DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof. Reference herein to any social initiative (including but not
limited to Diversity, Equity, and Inclusion (DEI); Community Benefits
Plans (CBP); Justice 40; etc.) is made by the Author independent of
any current requirement by the United States Government and does
not constitute or imply endorsement, recommendation, or support by
the United States Government or any agency thereof.

PNNL-28420 Ver. 4

o

Pacific
Northwest

NATIONAL LABORATORY

The Transactive Energy
Network Template
Metamodel

Version 4

October 2024

DJ Hammerstrom
D Raker

EEEEEEEEEEEE

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from
the Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062
www.osti.gov
ph: (865) 576-8401
fox: (865) 576-5728
email: reports@osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
or (703) 605-6000

email: info@ntis.gov
Online ordering: http://www.ntis.gov

http://www.osti.gov/
mailto:reports@osti.gov
mailto:info@ntis.gov
http://www.ntis.gov/

PNNL-28420 Ver. 4

The Transactive Energy Network
Template Metamodel

Version 4

October 2024

DJ Hammerstrom
D Raker

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

Summary

While transactive energy, which is defined as an allocation of electricity based on dynamically discovered
values or prices, has been extensively studied, its uptake and use has been slow. This report describes a
tool, the transactive network template, which should hasten the creation and uptake of transactive energy
networks.

Some basic principles of transactive energy are familiar from existing wholesale electricity markets.
Locational prices are calculated today for zones within bulk electric transmission systems. Locational
prices differ while accounting for the locational costs of electricity generation and the losses and
constraints incurred when electricity is transmitted from generators and distributed to consumers. A
transactive energy network might include these transmission zones. However, current research strives to
apply transactive energy also in electricity distribution circuits, buildings, and even for individual
generating and consuming devices. At the same time, researchers explore how to apply transactive energy
in real time during increasingly shorter time intervals.

Automated computational agents become necessary as transactive energy becomes applied to smaller
circuit zones and at faster dynamic timescales. A transactive energy network is an example of a multi-
agent system. Each zone in the network is represented by its transactive agent, which makes decisions for
and acts on behalf of a business entity that is responsible for and manages one of the circuit regions. A
transactive energy network is also an example of a decentralized, distributed control system. Control
decisions and responsibilities are distributed among the network’s transactive agents. The transactive
agents are independent; that is, there typically is no centralized authority or oversight function. Instead,
transactive agents exchange transactive signals and thereby negotiate the prices and quantities of
electricity that they will exchange.

Initially, the circuit regions and responsibilities of transactive agents appear to be very dissimilar. Each
circuit region may comprise transmission, distribution, or building-level circuits. Each has a unique
position and electrical connectivity within the transactive energy network. Each possesses unique assets
that either generate or consume electricity, and these (e.g., renewable energy generator, diesel generator,
aggregate utility load, building load, space conditioning, refrigerator, etc.) may further differ in their price
flexibility and in their strategies for responding to dynamic electricity prices. Given such diversity, an
implementer’s first inclination might be to start from scratch to define all these devices and to engineer
their seemingly unique interactions.

Given that each implementer’s perspective may be narrow within a transactive energy network, it is
unlikely that uniquely engineered systems would interact well. This is where the transactive network
template is applicable. The transactive network template is a metamodel that has been developed to guide
implementers as they configure their own transactive agent within a network of such agents. The object-
oriented design of the transactive network template provides basic code object types that may be used and
extended by implementers to represent each of the assets in their circuit region. These objects further
facilitate the transactive agent’s necessary computations, which are divided among responsibilities to
schedule power usage, balance electric supply and demand, and coordinate the exchange of electricity
with the other transactive agents.

This report addresses the conceptual transactive network template design. Implementers are directed to
more formal design documents and reference implementations. A Python™.-based' reference
implementation of the transactive network template has been coded, and three implementations have been
configured to represent a national laboratory and two university campuses. Version 2 of the transactive
node template generalizes the market class and its methods to facilitate multiple, and more diverse market

! Webpage available at https://www.python.org.

il

coordination mechanisms than were facilitated by and demonstrated using Version 1. Version 3 includes
new Appendix B, which addresses the designs of methods that would make dynamic prices track
approved electricity rates. In the future, the author wishes to make the transactive network template more
generally applicable to networks that require more accurate power flow.

Development of the transactive network template is jointly funded by the U.S. Department of Energy
(DOE) Energy Efficiency and Renewable Energy and the DOE Office of Electricity. In late 2015, one of
the first projects to be funded by the DOE Grid Laboratory Modernization Laboratory Consortium was
the Clean Energy and Transactive Campus project, led by Pacific Northwest National Laboratory. DOE
funds were matched by an investment by the Washington Department of Commerce through its Clean
Energy Fund. The transactive network template was developed to guide the implementation of
transactive energy networks within this project’s scope.

v

Glossary and Acronyms

local asset

locational marginal price

transactive agent

transactive energy network
transactive neighbor

transactive network template

transactive signal

UML® Unified Modeling Language

! Webpage available at https://www.python.org.
2 Webpage available at https://volttron.org/.

A device or system that generates or consumes electricity and
that is managed by a transactive agent. An object class within
the transactive network template. A transactive agent knows
all states and strategies of its local assets. A transactive agent
schedules its local assets, but it does not transact with them.

Formal definitions exist in wholesale electricity markets.
More generally, the change in cost that accompanies a change
in electricity supply at a given location and time.

An entity that manages a circuit region using an
implementation of the transactive network template. A
transactive agent must negotiate with other transactive agents
to coordinate energy flow and value within its transactive
energy network.

A set of transactive agents, plus the allowed transaction
pathways between the transactive agents.

Each member of a pair of transactive agents that transact with
one another by exchanging transactive signals.

An abstracted, object-oriented metamodel of one transactive
agent’s perspective within a multi-agent transactive energy
network. An extensible set of base object classes that was
developed using the Unified Modeling Language®. A
reference implementation of the transactive network template
base classes has been instantiated in Python™! for use with
the VOLTTRONT™? platform.

The information that transactive neighbors exchange. A set of
records, each of which represents a pairing of price and
quantity within a forecast time interval.

A standard visual modeling language intended to be used for
modeling business and similar processes, analysis, design, and
implementation of software-based systems.® The standard is
maintained by the Object Modeling Group®.

3 Webpage available at https://www.uml-diagrams.org.

Contents

N 0110000 F: 1 oy USRS 1ii
GLOSSATY ANA ACTOMNYIMISviiiiiieiiiieeiie ettt eeteeeteeeteeetteeseseessseeasaeesssaeassesassesassseesssesasseeessssessseesssessssseenssennns \%
1.0 INETOAUCIION ...ttt ettt et ettt et et bt e st et e e bt e st et e e bt et e besbeemsenbesaeeneenee 1
2.0 The Transactive Network Template Metamodelcccecuveevieriieriinieniesieceeee e 3
2.1 Base Transactive Network Template Code ClasSescceerviervieriiieenirenieeeiieeieeeseieesveesveeenes 3

2.2 Scheduling, Balancing, and Coordination ODbjJeCtiVES..........ccvervieriierieerieerieniesrenreeressesseeseens 4
2.2.1 The Balancing ReSponSIDIlILYcccieiciiiiiiiiiieciie ettt eeveeseree s 4

2.2.2 The Scheduling ReSpONSIDIIILY........cccuviiiiiiiiieiiie ettt et e eree s e eaeeesebeeeeree s 9

2.2.3 The Coordination ReSponsibility.........ccccceciveriieriierieriierienienie e e ere e 11

2.3 What It Means to Configure a Transactive Network Template Code Implementation.............. 15

2.4 What It Means to Specialize @ Classcccvieviieiiieeeiieeieecieecee et eeree e ae e beesveeeene s 15

3.0 INtrodUCtiOn T0 VEISION 2...c..eiuieiiiiiiiieieieeitetete ettt ettt sttt et sb et e bt bt et e st ebe et e steebtetesaesbeeneens 16
3.1 Series of Market Objects and Relationships between Series of Market Objects............c.ccuu... 17

3.2 Instantiation of New Market ODJECLSccvevviriiiiriieiie ettt ee e ssresnsesnseennees 19

3.3 Base Market State Machine..........cccooiriiiiiiiiieieee e 20

3.4 Consensus Versus Auction Timing using the Market State Machine............cccoccveveiveeiieennens 22

3.5 Market Price PrediCtion......cooieeieiiiieiiiieieeee ettt 26

3.6 Hourly Price Prediction MOdElcccuviiiiiiiiieiiie ettt e eae v e e vee e 27

3.7 ASSEt Price PrediCtion ...c..coiiiiiiiiiiii ettt ettt ettt 28

3.8 Correction Market Translations of Prior Bids and Offers..........cccccoeevvvcivrciincenneenieeeeeeeen, 29

3.9 Configuration EXAMPIEc..ceecuiiiiiiiiiiiiiiieciie ettt ettt eiee e stae st e e sbeeeaae e saeesssaeesreeessneeens 32
3.9.1 State Machine DIIVETcc.coiiiiiiiiiiieiieieeteee ettt st 32

3.9.2 Day-Ahead Market Configuration............cccvecveerieerieerieesienieniesee e e ereeaeereeseesseesees 32

3.9.3 Real-Time Market Configuration...........cceeccveeeeireriieeiieeiie e esreeereeeeeeseveesreeeeeeesenes 34

4.0 Suggested FULUIE WOTKccciiiiiiiiiiiecieeie ettt e st ssbe st essseesseesseessaenseessaeseensnas 35
4.1 Power FIOW IMPIOVEIMENLSccuviiriiiiiieeiiieiie et esteeeteeesveesiveesreeesteeesebeessseesssesessseesssessnsenans 35

4.2 Support Financial TranSaCtiONScccveeecuererieeriiesiieeesteeesseesseessseeesseeesseesseesssesessseessseessseeans 36

4.3 Training TULOTIALS.......eccveiiiieiieieeteeiterie et e seeseestteste st e sbeenseesseesseesseesseesseeseessaessnesssesssesnsennses 36
Appendix A : Recommended Relational Database StruCtUrecccueeeeieeierieiesienieeiee e 39
Appendix B : Methods to Harmonize Dynamic Prices and Approved Ratescoccecevininieninincenne 49
Appendix C : Accommodating Matching Engines in TENTccccccvvviiriiiniienienienieneesee e 57

vii

Figures

Figure 1. Simplified Representation of a Transactive Agent’s Transactive Network Template Code

L 050Y0) (S5 4013 1218 o) o U 4
Figure 2. A Simple Example Clearing between a Flexible Supplier and Inflexible Consumer................... 8
Figure 3. Coordination between Successive Market Series ObJects.......cuvevviercieeecireriienieeeieeeee e 18
Figure 4. Example of a Market Series Timing Diagram that Subdivides and Corrects another Market

)]0 11 2 19
Figure 5. The Lifetime of a Market Object based on its State Machine. Market activities may be assigned

to these transitions and states to drive the needed market activities.ccoceeveerieiiieeieeseeieeeeen, 22
Figure 6. Market States and Transitions applied to Iterative Consensus and Auction Negotiations 24
Figure 7. Auction Market Activities Mapped into the Market State Machine.............ccccecevvevcvieecieennnenee, 25
Figure 8. Market and Neighbor Model Activities during Iterative Market Consensus Negotiations 26
Figure 9. An Asset Model’s Price Prediction Strategy prior to Schedulingcccceevveviiviieniieniiennene, 29
Figure 10. Correction Market Translations of Example Asset’s or Neighbor’s Supply or Demand

CUIVES. .ttt e ettt ettt sttt st sttt et e bt e bt e bt e bt e s bt e s beesbeesbaesaeesatesanesane 31
Figure A.1. Information Service Table Relationships...........coooiiiiiiiiii i e 40
Figure A.2. Interval Value (for other than for Vertices) Table Relationships..................coovvviievnenn. 41
Figure A.3. Interval Value (for Vertices) Table Relationships...........coovviiiiiiiiiiiiiiiii e, 42
Figure A.4. Local Asset Table Relationships.........cceviuiiiiiiiiiiiiii e e 43
Figure A.5. Market Object Table Relationships...........ovviiniiiiiii e, 44
Figure A.6. Market Series Table Relationships...........cooiiiiiiiii e, 45
Figure A.7. Meter Point Table Relationships..........c.oouiiiiiiiiiiiii e e e 46
Figure A.8. Neighbor Table Relationships..........coviiiiiiiiiiii e, 46
Figure A.9. Time Interval Table Relationships.........oouiiiiiiiiiiii i e 47
Figure A.10. Transactive Record Table Relationships............coviiiiiiiiiiiiiiiiiiiiiie e, 47
Figure A.11. Vertex Table Relationships.........c.oovuiiiiiiiiii e e 48
FIgUIE B.1. NEW USE CaS08. ..ttt ittt ettt ettt e e et et et et et et e e e et e e e enteenneenaeans 49
Figure B.2. UML Sequence Diagram of the method correct cost recovery()..........coevvvevvvrnennnnnnnn. 50
Figure B.3. Sequence Diagram for Method get approved rate()..........cccovviiiiiiiiiiiiiiiiiieienens, 51
Figure B.4. Activity Diagram for Method update global price correction().............coceieiiiiiininne. 51
Figure B.5. Activity SUM_CUSTOMET POWET(). .. ututrtintententttentetteteeteetentetententeeteteneenneneenens 52
Figure B.6. Activity total COSt T@COVETY() .. uurinrtintiitt ettt ettt et et et e et e ie e eeaeeaeenans 52
Figure B.7. UML Sequence Diagram for Method correct_local price()...........ccoveviieiiiiiiiennann... 53
Figure B.8. Activity calculate local pricing error()........c.ooueienretititetetienterteeeeereeaeaneans 54
Figure B.9. Activity update _cumulative local price error().............cooeeiuiiiiiiiiiiiiiiiiiiiianeanen, 54
Figure B.10. Activity avoid WINAUP(). . uveneentititit ettt et et et e e et e e et et e e ae e aneaaenaans 55

viii

Tables

Table 1. Important Properties and Responsibilities of Transactive Network Template Base Class Objects5
Table 2. Methods Introduced by the Base Market Class for the Market State Machine 21

X

Introduction

The transactive network template is an extensible set of base object classes that was developed using the
Unified Modeling Language™ (UML).! The transactive network template facilitates the configuration
and operation of one agent within a cyber-physical network of such agents. It is designed to facilitate
decentralized transactive energy systems, which automate and coordinate decentralized control decisions
of distributed devices that generate or consume electricity.

