. The new battery energy storage class may then be further specialized to 
include the utility value of battery lifetime during the scheduling process, and so on. 

Specialization will be most used and useful for local asset objects. Ideally, libraries of specialized asset 
classes will become developed over time and made available to implementers. 

Specialization should never alter the interfaces between transactive network template base classes because 
doing so may affect the stability of other existing implementations that use the prior transactive network 
template interfaces. 

 

 
1 This mix of energy and demand prices is not mathematically vigorous. The intention is to forecast and approximate 
the real cost impacts of the demand charges in real time so that the impacts might be avoided. Some approximation 
is unavoidable.  
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Introduction to Version 2 

In late 2019, the transactive network template was revised to facilitate multiple markets and different 
types of market negotiation practices. Whereas the initial implementation had facilitated only a type of 
iterative consensus negotiation between neighboring transactive agents, template Version 2 facilitates 
nearly any combination of consensus and auction negotiations, the temporal interactions of which may be 
designed during configuration of the objects in the various market classes. The coordination of multiple 
markets may be exemplified, for example, by a shaping market that is refined or corrected by day-ahead 
markets, the hours of which are then corrected by hourly real-time markets, and so on. 

The following important differences are observed between iterative, consensus market mechanisms and 
auction market mechanisms and must be addressed if a transactive network is to broadly facilitate both 
such market interactions: 

 Price availability during the scheduling of assets. A consensus mechanism simultaneously discovers 
both price and quantity. When an elastic asset is called to schedule its power under a consensus 
market, it is explicitly provided forward prices that are also being actively discovered. On the other 
hand, market prices are unknown, but may be predicted, at the time an elastic asset is called upon to 
schedule its power under an auction market. This difference has implications for the sources of price 
information that is available druing the scheduling of assets under alternative market types. 

 Market timing models. Alternative market negotiation practices differ in how each defines market 
clearing and the types and timing of negotiation activitites that must take place in respect to the 
market clearing event. Especially for distributed, nested auctions, timing states must define the times 
at which assets are scheduled, bids are aggregated, and prices desceminated.  

 Agent timing coordination. The distinctions betweeen market negotiation practices are largely 
determined by the coordination of transactive signals between neighboring transactive agents, not 
changes to the markets’ balancing calculations and solution methods. This distinction would be 
missed if the template had facilitated negotiations without assigning each transactive agent distinct 
aggregation and price-discovery responsibilities. 

Version-1 implementations instantiated market classes just once during initial system configuration and 
instantiated new market time intervals as needed. That approach was found to limit the facilitation of 
multiple, simultateous markets. In Version 2, new market objects must be instantiated for each member of 
a market series and its unique market clearing time. A series of market objects is derived from the same 
parent market class, and all its market time intervals have the same duration. More than one series of 
market objects may be derived from the same parent market class, but market series must be derived from 
different parent market classes if they require different negotiation activities (e.g., consensus versus 
auction) or have different purposes (e.g., day-ahead versus real-time) in the system. Therefore, each 
market object is assigned its own set of market time intervals as the market object itself is instantiated. 
Some new logic was required in Version 2 to make sure that all the new market objects are initiated as 
they become relevant and needed. 

Given these fundamental differences between market treatments in Versions 1 and 2, the following 
improvements were made to the transactive network template for Version 2 and will be described in 
further detail in the remainder of this report: 

 Market state machine. The base market class has been given a state machine that defines market 
states, the basic transitions between the states, and extensible methods (which may be redefined 
by children market classes) for the activities during each transition and while in each state. 
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Whereas timing was weakly designed in Version 1, Version 2 works in perpetually by having the 
configuration script loop through calls to each active markets’ state machines. 

 Market instantiation. The market state machine is not really relevant to a market object before a 
market object has become instantiated. Prior to then, another market object must be relied upon to 
instantiate the new market object when it is relevant and needed, and the new market object then 
begins to transition through its own market state machine.  

 Market price prediction model. Should a long set of forward prices not be discovered in parallel 
with the scheduling of an agent’s assets, the market must offer a model by which prices of active 
market time intervals may be forecasted. 

 Asset price prediction model. Similarly, if there exist few or no meaningful foreward prices 
within the forward horizon over which an asset must assess its opportunity costs, it must 
somehow forecast prices over this forward time horizon and thereby assess when electricity is a 
bargain or expensive. 

 Balancing iterations moved to market state machine. In Version 1, the markets’ balancing method 
was inherently iterative. The fact that the private method (balancing occurs at each agent, not 
between agents) is iterative is not itself a problem, but intrinsic iterations are unwise because they 
potentially tie up the agent’s calculations from performing other timely responsibilities. 

Series of Market Objects and Relationships between Series of Market 
Objects 

In Version 2, a market object defines exactly one market clearing and all the timing and activities relevant 
to that market clearing. This differs from Version 1, in which a market object could have many, 
uncountable market clearing events. 

A series of market objects must (1) derive from the same parent market class, (2) share the same market 
interval duration, and (3) collectively define market delivery across the time continuum.  

A simple series might, for example, consist of hour-long delivery periods, each having a market clearing 
event defined some duration prior to the beginning of its hour-long delivery period. Each market object is 
instantiated from the same market class, which defines its properties, including the specification of its 
single, hour-long delivery period. If a market object is instantiated for each successive hour, all time may 
be covered by the resulting set of delivery hours (see Figure 3). 
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Figure 3.  Coordination between Successive Market Series Objects. The market delivery periods in this 

example do not overlap, but the markets’ delivery periods entirely cover the time continuum. 

Consider another example series of market objects defining a rolling window of 24 hour-long market time 
intervals. Well before midnight, a set of 24 hour-long time intervals is defined from 00:00 until just 
before 24:00 (i.e., midnight tomorrow), and these time intervals are cleared altogether by the market 
(whatever that might mean for this particular series) just before midnight. A new market object is 
instantiated well before and cleared just before 1:00 for the 24 hours beginning at 1:00, and so on. Each 
market object defines a single clearing event even though the market time intervals are being allowed to 
overlap from one market object to the next. 

The relationships between different series of market objects may entail refinement and correction. 
Consider a series of market objects defining a series 1-hour delivery periods and their clearing events. 
This first series may be refined by a second series of market objects, each addressing a single 15-minute 
market time interval. Specifically, each 15-minute time interval in the second market series is being used 
to refine the hour from the first market series that it subdivides. These two series might be, but are not 
necessarily, derived from the same parent market class. Each series individually provides full coverage of 
time continuum, but they are different series of market objects because they have different time interval 
durations. The second series having 15-minute intervals may be used to refine the coarser 1-hour intervals 
of the first series. Figure 4 demonstrates a market being refined by a market that subdivides its 
predecessor’s market time intervals.  

In the prior example, the succeeding market might have renegotiated all the electricity as it refined the 
coarser time intervals. The term correction refers a special type of refinement in which the quantities and 
prices from the prior market (the one that is to be corrected) are treated as commitments, leaving the new 
market to negotiate not all the electricity again, but only the changes from the scheduled powers that were 
cleared in the prior market that is being corrected. A commitment flag has been provided for each market 
object to indicate whether its cleared outcomes should be refined (commitment = false) or corrected 
(commitment = true). 
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Figure 4.  Example of a Market Series Timing Diagram that Subdivides and Corrects another Market 

Object 

 

 

Instantiation of New Market Objects 

Template Version 2 has provided versatility of market behaviors by better managing market object 
lifetimes. Many market objects must now become instantiated, live, and expire according to a market state 
machine. Many market objects must be reliably instantiated as they are needed. This section discusses 
how this challenge is accomplished. Once instantiated, each market object can transition through its 
defined state machine and important activities that have been assigned to its transitions and states can be 
performed. 

At least one of an agent’s market classes must have a method to determine when a new market object 
should be instantiated. Each market object keeps track of the time of its market clearing and the next 
market clearing time, as well. Each market object should assess whether the time has come for the next 
market object to become instantiated. A market object is relevant and needed only during the its lifetime 

Requirements: 
 Each market object defines exactly one market clearing event. 
 All market objects in a series of market objects are derived from the same parent market 

class. 
 All market objects in a series of market objects use the same market time interval duration. 
 Collectively, the delivery periods of a series of market objects entirely cover continuous time. 
 Negotiations should begin for a market object after the prior market object in its own series 

has cleared. 
 Negotiations should proceed to refine or correct any market time interval after the market 

object owning the time interval to be refined or corrected has cleared. 
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defined by the state machine. The time for a new market object may be determined from the current time 
and the durations of all the states that must occur in a new market object before the next market clearing. 
The new market object is created and added to the agent’s list of active market objects, and this new 
market object possesses all the information it needs to determine when still another one will be needed 
and relevant. Each market maintains a pointer to the market that precedes it (and likely created it) within 
its series of market objects. 

Multiple series of refinement markets could, in principle, propagate each series of market objects in the 
fashion just described in the prior paragraph. However, complex market relationships including 
refinements and corrections should all be driven from one such process rather than from multiple 
independent processes. One dominant series of market objects—likely the one having longest time 
intervals and earliest relative clearing times—should instantiate both its own market series members and 
all the succeeding markets that refine or correct the market objects being created in its own series. This 
consolidation of the responsibility to instantiate needed market objects simplifies the creation of pointers 
from new markets to the ones that are being refined or corrected. 

 

Base Market State Machine 

Once instantiated, a market object transitions through its market state machine, thus inducing all the 
market’s needed actions and events. The following market states may represent either consensus or 
auction market processes. Regardless of the states’ names, the actions undertaken during the various 
states may be unique for each different type of market negotiation. 

 Inactive. A market object should be instantiated into this state and remains in this state until 
activated. 

 Active. A market object transitions to this state at a defined time prior to its market clearing and 
remains in this state for the duration of a defined activation lead time. 

 Negotiation. A market object transitions to this state at a defined time prior to its market clearing 
and remains in this state for the duration of a defined negotiation lead time. As the name implies, 
many markets are actively negotiated among agents during this state. 

 Market Lead. A market object transitions to this state a defined time prior to its market clearing 
and remains in this state until the market object has cleared. The purpose of this state is to provide 
a duration for calculations and actions that must be completed before a market object clears. 

Requirements: 
 At least one parent market class and one of its corresponding series of market objects must 

provide a method by which new series market objects, and potentially those of refining or 
correcting objects, are instantiated. 

 Series of market objects keep track of whether their cleared outcomes should be refined 
(commitment = false) or corrected (commitment = true). 

 A market object maintains a pointer (“priorMarket”) to the market object it succeeds in a 
series of market objects. 

 A market object maintains a pointer (“refinedMarket”) to the market object it refines or 
corrects. 
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 Delivery Lead. A market object transitions to this state when the market object clears and remains 
in this state until the first market interval must be delivered. The purpose of this state is to provide 
time for calculations and actions that must be completed between market clearing and delivery. 

 Delivery. A market object transitions to this state when its time intervals begin to be delivered (a 
defined time after market clearing) and remains in this state until the last time interval has been 
delivered. 