Development of the transactive network template is jointly funded by the U.S. Department of Energy
(DOE) Energy Efficiency and Renewable Energy and the DOE Office of Electricity. In late 2015, one of
the first projects to be funded by the DOE Grid Laboratory Modernization Laboratory Consortium was
the Clean Energy and Transactive Campus project, led by Pacific Northwest National Laboratory. DOE
funds were matched by an investment by the Washington Department of Commerce through its Clean
Energy Fund. The transactive network template was developed to guide the implementation of
transactive energy networks within this project’s scope.

MATLAB®? and Python® reference implementations of the transactive network template were coded.
The MATLAB implementation is useful for research exploration, but it is not suitable for field use. The
Python reference implementation has been implemented on various VOLTTRONT™* communication
platforms for use in actual networks. Furthermore, the Python reference implementation was used to
configure three transactive energy network implementations—one representing a transactive energy
network comprised of buildings on the Pacific Northwest National Laboratory campus and their upstream
campus, municipality, and wholesale electricity suppliers; and two representing two U.S. university
campuses.’

The word template highlights the ability of the transactive network template to guide and facilitate
specific agent implementations. Its object-oriented design enforces a degree of standardization, and its
classes provide the standard properties that will be needed by an agent. Furthermore, needed behavioral
methods are enforced to standardize inter-agent transactions and integration of the agent’s local assets. At
the same time, extensibility is supported for the assets themselves, which often possess additional unique
properties and energy behaviors. Extensibility is quite naturally supported when using object-oriented
code design. Libraries of asset models (e.g., for specific building loads and demand-responsive assets)
should evolve by inheritance and extension of the base transactive network template object classes. The
base classes themselves should not be casually modified.

This report is intended for a nontechnical reader, not the coder or implementer. It introduces concepts and
features of the transactive network template, but it does not provide enough detail to create another valid
reference implementation. It is important for the reader to understand why the transactive network
template is a metamodel, but the reader is not expected within this report to interpret the UML
diagramming which allowed its design as an object-oriented metamodel. If still more detail is needed,
contact Donald J. Hammerstrom® regarding the design document or Hung Ngo’ regarding the Python
reference implementation code.

! Webpage available at https://www.uml-diagrams.org.

2 Webpage available at https://www.mathworks.com/products/matlab.html.

3 Webpage available at https://www.python.org.

4 Webpage available at https://volttron.org/.

5 Katipamula S, RG Lutes, S Huang, J Lian, H Ngo, and DJ Hammerstrom. 2019. Coordination of Behind-the-Meter
Distributed Energy Resources for Transactive Grid Services: Multi-Building. PNNL-XXXXX, Pacific Northwest
National Laboratory, Richland, Washington.

¢ Donald. Hammerstrom@pnnl.gov

" Hung Ngo@pnnl.gov

Implementations of the transactive network template are intended to facilitate a single agent’s perspective
within a multi-agent transactive network. That agent will be referred to in this report simply as “the
agent” or “this agent.” When necessary, references to “other network agents” or “another network agent”
or “neighboring agent” should be understood to refer to other members of the multi-agent network
besides the one central to the given implementation. Terse, precise class names were used in the
transactive network template, but more readable names and descriptions have been used in this report
(e.g., a LocalAsset object is referred to as a “local asset object”).

The structural and behavioral aspects of the transactive network template are addressed in Section 2, and
further improvements to the transactive network template are suggested and discussed in Section 3.

The Transactive Network Template Metamodel

The transactive network template is a metamodel in that it is a model of models. Its object-oriented UML
design may guide reference implementations that may use different software code languages. Regardless,
every reference implementation should reproduce the same transactive network template base classes and
base class behaviors. In principle, transactive agents residing in the same transactive network may choose
entirely different reference implementations of the transactive network template, and these agents should
still properly exchange transactive signals and interact.!

Object-oriented designs are separable into their structural and behavioral elements. Section 2.1 introduces
base classes of the transactive network template, thereby providing a structural overview of the structural
elements that are available to model an agent’s assets and position within a transactive network. Section
2.2 introduces the most important behavioral responsibilities of the transactive agent and how those
responsibilities are allocated among the available transactive network template classes. The three
fundamental computational responsibilities of a transactive agent are to 1) to balance electrical power in
the circuit region that is managed by the agent, 2) schedule the power to be generated or consumed by the
agent’s local assets, which decisions may be price-responsive, and 3) conduct transactions and coordinate
electricity exchanges with other agents.

Sections 2.3 and 2.4 address what it means to configure and extend a transactive network template code
implementation respectively.

Base Transactive Network Template Code Classes

This section introduces the structure of the transactive network template by introducing its base classes.
These classes are the structural elements available to design, configure, and operate a transactive network
template implementation. Objects must be instantiated from these base classes (or from classes whose
parentage can be tracked back to these base classes) from the perspective of a single transactive agent and
its electric circuit region that it represents.

A transactive network template implementation provides useful object classes that one transactive agent
may configure, specialize, and use to plan and manage electricity supply usage in the circuit region for
which it is responsible. Three of the transactive network template’s most important code classes are
shown in Figure 1. The market class manages the transactive agent’s balancing of electricity supply and
demand. The local asset class interfaces with and schedules the devices and systems in the circuit region
that the transactive agent manages. The neighbor class coordinates the transactions and manages the
exchange of transactive signals with neighboring transactive agents. The neighbor and local asset classes
may be specialized and instantiated as many times as is necessary to represent all the transactive agent’s
assets and transactive neighbors.

The transactive network template features more object classes than the important ones featured in Figure
1. High-level information about all the transactive network template base classes is summarized in Table
1. The first column gives both the base class name (bold, italicized) and its brief description. The second
column lists properties that the base class manages on behalf of the transactive agent, and the third
column lists the classes’ most important behavioral responsibilities.

" More precisely, the transactive records should interoperate at the business and syntactic levels. The transactive
network template is agnostic about interoperability in physical communication layers. Neighboring agents may have
to negotiate their choice of communication carrier and choose from available low-level communication protocols.

Transactive Agent Implementation

Transactive
Neighbor 1

Local
Asset 1

Local Asset Neighbor Code
Code Object 1 Object 1

Market

-
I |
I |
: : 1 E; :
1 :

Local Local Asset Code Neighbor Code €:> Transactive
Asset 2 Code Object 2 Object Object 2 g Neighbor 2
l I
[:

L

Transactive
Neighbor M

Local Asset Neighbor Code
Code Object N Object M

Local
Asset N

Figure 1. Simplified Representation of a Transactive Agent’s Transactive Network Template Code
Implementation and Its Interfaces to the Transactive Agent’s Local Assets and Transactive
Neighbors

1.1 Scheduling, Balancing, and Coordination Objectives

There are three very important computational responsibilities managed by transactive agents that
implement the transactive network template: 1) balancing, 2) scheduling, and 3) coordination. The
transactive network template has been designed to make these three computations as separable and
independently achievable as possible.

111 The Balancing Responsibility

Many readers will possess conceptual understanding of the market principles that are central to the
balancing objective. Given updated power schedules and price flexibilities of all the agent’s local assets
and neighbors, an agent’s market object calculates an electricity price that balances supply and demand
among all electricity entering and exiting the agent’s circuit region.

The agent’s circuit region is treated as a “copper plate,” which means it possesses undifferentiated
electrical circuit properties and incurs no transport losses within the circuit region. There may be only one
voltage in the circuit region. While exchanges with neighbor objects may be modified to reflect electricity
that is lost upon importing electricity into the circuit region, local assets reside in the circuit region and
typically will not incur transport losses.! The current transactive network template version addresses only
real electric power transactions and the balancing of real power.?

! These “copper-plate” principles are intentional and should not be violated. Electricity must have one unit price
across the agent’s entire circuit region at any given time. If an implementer feels compelled to assign multiple
electricity prices within one agent’s circuit region, the regions should be separated and granted their own agents and
transactive network template implementations.

2 Future versions should address reactive power and voltage management, which would require successively
detailed calculations of both real and reactive power generation and consumption within the agent’s circuit region
and complex power transport between agents and their circuit neighbors. Effects like transport losses can be
estimated until such new transactive network template versions can be completed. These future versions are
addressed in Section 3.0.

Table 1. Important Properties and Responsibilities of Transactive Network Template Base Class Objects

Class Object

Important Properties

Responsibilities

myTransactiveNode—The agent’s
transactive node. It represents an
agent’s perspective from within its
circuit region.

Lists of information source,
local asset, market, meter, and
neighbor objects that the asset
must interact with.

e None.

LocalAsset and LocalAssetModel™—A
local device or system that must be
scheduled by the transactive agent—a
generation or load device that lies
within the agent’s circuit region and is
“owned by” the asset. The transactive
agent knows the asset’s entire status
and strategy.

Cost parameters for
calculating production costs.
Default and active vertices for
representing the asset’s
flexibility to the locational
price.

Lists of meter and information
sources.

The object’s name and
description.

The asset’s default, minimum,
maximum, and scheduled
powers.

The asset’s production, total
production, dual, and total
dual costs.

e Given forward electricity prices,
an asset schedules its own
power and its flexibility to
change its electric power
generation or consumption in
response to changes in those
forward prices.

e Given the asset’s scheduled
powers, the asset updates its
production and dual costs,
which are used by the market
object to determine convergence
of the transactive agent’s
balancing objective.

Neighbor and
NeighborModel—Locations outside the
agent’s circuit region with which the
agent may exchange electricity.
Transactive neighbor objects are further
managed by other transactive agents of
the transactive network and expect to
exchange transactive records with this
agent.

The neighbor’s default,
minimum, maximum, and
scheduled powers.

Cost parameters that may be
used to calculate production
costs.®

Default and active vertices
that are used to represent
neighbor flexibility on a
marginal supply or demand
curve.

Demand-charge parameters.
Lists of meter and information
sources.

The object’s name and
description.

Production, total production,
dual, and total dual costs.
Ready, sent, and received
transactive records.

Boolean indicator stating
whether neighbor is
transactive or not.

Transport loss factor that may
be used to estimate transport
losses for electricity imported
from the neighbor.

¢ Given a series of forward
electricity prices, the Neighbor
schedules its own power and its
flexibility to changes in those
forward prices.

e Given the neighbor’s scheduled
powers and forward prices, the
neighbor updates its production
and dual costs.

e For every neighbor object, the
agent must prepare, send,
receive, and check for
convergence among transactive
record signals.

o [f demand charges are in play
for the neighbor object, it must
update the thresholds and
impacts of the demand charges.

Class Object

Important Properties

Responsibilities

Market

Aggregate flexibility is stored
as a list of aggregate active
vertices.

Aggregated generation total
generation, demand, total
demand, and net powers.
Aggregated production, total
production, dual, and total dual
costs.

Convergence criterion
threshold concerning the
agent’s balancing objective.
Convergence status.

Default and actual marginal
electricity prices.

Market forecast horizon and
clearing schedule.

Time interval duration.
Current market state.

Identity of preceding and any
corrected markets.

The market object must balance
electric supply and demand for
the agent, which includes these
following responsibilities.
Initiate updating of and sum
local assets’ and neighbors’
production and dual costs.
Initiate updating of and sum of
local assets’ and neighbors’
powers and flexibility
scheduling.

Maintain a current list of active
market time intervals.
Instantiate new successive
market objects as they become
needed and relevant.

Manage market lifetime and
event timing using a state
machine.

Timelnterval—A time interval object.©)

Market object in which the
time interval is relevant.
The object’s name.

The interval’s starting,
duration, activation, and
clearing times in the given
market object, as well as its
calculation timestamp.

Update market state.
A construction method exists to
enforce class structure.

IntervalValue—Measured or calculated
data that belong within their specified
time interval. For example, forecasted
price and power data must have their
respective time interval specified.

Market object in which the
value is relevant.

Object name identifier.

Source class and object that
created value.

The value and its measurement
type and units of measure.
Time interval in which the
value resides.

A construction method exists to
enforce class structure.

TransactiveRecord—transactive
record. A set of these records constitute
a signal between this agent and one of
its transactive neighbors.

Tuple of cost, marginal price,
and power, and the time
interval in which the tuple is
relevant.@

Indicator whether the record
represents scheduled power or
an inflection point on a
piecewise linear supply or
demand curve.

e A construction method exists to

enforce class structure.