 Reconcile. A market object transitions to this state after the last market time interval has been 
delivered and remains in this state until the outcomes have been reconciled. 

 Expired. A market object transitions to this state after it has been reconciled. Upon expiring, the 
market object is removed from the agent’s list of active market objects. 

A state machine defines conditions under which a market object may transition from one state to the next. 
The basic state machine is defined by the base market class and should rarely need to be overridden. Each 
transition and state, however, calls methods that may be overridden to define unique, critical market 
activities. The state machine’s triggers, basic actions, and replaceable methods are summarized in Table 
2. 

Table 2.  Methods Introduced by the Base Market Class for the Market State Machine 

State Methods Called Triggers or Actions 

Inactive  Initial state upon instantiation. 
Market is added to agent’s list of active 

markets 

 transition_to_active Active period starts. 

Active while_in_active  

 transition_from_active_to_negotiation Negotiation period starts. 

Negotiation while_in_negotiation Negotiate. 

 transition_from_negotiation_to_market_lead Negotiation period ends. 

Market Lead while_in_market_lead Collect market bids. 
Market calculations. 

 transition_from_market_lead_to_delivery_lead The market clears. 

Delivery 
Lead 

while_in_delivery_lead Disseminate final market results. 
Prepare for asset controls. 

 transition_from_delivery_lead_to_delivery Delivery of market periods begins. 

Delivery while_in_delivery Meter delivered electricity. 
Control scheduled electric power. 

 transition_from_delivery_to_reconcile Last delivery period ends. 

Reconcile while_in_reconcile Reconcile transactions. 

 transition_from_reconcile_to_expire Market is reconciled.  
Market is removed from agent’s list of active 

markets. 

Expire   
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Figure 5 provides another useful view of the state machine and its mappings to its replaceable methods. 
Additionally, several of the important objects typically created in the various methods are indicated, 
according to whether each is created by the iterative consensus (i.e., “iterative”) or bilateral auction (i.e., 
“auction”) negotiation mechanisms. 

 
Figure 5.  The Lifetime of a Market Object based on its State Machine. Market activities may be assigned 

to these transitions and states to drive the needed market activities. 

 

Consensus Versus Auction Timing using the Market State Machine 

The market state machine and its methods may be used to define consensus, auction, and potentially other 
negotiation practices. Auction and consensus classes have been coded as children of the base market 
class. The base class’s state machine works for both of the new market classes, but the new market classes 
replace certain of the base classes transitional and state methods (see Table 2) to conduct actions at the 
right times and in the right order. 

The timing of the most important consensus and auction activities are contrasted in Figure 6. The top 
panel of this figure is a representative timing diagram of market states and transitions. The actual 
durations of each state are unimportant and are configurable to the needs of each series of market objects.  
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The second panel of Figure 6 shows the major activities of an iterative consensus negotiation within the 
provided states. The negotiation period is most important as the window within which all prices and 
quantities must be iteratively negotiated. Locally, each agent must converge on the local electricity price 
and on the quantities to be generated or consumed by each local asset during the negotiation state. 
Furthermore, the agent must converge with all its neighboring agents concerning the prices and quantities 
of electricity to be exchanged during the negotiation state. The market lead and delivery lead states may 
be short, as they simply provide a short time for agents to prepare for the delivery of the negotiated 
electricity. Market clearing is not a distinct action in an iterative consensus negotiation, but, even if 
fictional, it is an important anchor for timing within the market state machine. 

The third and fourth panels of Figure 6 show the activities of an auction market within the market states. 
Unlike the consensus approach, auctions inherently possess concepts of upstream and downstream within 
a distribution system, and neighbor agents are assigned one of these directions based on the expected 
power flow direction. An upstream neighbor is an electricity supplier and provides price discovery for the 
local agent; a downstream neighbor is an electricity consumer and aggregates demand bids to be cleared 
by the local agent during its balancing process. The third panel shows an auction agent’s actions in 
respect to its upstream neighbors, and the fourth panel in respect to its downstream neighbors. Every 
auction agent is welcome to prepare and aggregate its own asset bids (and offers) during the negotiation 
state (not explicitly shown). The market lead state is used to send aggregated bids upstream and to receive 
aggregated bids from neighboring downstream agents (third panel). The delivery lead state is used to send 
cleared market offers to downstream neighbor agents and to receive such offers from upstream neighbor 
agents (fourth panel). Because the auction process is not iterative, additional logic is needed to make sure 
that bids and offers are coordinated throughout a string of upstream and downstream neighbor agents (i.e., 
throughout the transactive network). An agent should await bids from all its downstream agent neighbors 
before it finalizes its aggregated bid and sends it to its upstream neighbor agent. Then, during the delivery 
lead state, the agent should await results from its upstream neighbor’s the market clearing before clearing 
its own market and sending the resulting offers to its downstream neighbor agents. The respective market 
states must be long enough for this information to be conveyed throughout the network. Future work is 
needed for template Version 2 to accommodate error cases when an agent fails to conduct its actions 
within the provided states. 
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Figure 6.  Market States and Transitions applied to Iterative Consensus and Auction Negotiations 

 
Figure 7 and Figure 8 provide different views of the differences between auction and iterative consensus 
negotiation mechanisms, but these figures emphasize the activities that market objects and neighbor 
models (which may be further designated by “upstream” or “downstream”) are responsible in the various 
market states. Observe especially that an auction (i.e., Figure 7) possesses intrinsic ordering of neighbor 
activities that is not needed in iterative consensus negotiations. 
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Figure 7.  Auction Market Activities Mapped into the Market State Machine 
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Figure 8.  Market and Neighbor Model Activities during Iterative Market Consensus Negotiations 

 

Market Price Prediction 

The transactive network template, as originally implemented, used consensus negotiation over a rolling 
window of 24 hour-long market time intervals. This approach simultaneously discovers both prices and 
quantities, so the forward prices are meaningful. Version 2 extends applicability to auction negotiations, 
which perform price discovery only after bids have been submitted and which often feature single lone 
forward time intervals. Therefore, Version 2 offers methods to locally estimate prices for a market’s 
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forward time intervals should explicit, discovered prices be unavailable at the time bids must be 
calculated. 

Given the possibilities of various levels of system sophistication, the markets preferences for forecasting 
forward prices should try these methods in this order until forecasts exist for each time interval that is to 
be cleared. The market object predicts prices for only its active forward time intervals, no more than that. 

1. Actual market price. If a forward market time interval has already been assigned a price, this 
price should be accepted and used for the market’s forward time intervals. 

2. Price forecasted or discovered for this same time by a prior market object in the same market 
series. If a prior member of the same series of market objects possesses a price for the forward 
market time interval, this price should be adopted. This will occur only if sequential markets in a 
series overlap one another. 

3. Price discovered for the same time in another market object that is being corrected. If a market 
object being refined or corrected possesses a price, this price should be adopted. Revised or 
corrected markets must always include the market time interval that is revising or correcting the 
first. 

4. Price forecasted by the price model of the market series. A price model uses historical prices to 
predict future prices. A simple model was provided to the base market class to update and 
predicts average and standard deviation prices for the 24 hours in a day. If provided newly 
cleared prices upon transitions to delivery states (when no further changes to electricity prices 
should be possible), a market object can learn and predict its hourly trends. See Section 0 for 
further details. 

5. A static default price of the market series. As a last resort, forward prices may be assigned the 
market series’ static default, which is assigned during initial system configuration. This is, of 
course, less than ideal because it entirely fails to represent price dynamics. 

Hourly Price Prediction Model 

A list of average hourly prices and their standard deviations is provided from the base market class in 
Version 2, and a rudimentary method is provided to update and retrieve price data from this model. This 
section describes this price forecasting model which is now available for use by any market object that 
inherits from the base market class. 

Market property “priceModel” is a list of 48 values. Given an hour h in the range 0 to 23, the average 
price for the hour is indexed in this list by 2*h, and its standard deviation is indexed by 2*h+1.  

The base market class provides the low-pass filtering method 

model_prices(self, datetime, price, k=14); 

where parameter datetime is the time containing the prediction hour; parameter price, if provided, is a 
newly discovered price datum that updates the market object’s hourly price data; and k, if provided, 
specifies the time constant of the updating function based on numbers of new price data. The default 



 

28 

value k=14, for example, specifies a response time of two weeks (i.e., 14 new price data) if a new price 
datum is supplied once each hour.1 

When the method is used for prediction, only parameter datetime is needed. The method simply looks up 
and replies the current average electricity price ($/kWh) and standard deviation electricity price ($/kWh) 
that corresponds to the hour or parameter datetime. 

If the method is called with both parameters price and datetime, the method uses parameter price to 
update the data in the market object’s list and replies with the updated price and updated standard 
deviation for the hour. The update of average price 𝜆መ from provided price parameter 𝜆௡௘௪ is calculated as 
in (2), and the update of standard deviation price 𝜎 is updated as in (3). 

    𝜆መ௡௘௪ =
(𝑘 −  1) ∗  𝜆መ௢௟ௗ +  𝜆௡௘௪

𝑘
 

(2) 

𝜎௡௘௪ =  ቆ
(𝑘 −  1)  ∗  𝜎௢௟ௗ

ଶ  +  (𝜆መ௡௘௪  −  𝜆௡௘௪)ଶ

𝑘
ቇ

଴.ହ

 
(3) 

This price forecast model is admittedly rudimentary. Implementers are invited to replace the method if 
greater sophistication is necessary.  

Asset Price Prediction 

Market objects call on assets to schedule their power and elasticity. Much as for the market, elastic assets 
may need to forecast prices farther into the future than prices are being supplied by the market object. 
Without knowledge of future prices, the asset cannot compare its current and future opportunity costs. 
The new asset property “scheduleHorizon” should state the future time horizon over which an asset can 
properly schedule its power. Typically, an elastic asset should have its scheduling horizon set to a 
duration that is about twice the time interval over which its scheduled energy can be shifted. A 24-hour 
horizon is sensible for many assets—water heaters, building air conditioning, and residential batteries, for 
example—that might shift their demand by approximately 12 hours. An asset’s price horizon may be 
unique to the asset and the way it is scheduled. 

Think of the scheduling horizon as the forward time over which the current price opportunities must be 
calibrated. The horizon may be affected both by an asset’s capabilities and by expectations about market 
price patterns and volatility. Where prices have a strong diurnal trend, horizons for should be no shorter 
than 24 hours.  

An asset could use many means to glean or predict expected future prices for the extent of its scheduling 
horizon. The following approaches are tried in this order until suitable price forecasts have been obtained 
for all included market time intervals: 

1. Actual market price. If prices have been provided by a market object for its active time intervals, 
those prices should be used. 

 
1 Incidentally, early transactive auction implementations used only the prices from the preceding 24 hours to 
calibrate opportunity costs. That practice can be implemented when k = 1, in which case the stored prices are exactly 
the prior 24 updated prices. The calculated standard deviation is always zero when k = 1. 
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2. Prior market price. If a price is available from a prior market object in the same series of market 
objects as the one calling on the asset to schedule itself, that price should. This will occur only if 
successive market objects have delivery periods that overlap. 

3. Corrected market price. Similarly, if a price is available from a market object that is being 
corrected, that price should be used. 

4. Modeled price. As of Version 2, markets will offer prediction methods that may be mined for 
suitable price predictions. (See Section 0.) 

5. Static default price. As a last resort, the market object’s static default price may be adopted, but 
this approach is not especially useful for predicting and anticipating price dynamics. 

 
Figure 9.  An Asset Model’s Price Prediction Strategy prior to Scheduling 

Correction Market Translations of Prior Bids and Offers 

This section discusses a general strategy to use when a market object clearing is treated as a commitment, 
thus leading later markets that refine rather than replace the result of the prior corrected market clearing. 
If committed, generation and consumption in the corrected market must still be accounted at that market’s 
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prices, but incremental (or decremental) energies that become scheduled thereafter are subject to newly 
discovered correction market prices. The general ramification is that correction markets’ bids and offers 
become translated by the power that was cleared in the market that is being corrected. Because only the 
differences from the prior market are being negotiated, there is likely greater price volatility in correction 
markets than in the market that is being corrected. 

The following steps are performed when a new market is intended to correct a commitment in a prior 
market: 

1. Preliminary assumptions of data availability. The market object being corrected is assumed to 
have cleared price and quantity for the time interval or intervals of interest. Asset and neighbor 
objects possess scheduled powers, which reveal their cleared quantities in the market object and 
time interval that is being corrected.  

2. Neighbors are scheduled.  Because neighbor models intentionally ignore intertemporal effects 
during their scheduling, their bids or offers in the new market may be had by simply translating 
their current demand or supply curves by the average electric power that was cleared and 
committed in the market that is to be corrected (see Figure 10). 

3. Assets are scheduled. The supply or demand curves are updated over the asset’s scheduling 
horizon using the strategies of Section 0 for predicting prices. The resulting demand or supply 
curves are then translated by the power that was cleared for the asset in the prior market that is 
being corrected. 

4. The transactive agent balances the correction market. It uses both the immutable committed 
power quantities cleared in the market being corrected for each asset and neighbor and the new 
bids and offers from these entities that use only the change in power from the prior clearing. A 
correction market price is determined by the balancing process. The committed power quantities 
cleared in the market being corrected are again subtracted from the residual supply and demand 
curves that are then to be sent back to neighbors and assets. 

5. The assets and neighbors note the average power quantities cleared in the correction market. The 
assets use both the scheduled prior commitments and corrections to control the assets during the 
delivery period. 

Figure 10 offers examples how supply and demand curves from local asset and neighbors are translated 
using the power that had been cleared in the prior market that is being corrected. The top curves represent 
the supply and demand curves made into the prior market, and the bottom ones represent revised, 
translated supply and demand curves to be bid into the corresponding correction market. Cases (a) to (c) 
exhibit no change in supply or demand curve since the prior market. Their total scheduled powers would 
remain unchanged if the correction market were to clear at the same price as for the one being corrected. 
Case (d) exhibits a change in the general shape and position of its supply curve since the prior market. 
Such changes may occur if the asset’s required utility changes, external stimuli change, or available 
flexibility changes or is unavailable now that the delivery period is nearer. Even if the correction market 
clears at the same price as the prior market, a correction must be made (i.e., a price paid) for the reduced 
power that this generation asset is now able to offer. 

Figure 10a shows the correction of a generator offer. The prior market cleared at the dashed vertical line, 
which corresponds to the power commitment of the horizonal dashed line. In the correction market, the 
generator effectively has two offers: First, its immutable power commitment from the prior market is 
represented by an infinite horizontal line at the committed power level. Its updated supply curve (which 
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happens to be identical to its prior supply curve in this case) is translated downward by the committed 
power level. Its scheduled power may be either increased or decreased, depending on the price that is 
discovered by the correction market. 

Figure 10b follows similar logic as for Figure 10a, but this example is for a demand asset.  

Figure 10c follows the same logic still again, but this time for a flexible battery asset. The price cleared in 
the prior market committed it to discharge (i.e., act like a generator) at its maximum offered discharge 
rate. After this new curve is translated downward by the committed power quantity, its residual flexibility 
cannot induce discharging energy regardless how high the price discovered by the correction market, but 
the battery system could be incentivized to reduce its discharge and eventually charge at low correction 
market prices. 

Figure 10d shares the same generator supply curve into the prior market as for the generator of Figure 
10a, but conditions are found to have changed for the generator since it made that prior offer. Its costs 
have decreased, as shown by a leftward shift in its offer; it has much less supply to offer, as shown by 
how low its powers become after its translation; and its flexibility has diminished, as shown by how little 
change in power is offered. Even if the correction market were to clear at the same price as the prior 
market, this generator must reduce its scheduled supply power and probably pay to do so in the correction 
market. 
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Figure 10.  Correction Market Translations of Example Asset’s or Neighbor’s Supply or Demand Curves. 
Cases include corrections of (a) a generator offer, (b) a demand bid, (c) a battery system bid or 
offer, and (d) a generator, where its available flexibility and costs have changed since its offer 
into the market object that is being corrected. (p is power and 𝜆 is price) 
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Configuration Example 

The current PNNL Transactive Campus Project is to be revised to demonstrate and test the transactive 
network template’s new Version-2 functionality. Specifically, the current 24-hour rolling window of 
hourly consensus iterations is to be replaced by a single day-ahead bilateral auction that clears once per 
day at 9:45 prior to its first delivery hour at 10:00. Additionally, the results of the day ahead market are to 
be refined by a real-time bilateral auction that corrects commitments from each day-ahead hour using four 
subdivided 15-minute intervals. This section discusses critical configuration steps that will cause the 
desired market behaviors. Python configuration code will be used as an example. The intention of this 
section is to introduce important principles, not to offer complete code. 

Assume the auction is being configured for agent using object “dAA”. The following line would occur 
very early in its configuration script. This is important because its is this object that will keep track of all 
the active market objects: 

myTN = myTransactiveNode() 

State Machine Driver 

Each agent’s configuration script should conclude with a small code loop that has each current market 
object update its market state and all its corresponding activities and events. Assuming node “myTN” has 
been instantiated to represent the local transactive agent, this following snippet of Python code will 
recursively call on active market objects to move through their state machines. 

For x in range(len(myTN.markets) 
 myTN.spawn_markets()  
 myTN.markets[x].events() 

At least one market object must be configured to start the process. In our current example, a script must 
be used to instantiate the very first day-ahead market object and assign its properties. Thereafter, 
successive day-ahead markets will be instantiated as they are needed. Because the real-time market 
objects correct the day-ahead market objects, it is preferable to have the real-time correction markets 
instantiated at the same times as the day-ahead intervals that are to be corrected. This means that the day-
ahead market’s method spawn_markets() must be replaced to also generate the needed real-time market 
objects. 

Day-Ahead Market Configuration 

Many the auction day-ahead market’s behaviors may be used directly from the auction base class, but the 
auction base class must be specialized here to have the day-ahead markets instantiate the corresponding 
real-time correction markets. Therefore, a preliminary step is to create new child class DayAheadAuction1 
and use this new class to redefine method spawn_markets(): 

class DayAheadAuction(Auction): 
 … 
 def spawn_markets(): 
  … 

 
1 The implementer is free to choose the class name, but it should be descriptive of the extension that is being made. 
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The very first day-ahead market is instantiated within a configuration script as follows: 

1. Instantiate the first day-ahead auction market object from the newly extended auction class, which is 
a child of the transactive network template auction and base market classes: 

dAA = DayAheadAuction() 

2. Assign the new auction object 24 market intervals. This, in conjunction with the defined interval 
duration, establishes the market delivery period duration: 

dAA.intervalsToClear = 24 

3. Assign the interval duration. This, in conjunction with the number of intervals to clear, establishes the 
market delivery period duration: 

dAA.intervalDuration = deltatime(hours=1) 

4. Assign the current market clearing time for the market that is currently in delivery. This may point to 
either 9:45 today or 9:45 yesterday (i.e., 15 minutes before delivery), depending on the current time. 
This assignment anchors the timing of all future market clearing times: 

dAA.marketClearingTime = datetime(year=2019, month=11, day=10, hour=9, minute=45,  
  second=0, microsecond=0) 

5. Assign the market clearing interval. Doing so establishes the series of future market clearing times: 

dAA.marketClearingInterval = deltatime(hours=24) 

6. Assign the next market clearing time using the current market clearing time and market clearing time 
interval. This time will determine by when the next day-ahead market object will be needed. 

dAA.nextMarketClearingTime = dAA.marketClearingTime + dAA.marketClearingInterval 

7. Assign a name to this market series, which should be the root of all future market object names in this 
series: 

dAA.marketSeriesName = “Day Ahead Market” 

8. Assign state durations. These will be used to trigger certain state transitions in respect to market 
clearing times. It may be helpful to refer to the state machine of Figure 6. There is some freedom 
while assigning these durations. Each duration must be long enough to conduct all agent calculations, 
and the sum of all the lead times should not induce market negations before the prior market object 
has cleared. 

dAA.deliveryLeadTime = deltatime(minutes=15) 
dAA.marketLeadTime = deltatime(minutes=15) 
dAA.negotiationLeadTime = deltatime(minutes=30) 
dAA.activationLeadTime = deltatime(minutes=0) 

9. Confirm that the results of this day-ahead clearing are commitments to be corrected in the later real-
time markets: 
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dAA.commitment = True 

10. The market should be instantiated in its “Inactive” market state. The market state will be quickly 
corrected by calls to method events() that exercise the market object’s state machine. 

dAA.marketState = MarketState.Inactive 

11. Place the configured day-ahead market into the agent’s list of markets. By doing this, the market 
object will be placed in a queue and matriculate through its state machine. 

myTN.markets = [dAA] 

Real-Time Market Configuration 

As discussed above, real-time market object should be instantiated within the replaced spawn_markets() 
method of class DayAheadAuction, not in the configuration script. Therefore, the day-ahead market’s 
method spawn_markets() should instantiate not only the next new market object in its own series, but also 
all the real-time correction markets that will be needed to correct all the day-ahead time intervals. Let 
“new_dAA” reference the newly instantiated day-ahead market. The following code elements would be 
placed in the replaced spawn_markets() method: 

1. The code inherited from the base market classes is probably adequate for the instantiation of the next 
day-ahead market object: 

super().spawn_markets() 

Let “new_dAA” reference the newly instantiated day-ahead market. 