Vertex—An inflection point between
lines of a piecewise linear marginal
supply or demand curve.

Tuple of cost, marginal price,
and power.

e A construction method exists to

enforce class structure.

MarketState—Enumeration of possible
market states.

The set {Inactive, Explore,
Tender, Transaction, Delivery,
Publish, and Expired}

e None.

Class Object Important Properties Responsibilities

MeterPoint—A meter source of data.) e Meter description and name. e Read a meter.
e Measurement value and type e Store meter data.
and unit of measure.
e Sample time and interval and
next scheduled sample time.
o Store time, storage interval,
and next scheduled repository

store time.
InformationServiceModel— o Information source e Update information (e.g.,
Information service or, more generally, (e.g., service and its location). forecast outdoor temperature
a source of information other than a e Information type and units of from a weather forecasting
simple meter.® measure. service).

e Object name.
e Sample time and duration, and
next scheduled sample time.

@ Two classes of types object and model were used for various base classes of the transactive network template.
The intention was to group object properties that reside with objects in static time and behavioral properties and
methods that reside modeled with objects in predicted time series. There is some value to this approach, but the
distinction will be mostly ignored within this report.

®) Fueled generator cost functions are the basis for most theory underlying wholesale electricity markets. The
transactive network template therefore facilitates calculation of production costs using a quadratic function of
power. Interestingly, these conventional cost functions are not particularly useful for determining the production
costs of other distributed generation resources.

© Time interval objects, once instantiated, remain affixed to their delivery time period. The time interval object
can therefore keep track of a market’s status, which facilitates potentially rich market timing practices. The
transactive network template should be resilient to missed calculations and system down times because of the
persistence of time interval objects.

@ Many additional tuple elements were defined for a transactive record to support anticipated future
functionality. Unimplemented, untested features will not be discussed in this report.

© As for InformationServiceModel, reference implementations are tending to ignore this class. It was hoped that
this class would facilitate platform independence.

® The reference implementations largely ignore this class. Access to some information sources will be found to
have been provided by a communication platform, as was the case with VOLTTRON. It was hoped that this
class would facilitate platform independence.

All suppliers, consumers, importers, and exporters of electricity are treated similarly and symmetrically
by the transactive network template. A consistent sign convention is enforced from the perspective of the
agent and its circuit region that the agent manages. Power and electricity entering the agent’s circuit
region via generation or importation are assigned positive values; power and electricity exiting the agent’s
circuit region via consumption or exportation have negative values. Bidirectional power flows and energy
storage assets are permitted and supported. The transactive network template allows an electricity
consumer to become a generator or an exporter to become an importer from one time interval to the next.
An important consequence of this sign convention is that, from the agent’s perspective, electric power
balance has been achieved if the sum of all electricity generation, consumption, importation, and
exportation is zero.

The balancing process is initiated upon the agent’s market object inviting all its neighbor and local asset
objects to update their schedules, price flexibilities, and production and dual costs. These scheduling
computations by the transactive network template neighbor and asset objects are precisely the
responsibilities that are to be discussed in Section 0. The market object sums the objects’ responses to
determine net power balance, net available price flexibility, and various costs that indicate whether the

balancing process has converged.! Template Version 1 facilitated only an iterative consensus negotiation
mechanism that could be solved using either of two alternative solution methods: Method 1 conducts a
sub-gradient search, in which each time interval’s price is nudged up or down based on the magnitude and
sign of the calculated duality gap. This first method requires many iterations, but it becomes necessary
when objects cannot, or choose not to, reveal the flexibility of their scheduled powers to price changes.
The balancing process ends when the duality gap has been driven to a suitably small magnitude. The
simpler, preferred Method 2 requires many fewer iterations. If all transactive network template neighbor
and asset objects reply to their market object with accurate, piecewise linear representations of their price
flexibility for each active time interval, then the clearing price may be accurately determined through
interpolation, thus requiring few if any iterations. The duality gap still is used by Method 2 to indicate
convergence, but very few iterations were needed for the simple reference implementations to date.

The authors strongly advocate for the simpler Method 2. One of its assumptions is that all objects’
production (and consumption) costs are represented by quadratic, monotonically increasing cost
functions. An implication of this common assumption is that the derivative of the quadratic cost
function—its marginal supply or demand curve—is affine. Any power function comparable to marginal
prices is therefore piecewise linear, as demonstrated by Error! Reference source not found., which
shows a cleared balancing between a price-responsive supplier and an inflexible consumer.

30
.-_.
20
= 10
2, .
B0 eeeeeeeeen @
g 0 0.03 0.04 0.05
210 price [$/MWh]
-20
@ supplier = = =consumer —@— netpower

Figure 2. A Simple Example Clearing between a Flexible Supplier and Inflexible Consumer

The price-sensitive supplier’s offer is represented by three line segments: It will never produce electricity
at any price below $0.01/MWh. It will produce a linearly increasing power between that price and
$0.035/MWh. Finally, it can produce no more than 25 MW at any price higher than that. In this case, only
two inflection points, or vertices, were needed to represent a relatively sophisticated price-responsive
production offer from the supplier.

Curves’ tails are always presumed to extend horizontally from the smallest priced vertex to negative
infinity and from the greatest priced vertex to positive infinity. The price-inflexible consumer in

Error! Reference source not found. is represented by a single horizontal line at -15 MW. This entire bid
from the consumer may

be represented by the single vertex (oo, -15).

Net power is calculated by adding powers at each marginal price. In fact, if the curves are all piecewise
linear, only power at vertex marginal prices must be added, and the power at all other marginal prices

! More precisely, the magnitude of the duality gap, which is a difference between primal and dual costs, indicates
whether the agent has converged upon a satisfactory balance of supply and demand throughout a set of forecast time
intervals.

may be found by interpolation. The corresponding clearing price occurs where the net power curve (again
piecewise linear) is zero, meaning that supply and demand are of equal magnitude (i.e., balanced).

Incidentally, the transactive network template allows and supports negative marginal prices. A negative
marginal price indicates that balancing clears to the left of $0/MWh, which requires that a supplier was
willing to reduce its production, or a consumer was willing to increase its consumption, as marginal price
became negative. While marginal price remains negative, suppliers must pay to produce, and consumers
must be paid to consume electricity.

Startup and Future Balancing Issues

System startup of transactive network template processes creates interesting challenges for the balancing
process. The market object must supply default marginal prices to the agent’s local asset and neighbor
objects, which any price-responsive object will require if it is to schedule its power. While this might
seem to be an issue only during system startup, new future time interval objects are constantly being
spawned as the system marches through time, and a default marginal price must be assigned to these new
time intervals as well to jumpstart the balancing of power in the new time intervals.

Base transactive network template classes may possess additional class properties and methods that are
not discussed in this report. In most cases, these features were included in the transactive network
template to support anticipated future functionality. We list some anticipated functionality here but warn
the reader that these capabilities are not tested and may be incomplete:

e Reserve margins. Given an increasing interest in grid resilience, properties have been proposed to
help keep track of aggregate system reserve margin. Unused, super marginal production capacity
(and potentially unengaged demand reduction, as well) might be claimed as reserve margin. The
available aggregate reserve margin might indicate the transactive network’s resilience. Alternatively,
a requirement might be stated for a minimum allowable reserve margin, and the market class clearing
process might be extended to account for the achievement and cost of this requirement.

o Asset engagement. Wholesale electricity markets perform unit commitment to preplan whether large
generators need be engaged (ready) or not. This practice is particularly important for assets that take a
long time to start up and shut down or that incur costs upon doing so.

o Fixed and fixed, avoidable costs. Fixed production costs are not typically used for unit commitment
and dispatch, but fixed costs comprise a substantial fraction of final electricity bills. And some
wholesale electricity markets are finding ways to re-compensate producers for fixed, avoidable
expenses (e.g., startup cost) they might incur. For these and other reasons, transactive systems may
need to harmonize discrepancies and unfairness due to fixed and fixed, avoidable costs.

The Scheduling Responsibility

Given a series of forward prices, each neighbor and local asset object must be able to 1) predict its power
generation or consumption, 2) calculate its predicted flexibility to change its schedule in response to
changes of said forward prices, and 3) calculate its various production and dual costs, which may include
the costs of both electricity and utility. These responsibilities are referred to here as scheduling. Each
local asset and neighbor object should be able to independently schedule itself. Each object acts in its self-
interest on behalf of its transactive agent.

The scheduling process is initiated when the local asset or neighbor objects are invited by the transactive
network template market object to schedule themselves. The scheduling processes differ slightly for
neighbor and local asset objects, as will be addressed in the next two subsections.

Scheduling of a Neighbor Object

Because the neighbor object represents a neighboring agent and its remote circuit region, this agent
(meaning the one central to the transactive network template) knows little about the remote circuit region
and its motivations and therefore uses a more standardized, hard-coded approach in its scheduling of the
neighbor object. The neighbor object maintains a copy of the last supply or demand curve that was
received from the neighboring agent in the form of a transactive signal. These curves are represented by
the inflection vertices, as has already been discussed in conjunction with Error! Reference source not
found.. Therefore, the scheduled power is simply the power at which the neighbor object’s saved supply
or demand curve intersects the current marginal price in its respective time interval. The neighbor’s price
flexibility is precisely represented by the neighbor object’s saved supply or demand curve that it received
also from the neighbor transactive agent via a received transactive signal. The production cost (or its
equivalent gross consumer surplus), excluding a constant term, may be calculated by integrating the
neighbor object’s saved supply or demand curve over the object’s viable power from its minimum
production (maximum consumption) to maximum production (minimum consumption). The dual cost is
equal to the calculated production cost (gross consumer surplus), less the energy income (outflow).

Scheduling a Local Asset Object

During the scheduling process for local asset objects, the market object expects the same calculated
results as from neighbor objects, but the scheduling of local asset objects may be much more diverse and
complex and highly specialized. This complexity can be accommodated for the local asset objects,
however, because the status of a local asset object is always fully transparent to its agent. Any strategy of
a local asset is fully known by its agent and should exist to serve the interests of the agent, as well.

Consider a battery energy storage site as an example local asset represented by its corresponding local
asset object. An asset’s owner might pose a strategy to optimize the arbitrage value of the energy to be
stored into batteries (negative power and energy, by the transactive network template sign convention)
and released back to the electric power grid (positive power and energy). This is certainly feasible to do
given a series of forward electricity prices. However, the optimization strategy must consider the site’s
limited energy storage capacity, the inverters’ charge and discharge power capacities, and the batteries’
current state of charge. This optimization is very challenging, but the optimization strategy might still be
configured to suit not only this example, but also the needs of other battery energy storage owners who
have similar basic objectives. More sophisticated battery owners might further value battery lifetime,
backup reserve capacity, maintenance periods when battery availability is to be limited, and so on.! The
potential objectives are unbounded. Therefore, many local asset battery energy storage objects will
become further specialized to address permutations of more and more operational objectives, resulting in
increasingly richer optimization strategies. For these reasons, the transactive network template establishes
an interface by which local asset objects must respond their power generation or consumption schedules,
but the transactive network template must not formalize or standardize the means by which the optimal
power schedule is calculated.?

We continue the battery energy storage example and consider its responsibility to calculate its price
flexibility. Assume that an optimal power schedule has been found. Further define residual flexibility as a

!'Upon including valued objectives in addition to electricity cost and income, one is now optimizing a utility cost
function.

2 In fact, many empirical and simplified heuristic methods and decision functions have evolved for predicting
transactive power schedules from prices. Analytical optimization should be preferred for power scheduling when
explicit forward prices exist, as is the case today for the transactive network template. Simplified approaches should
strive to approximate the results of a true optimization strategy.

10

trajectory on the marginal price plane if one time interval’s price were to be perturbed while leaving all
other forward prices unchanged. The point at the scheduled power value and current locational electricity
price is necessarily a member of the residual flexibility curve. All the other points on the trajectory may
be found while using the same optimization strategy as was used to find the scheduled power.

The opportunities represented by the residual flexibility curve are therefore respectful of the opportunities
the asset has in the other time intervals because the multi-period optimization principals are retained
unchanged. It is important for implementers to understand this ideal approach (using perturbation to
determine residual flexibility) even if shortcuts are taken.!

Regardless how residual flexibility is calculated, it should become represented by its piecewise linear
supply or demand curve. Doing so takes advantage of concise storage and simple calculations, as was
discussed in conjunction with Error! Reference source not found..

The final scheduling objective for the local asset object, to calculate production cost (gross consumer
surplus) and dual cost, proceed as for neighbor objects as discussed earlier.

Much as the transactive network template market object provided default prices to facilitate bootstrap
startup of the transactive network template balancing process, both local asset and neighbor objects must
supply a default scheduled power and default active vertices to ensure startup and resiliency of the
scheduling processes. If an agent’s transactive network template implementation is to successfully start
up, then there must exist a feasible initial solution to the balancing computation—there must exist a price
at which summed supply and load balance one another.

These default values are particularly needed by a neighbor object, which lacks knowledge of the
neighboring agent’s power needs (or offers) and price flexibility until that neighbor agent choses to reveal
such information by finally sending its transactive signal. Local asset objects are less dependent on these
defaults during bootstrap startup, but the defaults may still be used should scheduling calculations fail.

The Coordination Responsibility

Pairs of transactive neighbor agents transact; that is, they exchange transactive signals. In doing so, each
agent plays its role in the coordination of energy allocation throughout the entire transactive network of
decentralized, independent transactive agents. Neighboring transactive agents should be independent.
Each has its own unique local assets and its own unique position within the transactive network. A
neighboring transactive agent cannot even be expected to have been derived from the same transactive
network template reference implementation or to have been coded using the same computer language. A
transactive agent can decide when to send its own computed transactive signal to one of its neighboring
agents, but it cannot insist and control precisely when that neighboring transactive agent shall reply with
its (i.e., the neighboring agent’s) transactive signal. The transactive network template coordination and
signaling processes must therefore be flexible to accommodate other agents’ independence.

A transactive record pairs a forecast time interval with a record number, price, and electricity quantity.?
Neighboring transactive agents must agree on the format of a transactive record so that exchanged records
may be accurately interpreted by both neighbors. Better yet, an entire transactive network should agree
upon and enforce a standard transactive record format (along with compliant transactive network template

! Again, if optimization principles were not applied while calculating a power schedule, then there is no strong
support for calculating price flexibility. The local asset’s intertemporal constraints may be lost and violated.

2 The transactive network template transactive record class currently includes other properties such as reactive
power and voltage that will be needed for future transactive network template capabilities and versions.

11

reference implementations) as a condition of joining a transactive energy network. The transactive
network template specifies content information and structure of transactive records, but it is agnostic
concerning low-level communication protocols that must be negotiated between transactive neighbors.

At least one transactive record must be sent for each active time interval, thus revealing the agent’s
aggregate electric power that, according to its computations, is scheduled to be exchanged. This record is
assigned as “Record 0”. When only this one single transactive record is sent, the sender is saying it can
offer no flexibility to change its scheduled power as a function of the time interval’s electricity price.

If additional transactive records are sent concerning an active time interval, these records are numbered
successively using integers {1, 2, ...}. These additional transactive records represent the agent’s residual
flexibility—inflection points (“active vertices”) of the agent’s supply or demand curve in the active time
interval. At least two inflection points are necessary to represent residual flexibility.!

Neighboring transactive agents must agree which time intervals are eligible for transactions and should
therefore be represented among the transactive records that are sent and received.? The set of transactive
records for all the active time intervals is the transactive record signal.

If the transactive signals between neighbors can be represented by relatively few transactive records, each
representing an inflection point of a piecewise linear supply or demand curve, then the transactive signals
remain small and should not require much communication bandwidth. The transactive network template
is agnostic concerning the choice of communication carrier. An agent may be, but is not necessarily,
internet connected. Future transactive network template reference implementations should not specify or
require any one single communication protocol.

The coordination process is driven by the agent’s decision to send its transactive signal to a neighboring
transactive agent. It should do so upon recognizing either of two events: 1) local conditions have
significantly changed since a transactive signal was last sent or 2) the agent and its neighboring agent
disagree concerning the price or average electric power that is to be exchanged.

To determine these events, the agent saves and compares three versions of the transactive signal: 1) the
last transactive record signal that was sent, in fact, by this transactive agent to the neighboring transactive
agent, 2) the current transactive signal that is up-to-date and ready to be sent to the neighboring
transactive agent, but has not yet been sent, and 3) a copy of the most recent transactive record signal
received by this transactive agent from the neighboring transactive agent. The transactive agent should
send its transactive signal if the prepared and sent transactive record signals differ by more than a
configurable threshold magnitude. The agent should also resend its transactive signal if the prepared and
received transactive signals differ by more than another configurable threshold magnitude, providing the
neighbor’s transactive signal has been received since one was last sent. The transactive agent believes
coordination between itself and its neighboring agents has converged while neither event compels it to
resend its transactive record signal.’

! Specifically, this means there may be sets of transactive records numbered {{0}; {0, 1, 2}; {0, 1,2, 3}; ...}, but
never {0, 1}, for a given active time interval.

2 This determination concerning active time intervals and other attributes and timing of the transactions are specified
by the transactive network template market object. Neighboring agents must therefore agree on transaction rules as
specified by their respective transactive network template market objects.

3 This fully event-driven design is very flexible and forgiving. The system can ride through temporary
communication outages, but it cannot distinguish satisfied neighbors from those experiencing failed
communications. Therefore, a recommended practice is for an agent to send a transactive signal at least once during
each market time interval. Future transactive network template versions should also discount the reliability of stale
transactive signals that were not updated when expected.

12

The process and timing of inter-agent signaling, as directed by the market object, defines whether a
transactive negotiation is a bilateral auction, consensus negotiation, or other negotiation mechanism. The
transactive network templates base classes must provide methods and properties that are flexible and
sophisticated enough to facilitate many different mechanisms. This flexibility was enhanced in Version 2,
to be discussed later in this report. Had Version 1 focused on only bilateral auctions, which have intrinsic
assumptions concerning a direction of power flow and one-time price discovery, it may have been
impossible to later extend the facilitation to deep multi-agent networks and iterative negotiation
mechanisms.

Also central to the facilitation of alternative negotiation mechanisms is the exchange of net supply and
demand curves between neighboring agents. The net supply or demand curve is the sum net flexibility of
all an agent’s neighbor and local asset objects, excluding the transactive neighbor agent to which the
transactive record signal pertains. This practice comes quite naturally to those conducting bilateral
auctions in that electric load is aggregated and bid into a supply market. But this aggregation must also
take place in the creation of supply bids if alternative diverse, iterative, decentralized negotiations are to
be facilitated. The principle may be exemplified using Error! Reference source not found., which
shows a supply, demand, and summed net curve. If the supply curve is that revealed by a neighboring
agent that supplies this agent, then its transactive signal would exclude the supply curve, leaving only the
constant demand curve to be included in the transactive record signal. The points are that 1) coordination
may occur between two transactive neighbors independently from any aggregation and 2) the timing of
signal exchanges is not necessarily limited to prescribed market periods, power flow direction, or
heartbeat dependencies.

If an agent and a neighboring agent are to initiate successful transactions, each must configure generous
default representations of the other’s power capacity range. Each neighbor has an assigned minimum and
maximum power capacity that represents such capacity. The electric power received from or sent to a
neighbor may be constrained either by the abilities of the two neighbors to generate and consume
electricity or by the capacity of the electricity transport elements (e.g., conductor, transmission line,
distribution line, transformer, fuse, breaker, etc.) between the two neighbors. The capacity range may be
narrowed to powers either above or below zero if a neighbor agent is anticipated to always be an
electricity supplier or consumer.

Each agent may compute a still narrower power range to represent its residual flexibility range, wherein it
could be enticed to operate given correspondingly enticing prices. The agent’s residual flexibility may
extend to either or both the capacity constraints. On the other hand, if the transactive agent truly has no
price flexibility, its residual flexibility becomes a single scheduled power within the allowed power
capacity range.

The relationships of these various hard and soft power constraints are shown in Eq. (1). Bars below and
above average powers p represent minima and maxima, respectively, of the indicated ranges.! Transactive
records should represent the scheduled power and soft price flexibility range, if any. An agent should
offer as much price flexibility as it can (and will) via its transactive records. A transactive record between
two transactive neighbor agents should never be computed to lie outside the hard capacity constraint
range that they share. The logic of this paragraph defines and enforces the impacts of price-
responsiveness and capacity constraints during the transactive network template’s coordination of power
exchange between neighboring transactive agents.

! Observe that the transactive network template sign convention applies here. The minimum pcapacity for a
neighbor object that consumes electricity from this agent is a negative number that represents its
maximum average electric power consumption during the time interval, a negative number.

13

power capacity range

Bcapacity = Eﬂexibility < Dscheduled < Eﬂexibility < Ecapacity (1)

price flexibility range

Discussion has thus far avoided the interpretation of the agent’s electricity price. For implementations that
support only a shallow network (e.g., utilities bidding their aggregate local asset flexibilities into a
wholesale electricity market), the interpretation might not matter much. Local asset objects will schedule
themselves given any forward price schedule, regardless of its interpretation. However, for deep, greatly
decentralized networks, the interpretation of the price must be consistent with the market process and
determines whether assets are meaningfully coordinated among the many levels of the transactive
network. Marginal price is the preferred interpretation of a transactive agent’s price. It is the locational
marginal price that meaningfully compares resource opportunities and determines which distributed
resources should be dispatched.!

Whereas local assets were said to reside on a lossless copper plate representation of the agent’s circuit
region, neighbor objects are remote, do not lie on the lossless copper plate, and should account for any
losses that are incurred as electricity is imported into the agent’s circuit region. A parameter of the
neighbor class allows an implementer to configure the full-load percentage loss when importing peapacity
from the corresponding neighbor object. The lost electricity may then be estimated for any imported
average electric power magnitude.’

Losses should be applied to only imported (i.e., purchased) electricity. The importer must account for
electricity losses and the cost impacts of energy losses.® The average power to be imported from the
neighboring transactive agent must be decremented by the anticipated electricity power loss. The effective
local price of the imported electric power must be increased because more power must be purchased than
will, in fact, be received.

Transactions between neighboring transactive agents may also address demand charges if such practices
exist between them. Neighbor class properties have been provided to configure and apply such demand
charges. Specific practices may differ, but the typical practice is to add substantial monthly charges based
on the highest demand that one agent is supplied by another during the prior calendar month. The demand
charges attributable to relatively few high-demand periods in the month often constitute a substantial
fraction of the electricity customer’s monthly bill. The base transactive network template neighbor object
monitors the actual demand power and compares it with highest demand power thus far in the calendar

! Marginal price has a formal definition in wholesale electricity markets, but the definition should be relaxed
somewhat for use with decentralized transactive networks. Here, we simply refer to the marginal price function that
results upon differentiation of utility cost functions. Marginal prices differ by location and time. The important point
is that transactive network template prices should be derived everywhere using principles of cost minimization and
should not include arbitrary factors or offsets that are not founded in market principles.

2 The first version of the transactive network template does not account for reactive power flow, so losses may only
be estimated while presuming constant power factor.

3 Having the agent that imports electricity incur losses and the costs of lost energy may be politically offensive, but
it is computationally much more straightforward and advantageous. An agent’s electricity price exists for electricity
at that agent’s location. Losses are a cost of moving the electricity. If the exporter were to account for losses, it
would need to keep track of not only its locational price, but also all the shadow prices that would accompany the
values of electricity that might be exported to many neighboring agents. If the electricity importer accounts for
energy losses, it must simply compare and choose from among the values of locally generated power resources and
the corrected (increased) price of importing a neighbor’s electricity. A buyer naturally should make such resource
decisions.

14

month. The demand-charge price is added to the marginal price at and above the power demand that
would exceed the month’s prior peak demand.'

What It Means to Configure a Transactive Network Template Code
Implementation

When an implementer configures a transactive network template implementation, he establishes an
agent’s perspective and initializes the behaviors and properties of the market, neighbor and local asset
objects with which the agent must interact. This process might eventually become somewhat automated,
but the first implementations have had few, relatively time-invariant neighbor and asset objects, so
automating their registry has not been needed. Instead, these objects can be instantiated and configured
once using a script.

If an existing class adequately represents a needed object and its capabilities, the implementer may simply
instantiate that class with the new object’s name and configure its properties. If new properties or
methods are needed to represent a needed object and its capabilities, an existing class must be specialized.

What It Means to Specialize a Class

A class may be specialized by creating a new class that inherits properties and methods from another. All
the inherited properties and methods may be used by an object of the new, specialized class. However, the
parent class’s inherited properties and methods may be redefined to suit the needs and capabilities of the
new class. Specialization is to be used by the transactive network template to extend its usage to new and
unique objects. For example, the transactive network template base local asset class may be specialized to
represent battery energy storage. The new battery energy storage class may then be further specialized to
include the utility value of battery lifetime during the scheduling process, and so on.

Specialization will be most used and useful for local asset objects. Ideally, libraries of specialized asset
classes will become developed over time and made available to implementers.

Specialization should never alter the interfaces between transactive network template base classes because
doing so may affect the stability of other existing implementations that use the prior transactive network
template interfaces.

! This mix of energy and demand prices is not mathematically vigorous. The intention is to forecast and approximate
the real cost impacts of the demand charges in real time so that the impacts might be avoided. Some approximation
is unavoidable.

15

Introduction to Version 2

In late 2019, the transactive network template was revised to facilitate multiple markets and different
types of market negotiation practices. Whereas the initial implementation had facilitated only a type of
iterative consensus negotiation between neighboring transactive agents, template Version 2 facilitates
nearly any combination of consensus and auction negotiations, the temporal interactions of which may be
designed during configuration of the objects in the various market classes. The coordination of multiple
markets may be exemplified, for example, by a shaping market that is refined or corrected by day-ahead
markets, the hours of which are then corrected by hourly real-time markets, and so on.