2. Real-time auction markets must be instantiated to fully cover the delivery period of the day-ahead 
market object. A loop is created, and real-time market objects are instantiated to cover the entire day-
ahead delivery period. The base auction class is suitable for the real-time market objects because no 
new behaviors are needed. Because the instantiation steps are like those for the day-ahead markets 
above, the steps will not be separately enumerated: 

deliveryStart = new_dAA.marketClearingTime – new_dAA.deliveryLeadTime 
deliveryEnd = deliveryStart + new_dAA.marketClearingInterval 
 
while deliveryStart < deliveryEnd 
 

rTA = Auction() 
 
rTA.intervalDuration = deltatime(minutes=15) 
rTA.deliveryLeadTime = deltatime(minutes=5) 
rTA.marketClearingTime = deliveryStart – rTA.deliveryLeadTime 
rTA.marketClearingInterval = deltatime(minutes=15) 
rTA.nextMarketClearingTime = rTA.marketClearingTime + rTA.marketClearingInterval 
rTA.marketLeadTime = deltatime(minutes=5) 
rTA.negotiationLeadTime = deltatime(minutes=5) 
rTA.activationLeadTime = deltatime(minutes=0) 
rTA.marketSeriesName = “Real-Time Auction” 
rTA.name = rTA.marketSeriesName + “_” + str(deliverStart) 
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rTA.marketState = MarketState.Inactive 
 
myTN.markets.append(rTA) 
 
deliveryStart = deliveryStart + rTA.intervalDuration 

Now, every time a new day-ahead market become instantiated, 96 real-time market objects will also be 
instantiated. Each markets remains in an inactive state in the agent’s queue until it becomes time for it to 
transition into its negotiation state, as prescribed by the market state machine. 

 

Suggested Future Work 

The transactive network template was designed as a template for implementing transactive energy 
implementations in the electricity domain. Its object-oriented design establishes a structure of object types 
and object behaviors that will be needed to represent any circuit region within a transactive network. A 
useful separation of computational responsibilities has been designed into the transactive network 
template’s base classes. Local asset objects schedule electricity consumption and generation and can 
thereby represent the price flexibility of an extremely diverse set of devices and systems. Market objects 
ensure that a local price is discovered that will balance the supply and demand of all electricity to be 
generated, consumed, or exchanged in the agent’s circuit region. Neighbor objects manage the 
coordination that must occur between neighboring agents. The transactive network template further 
supports extensibility to address new grid objectives and, especially, to engage new local assets devices 
and systems and their unique scheduling needs and strategies. 

The remainder of this section shall address future improvements of the transactive network template. 

Power Flow Improvements 

The current transactive network template version facilitates a simple pooled market approach to represent 
electricity exchange between transactive neighbors. Neighbors are presumed to be able to exchange 
electrical power within stated capacity limits. Reactive electric power and voltage are neither tracked nor 
managed in the transactive network. This simplification may be necessary and justified given the current 
reluctance and limited abilities of real-world entities to meter and, worse yet, accurately forecast their 
voltage or reactive power. Transport constraints and losses can be estimated as functions of electric 
power even though transport constraints and losses should be more accurately stated as functions of 
electric current. Admittedly, however, applications in microgrids and in circuits having high penetrations 
of intermittent renewable resources may necessitate voltage management that cannot be adequately 
addressed by the current transactive network template version. 

Two improved versions of the transactive network template market base class are foreseen to better 
facilitate reactive power and voltage management. First, DC power flow principles should be applied to 
introduce reactive power flow and voltage and to estimate their interdependency. Voltages differences are 
estimated using DC power flow, so voltage constraints may be introduced and addressed upon its 
implementation. Reactive and real power flows are frequently decoupled in transmission system studies, 
where per-unit voltages lie close to unity and where transmission impedances are predominantly reactive, 
but this decoupling is not justified in general. The transactive network template can be applied to 
distribution and even smaller circuit regions. DC power flow models are generally stable, giving one hope 
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that the decentralized application of these principles to the transactive network template might also be 
reliable and stable.  

Eventually, a transactive network template market version using full, accurate AC power flow principles 
should be developed to accurately address circuit voltages. Unfortunately, the resulting equations are 
difficult to solve and may be found to introduce instabilities and reduced reliability to the transactive 
network template markets’ balancing process. 

The success of these improvements in the field may be limited by implementers’ willingness to monitor 
and forecast their reactive power and voltage. Forecasts throughout the transactive network may, in fact, 
become less accurate if transactive agents misstate their voltages and reactive power needs and pay no 
penalty for doing so.  

Whereas the current transactive network template version has its transactive neighbor and local assets 
similarly participate in the market object’s balancing objective, future versions implementing DC and AC 
power flow principles will require new balancing calculations be used for the transactive neighbor 
objects. In the new versions, power exchange should not be independently asserted. Instead, power 
exchange is necessarily dependent upon the local circuit region’s voltage, the neighbor circuit region’s 
voltage, and the impedances of the interceding transport elements. A transactive agent may take actions to 
change its own complex voltage, but it cannot change other remote circuit regions’ voltages in what might 
be a highly meshed electrical network. And its ability to do so might be heavily constrained by a 
constraint on local voltage, other neighbors’ voltages, and constrained power flow capacities. 

Support Financial Transactions 

Pilot implementations of transactive systems have had their dynamic locational prices enforced to 
differing degrees. The transactive networks’ dynamic prices have frequently been permitted to diverge 
from electricity billing practices and are therefore ignored or must be corrected when calculating actual 
customer bills. The current transactive network template design anticipated flags to mark agents’ 
commitments to prices and quantities. A reconciliation market state was created to allow time for market 
outcomes to become resolved and settled. The revenue implications and practices for those who 
implement and participate in transactive networks may be significantly more dynamic than those that 
predominate today. Transition to a transactive world will be considered risky. The connections between 
transactive network processes and electricity billing practices must be facilitated and tested. 

Training Tutorials 

PNNL has attempted to teach the transactive node template to other potential implementers for the 
establishment of new transactive networks. Success has been mixed. The reference implementation is 
relatively new and fragile and is admittedly limited in the types of interactions and asset models that have 
been coded. The template introduces concepts and definitions that are foreign, at first, to many 
implementers. 

The entire PNNL campus network implementation has been offered as an example, but this example has 
shortcomings. The implementation is closely integrated with the Volttron communication platform and is 
not easily exercised without also teaching and implementing the Volttron platform. Furthermore, its 
commercial building asset models are not fully compliant with the template’s base classes.  

For all these reasons, a simple reference implementation and tutorial are needed.  
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1. The student should develop one and only one agent’s perspective without having to plan and 
implement an entire network. Working code for the tutorial’s implementations should be 
downloadable and able to be run apart from any presumed computational or communication 
platforms.  

2. The tutorial’s starting point should possess just one example asset. The asset should at first have a 
constant, inelastic demand, but the tutorial would teach the student to create increasingly time-variant 
and price-responsive behaviors for the asset. The student would be led through the process for adding 
another new asset. 

3. The tutorial must supply a non-transactive neighbor with which the student’s agent interacts. The 
tutorial should then introduce the student to an emulated transactive neighbor with which transactive 
signals may be exchanged. The student would be taught to connect with a new transactive neighbor in 
the network. 

4. Finally, the student would be taught to modify the provided market configuration, to implement 
anotehr market to refine the first, and to create other new market behaviors. 

Having completed these tutorial steps, the student would be prepared to apply the transactive network 
template and its principles and construct a new transactive network. 
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: Recommended Relational Database Structure 

This appendix depicts tables and views of a relational database that could be used to capture data from the 
transactive network template. For clearer presentation, the database has been parsed into multiple 
diagrams. Each diagram features one relational table (highlighted in yellow) and the important primary 
and secondary key relationships between the table and other database tables or enumerations. While 
current reference implementations of the transactive network template address data collection according 
to platform preferences (e.g., the Volttron environment), future versions of the transactive network 
template should facilitate this recommended database to make future system implementations more 
platform independent. 
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Figure A.1.  Information Service Table Relationships 

«table»
InformationService

«column»
*PK informationServiceId: KEY
*FK ownerObject: KEY
* measurementType: KEY
* measurementUnit: KEY
* address: TEXT
* class: TEXT
* description: TEXT
* lastUpdate: DATETIME
* name: TEXT
* updateInterval: DATETIME
 file: TEXT
 serviceExpirationDate: DATETIME
 license: TEXT

«table»
IntervalValue(Other)

«column»
*FK associatedObjectId: KEY
* recordType: KEY
* value: REAL

See another diagram 
for the complete 
IntervalValue(Other) 
Table perspective and 
its view.

«view»
Information Service View

- update_datetime
- information_service_id
- name
- class
- description
- address
- measurement_type
- measurement_unit
- update_interval
- file_name
- service_expiration_date
- license

«enumerati...
MeasurementType

«enumerati...
MeasurementUnit

An InformationService Table entry should be 
made each time the source or license is 
updated.

«enumeration»
RecordType

 IS - Predicted Value
 LA - Active Vertex
 LA - Dual Cost
 LA - Engagement Schedule
 LA - Production Cost
 LA - Reserve Margin
 LA - Scheduled Power
 MKT - Active Vertex
 MKT - Dual Cost
 MKT - Marginal Price
 MKT - Net Power
 MKT - Production Cost
 NM - Active Vertex
 NM - demand_Rate
 NM - demandThreshold
 NM - Dual Cost
 NM - Production Cost
 NM - Reserve Margin
 NM - Scheduled Power

The Information 
Service Table and 
View keep track of 
active and historical 
information services 
like web services.

(RecordType =
recordType)

measurement_type

measurement_unit

(associatedObjectId =
informationServiceId)

(all others)
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Figure A.2.  Interval Value (for other than for Vertices) Table Relationships 

«enumerati...
MeasurementType

«table»
TimeInterval

«column»
*PK timeIntervalId: KEY
*FK marketId: KEY
* startTime: DATETIME

The market object key can be derived 
from the TimeInterval object.