The following important differences are observed between iterative, consensus market mechanisms and
auction market mechanisms and must be addressed if a transactive network is to broadly facilitate both
such market interactions:

o Price availability during the scheduling of assets. A consensus mechanism simultaneously discovers
both price and quantity. When an elastic asset is called to schedule its power under a consensus
market, it is explicitly provided forward prices that are also being actively discovered. On the other
hand, market prices are unknown, but may be predicted, at the time an elastic asset is called upon to
schedule its power under an auction market. This difference has implications for the sources of price
information that is available druing the scheduling of assets under alternative market types.

e Market timing models. Alternative market negotiation practices differ in how each defines market
clearing and the types and timing of negotiation activitites that must take place in respect to the
market clearing event. Especially for distributed, nested auctions, timing states must define the times
at which assets are scheduled, bids are aggregated, and prices desceminated.

e Agent timing coordination. The distinctions betweeen market negotiation practices are largely
determined by the coordination of transactive signals between neighboring transactive agents, not
changes to the markets’ balancing calculations and solution methods. This distinction would be
missed if the template had facilitated negotiations without assigning each transactive agent distinct
aggregation and price-discovery responsibilities.

Version-1 implementations instantiated market classes just once during initial system configuration and
instantiated new market time intervals as needed. That approach was found to limit the facilitation of
multiple, simultateous markets. In Version 2, new market objects must be instantiated for each member of
a market series and its unique market clearing time. A series of market objects is derived from the same
parent market class, and all its market time intervals have the same duration. More than one series of
market objects may be derived from the same parent market class, but market series must be derived from
different parent market classes if they require different negotiation activities (e.g., consensus versus
auction) or have different purposes (e.g., day-ahead versus real-time) in the system. Therefore, each
market object is assigned its own set of market time intervals as the market object itself is instantiated.
Some new logic was required in Version 2 to make sure that all the new market objects are initiated as
they become relevant and needed.

Given these fundamental differences between market treatments in Versions 1 and 2, the following
improvements were made to the transactive network template for Version 2 and will be described in
further detail in the remainder of this report:

e Market state machine. The base market class has been given a state machine that defines market
states, the basic transitions between the states, and extensible methods (which may be redefined
by children market classes) for the activities during each transition and while in each state.

16

Whereas timing was weakly designed in Version 1, Version 2 works in perpetually by having the
configuration script loop through calls to each active markets’ state machines.

e Market instantiation. The market state machine is not really relevant to a market object before a
market object has become instantiated. Prior to then, another market object must be relied upon to
instantiate the new market object when it is relevant and needed, and the new market object then
begins to transition through its own market state machine.

e Market price prediction model. Should a long set of forward prices not be discovered in parallel
with the scheduling of an agent’s assets, the market must offer a model by which prices of active
market time intervals may be forecasted.

e Asset price prediction model. Similarly, if there exist few or no meaningful foreward prices
within the forward horizon over which an asset must assess its opportunity costs, it must
somehow forecast prices over this forward time horizon and thereby assess when electricity is a
bargain or expensive.

e Balancing iterations moved to market state machine. In Version 1, the markets’ balancing method
was inherently iterative. The fact that the private method (balancing occurs at each agent, not
between agents) is iterative is not itself a problem, but intrinsic iterations are unwise because they
potentially tie up the agent’s calculations from performing other timely responsibilities.

Series of Market Objects and Relationships between Series of Market
Objects

In Version 2, a market object defines exactly one market clearing and all the timing and activities relevant
to that market clearing. This differs from Version 1, in which a market object could have many,
uncountable market clearing events.

A series of market objects must (1) derive from the same parent market class, (2) share the same market
interval duration, and (3) collectively define market delivery across the time continuum.

A simple series might, for example, consist of hour-long delivery periods, each having a market clearing
event defined some duration prior to the beginning of its hour-long delivery period. Each market object is
instantiated from the same market class, which defines its properties, including the specification of its
single, hour-long delivery period. If a market object is instantiated for each successive hour, all time may
be covered by the resulting set of delivery hours (see Figure 3).

17

Delivery LEX::I

)ﬁEﬂDnC“é{

Delivery

Inactive

Market 1

Market 1 clears

Market 1 delivery ends

= \/
-
E Negutiatiﬂ){‘a’larket Lead)‘i)eli\rer\r Leadx Delivery X{a:uncilé(Inactive
1 1 1 1 1 | Il 1 1 1 1 1 1 1 | Il 1 1 1 1
Market 2 clears Market Z delivery ends
L]
e
E X Active Xlegotiatiux Market Lead X[}eli\rer\r LeadX Delivery

]]
I I I I I I I I I I I I I I I I I I I I
[4) 5 10 15 20 25 30 35 40 45 50 55 &0 &5 TF0 Y5 B30 B85 S0 95100

Figure 3. Coordination between Successive Market Series Objects. The market delivery periods in this
example do not overlap, but the markets’ delivery periods entirely cover the time continuum.

Consider another example series of market objects defining a rolling window of 24 hour-long market time
intervals. Well before midnight, a set of 24 hour-long time intervals is defined from 00:00 until just
before 24:00 (i.e., midnight tomorrow), and these time intervals are cleared altogether by the market
(whatever that might mean for this particular series) just before midnight. A new market object is
instantiated well before and cleared just before 1:00 for the 24 hours beginning at 1:00, and so on. Each
market object defines a single clearing event even though the market time intervals are being allowed to
overlap from one market object to the next.

The relationships between different series of market objects may entail refinement and correction.
Consider a series of market objects defining a series 1-hour delivery periods and their clearing events.
This first series may be refined by a second series of market objects, each addressing a single 15-minute
market time interval. Specifically, each 15-minute time interval in the second market series is being used
to refine the hour from the first market series that it subdivides. These two series might be, but are not
necessarily, derived from the same parent market class. Each series individually provides full coverage of
time continuum, but they are different series of market objects because they have different time interval
durations. The second series having 15-minute intervals may be used to refine the coarser 1-hour intervals
of the first series. Figure 4 demonstrates a market being refined by a market that subdivides its
predecessor’s market time intervals.

In the prior example, the succeeding market might have renegotiated all the electricity as it refined the
coarser time intervals. The term correction refers a special type of refinement in which the quantities and
prices from the prior market (the one that is to be corrected) are treated as commitments, leaving the new
market to negotiate not all the electricity again, but only the changes from the scheduled powers that were
cleared in the prior market that is being corrected. A commitment flag has been provided for each market
object to indicate whether its cleared outcomes should be refined (commitment = false) or corrected
(commitment = true).

18

Market LE‘Xj Delivery Lead X Delivery

Market 2

Marketclears Market delivery starts

Active X.Iegotiatioxﬂarket Lea:}‘i)eliver\r LeadX Delivery Subinterval X Reconcile Xnacti\re

Correction Market 1 clears Delivery subinterval ends
W
Active Xlegotiatio%a rket LeaXDeIi\rer\r Lea dX Delivery Subinterval

Correction Market 2 | Correction Market 1

Il
I I I I I I I I I I I I I I I I I I I
4] 5 10 15 20 25 30 35 40 45 50 55 &0 &5 TO V5 80 35 90 55100

Figure 4. Example of a Market Series Timing Diagram that Subdivides and Corrects another Market

Object

Requirements:

Each market object defines exactly one market clearing event.

All market objects in a series of market objects are derived from the same parent market
class.

All market objects in a series of market objects use the same market time interval duration.
Collectively, the delivery periods of a series of market objects entirely cover continuous time.
Negotiations should begin for a market object after the prior market object in its own series
has cleared.

Negotiations should proceed to refine or correct any market time interval after the market
object owning the time interval to be refined or corrected has cleared.

Instantiation of New Market Objects

Template Version 2 has provided versatility of market behaviors by better managing market object

lifetimes. Many market objects must now become instantiated, live, and expire according to a market state

machine. Many market objects must be reliably instantiated as they are needed. This section discusses
how this challenge is accomplished. Once instantiated, each market object can transition through its

defined state machine and important activities that have been assigned to its transitions and states can be
performed.

At least one of an agent’s market classes must have a method to determine when a new market object
should be instantiated. Each market object keeps track of the time of its market clearing and the next
market clearing time, as well. Each market object should assess whether the time has come for the next
market object to become instantiated. A market object is relevant and needed only during the its lifetime

19

defined by the state machine. The time for a new market object may be determined from the current time
and the durations of all the states that must occur in a new market object before the next market clearing.
The new market object is created and added to the agent’s list of active market objects, and this new
market object possesses all the information it needs to determine when still another one will be needed
and relevant. Each market maintains a pointer to the market that precedes it (and likely created it) within
its series of market objects.

Multiple series of refinement markets could, in principle, propagate each series of market objects in the
fashion just described in the prior paragraph. However, complex market relationships including
refinements and corrections should all be driven from one such process rather than from multiple
independent processes. One dominant series of market objects—Ilikely the one having longest time
intervals and earliest relative clearing times—should instantiate both its own market series members and
all the succeeding markets that refine or correct the market objects being created in its own series. This
consolidation of the responsibility to instantiate needed market objects simplifies the creation of pointers
from new markets to the ones that are being refined or corrected.

Requirements:

o At least one parent market class and one of its corresponding series of market objects must
provide a method by which new series market objects, and potentially those of refining or
correcting objects, are instantiated.

o Series of market objects keep track of whether their cleared outcomes should be refined
(commitment = false) or corrected (commitment = true).

o A market object maintains a pointer (“priorMarket”) to the market object it succeeds in a
series of market objects.

o A market object maintains a pointer (“refinedMarket”) to the market object it refines or
corrects.

Base Market State Machine

Once instantiated, a market object transitions through its market state machine, thus inducing all the
market’s needed actions and events. The following market states may represent either consensus or
auction market processes. Regardless of the states’ names, the actions undertaken during the various
states may be unique for each different type of market negotiation.

e Inactive. A market object should be instantiated into this state and remains in this state until
activated.

e Active. A market object transitions to this state at a defined time prior to its market clearing and
remains in this state for the duration of a defined activation lead time.

e Negotiation. A market object transitions to this state at a defined time prior to its market clearing
and remains in this state for the duration of a defined negotiation lead time. As the name implies,
many markets are actively negotiated among agents during this state.

o Market Lead. A market object transitions to this state a defined time prior to its market clearing

and remains in this state until the market object has cleared. The purpose of this state is to provide
a duration for calculations and actions that must be completed before a market object clears.

20

e Delivery Lead. A market object transitions to this state when the market object clears and remains
in this state until the first market interval must be delivered. The purpose of this state is to provide
time for calculations and actions that must be completed between market clearing and delivery.

e Delivery. A market object transitions to this state when its time intervals begin to be delivered (a
defined time after market clearing) and remains in this state until the last time interval has been
delivered.

e Reconcile. A market object transitions to this state after the last market time interval has been
delivered and remains in this state until the outcomes have been reconciled.

o [Expired. A market object transitions to this state after it has been reconciled. Upon expiring, the
market object is removed from the agent’s list of active market objects.

A state machine defines conditions under which a market object may transition from one state to the next.
The basic state machine is defined by the base market class and should rarely need to be overridden. Each
transition and state, however, calls methods that may be overridden to define unique, critical market

activities. The state machine’s triggers, basic actions, and replaceable methods are summarized in Table
2.

Table 2. Methods Introduced by the Base Market Class for the Market State Machine

State Methods Called Triggers or Actions
Inactive Initial state upon instantiation.
Market is added to agent’s list of active
markets
transition_to_active Active period starts.
Active while in_active
transition_from_active to negotiation Negotiation period starts.
Negotiation while in_negotiation Negotiate.

transition_from negotiation_to market lead | Negotiation period ends.

Market Lead while in_market lead Collect market bids.
Market calculations.

transition_from market lead to delivery lead | The market clears.

Delivery while in_delivery lead Disseminate final market results.
Lead Prepare for asset controls.

transition_from_delivery lead to delivery Delivery of market periods begins.

Delivery while in_delivery Meter delivered electricity.
Control scheduled electric power.

transition_from_delivery to reconcile Last delivery period ends.
Reconcile while_in_reconcile Reconcile transactions.
transition_from reconcile to expire Market is reconciled.
Market is removed from agent’s list of active
markets.

Expire

21

Figure 5 provides another useful view of the state machine and its mappings to its replaceable methods.
Additionally, several of the important objects typically created in the various methods are indicated,
according to whether each is created by the iterative consensus (i.e., “iterative”) or bilateral auction (i.e.,
“auction”) negotiation mechanisms.

Inactive
O state
Negotiation E T ,::5-_ s ot = % T
Period Begins > >| transition_from_inactive_to_negotiation{) >

.l‘f received:

[iterative] ~ :.:5' TransactiveRecord
wStaten = — R 1 otdm el i d
Megotitation Period | — — — 7‘}~|whlie_m_transll:mn{|n >__ e o
[iterative] _ I e

TransactiveRecord

Megotiation Pericd = =5 TN
o - :}-| transition_from_negotiation_to_market_lead() >

wStated £ = -
} —— ==| while_in_market_lead() > —[suction] - {>~ _bid/offer
Market Lead Time >-| == =] TransactiveRecord
Market Closes —-—==

aStaten = =
(DefiverylesdTime | —==| while_in_delivery lead() >

W

n

]

~ __>‘| transition_from_market_lead_to_delivery lead() >-

[auction]

First Market = 5 = j]

. ———— == ——— == transition_from_delivery_lead_to_delivery(} {}{ Cleared price-quantity:
Interval Starts >'| >— = p i'ﬂegemrdg

aStated —
Delivary Period St —:>| while_in_delivery() >q ———
Last Market T Actual Electricity
25 STNETE)l T — = !
== >‘| transition_from_delivery_to_reconcile() > " Consumption
/ o

wStaten
Reconcile Period

—— =>{ while_in_recondgilel) >~ i

MarketTime Intervals ™ _ _ _ ~| =~ e i
elins 53 >| transition_from_reconcile_to_expired() >

Expired

Figure 5. The Lifetime of a Market Object based on its State Machine. Market activities may be assigned
to these transitions and states to drive the needed market activities.

Consensus Versus Auction Timing using the Market State Machine

The market state machine and its methods may be used to define consensus, auction, and potentially other
negotiation practices. Auction and consensus classes have been coded as children of the base market
class. The base class’s state machine works for both of the new market classes, but the new market classes

replace certain of the base classes transitional and state methods (see Table 2) to conduct actions at the
right times and in the right order.

The timing of the most important consensus and auction activities are contrasted in Figure 6. The top

panel of this figure is a representative timing diagram of market states and transitions. The actual
durations of each state are unimportant and are configurable to the needs of each series of market objects.

22

The second panel of Figure 6 shows the major activities of an iterative consensus negotiation within the
provided states. The negotiation period is most important as the window within which all prices and
quantities must be iteratively negotiated. Locally, each agent must converge on the local electricity price
and on the quantities to be generated or consumed by each local asset during the negotiation state.
Furthermore, the agent must converge with all its neighboring agents concerning the prices and quantities
of electricity to be exchanged during the negotiation state. The market lead and delivery lead states may
be short, as they simply provide a short time for agents to prepare for the delivery of the negotiated
electricity. Market clearing is not a distinct action in an iterative consensus negotiation, but, even if
fictional, it is an important anchor for timing within the market state machine.

The third and fourth panels of Figure 6 show the activities of an auction market within the market states.
Unlike the consensus approach, auctions inherently possess concepts of upstream and downstream within
a distribution system, and neighbor agents are assigned one of these directions based on the expected
power flow direction. An upstream neighbor is an electricity supplier and provides price discovery for the
local agent; a downstream neighbor is an electricity consumer and aggregates demand bids to be cleared
by the local agent during its balancing process. The third panel shows an auction agent’s actions in
respect to its upstream neighbors, and the fourth panel in respect to its downstream neighbors. Every
auction agent is welcome to prepare and aggregate its own asset bids (and offers) during the negotiation
state (not explicitly shown). The market lead state is used to send aggregated bids upstream and to receive
aggregated bids from neighboring downstream agents (third panel). The delivery lead state is used to send
cleared market offers to downstream neighbor agents and to receive such offers from upstream neighbor
agents (fourth panel). Because the auction process is not iterative, additional logic is needed to make sure
that bids and offers are coordinated throughout a string of upstream and downstream neighbor agents (i.e.,
throughout the transactive network). An agent should await bids from all its downstream agent neighbors
before it finalizes its aggregated bid and sends it to its upstream neighbor agent. Then, during the delivery
lead state, the agent should await results from its upstream neighbor’s the market clearing before clearing
its own market and sending the resulting offers to its downstream neighbor agents. The respective market
states must be long enough for this information to be conveyed throughout the network. Future work is
needed for template Version 2 to accommodate error cases when an agent fails to conduct its actions
within the provided states.

23

interval(s) reconciled

Expired .
last interval ends

Reconcile 5
1st interval start

Delivery
Delivery Lead 2
negotiations sto

Market Lead e
negotiations opel

Negotiation

Market Clearing Interval States

Inactiv

wait X send & recaive X wait X cont. & meas. X wait

Itarative

=
§
B wait X send X receive X cont. & meas. X wait
=
2
7]
=
=L
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Il
-
]
L
£
§’ wait X receive X send X cont. & meas. X wait
=
2
T
=
=L

T 1 1 1
o 5 10 15 20 25 30 35 40 45 50 55 &0 &5 70 75 20 85 30 95 100

Figure 6. Market States and Transitions applied to Iterative Consensus and Auction Negotiations

Figure 7 and Figure 8 provide different views of the differences between auction and iterative consensus
negotiation mechanisms, but these figures emphasize the activities that market objects and neighbor
models (which may be further designated by “upstream” or “downstream”) are responsible in the various
market states. Observe especially that an auction (i.e., Figure 7) possesses intrinsic ordering of neighbor
activities that is not needed in iterative consensus negotiations.

24

Market States

Activation
Time

[activation time starts]

wStatew
Active

[negotiztion time starts]

wStates
Megotiation Period

[market lead time starts]

wStatex
Market Lead Time

[delivery lead time starts]

wStatew
Delivery Lead Time

[delivery starts]

aStates
Delivery Period
[delivery ends]
«States

Reconcile Period

[reconciled]

wStates
Expired

i {mtant iate Market object

Market Activities

and its market intervals

Schedule local asset
maodel using price
forecast model

- -‘: Save market data :I
- —(Delete market object :I

Upstream Neighbor Madel

<prec

P

- ‘{Eﬂd bid upstream Eon{:9

Recieve upstream supply
offer

-
“precesds®
e

Downstream Neighbor Model

e ._éecei\re downstream bid;

eeds> <

e

== Send supply offer
downstream [once)
-—=| Meter downstream
power delivery

Figure 7. Auction Market Activities Mapped into the Market State Machine

25

Market States

Activation

5

[activation time starts]

«States ;|
Active

[negotiation time starts]

«States

Negotiation Period

[market lead time starts]

«5taten
Market Lead Time

[delivery lead time starts]

«5tatew

Delivery Lead Time

[delivery starts]

«Statex

Delivery Period

[delivery ends]

«States

Reconcile Period

[reconciled]

«Stater
Expired

Market Activities

and its market intervals

N {nstant iate Market object

Meighbor Agent Model

Convergence criteria guide these iterations. Balancing and
scheduling depends on convergence of successive prices
and schedules. The sending of signals is triggered by
disagreements between signals that have been sent,
received, and formulated.

-
v

alt iterate /

[not converged]

schedule local assets

using discovered prices

Discover local price
using scheduled powers

(Receive signals) |: Formulate signal :I
send signals Schedule neighbor
model

-—- Savemarketdata)
- —|: Delete market object :I

Meter power exchanges

Figure 8. Market and Neighbor Model Activities during Iterative Market Consensus Negotiations

Market Price Prediction

The transactive network template, as originally implemented, used consensus negotiation over a rolling
window of 24 hour-long market time intervals. This approach simultaneously discovers both prices and
quantities, so the forward prices are meaningful. Version 2 extends applicability to auction negotiations,
which perform price discovery only after bids have been submitted and which often feature single lone
forward time intervals. Therefore, Version 2 offers methods to locally estimate prices for a market’s

26

forward time intervals should explicit, discovered prices be unavailable at the time bids must be
calculated.

Given the possibilities of various levels of system sophistication, the markets preferences for forecasting
forward prices should try these methods in this order until forecasts exist for each time interval that is to
be cleared. The market object predicts prices for only its active forward time intervals, no more than that.

1. Actual market price. If a forward market time interval has already been assigned a price, this
price should be accepted and used for the market’s forward time intervals.

2. Price forecasted or discovered for this same time by a prior market object in the same market
series. If a prior member of the same series of market objects possesses a price for the forward
market time interval, this price should be adopted. This will occur only if sequential markets in a
series overlap one another.

3. Price discovered for the same time in another market object that is being corrected. If a market
object being refined or corrected possesses a price, this price should be adopted. Revised or
corrected markets must always include the market time interval that is revising or correcting the
first.

4. Price forecasted by the price model of the market series. A price model uses historical prices to
predict future prices. A simple model was provided to the base market class to update and
predicts average and standard deviation prices for the 24 hours in a day. If provided newly
cleared prices upon transitions to delivery states (when no further changes to electricity prices
should be possible), a market object can learn and predict its hourly trends. See Section 0 for
further details.

5. A static default price of the market series. As a last resort, forward prices may be assigned the
market series’ static default, which is assigned during initial system configuration. This is, of
course, less than ideal because it entirely fails to represent price dynamics.

Hourly Price Prediction Model

A list of average hourly prices and their standard deviations is provided from the base market class in
Version 2, and a rudimentary method is provided to update and retrieve price data from this model. This
section describes this price forecasting model which is now available for use by any market object that
inherits from the base market class.

Market property “priceModel” is a list of 48 values. Given an hour 4 in the range 0 to 23, the average
price for the hour is indexed in this list by 2*4, and its standard deviation is indexed by 2*a+1.

The base market class provides the low-pass filtering method
model_prices(self, datetime, price, k=14);
where parameter datetime is the time containing the prediction hour; parameter price, if provided, is a

newly discovered price datum that updates the market object’s hourly price data; and £, if provided,
specifies the time constant of the updating function based on numbers of new price data. The default

27

value k=14, for example, specifies a response time of two weeks (i.e., 14 new price data) if a new price
datum is supplied once each hour.!

When the method is used for prediction, only parameter datetime is needed. The method simply looks up
and replies the current average electricity price ($/kWh) and standard deviation electricity price ($/kWh)
that corresponds to the hour or parameter datetime.

If the method is called with both parameters price and datetime, the method uses parameter price to
update the data in the market object’s list and replies with the updated price and updated standard
deviation for the hour. The update of average price A from provided price parameter A,,,, is calculated as
in (2), and the update of standard deviation price ¢ is updated as in (3).

3 _ (k - 1) * iold + Anew ()
new —
k
A 0.5
— <(k — 1) * O-(?ld + (Anew — Anew)2> (3)
Onew = k

This price forecast model is admittedly rudimentary. Implementers are invited to replace the method if
greater sophistication is necessary.

Asset Price Prediction

Market objects call on assets to schedule their power and elasticity. Much as for the market, elastic assets
may need to forecast prices farther into the future than prices are being supplied by the market object.
Without knowledge of future prices, the asset cannot compare its current and future opportunity costs.
The new asset property “scheduleHorizon” should state the future time horizon over which an asset can
properly schedule its power. Typically, an elastic asset should have its scheduling horizon set to a
duration that is about twice the time interval over which its scheduled energy can be shifted. A 24-hour
horizon is sensible for many assets—water heaters, building air conditioning, and residential batteries, for
example—that might shift their demand by approximately 12 hours. An asset’s price horizon may be
unique to the asset and the way it is scheduled.

Think of the scheduling horizon as the forward time over which the current price opportunities must be
calibrated. The horizon may be affected both by an asset’s capabilities and by expectations about market
price patterns and volatility. Where prices have a strong diurnal trend, horizons for should be no shorter
than 24 hours.

An asset could use many means to glean or predict expected future prices for the extent of its scheduling
horizon. The following approaches are tried in this order until suitable price forecasts have been obtained
for all included market time intervals:

1. Actual market price. If prices have been provided by a market object for its active time intervals,
those prices should be used.

! Incidentally, early transactive auction implementations used only the prices from the preceding 24 hours to
calibrate opportunity costs. That practice can be implemented when k& = /, in which case the stored prices are exactly
the prior 24 updated prices. The calculated standard deviation is always zero when k = /.

28

2. Prior market price. If a price is available from a prior market object in the same series of market
objects as the one calling on the asset to schedule itself, that price should. This will occur only if
successive market objects have delivery periods that overlap.

3. Corrected market price. Similarly, if a price is available from a market object that is being
corrected, that price should be used.

4. Modeled price. As of Version 2, markets will offer prediction methods that may be mined for
suitable price predictions. (See Section 0.)

5. Static default price. As a last resort, the market object’s static default price may be adopted, but
this approach is not especially useful for predicting and anticipating price dynamics.

Assetor
MNeighbor is
asked to
schedule

5et the forward horizon to the longer
of the market's active intervals or the
asset’s own forward horizon.

Are prices explicit for
the entire forward

Use explicit prices

[ves] for entire forward

horizon? horizon
[no]
Are prices explicit for at Use available explicit
least one forward market [yes] price(s] at beginning of
interval? forward horizon

[ncl

Is a predictive
price model
availalbe?

price model for remaining

Predict forward prices from J
forward horizon

Schedule using
explicit and predicted
forward prices

As a last resort, use market's 1
static default price J

Figure 9. An Asset Model’s Price Prediction Strategy prior to Scheduling

Correction Market Translations of Prior Bids and Offers

This section discusses a general strategy to use when a market object clearing is treated as a commitment,
thus leading later markets that refine rather than replace the result of the prior corrected market clearing.
If committed, generation and consumption in the corrected market must still be accounted at that market’s

29

prices, but incremental (or decremental) energies that become scheduled thereafter are subject to newly
discovered correction market prices. The general ramification is that correction markets’ bids and offers
become translated by the power that was cleared in the market that is being corrected. Because only the
differences from the prior market are being negotiated, there is likely greater price volatility in correction
markets than in the market that is being corrected.

The following steps are performed when a new market is intended to correct a commitment in a prior
market:

1. Preliminary assumptions of data availability. The market object being corrected is assumed to
have cleared price and quantity for the time interval or intervals of interest. Asset and neighbor
objects possess scheduled powers, which reveal their cleared quantities in the market object and
time interval that is being corrected.

2. Neighbors are scheduled. Because neighbor models intentionally ignore intertemporal effects
during their scheduling, their bids or offers in the new market may be had by simply translating
their current demand or supply curves by the average electric power that was cleared and
committed in the market that is to be corrected (see Figure 10).

3. Assets are scheduled. The supply or demand curves are updated over the asset’s scheduling
horizon using the strategies of Section 0 for predicting prices. The resulting demand or supply
curves are then translated by the power that was cleared for the asset in the prior market that is
being corrected.