«enumerati...
MeasurementUnit

«table»
IntervalValue(Other)

«column»
*PK intervalValueId: KEY
*FK associatedObjectId: KEY
*FK timeIntervalId: KEY
* measurementType: KEY
* measurementUnit: KEY
* associatedClassType: TEXT
* associatedObjectClass: TEXT
* class: TEXT = IntervalValue(Other)
* name: TEXT
* recordType: KEY
* timeStamp: DATETIME
* value: REAL

«view»
Interval Value View

- time_stamp
- source_type
- source_name
- market_series_name
- market_clearing_time
- interval_starting_time
- record_type
- measurement_type
- measurement_unit
- value

«table»
MarketObject

«column»
*PK marketId: KEY
*FK marketSeriesId: KEY
* marketClearingTime: DATETIME

«enumeration»
RecordType

 IS - Predicted Value
 LA - Active Vertex
 LA - Dual Cost
 LA - Engagement Schedule
 LA - Production Cost
 LA - Reserve Margin
 LA - Scheduled Power
 MKT - Active Vertex
 MKT - Dual Cost
 MKT - Marginal Price
 MKT - Net Power
 MKT - Production Cost
 NM - Active Vertex
 NM - demand_Rate
 NM - demandThreshold
 NM - Dual Cost
 NM - Production Cost
 NM - Reserve Margin
 NM - Scheduled Power

«table»
MarketSeries

«column»
*PK marketSeriesId: KEY
* name: TEXT

The source type and name reference the object
that created the IntervalValue row. The 
sources may be Neighbor, LocalAsset, Market, 
MeterPoint, or InformationService objects. In 
the InvervalValue(Other) Table the source is 
referenced by the associatedObjectId.

market_series_name

(RecordType =
recordType)

interval_starting_time

(associatedObjectId
= marketId)

(timeIntervalId =
timeIntervalId)

measurement_type

measurement_unit

record_type

time_stamp,
value

(marketId = marketId)

(marketSeriesId = marketSeriesId)

market_clearing_time
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Figure A.3.  Interval Value (for Vertices) Table Relationships 

«table»
IntervalValue(Vertex)

«column»
*PK intervalValueId: KEY
*FK associatedObjectId: KEY
*FK timeIntervalId: KEY
*FK vertexId: KEY
* recordType: KEY
* associatedClass: TEXT
* class: TEXT = IntervalValue(V...
* name: TEXT
* timeStamp: DATETIME

«table»
Vertex

«column»
*PK vertexId: KEY
* marginalPrice: REAL
* power: REAL

«table»
TimeInterval

«column»
*PK timeIntervalId: KEY
*FK marketId: KEY
* startTime: DATETIME

«enumeration»
RecordType

 IS - Predicted Value
 LA - Active Vertex
 LA - Dual Cost
 LA - Engagement Schedule
 LA - Production Cost
 LA - Reserve Margin
 LA - Scheduled Power
 MKT - Active Vertex
 MKT - Dual Cost
 MKT - Marginal Price
 MKT - Net Power
 MKT - Production Cost
 NM - Active Vertex
 NM - demand_Rate
 NM - demandThreshold
 NM - Dual Cost
 NM - Production Cost
 NM - Reserve Margin
 NM - Scheduled Power

«table»
MarketObject

«column»
*PK marketId: KEY
*FK marketSeriesId: KEY
* marketClearingTime: DATETIME

The enumerations MeasurementType and 
MeasurementUnit are not necessary here because 
the Vertex object is specified to pair marginal price 
[$/kWh] and average electric power [kW].

«view»
Vertex Interval Value View

- time_stamp
- source_type
- source_name
- market_series_name
- market_clearing_time
- interval_starting_time
- record_type
- power
- price

«table»
MarketSeries

«column»
*PK marketSeriesId: KEY
* name: TEXT

The source type and name reference the 
object that created the 
IntervalValue(Vertex) row. The sources 
may be Neighbor, LocalAsset, or Market 
objects. In the InvervalValue(Vertex) Table
the source is referenced by the 
associatedObjectId.

(marketSeriesId =
marketSeriesId)

record_type

power,
price

time_stamp

market_clearing_time

(ownerId =
intervalValueId)

interval_starting_time

(vertexId =
vertexId)

(marketId = marketId)

(timeIntervalId =
timeIntervalId)

RecordType =
recordType

market_series_name
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Figure A.4.  Local Asset Table Relationships 

«table»
LocalAsset

«column»
*PK localAssetId: KEY
* assetClass: TEXT
* costParameters: REAL
* defaultPower: REAL
* defaultVertices: KEY
* description: TEXT
* engagementCost: REAL
* location: TEXT
* maximumPower: REAL
* minimumPower: REAL
* name: TEXT
* transitionCosts: REAL
* update_datetime: DATETIME

«table»
IntervalValue(Other)

«column»
*FK associatedObjectId: KEY
* recordType: KEY

«table»
Vertex

«column»
*PK vertexId: KEY
*FK ownerId: KEY
* type: KEY

«table»
IntervalValue(Vertex)

«column»
*FK associatedObjectId: KEY
*FK vertexId: KEY
* recordType: KEY

«view»
Local Asset View

- update_datetime
- local_asset_id
- name
- class
- description
- location
- cost_parameters [3]
- default_power
- engagement_cost [3]
- maximum_power
- minimum_power

«enumeration»
VertexType

 1 - Active
 2 - Default (static)

The owner of an 
"Active" vertex is its 
IntervalValue(Vertex) 
object.

The owner of a 
"default" vertex is its 
LocalAsset, Neighbor, 
or Market object.

«enumeration»
RecordType

 IS - Predicted Value
 LA - Active Vertex
 LA - Dual Cost
 LA - Engagement Schedule
 LA - Production Cost
 LA - Reserve Margin
 LA - Scheduled Power
 MKT - Active Vertex
 MKT - Dual Cost
 MKT - Marginal Price
 MKT - Net Power
 MKT - Production Cost
 NM - Active Vertex
 NM - demand_Rate
 NM - demandThreshold
 NM - Dual Cost
 NM - Production Cost
 NM - Reserve Margin
 NM - Scheduled Power

(VertexType = type)

(associatedObjectId =
localAssetId)

(vertexId = vertexId)

(ownerId =
localAssetId)

(RecordType =
recordType)

RecordType =
recordType

(associatedObjectId =
localAssetId)
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Figure A.5.  Market Object Table Relationships 

«table»
TimeInterval

«column»
*PK timeIntervalId: KEY
*FK marketId: KEY

«table»
IntervalValue(Other)

«column»
*FK associatedObjectId: KEY
*FK timeIntervalId: KEY
* recordType: KEY

«table»
IntervalValue(Vertex)

«column»
*PK intervalValueId: KEY
*FK associatedObjectId: KEY
*FK vertexId: KEY
* recordType: KEY

«table»
MarketSeries

«column»
*PK marketSeriesId: KEY
* name: TEXT
* marketClearingInterval: DATETIME
* intervalsToClear: INTEGER

«table»
MarketObject

«column»
*PK marketId: KEY
*FK marketSeriesId: KEY
* marketClearingTime: DATETIME
* name: TEXT
* totalDemand: REAL
* totalDualCost: REAL
* totalGeneration: REAL
* totalProductionCost: REAL

«enumeration»
VertexType

 1 - Active
 2 - Default (static)

«table»
Vertex

«column»
*PK vertexId: KEY
*FK ownerId: KEY
* type: KEY

«enumeration»
RecordType

 IS - Predicted Value
 LA - Active Vertex
 LA - Dual Cost
 LA - Engagement Schedule
 LA - Production Cost
 LA - Reserve Margin
 LA - Scheduled Power
 MKT - Active Vertex
 MKT - Dual Cost
 MKT - Marginal Price
 MKT - Net Power
 MKT - Production Cost
 NM - Active Vertex
 NM - demand_Rate
 NM - demandThreshold
 NM - Dual Cost
 NM - Production Cost
 NM - Reserve Margin
 NM - Scheduled Power

«view»
Market Object View

- market_id
- market_name
- market_series_name
- number_of_market_intervals
- market_cllearing_time
- delivery_start_time
- total_delivery_hours
- total_generation
- total_demand
- total_production_cost
- total_dual_cost

The Market Object 
Table and View keep 
records of spawned 
market objects.

(RecordType =
recordType)

market_series_name,
number_of_market_intervals,

total_delivery_hours,

(marketSeriesId =
marketSeriesId)

(associatedObjectId =
marketId)

(all others)

(associatedObjectId =
marketId)

(timeIntervalId =
timeIntervalId)

(marketId =
marketId)

(VertexType = type)

(vertexId =
vertexId)

{type = "Active"}

(ownerId =
intervalValueId)

{type = "Active"}
RecordType =
recordType
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Figure A.6.  Market Series Table Relationships 

«table»
MarketSeries

«column»
*PK marketSeriesId: KEY
* initialMarketState: KEY
* method: KEY
* marketClass: TEXT
* name: TEXT
* commitment: BOOLEAN
* duration: DATETIME
* defaultPrice: REAL
* dualityGapThreshold: REAL
* marketClearingInterval: DATETIME
* futureHorizon: DATETIME
* intervalDuration: DATETIME
* intervalsToClear: INTEGER
* lastUpdate: DATETIME
* marketOrder: INTEGER

«enumerati...
MarketMethod

«enumerati...
MarketState

«table»
MarketObject

«column»
*FK marketSeriesId: KEY

«view»
Market Series View

- last_update
- market_series_id
- market_series_name
- class_name
- commitment
- default_price
- duality_gap_threshold
- future_horizon
- initial_market_state
- market_clearing_interval
- interval_duration
- number_of_intervals_to_clear
- market_order
- method

The Market Series Table and View keep track of the 
market classes from which market objects are 
spawned. There might be just one entry, but there 
could be many having priority indicated by the 
market_order parameter. A record should probably be 
added or overwritten each time the market class is 
revised and updated.

For each market 
series, many market 
objects will likely be 
spawned.

This refers to the 
state machine and 
market states that 
were defined in TENT 
Version 3.

In TENT Versions 1 & 2, this referred to whether 
balance points were found by iteration or by 
interpolation. This distinction is handled by the 
new market state machine introduced in 
Version 3. I recommend this be used to 
reference the nature of the market series price 
discovery (e.g., "auction," "game," etc.)

(initialMarketState =
MarketState key)

(marketSeriesId =
marketSeriesId)

(method =
MarketMethod key)
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Figure A.7.  Meter Point Table Relationships 

 

Figure A.8.  Neighbor Table Relationships 

MeterPoint

«column»
*PK meterPointId: KEY
*FK associatedObjectId: KEY
* measurementType: KEY
* measurmentUnit: KEY
* class: TEXT
* description: TEXT
* lastUpdate: DATETIME
* meaasurementInterval: DATETIME
* name: TEXT
* storeInterval: DATETIME
* writeFile: TEXT

«enumerati...
MeasurementType

«enumerati...
MeasurementUnit

IntervalValue(Other)

«column»
*FK associatedObjectId: KEY

Meter Point View

- update_datetime
- meter_point_id
- meter_point_name
- meter_point_class
- meter_point_description
- owner_object_name
- owner_object_class
- measurement_type
- measurement_unit
- measurement_interval
- filename

The Meter Point Table and View keep track of individual 
measurements that are available from a meter. Each meter 
has an associated object, or owner, and that object must be 
referenced to get its name and class. (Owner classes differ, 
so this dependency is not shown in this diagram.)

(associatedObjectId =
meterPointId)

«table»
Neighbor

«column»
*PK neighborId: KEY
* class: TEXT
* convergenceThreshold: REAL
* costParameters: REAL
* defaultPower: REAL
* description: TEXT
* effectiveImpedance: REAL
* friend: BOOLEAN
* isTransactive: BOOLEAN
* lastUpdate: DATETIME
* name: TEXT «table»

IntervalValue(Vertex)

«column»
*PK intervalValueId: KEY
*FK associatedObjectId: KEY

«table»
Vertex

«column»
*FK ownerId: KEY

«table»
IntervalValue(Other)

«column»
*FK associatedObjectId: KEY
* recordType: KEY

«table»
InformationService

«column»
*FK ownerObject: KEY

«table»
MeterPoint

«column»
*FK associatedObjectId: KEY

«table»
TransactiveRecord

«column»
*FK neighborId: KEY
* direction: KEY

«enumeration»
VertexType

 1 - Active
 2 - Default (static)

«enumeration»
Direction

 1 Ready to Send
 2 Received
 3 Sent

«view»
Neighbor View

- last_update
- neighbor_id
- neighbor_name
- neighbor_class
- description
- convergence_threshold
- cpst_parameters [3]
- default_power
- effective_impedance
- friend
- is_transactive

Record type keeps track of historical and 
current time series values for the 
neighbor object.

An "Active" vertex is 
owned by an interval 
value.a "Default (static)" 

vertex is owned by a 
neighbor, local asset, 
or market object.

(associatedObjectId =
neighborId)

(associatedObjectId
= neighborId)

(ownerId =
neighborId)

(neighborId =
neighborId)

(associatedObjectId =
neighborId)

(ownerId =
intervalValueId)

(VertexType = type)

(ownerObject =
neighborId)
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Figure A.9.  Time Interval Table Relationships 

 

Figure A.10.  Transactive Record Table Relationships 

«table»
TimeInterval

«column»
*PK timeIntervalId: KEY
*FK marketId: KEY
* startTime: DATETIME
* timeStamp: DATETIME
* duration: DATETIME
* name: TEXT

«table»
MarketObject

«column»
*PK marketId: KEY

«table»
IntervalValue(Vertex)

«column»
*FK timeIntervalId: KEY

«table»
IntervalValue(Other)

«column»
*FK timeIntervalId: KEY

«table»
TransactiveRecord

«column»
*FK timeIntervalId: KEY

«view»
Time Interval View

- time_stamp
- time_interval_id
- time_interval_name
- market_id
- market_name
- start_time
- duration

The Time Interval Table and View keep track of the 
current and historical market time intervals as they 
are created by market objects.

(timeIntervalId =
timeIntervalId)

(timeIntervalId =
timeIntervalId)

(marketId =
marketId)

(timeIntervalId =
timeIntervalId)

market_name

«table»
TransactiveRecord

«column»
*PK transactiveRecordId: KEY
*FK neighborId: KEY
*FK timeIntervalId: KEY
* direction: KEY
* marginalPrice: REAL
* power: REAL
* record: INTEGER
* timeStamp: DATETIME

«table»
TimeInterval

«column»
*PK timeIntervalId: KEY
*FK marketId: KEY
* startTime: DATETIME

«table»
MarketSeries

«column»
*PK marketSeriesId: KEY
* name: TEXT

«table»
Neighbor

«column»
*PK neighborId: KEY
* name: TEXT

«enumeration»
Direction

 1 Ready to Send
 2 Received
 3 Sent

The direction key lets it be known whether 
the transactive record was sent, received, 
or is calculated and ready to send to the 
Neighbor, which can be indicated by an 
enumeration.

«view»
Transactive Record

- time_stamp
- transactive_recordId
- neighbor_id
- neighbor_name
- direction
- market_series_name
- market_id
- market_clearing_time
- start_time
- record_number
- price
- power

«table»
MarketObject

«column»
*PK marketId: KEY
*FK marketSeriesId: KEY
* marketClearingTime: DATETIME

The Transactive Record Table keeps precise track of 
signals that are prepared for, sent to, or received from 
transactive neighbor objects. It can be mined using a 
minimal set of relational keys to other database 
tables.
The Transactive Record View contains much the same 
information, but it uses more textual information of the
type that can be communicated to the neighbor object 
as a signal.

market_series_name

(timeIntervalId =
timeIntervalId)

(marketId = marketId)

(neighborId =
neighborId)

direction

neighbor_name

market_clearing_time

(marketSeriesId = marketSeriesId)

market_id,
start_time

(all others)
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Figure A.11.  Vertex Table Relationships 

«table»
Vertex

«column»
*PK vertexId: KEY
*FK ownerId: KEY
* type: KEY
* marginalPrice: REAL
* power: REAL

«table»
IntervalValue(Vertex)

«column»
*FK associatedObjectId: KEY
*FK vertexId: KEY

«table»
LocalAsset

«column»
*PK localAssetId: KEY
* name: TEXT

«table»
Neighbor

«column»
*PK neighborId: KEY
* name: TEXT

«enumeration»
VertexType

 1 - Active
 2 - Default (static)

Used for "active vertices." 
See enumeration RecordType 
and the perspective diagram 
for the Interval Value Table.

Used for a neighbor 
object's default 
vertices.

Used for a local asset 
object's default 
vertices.

«view»
Vertex View

- time_stamp
- vertex_id
- owner_name
- owner_id
- type
- marginal_price
- power

(VertexType = type)

(vertexId = vertexId)
«FK» {type = "Active"}

owner_name

(ownerId = localAssetId)

«FK» {type = "Default"}

owner_name

(ownerId =
neighborId)
«FK» {type = "Default"}

(ownerId =
intervalValueId)

«FK» {type = "Active"}

owner_name
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: Methods to Harmonize Dynamic Prices and 
Approved Rates 

This appendix introduces two novel TENT processes that may be used in the future to harmonize the 
dynamic and locationally unique electricity prices that TENT discovers with conventional, regulated cost-
recovery practices, as first described in (Hammerstrom 2022). This appendix teaches how the two 
processes could be implemented in TENT, but the implementations of these processes will be deferred 
until the processes are needed by a TENT implementer. This appendix documents a potential future 
implementation of these processes in TENT, but the processes are not yet coded. The interactions of the 
distribution utility and retail customer with these new use cases are summarized in Fig. B.1. The 
implementation of these processes in TENT will introduce new price and quantity objects but should not 
displace existing ones. 

The first process (B.1) forces actual cost recovery under dynamic electricity pricing to track approved 
cost recovery for an electricity customer class. The second method (Section B.2) makes sure that all 
members in a customer class receive similar average electricity prices, even if the dynamic price at a 
customer’s location is affected by transport constraints or other constraints that may cause locational price 
discrepancies.  

 

Figure B.1.  New Use Cases 

The methods are applicable when a transactive node represents a regulated electricity supplier like a 
distribution utility that offers regulated electricity rates. The retail customer is a member of an electric 
customer class, all members of which should expect similar access to electricity from their electricity 
supplier. 

B.1 Correction of Distribution Utility Cost Recovery 

We begin with the method that makes actual cost recovery track approved cost recovery. This sequence is 
summarized in Fig. B.2. 
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In parallel, the retail customers of a customer class send their transactive signals to the distribution utility, 
as already facilitated by TENT. 

 

Figure B.2.  UML Sequence Diagram of the method correct_cost_recovery() 

The distribution utility accesses an approved electricity rate for the customer class. The method to do so is 
summarized in Fig. B.3. In the simplest case, the rates are static or change with a predicted pattern, in 
which case the rates may be retrieved from lookup tables. If the approved rates include dynamically 
changing prices, then such prices must be retrieved in real time. For example, critical peak pricing events 
and new market prices must be electronically queried or published. The method of querying may be 
unique to the approved rate and its source. 
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Figure B.3.  Sequence Diagram for Method get_approved_rate() 

Then the global price correction is updated. The price correction process is summarized by the activities 
of Fig. B.4. 

 

Figure B.4.  Activity Diagram for Method update_global_price_correction() 

Two activities initiate this process, as shown at the top of Fig. B.4. The first calculates the total electricity 
to be consumed in a market time interval t by the members i of a customer class, as shown in Fig. B.5. 
Scheduled average interval powers are already conveyed via TENT transactive signals. However, actual 
electricity consumption can be different from that which is scheduled in a time interval by TENT. It 
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would be preferrable for the distribution utility to glean actual interval energy by using smart customer 
meters, not TENT signals.  

 

Figure B.5.  Activity sum_customer_power() 

The next activity of Fig. B.4 sums the total cost recovery, which is the sum product of customers’ 
electricity and corrected dynamic prices in each market time interval. The calculation is shown in Fig. 
B.6. In each time interval, each customer’s interval electricity (i.e., the same as the input to the activity 
diagram of Fig. B.5) is multiplied by the customer’s corrected local price. The corrected local interval 
price will be a new object to TENT. It is the sum of the dynamic locational price, which exists in TENT 
already, the global price correction that the customer receives from the distribution utility, and the 
approved rate, which is also received from the distribution utility. The sum of these products is the total 
revenue from the customer class in the time interval. 

 

Figure B.6.  Activity total_cost_recovery() 
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All remaining steps in update_global_price_correction() (i.e., Fig. B.4) are simple actions or functions 
that calculate: 

 the approved cost recovery in the time interval 
 a global price correction for the market time interval 
 a cost recovery error for the market time interval, and  
 a cumulative cost recovery error. 

Note that a constant global tracking gain is defined, which specifies the high-pass cutoff frequency with 
which the integrating filter tracks approved cost recovery.  

B.2 Correction of Customer Prices 

This section introduces the process by which average customer prices are made similar across an entire 
customer class. This is accomplished by having customers’ corrected dynamic prices track an approved 
electricity rate. The calculation sequence is summarized in Fig. B.7. 

The first action of Fig. B.7 updates the local price correction. The calculation uses a constant local 
tracking gain that defines the high-pass dynamics of the tracking process—typically defining a high-pass 
response period between 1 week and 1 month, or so. That is, the chosen gain should, upon excitation by a 
step change in the dynamic price, relax to the new condition within a period between 1 week and 1 
month. 

 

Figure B.7.  UML Sequence Diagram for Method correct_local_price() 

Once the price correction has been calculated, it is relatively straightforward to then calculate the 
corresponding local pricing error for the market time interval (Fig. B.8) and to update a cumulative local 
pricing error (Fig. B.9). 
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Figure B.8. Activity calculate_local_pricing_error() 

 

Figure B.9.  Activity update_cumulative_local_price_error() 

The process could end at this point (i.e., after the first use of “Update Cumulative Local Price Error” in 
Fig. B.7), but the results would be vulnerable to integrator windup and oscillatory behaviors when excited 
by sudden, extreme price changes. Optional sequence avoid_windup() may be invoked to mitigate 
integrator windup, as shown in Fig. B.7. 

The details of method avoid_windup() are shown in Fig. B.10. The local price correction, local and 
cumulative pricing errors become recalculated if the local pricing error and cumulative local pricing error 
have different signs. If this condition is true, the local pricing error is reverted to its original value, and the 
local and cumulative pricing errors are again updated (Figs. B.8 and B.9). 
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Figure B.10.  Activity avoid_windup() 

Finally, the corrected local price may be calculated using current global and local correction terms, as 
shown in the last action of Fig. B.7. 
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: Accommodating Matching Engines in TENT 

TENT was designed to accommodate alternative types of electricity markets. Initial TENT 
implementations facilitated bilateral electricity markets and consensus methods that can discover an 
electricity price for each location and time interval. TENT has been extended to facilitate matching 
engines, which, like stock markets, asynchronously receive simple offers or bids (“aggressive orders”) 
and attempt to match them from standing counteroffers or bids (“standing orders”) that await to be 
matched. Principles of energy balance still underly the resulting electricity prices, but each bid or offer 
can result in a different price. 