4. The transactive agent balances the correction market. It uses both the immutable committed
power quantities cleared in the market being corrected for each asset and neighbor and the new
bids and offers from these entities that use only the change in power from the prior clearing. A
correction market price is determined by the balancing process. The committed power quantities
cleared in the market being corrected are again subtracted from the residual supply and demand
curves that are then to be sent back to neighbors and assets.

5. The assets and neighbors note the average power quantities cleared in the correction market. The
assets use both the scheduled prior commitments and corrections to control the assets during the
delivery period.

Figure 10 offers examples how supply and demand curves from local asset and neighbors are translated
using the power that had been cleared in the prior market that is being corrected. The top curves represent
the supply and demand curves made into the prior market, and the bottom ones represent revised,
translated supply and demand curves to be bid into the corresponding correction market. Cases (a) to (c)
exhibit no change in supply or demand curve since the prior market. Their total scheduled powers would
remain unchanged if the correction market were to clear at the same price as for the one being corrected.
Case (d) exhibits a change in the general shape and position of its supply curve since the prior market.
Such changes may occur if the asset’s required utility changes, external stimuli change, or available
flexibility changes or is unavailable now that the delivery period is nearer. Even if the correction market
clears at the same price as the prior market, a correction must be made (i.e., a price paid) for the reduced
power that this generation asset is now able to offer.

Figure 10a shows the correction of a generator offer. The prior market cleared at the dashed vertical line,
which corresponds to the power commitment of the horizonal dashed line. In the correction market, the
generator effectively has two offers: First, its immutable power commitment from the prior market is
represented by an infinite horizontal line at the committed power level. Its updated supply curve (which

30

happens to be identical to its prior supply curve in this case) is translated downward by the committed
power level. Its scheduled power may be either increased or decreased, depending on the price that is

discovered by the correction market.
Figure 10b follows similar logic as for Figure 10a, but this example is for a demand asset.

Figure 10c follows the same logic still again, but this time for a flexible battery asset. The price cleared in
the prior market committed it to discharge (i.e., act like a generator) at its maximum offered discharge
rate. After this new curve is translated downward by the committed power quantity, its residual flexibility
cannot induce discharging energy regardless how high the price discovered by the correction market, but
the battery system could be incentivized to reduce its discharge and eventually charge at low correction

market prices.

Figure 10d shares the same generator supply curve into the prior market as for the generator of Figure
10a, but conditions are found to have changed for the generator since it made that prior offer. Its costs
have decreased, as shown by a leftward shift in its offer; it has much less supply to offer, as shown by
how low its powers become after its translation; and its flexibility has diminished, as shown by how little
change in power is offered. Even if the correction market were to clear at the same price as the prior
market, this generator must reduce its scheduled supply power and probably pay to do so in the correction

market.

AD ! AD | AD |
) i 1 b1 /T 1" ! 2
s 4 ; e
| | |
v v v
AD ' AD : p | AD :

/ A 7 2 ; j
S+ — s +— "
e s « 5 s
(a) (b) (©) (d)

Figure 10. Correction Market Translations of Example Asset’s or Neighbor’s Supply or Demand Curves.
Cases include corrections of (a) a generator offer, (b) a demand bid, (c) a battery system bid or
offer, and (d) a generator, where its available flexibility and costs have changed since its offer
into the market object that is being corrected. (p is power and A is price)

31

Configuration Example

The current PNNL Transactive Campus Project is to be revised to demonstrate and test the transactive
network template’s new Version-2 functionality. Specifically, the current 24-hour rolling window of
hourly consensus iterations is to be replaced by a single day-ahead bilateral auction that clears once per
day at 9:45 prior to its first delivery hour at 10:00. Additionally, the results of the day ahead market are to
be refined by a real-time bilateral auction that corrects commitments from each day-ahead hour using four
subdivided 15-minute intervals. This section discusses critical configuration steps that will cause the
desired market behaviors. Python configuration code will be used as an example. The intention of this
section is to introduce important principles, not to offer complete code.

Assume the auction is being configured for agent using object “dAA”. The following line would occur
very early in its configuration script. This is important because its is this object that will keep track of all
the active market objects:

myTN = myTransactiveNode()

State Machine Driver

Each agent’s configuration script should conclude with a small code loop that has each current market
object update its market state and all its corresponding activities and events. Assuming node “myTN” has
been instantiated to represent the local transactive agent, this following snippet of Python code will
recursively call on active market objects to move through their state machines.

For x in range(len(myTN.markets)
myTN.spawn_markets()
myTN.markets[x].events()

At least one market object must be configured to start the process. In our current example, a script must
be used to instantiate the very first day-ahead market object and assign its properties. Thereafter,
successive day-ahead markets will be instantiated as they are needed. Because the real-time market
objects correct the day-ahead market objects, it is preferable to have the real-time correction markets
instantiated at the same times as the day-ahead intervals that are to be corrected. This means that the day-
ahead market’s method spawn_markets() must be replaced to also generate the needed real-time market
objects.

Day-Ahead Market Configuration

Many the auction day-ahead market’s behaviors may be used directly from the auction base class, but the
auction base class must be specialized here to have the day-ahead markets instantiate the corresponding
real-time correction markets. Therefore, a preliminary step is to create new child class DayAheadAuction’
and use this new class to redefine method spawn markets():

class DayAheadAuction(Auction):

def spawn_markets():

! The implementer is free to choose the class name, but it should be descriptive of the extension that is being made.

32

The very first day-ahead market is instantiated within a configuration script as follows:

L.

Instantiate the first day-ahead auction market object from the newly extended auction class, which is
a child of the transactive network template auction and base market classes:

dAA = DayAheadAuction()

Assign the new auction object 24 market intervals. This, in conjunction with the defined interval
duration, establishes the market delivery period duration:

dAA.intervalsToClear = 24

Assign the interval duration. This, in conjunction with the number of intervals to clear, establishes the
market delivery period duration:

dAA.intervalDuration = deltatime(hours=1)

Assign the current market clearing time for the market that is currently in delivery. This may point to
either 9:45 today or 9:45 yesterday (i.e., 15 minutes before delivery), depending on the current time.
This assignment anchors the timing of all future market clearing times:

dAA.marketClearingTime = datetime(year=2019, month=11, day=10, hour=9, minute=45,
second=0, microsecond=0)

Assign the market clearing interval. Doing so establishes the series of future market clearing times:
dAA.marketClearinginterval = deltatime(hours=24)

Assign the next market clearing time using the current market clearing time and market clearing time
interval. This time will determine by when the next day-ahead market object will be needed.

dAA.nextMarketClearingTime = dAA.marketClearingTime + dAA.marketClearingInterval

Assign a name to this market series, which should be the root of all future market object names in this
series:

dAA . marketSeriesName = “Day Ahead Market”

Assign state durations. These will be used to trigger certain state transitions in respect to market
clearing times. It may be helpful to refer to the state machine of Figure 6. There is some freedom
while assigning these durations. Each duration must be long enough to conduct all agent calculations,
and the sum of all the lead times should not induce market negations before the prior market object
has cleared.

dAA deliveryLeadTime = deltatime(minutes=15)
dAA.marketLeadTime = deltatime(minutes=15)
dAA negotiationLeadTime = deltatime(minutes=30)
dAA activationLeadTime = deltatime(minutes=0)

Confirm that the results of this day-ahead clearing are commitments to be corrected in the later real-
time markets:

33

dAA.commitment = True

10. The market should be instantiated in its “Inactive” market state. The market state will be quickly
corrected by calls to method events() that exercise the market object’s state machine.

dAA.marketState = MarketState.Inactive

11. Place the configured day-ahead market into the agent’s list of markets. By doing this, the market
object will be placed in a queue and matriculate through its state machine.

myTN.markets = [dAA]

Real-Time Market Configuration

As discussed above, real-time market object should be instantiated within the replaced spawn_markets()
method of class DayAheadAuction, not in the configuration script. Therefore, the day-ahead market’s
method spawn_markets() should instantiate not only the next new market object in its own series, but also
all the real-time correction markets that will be needed to correct all the day-ahead time intervals. Let
“new_ dAA” reference the newly instantiated day-ahead market. The following code elements would be
placed in the replaced spawn_markets() method:

1. The code inherited from the base market classes is probably adequate for the instantiation of the next
day-ahead market object:

super().spawn_markets()
Let “new_dAA” reference the newly instantiated day-ahead market.

2. Real-time auction markets must be instantiated to fully cover the delivery period of the day-ahead
market object. A loop is created, and real-time market objects are instantiated to cover the entire day-
ahead delivery period. The base auction class is suitable for the real-time market objects because no
new behaviors are needed. Because the instantiation steps are like those for the day-ahead markets
above, the steps will not be separately enumerated:

deliveryStart = new_dAA.marketClearingTime — new_dAA.deliveryLeadTime
deliveryEnd = deliveryStart + new_dAA.marketClearingInterval

while deliveryStart < deliveryEnd
rTA = Auction()

rTA.intervalDuration = deltatime(minutes=15)

rTA.deliveryLeadTime = deltatime(minutes=5)

rTA.marketClearingTime = deliveryStart — rTA.deliveryLeadTime
rTA.marketClearingInterval = deltatime(minutes=15)

rTA.nextMarketClearingTime = rTA.marketClearingTime + rTA.marketClearingInterval
rTA.marketLeadTime = deltatime(minutes=>5)

rTA.negotiationLeadTime = deltatime(minutes=5)

rTA.activationLeadTime = deltatime(minutes=0)

rTA.marketSeriesName = “Real-Time Auction”

rTA.name = rTA.marketSeriesName + “_” + str(deliverStart)

34

rTA.marketState = MarketState.Inactive
myTN.markets.append(rTA)
deliveryStart = deliveryStart + rTA.intervalDuration

Now, every time a new day-ahead market become instantiated, 96 real-time market objects will also be
instantiated. Each markets remains in an inactive state in the agent’s queue until it becomes time for it to
transition into its negotiation state, as prescribed by the market state machine.

Suggested Future Work

The transactive network template was designed as a template for implementing transactive energy
implementations in the electricity domain. Its object-oriented design establishes a structure of object types
and object behaviors that will be needed to represent any circuit region within a transactive network. A
useful separation of computational responsibilities has been designed into the transactive network
template’s base classes. Local asset objects schedule electricity consumption and generation and can
thereby represent the price flexibility of an extremely diverse set of devices and systems. Market objects
ensure that a local price is discovered that will balance the supply and demand of all electricity to be
generated, consumed, or exchanged in the agent’s circuit region. Neighbor objects manage the
coordination that must occur between neighboring agents. The transactive network template further
supports extensibility to address new grid objectives and, especially, to engage new local assets devices
and systems and their unique scheduling needs and strategies.

The remainder of this section shall address future improvements of the transactive network template.

Power Flow Improvements

The current transactive network template version facilitates a simple pooled market approach to represent
electricity exchange between transactive neighbors. Neighbors are presumed to be able to exchange
electrical power within stated capacity limits. Reactive electric power and voltage are neither tracked nor
managed in the transactive network. This simplification may be necessary and justified given the current
reluctance and limited abilities of real-world entities to meter and, worse yet, accurately forecast their
voltage or reactive power. Transport constraints and losses can be estimated as functions of electric
power even though transport constraints and losses should be more accurately stated as functions of
electric current. Admittedly, however, applications in microgrids and in circuits having high penetrations
of intermittent renewable resources may necessitate voltage management that cannot be adequately
addressed by the current transactive network template version.

Two improved versions of the transactive network template market base class are foreseen to better
facilitate reactive power and voltage management. First, DC power flow principles should be applied to
introduce reactive power flow and voltage and to estimate their interdependency. Voltages differences are
estimated using DC power flow, so voltage constraints may be introduced and addressed upon its
implementation. Reactive and real power flows are frequently decoupled in transmission system studies,
where per-unit voltages lie close to unity and where transmission impedances are predominantly reactive,
but this decoupling is not justified in general. The transactive network template can be applied to
distribution and even smaller circuit regions. DC power flow models are generally stable, giving one hope

35

that the decentralized application of these principles to the transactive network template might also be
reliable and stable.

Eventually, a transactive network template market version using full, accurate AC power flow principles
should be developed to accurately address circuit voltages. Unfortunately, the resulting equations are
difficult to solve and may be found to introduce instabilities and reduced reliability to the transactive
network template markets’ balancing process.

The success of these improvements in the field may be limited by implementers’ willingness to monitor
and forecast their reactive power and voltage. Forecasts throughout the transactive network may, in fact,
become less accurate if transactive agents misstate their voltages and reactive power needs and pay no
penalty for doing so.

Whereas the current transactive network template version has its transactive neighbor and local assets
similarly participate in the market object’s balancing objective, future versions implementing DC and AC
power flow principles will require new balancing calculations be used for the transactive neighbor
objects. In the new versions, power exchange should not be independently asserted. Instead, power
exchange is necessarily dependent upon the local circuit region’s voltage, the neighbor circuit region’s
voltage, and the impedances of the interceding transport elements. A transactive agent may take actions to
change its own complex voltage, but it cannot change other remote circuit regions’ voltages in what might
be a highly meshed electrical network. And its ability to do so might be heavily constrained by a
constraint on local voltage, other neighbors’ voltages, and constrained power flow capacities.