Whereas TENT facilitates rich supply and bid curves, as can be represented by linear interpolation 
between any nondecreasing ordering of Vertices, bids and offers submitted to market engines are 
typically simple “orders” that pair a single quantity with a strike price. The current work allows that 
practice to continue, but TENT also accommodates richer bid and offer curves, as well. If a match is 
successfully made, the result pairs a single price and quantity, regardless of the complexity of the bids and 
offers being matched. 

Bids and offers into matching engines can include various constraints to be placed on the matching 
process. TENT was extended to accommodate some, but not all, these constraints.  

 A distinction might be made between “limit orders” that include both a quantity and strike price 
and “market orders” that state a quantity that should be matched regardless of price. TENT 
already facilitated this distinction because the price of a VERTEX object can be assigned any 
price, including positive or negative infinity. 

 An aggressive order may be flagged to indicate whether it should be included among standing 
orders if it is not initially matched. TENT can be extended to include this persistence flag, but this 
feature is not fully implemented and tested.  

An aggressive order may be flagged to indicate whether its quantity must be entirely matched, or whether 
it may be partially matched, leaving an unmatched quantity remainder. For example, if an electricity 
generator has only binary on and off operational states, no option should exist to match only part of its 
offered generation.1 TENT was extended to flag VERTEX objects to indicate the continuity of bids and 
offers, and matching engine processes were designed to respect the continuity or discontinuity of bids and 
offers. 

 

Secondary matching strategies 

Matching always uses price as its initial matching strategy. If price alone cannot alone be used to uniquely 
match orders, then the matched quantities of same-priced counteroffers must be matched using order age 
or quantity volume as a preference. These alternative strategies will not be needed and invoked as 
frequently for distributed transactive energy systems as for stock trading because the pools of standing 
orders will be smaller. TENT was extended to facilitate these two preferences. 

 
1 This does not preclude matching a single aggressive order using multiple standing orders, which makes the logic 
much more challenging. 



 

 

Effects of partial fulfilment on matching 

Each time an order is partially fulfilled, newly spawned orders must be created for the matched and 
unmatched quantities. These child orders must be traceable to the original parent order. Unmatched 
residuals are modified by reducing the magnitudes of all the order’s vertices by the matched quantity. 

New TENT Classes that Support Matching Engines 

This appendix introduces two new TENT object classes and describes the extension of an existing base 
class. The class MATCHINGENGINE is a child of class MARKET that facilitates the matching of an 
aggressive supply or demand order with existing counteroffers from a resting order book. Class ORDER 
and extended class VERTEX support MATCHINGENGINE markets and could also be used otherwise to 
simplify TENT code. These classes and related enumerations may be imported using these commands: 

 

Extended Vertex Class 

Class ORDER.VERTEX extends original TENT class VERTEX.VERTEX. Base class VERTEX.VERTEX was 
intended to represent an inflection point in a quantity-versus-price supply or demand curve. While it has 
served its purpose well, VERTEX objects have been challenging to instantiate. Some original 
VERTEX.VERTEX properties have not proven to be especially useful. An extended ORDER.VERTEX object can 
be instantiated by supplying, at minimum, the object’s price. A power quantity should normally be 
provided, as well. New ORDER.VERTEX properties “price” and “quantity” alias the existing VERTEX.VERTEX 
properties “marginalPrice” and “power,” respectively. Electricity price is still assumed to use 
measurement units “$/kWh,” and quantity or power is still assumed to use measurement units “average 
kW.” Here is an example instantiation of an extended ORDER.VERTEX object: 

 

> from matching_engine import MatchingEngine 
> from order import Order, Vertex, OrderStatus, SupplyOrDemand 

> new_vertex = Vertex( 
price=0.1,  # $/kWh 
quantity=100.0)  # kW_e 



 

 

   

Figure 11. Vertex extends base class Vertex. 

Extended ORDER.VERTEX properties: 

 timeStamp (datetime): By default, timeStamp is set to the time and date at which the ORDER.VERTEX 
object is created. Ideally, timeStamp should match that of the ORDER.ORDER object to which the 
ORDER.VERTEX belongs.  

 orderId (integer): This identifying integer should match the identifying integer of the ORDER.ORDER 
object to which the ORDER.VERTEX belongs. 

 Continuity (Boolean): This property should be assigned True if the supply or demand curve is 
continuously defined between this ORDER.VERTEX object and the ORDER.VERTEX object representing the 
next smaller quantity magnitude of the supply or demand curve. The property should be assigned 
False if there is no quantity defined within that price range. See Figure 12. Observe especially how 
discontinuity is assigned in supply curves (Figure 12b) and demand curves (Figure 12d). 



 

 

  
(a) Continuous supply curve (b) Discontinuous supply curve 

  
(c)  Continuous demand curve (d)  Discontinuous demand curve 

Figure 12.  ORDER.VERTEX continuity assignments for ORDER.VERTEX objects in various continuous and 
discontinuous supply and demand curves 

ORDER.ORDER Class 

The new ORDER.ORDER class is used to collect one or more ORDER.VERTEX objects that belong together as a 
supply or demand curve. Prior implementations used class INTERVALVALUE to bind an individual 
VERTEX.VERTEX object with its market, time interval, the purpose that the VERTEX serves, and the system 
actor that is making the bid or offer. An INTERVALVALUE object having a VERTEX object as its value 
introduced challenging nuances. Complex price-quantity curves heretofore had to be recollected, 
manipulated, and resaved as individual VERTEX objects, each within its own INTERVALVALUE object.  The 
ORDER.ORDER class simplifies this process and should lessen the chance that supply or demand curves get 
corrupted. 

The following commands could be used to instantiate a new ORDER.ORDER object and its requisite 
parameter objects. “Datetime1”, “datetime2,” “datetime3,” and “timedelta” refer to times and dates and 
time durations that have been instantiated using python module DATETIME. 

True 

True 
price 

quantity 

False 

True price 

quantity 

True 

True 

price 

quantity 

False 

True 
price 

quantity 

> a_time_interval = TimeInterval( 
activation_time: datetime = datetime1,  
duration: timedelta = timedelta(hours=1),  
market: Market = new_matching_engine,  
market_clearing_time: datetime = datetime2,  
start_time: datetime = datetime3) 

> a_neighbor = Neighbor() 
> new_order = Order( 

market: Market = new_matching_engine,   
time_interval: TimeInterval = a_time_interval,  
actor: Neighbor or LocalAsset = a_neighbor) 



 

 

 

Figure 13. Class ORDER.ORDER and two of its enumerations 

ORDER.ORDER properties: 

 market (MARKET): This property refers to a TENT MARKET object—typically the MATCHINGENGINE 
object in which this ORDER.ORDER object is active.  

 timeInterval (TIMEINTERVAL): This property refers to a TIMEINTERVAL object in which this 
ORDER.ORDER object is active. The TIMEINTERVAL identifies the delivery time and duration. In a 
MATHCINGENGINE object, there exists a one-to-one pairing between this property and the market. 

 actor (NEIGHBOR or LOCALASSET): This property points to a NEIGHBOR or LOCALASSET object that owns 
the supply or demand represented by this ORDER.ORDER object. An agent may work with the supply 
and demand of local devices or assets, or it may work with bids and offers from other neighboring 
agents in its transactive energy system. 

 expireBy (DATETIME): This is the date and time at which the ORDER.ORDER object, if not acted upon, 
should expire.  

 parentOrderId (integer): An ORDER.ORDER object may need to be revised as it is fixed or matched. 
This property should point to the ID of the parent ORDER.ORDER object that has been revised. 

 vertices (ordered list of ORDER.VERTEX objects): This list of ORDER.VERTEX objects represents the 
ORDER.ORDER object’s supply or demand curve. The list should represent supply or demand, but not 
both. The list should be ordered by increasing price and quantity. 

 Id (integer): This is the unique identifier of the ORDER.ORDER object. This identifier is automatically 
assigned as the ORDER.ORDER is created and should not be changed thereafter. 

 timeStamp (DATETIME): A matching engine may prioritize ORDER.ORDER objects by their age. Ideally, 
this timestamp should be set to the date and time at which the ORDER.ORDER object is placed in a 



 

 

standing order book. By default, the timestamp is set to the time at which the ORDER.ORDER object is 
created.  

 status (ORDER.ORDERSTATUS): This property keeps track of the status of the ORDER.ORDER object during 
its lifetime. See enumeration ORDERSTATUS. An ORDER.ORDER object may start out “new” and 
transition as it becomes revised, matched, superseded, expired, etc. 

 childOrderIds (list of integers): As the ORDER.ORDER object becomes revised and superseded, this 
property should be used to list the new ORDER.ORDER objects that it parents.  

 supplyOrDemand (SUPPLYORDEMAND): An ORDER.ORDER object should represent either supply or 
demand, not both. See enumeration SUPPLYORDEMAND. 

ORDER.ORDER methods: 

 create_json_message: This method returns a flat JSON file from an ORDER.ORDER object. The file is 
suitable to convey a bid or offer to a neighboring transactive energy system agent. The message may 
be interpreted by method load_json_message. 

 load_json_message: This method may be used to interpret a message and reconstruct an order from a 
file that had been created by method create_json_message. 

 check_demand_order: This method returns a proper demand ORDER.ORDER object from the original 
one. If the original ORDER.ORDER is already a proper demand order, then it is returned unchanged. If 
the original ORDER.ORDER object has no demand component, None is returned. If the original 
ORDER.ORDER object has both supply and demand components, its demand component is returned as a 
new revised Order object having the original ORDER.ORDER object as its parent. 

 check_supply_order: This method returns a proper supply ORDER.ORDER object from the original one. 
If the original ORDER.ORDER is already a proper supply order, then it is returned unchanged. If the 
original ORDER.ORDER object has no supply component, None is returned. If the original ORDER.ORDER 
object has both supply and demand components, its supply component is returned as a new revised 
ORDER.ORDER object having the original ORDER.ORDER object as its parent. 

 get_prices_from_orders: Given a list of ORDER.ORDER objects, this method retrieves their 
ORDER.VERTEX prices. Filtering is done to eliminate meaningless duplicates. 

 get_quanity_from_price: A supply or demand quantity curve is necessarily a function of price. Given 
an electricity price, this method returns the ORDER.ORDER object quantity that corresponds to that 
price. None is returned if the supply or demand curve happens to be discontinuous (quantity is not 
defined) at that price. 

 match: Given a matched counteroffer quantity and match price, this method returns two new 
ORDER.ORDER objects—one for the match and another for the ORDER.ORDER object’s remainder 
unmatched supply or demand curve. None is returned for the unmatched ORDER.ORDER object if there 
is no remainder supply or demand curve. This important method is discussed further below. 

 order_or_none: This method simply returns the ORDER.ORDER object if it represents any supply or 
demand quantity. Otherwise, it returns None. This is a good method to use in conjunction with return 
statements so that meaningless ORDER.ORDER objects will not be propagated. 

 sort_order: This method sorts an ORDER.ORDER object’s list of ORDER.VERTEX objects by price and 
quantity. The sorting process is different for supply and demand ORDER.ORDER objects. 

After the MATCHINGENGINE market discovers a power quantity and price at which an aggressive order and 
standing order match, it calls method match(). See Figure 14. If this method is called about a standing 



 

 

order, the quantity magnitudes in the standing order’s listed ORDER.VETEX objects are reduced by the 
matched quantity and a new revised ORDER.ORDER object is created for the remaining unmatched 
quantities of the give supply or demand curve. Typically, the original standing order is cancelled, but the 
old and revised ORDER.ORDER objects point to the other’s ID using their parentOrder and childOrderIds 
properties. A new limit order object is also created for the matched quantity and price. 

Any match causes both the aggressive order and its standing counteroffer to be matched and revised. So, 
the match method of class ORDER.ORDER is also called in respect to the aggressive order. Note that the sign 
of the quantity magnitude is that of the order’s counteroffer, so the quantity signs are different for the 
standing and aggressive orders that are becoming revised. The revised quantity is the sum of the 
ORDER.ORDER object and matched quantities. 

If no quantity of an order remains after the match, the unmatched order is returned as None. 
These examples demonstrate calls made to method match() in respect to a standing order and an 
aggressive order. 

  

> matched_order, unmatched_order = standing_order.match( 
match_price: float = 0.1,  
quantity: float = 100.0) 

matched_order, unmatched_order = aggressive_order.match( 
match_price: float = 0.1,  
quantity: float = -100.0) 



 

 

 

Figure 14.  Given a matched quantity and price, the ORDER.ORDER class method match returns 
ORDER.ORDER objects representing the matched limit order and unmatched remainder after the 
transaction. 

MATCHINGENGINE Class 

The MATCHINGENGINE class inherits many useful attributes and methods from parent class MARKET. 
However, discussion will focus on new attributes. 

MATCHINGENGINE properties: 

 matchingStrategy (MATCHINGSTRATEGY): Price is always the dominant matching strategy. When price 
alone cannot arbitrate between multiple competing standing counteroffers, an alternative strategy 
must be invoked. There are many possible such strategies, but only two are defined here: order age 
and order volume. The first gives priority to ORDER.ORDER objects that are oldest. The latter gives 
priority to ORDER.ORDER objects that represent the greatest quantity magnitude. 

 hasMarket (Boolean): By default, this property is set False and it is assumed that a transactive agent 
does not itself operate a matching-engine process. Any agent may, however, use the matching-engine 
process. 

 orderList (list of ORDER.ORDER objects): This property holds a list of ORDER.ORDER objects that may be 
used as counteroffers when a new aggressive ORDER.ORDER object is received. This list is often called 
an “order book.” It is possible for listed ORDER.ORDER objects to be matched and revised, creating new 
ORDER.ORDER objects for the orderList or matchList. 

 matchList (list of ORDER.ORDER objects): This property holds a list of ORDER.ORDER objects that 
represent successful match transactions. ORDER.ORDER objects should not be removed from this list. 



 

 

 

Figure 15.  Class MATCHINGENGINE is a child of base class MARKET. Four new attributes and methods are 
defined. Most important are the orderList and matchList attributes. 

 



 

 

Objects of the new MATCHINGENGINE class are instantiated as follows. 

MATCHINGENGINE methods: 

 get_counteroffer_vertices: Given an electricity price and the designation of the aggressive 
ORDER.ORDER object as either supply or demand, this method creates an ORDER.VERTEX object for 
counteroffers offering nonzero quantity. ORDER.VERTEX objects are returned instead of a simple list of 
quantities because matching engines must keep track of the provenance of counteroffers, including 
whether the counteroffer supply or demand curve is continuous in this price region. 

 get_counteroffers: Given the designation of an aggressive ORDER.ORDER object as either supply or 
demand, this method collects valid counteroffers from orderList (i.e., the order book). Standing 
counteroffers are “valid” if they are designated as either standing orders or as revised standing orders. 

 get_market_orders_by_actor: Given a transactive energy system actor (either NEIGHBOR or 
LOCALASSET object), this method gathers and returns a list of orders from among matchList and 
orderList objects that are attributed to the actor. 

 get_order_by_id: Given an order’s ID, this method finds the corresponding ORDER.ORDER object from 
among the matchList and orderList orders. 

 match: Given a new aggressive order, this method attempts to match the order from among eligible 
counteroffers found in the orderList. The matching process may be affected by the current 
MATCHINGENGINE object’s matching strategy (see enumeration MATCHINGSTRATEGY). If no match is 
possible, the aggressive offer is moved to orderList, where it becomes a standing order for future 
matches. If one or more matches can be made, the aggressive order and its counteroffers are revised 
accordingly, and the matched and unmatched ORDER.ORDER objects are moved into the matchList and 
orderList lists. 

 order_id_is_unique: This method returns True if an ID integer cannot be found among existing 
ORDER.ORDER objects in matchList or orderList. 

Important MARKET methods that are redefined by MATCHINGENGINE: 

 spawn_markets: This redefined method should create the next MARKETENGINE.MARKET object when 
invoked to do so. The new market object inherits many of its properties from its predecessor, but the 
delivery time and other times and dates must be updated. For a MARKETENGINE object, there is a one-
to-one relationship between the market object and its TIMEINTERVAL object. A new market must be 
created for every new electricity delivery period. 

 while_in_negotiation: This redefined method facilitates the asynchronous calculations of new supply 
and demand curves by LOCALASSET and NEIGHBOR objects, the conveyance of signals that represent 
such supply and demand curves, and the matching of these ORDER.ORDER objects from among 
standing counteroffers. Negotiations are permitted until just prior to the delivery period at a time that, 
for other market types, corresponds to a market clearing time. (No trigger has been determined to 
stimulate the formulation of new supply or demand curves in this asynchronous manner. Perhaps the 
creation of new supply or demand ORDER.ORDER objects should be initiated when predicted supply or 
demand diverge by some metric from that which has been contracted via prior markets.) 

 while_in_reconcile: This redefined method should facilitate the gathering of successful match 
transactions and reconcile the aggregate impact of these transactions with actual electricity usage 

> new_matching_engine = MatchingEngine() 



 

 

during the delivery period. (This process cannot be completed currently because TENT is not itself 
integrated with metering needed to perform this reconciliation.) 

The new MATCHINGENGINE class has properties orderList and matchList that store collections of 
ORDER.ORDER objects. Property orderList is for the market’s standing orders, and matchList is the market’s 
ledger of completed match transactions. 

Testing 

File test_order.py contains unit tests for the extended ORDER.VERTEX and ORDER.ORDER classes. This code 
may be run to confirm many of the expected behaviors of ORDER.ORDER methods. 

File test_matching_engine.py contains tests for new class MATCHINGENGINE and its methods. This code 
may be run to confirm many of the expected results of MATCHINGENGINE methods.  

TENT is currently limited in its ability to support system-level tests, and efforts are underway to address 
this limitation. Additionally, we have not yet determined the logic by which agents should be induced to 
create new supply or demand curves for an asynchronous matching-engine market, as was mentioned 
earlier. For these reasons, TENT’s ability to support matching engines is not yet confirmed at the system 
level. 

MATCHINGENGINE.match() Logic 

 

1. Gather eligible supply counteroffers. 
2. Get and sort all the unique Vertex prices from the eligible standing orders and aggressive order. 
3. Index through those Vertex prices (order depends on whether aggressive order is supply or demand). 

3.1. Determine effective limit orders for the supply orders and aggressive order at this price. 
3.2. Sum eligible supply order quantities at this price. 

3.2.1. <CASE> Aggressive order quantity is 0 or is undefined at this price 
3.2.1.1. Stop. 

3.2.2. <CASE> Total supply-order quantity = 0 
3.2.2.1. Continue to next price. 

3.2.3. <CASE> Aggressive-order quantity >= total limit supply-order quantity 
3.2.3.1. <CASE> Aggressive-order quantity is not continuous 

3.2.3.1.1. Continue to next price. 
3.2.3.2. <CASE> Aggressive-order quantity is continuous 

3.2.3.2.1. Index through supply effective limit order quantities 
3.2.3.2.1.1. Create and save match order for supply-order quantity at indexed price 
3.2.3.2.1.2. Revise standing order 
3.2.3.2.1.3. Create and save match order for matched aggressive-order quantity 
3.2.3.2.1.4. Update total matched, transacted aggressive-order quantity and unmatched 

aggressive-order quantity remainder 
3.2.3.2.2. Revise aggressive order using total transacted and remainder aggressive-order 

quantities 
3.2.4. <CASE> Aggressive-order quantity < total limit supply-order quantity 

3.2.4.1. Index through list of matching priorities 
3.2.4.1.1. <CASE> Matching priority is by proportion 

3.2.4.1.1.1. Continue to next matching priority 
3.2.4.1.2. <CASE> Matching priority is by order age 

3.2.4.1.2.1. Sort standing limit order quantities by age  
3.2.4.1.2.2. See Code Logic Block A 

3.2.4.1.3. <CASE> Matching priority is by order volume 
3.2.4.1.3.1. Sort active supply limit order quantities by volume 
3.2.4.1.3.2. See Code Logic Block A 



 

 

  

<Begin Code Logic Block A>  
1. Initialize unmatched aggressive-order quantity at aggressive-order quantity for this price   
2. Index through sorted supply-order quantities 

2.1.  <CASE> Aggressive-order remainder quantity < supply-order quantity 
2.1.1.  <CASE> Supply-order quantity is not continuous 

2.1.1.1. Next supply-order quantity 
2.1.2.  <CASE> Supply-order quantity is continuous 

2.1.2.1. Record the tentative supply-order and aggressive-order matches 
2.1.2.2. Update aggressive-order quantity remainder 
2.1.2.3. Stop. There should be no aggressive order remainder. 

2.2.  <CASE> Aggressive-order remainder quantity >= supply-order quantity 
2.2.1. Record the tentative supply-order and aggressive-order matches 
2.2.2. Update aggressive-order quantity remainder 
2.2.3. <CASE> There is an unmatched aggressive-order remainder and aggressive-order continuity is 

false 
2.2.3.1. Next supply-order quantity 

2.2.4.  <CASE> There is no unmatched aggressive-order remainder, or aggressive-order continuity is 
true 

2.2.4.1. Index through the tentative supply-order and aggressive-order quantity matches 
2.2.4.1.1. Create and record match order for matched supply-order quantity   
2.2.4.1.2. Revise order for unmatched supply-order quantity 
2.2.4.1.3. Create and record order for matched aggressive-order quantity 

2.2.4.2. Revise and record a new order for the unmatched aggressive-order quantity    
<End Code Logic Block A> 



 

 

 