Support Financial Transactions

Pilot implementations of transactive systems have had their dynamic locational prices enforced to
differing degrees. The transactive networks’ dynamic prices have frequently been permitted to diverge
from electricity billing practices and are therefore ignored or must be corrected when calculating actual
customer bills. The current transactive network template design anticipated flags to mark agents’
commitments to prices and quantities. A reconciliation market state was created to allow time for market
outcomes to become resolved and settled. The revenue implications and practices for those who
implement and participate in transactive networks may be significantly more dynamic than those that
predominate today. Transition to a transactive world will be considered risky. The connections between
transactive network processes and electricity billing practices must be facilitated and tested.

Training Tutorials

PNNL has attempted to teach the transactive node template to other potential implementers for the
establishment of new transactive networks. Success has been mixed. The reference implementation is
relatively new and fragile and is admittedly limited in the types of interactions and asset models that have
been coded. The template introduces concepts and definitions that are foreign, at first, to many
implementers.

The entire PNNL campus network implementation has been offered as an example, but this example has
shortcomings. The implementation is closely integrated with the Volttron communication platform and is
not easily exercised without also teaching and implementing the Volttron platform. Furthermore, its
commercial building asset models are not fully compliant with the template’s base classes.

For all these reasons, a simple reference implementation and tutorial are needed.

36

1. The student should develop one and only one agent’s perspective without having to plan and
implement an entire network. Working code for the tutorial’s implementations should be
downloadable and able to be run apart from any presumed computational or communication
platforms.

2. The tutorial’s starting point should possess just one example asset. The asset should at first have a
constant, inelastic demand, but the tutorial would teach the student to create increasingly time-variant
and price-responsive behaviors for the asset. The student would be led through the process for adding
another new asset.

3. The tutorial must supply a non-transactive neighbor with which the student’s agent interacts. The
tutorial should then introduce the student to an emulated transactive neighbor with which transactive
signals may be exchanged. The student would be taught to connect with a new transactive neighbor in
the network.

4. Finally, the student would be taught to modify the provided market configuration, to implement
anotehr market to refine the first, and to create other new market behaviors.

Having completed these tutorial steps, the student would be prepared to apply the transactive network
template and its principles and construct a new transactive network.

37

Appendices

Appendix A: Recommended Relational Database Structure

Appendix B: Methods to Harmonize Dynamic Prices and Approved Ratesoeoeeeaee.

Appendix C: Accommodating Matching Engines in TENT

38

Appendix A: Recommended Relational Database Structure

This appendix depicts tables and views of a relational database that could be used to capture data from the
transactive network template. For clearer presentation, the database has been parsed into multiple
diagrams. Each diagram features one relational table (highlighted in yellow) and the important primary
and secondary key relationships between the table and other database tables or enumerations. While
current reference implementations of the transactive network template address data collection according
to platform preferences (e.g., the Volttron environment), future versions of the transactive network
template should facilitate this recommended database to make future system implementations more
platform independent.

Figure A.1. Information Service Table Relationships 40
Figure A.2. Interval Value (for other than for Vertices) Table Relationships 41
Figure A.3. Interval Value (for Vertices) Table Relationships 42
Figure A.4. Local Asset Table Relationshipsc.ooiiiini. 43
Figure A.5. Market Object Table Relationshipsccooevviiiiinin, 44
Figure A.6. Market Series Table Relationshipsc.cooiiinn. 45
Figure A.7. Meter Point Table Relationshipscooon. 46
Figure A.8. Neighbor Table Relationshipsccoovviiiiiiiinn.n... 46
Figure A.9. Time Interval Table Relationshipsocooiiiiiiii. 47
Figure A.10. Transactive Record Table Relationships 47
Figure A.11. Vertex Table Relationshipsccooeiiiiiiiiiiiiii i, 48

39

«table»
InformationService

«column»
*PK informationServiceld: KEY
*FK ownerObject: KEY
measurementType: KEY
measurementUnit: KEY
address: TEXT
class: TEXT
description: TEXT
lastUpdate: DATETIME
name: TEXT
updatelnterval: DATETIME
file: TEXT
serviceExpirationDate: DATETIME
license: TEXT

I T

- updated.

An InformationService Table entry should be
- { made each time the source or license is

(associatedObjectld =
informationServiceld)

«table»
IntervalValue(Other)

See another diagram
for the complete
IntervalValue(Other)
Table perspective and
its view.

1
(all others)

«iew»
Information Service View

- update_datetime

- information_service_id
- name

- class

- description

- address

- measurement_type

- measurement_unit

- update_interval

- file_name

- service_expiration_date
- license

«column»

*FK associatedObjectld: KEY]|
* recordType: KEY

* value:REAL

~ { The Information
Service Table and
View keep track of
active and historical
information services
like web services.

«enumerati...
MeasurementType

«enumerati...
MeasurementUnit|

(RecordType =
recordType),

«enumeration»
RecordType

IS-Predicted Value

LA - Active Vertex
LA-Dual Cost

\L LA-Engagement Schedule
LA-Production Cost
LA-Reserve Margin
LA-Scheduled Power
MKT - Active Vertex
MKT - Dual Cost

MKT -Marginal Price
MKT - Net Power

MKT - Production Cost
NM - Active Vertex
NM-demand_Rate
NM-demandThreshold
NM -Dual Cost

NM - Production Cost
NM -Reserve Margin
NM -Scheduled Power

Figure A.1. Information Service Table Relationships

40

The market object key can be derived «table» «enumeratim
from the Timelnterval object. IntervalValue(Other) MeasurementType
'
! «column»
«table» *PK intervalValueld: KEY 4 A
Timelnterval (timelntervalld = *FK associatedObjectld: KEY / |
timelntervalld) *FK timelntervalld: KEY / !
«column» ” * measurementType: KEY // :
*PK timelntervalld: KEY * measurementUnit: KEY 7]
*FK marketld: KEY * associatedClassType: TEXT T A | (U
* startTime: DATETIME * associatedObjectClass: TEXT / MeasurementUnit
v\ (associatedObjectld—| : class:'TEXT=IntervaIVaIue(Other) measur/ement_type
AN = marketid) * ::cmOSdI::g KEY / =7
- 8 s
(marketld =marketid) q * timeStamp: DATETIME -
N * value: REAL measyrement_unit
N 7
«table» N /t\ e
MarketObject N N | 4 «enumeration»
. N . . time stall'np RecordType
«column» interval_sta rimg_tlme value! ’ -
*PK marketld: KEY N : , o~ (RecordType = IS-_Precljlcted Value
*FK marketSeriesld: KEY N - d LA-Active Vertex
. . iy ~ e - recordType) LA-Dual Cost
marketClearingTime: DATETIME S~ N | .~ i o
-~ Interval Value View LA Engagement Schedule
market_clearing_time . A=l m Cqst
~= ime_stamp LA -Reserve Margin
(marketSeriesld = marketSeriesld) ~~|- source_type LA -Scheduled Power
- source_name | C—— > MKT - Active Vertex
- market_series_name record_type MKT - Dual Cost
«table» - market_clearing_time MKT - Marginal Price
MarketSeries - interval_starting_time MKT - Net Power
ez M2 rket series name __ _ [- record_type MKT - Production Cost
«column» - measurement_type NM - Active Vertex
*PK marketSeriesid: KEY - measurement_unit NM-demand_Rate
* name: TEXT - value NM -demandThreshold
' NM-Dual Cost
H NM -Production Cost
, NM -Reserve Margin
L NM-Scheduled Power

The source type and name reference the object
that created the IntervalValue row. The
sources may be Neighbor, LocalAsset, Market,
MeterPoint, or InformationService objects. In
the InvervalValue(Other) Table the source is
referenced by the associatedObjectld.

Figure A.2. Interval Value (for other than for Vertices) Table Relationships

41

(vertexid =

table
(:I A 2 I vertexid) «table» '
ertex 1 IntervalValue(Vertex) The enumerations MeasurementType and
(ownerld = MeasurementUnit are not necessary here because
«column» intervalValueld) 1l «column» the Vertex object is specified to pair marginal price
*PK vertexId: KEY M *pk intervalvalueld: KEY _] [$/kWh]and average electric power [kW].
* i H . L -~ -
B me rgln.aIPrlce. REAL V *FK associatedObjectld: KEY
power: REAL N *FK timelntervalld: KEY
N (timelntervalld= | *fK vertexld: KEY
T N timelntervalld) * recordType: KEY «enumeration»
T ‘H_)/ * associatedClass: TEXT RecordType
N * class: TEXT =IntervalValue(V... 'S -Predicted Val
«column» power, , LELICBUSKY LA Aret'lc 3 ta -
rice g . RecordType = SACUNCAVCTLES
*PK timelntervalld: KEY P N HimestampDATENIME recordT;I;e LA-Dual Cost
*FK marketld: KEY AN A LA-Engagement Schedule
* startTime: DATETIME [\~ _ - AN time st LA- Production Cost
N . . |me_'s amp LA-Reserve Margin
(marketld =marketld) |nterva|_stirt|ng_t|me _' LA-Scheduled Power
S e «view» MKT - Active Vertex
— >SS - Vertex Interval Value View MKT - Dual Cost
«table» ~ = - i i
MarketObject Y- time_stamp recgrﬁ_type- -7 mg x:tr'g;:vilel:rlce
market_clearing_time SEIITEE iy - MKT - Production Cost
«column» <o —— === —— - source_nhame NM - Active Vertex
*PK marketld: KEY - market_series_name NM-demand Rate
*FK marketSeriesld: KEY - market_clearing_time NM -demandThreshold
* marketClearingTime: DATETIME - interval_starting_time NM - Dual Cost
- record_type -
(marketSeriesld = |- power ,’:“m) :roductloMn CO,St
marketSeriesld)4— . -~ 7| - price . -Reserve Viargin
market_series_name . NM -Scheduled Power
«table» - AN
MarketSeries e - AN
«column»
*PK marketSeriesld: KEY Thg source type and name reference the
* name: TEXT object that created the
] IntervalValue(Vertex) row. The sources

may be Neighbor, LocalAsset, or Market
objects. In the InvervalValue(Vertex) Table
the source is referenced by the
associatedObjectld.

Figure A.3. Interval Value (for Vertices) Table Relationships

42

«table»
LocalAsset

«column»
*PK localAssetld: KEY
assetClass: TEXT
costParameters: REAL
defaultPower: REAL
defaultVertices: KEY
description: TEXT
engagementCost: REAL
location: TEXT
maximumPower: REAL
minimumPower: REAL
name: TEXT
transitionCosts: REAL
update_datetime: DATETIME

PRI IR I B T S

H(aﬁociatedobjectld = |

A

«view»
Local Asset View

- update_datetime

- local_asset_id

- name

- class

- description

- location

- cost_parameters [3]
- default_power

- engagement_cost [3]
- maximum_power

- minimum_power

«table»
IntervalValue(Other)

(associatedObjectld =—
localAssetldy”” «

«column»
*FK associatedObjectld: KEY

recordType: KEY

—

(RecordType =
recordType)

«table»
IntervalValue(Vertex)

IocaIAssetId)_‘

«column»
*FK associatedObjectld: KEY
*FK vertexld: KEY

recordType: KEY

RecordType =
[—recordType

(ownerld =
localAssetld)
Ll

The owner ofa
"default" vertex is its
LocalAsset, Neighbor,
or Market object.

(vertexId =vertexId)
1 Teal
; +
«table»

Vertex

«column»
*PK vertexId: KEY|
*FK ownerld: KE
* type:KEY

I

(VertexType =type)

«enumeration»
VertexType

1-Active
2 -Default (static)

| The ownerofan

"Active" vertexis its
IntervalValue(Vertex)
object.

Figure A.4. Local Asset Table Relationships

43

«enumeration»
RecordType

IS-Predicted Value

LA - Active Vertex
LA-Dual Cost
LA-Engagement Schedule
LA-Production Cost
LA-Reserve Margin
LA-Scheduled Power
MKT - Active Vertex
MKT - Dual Cost

MKT - Marginal Price
MKT - Net Power

MKT - Production Cost
NM -Active Vertex

NM -demand_Rate

NM -demandThreshold
NM - Dual Cost

NM - Production Cost
NM -Reserve Margin
NM -Scheduled Power

«table»
MarketSeries

«column»

*PK
*
*

*

marketSeriesld: KEY

name: TEXT
marketClearinglnterval: DATETIME
intervalsToClear: INTEGER

(marketSeriesld =
marketSeriesld)

market_series_name,

number_of_market_intervals,

total_delivery_hours,™

«view»
Market Object View

- market_id

- number_of _market_intervals
- market_cllearing_time

- delivery_start_time

- total_delivery_hours

- total_generation

- total_demand

- total_production_cost

- total_dual_cost

market_name
market_series_name

'
'
.
'
'

The Market Object
Table and View keep
records of spawned
market objects.

(associatedObjectld =

marketld).

«table»
MarketObject _- -7
-
-
«column» =
*PK marketld: KEY
*FK marketSeriesld: KEY
* marketClearingTime: DATETIME ~ f---- S
* pame:TEXT | TTTTT
* totalDemand: REAL
* totalDualCost: REAL
* totalGeneration: REAL
* totalProductionCost: REAL
(associatedObjectld =
marketld) (marketld =
marketld)
«table»
IntervalValue(Vertex)
«table»
«column» Timelnterval
*PK intervalValueld: KEY
*FK associatedObjectld: KEY «columny»
*FK vertexld: KEY *PK timelntervalld: KEY
* recordType: KEY *FK marketld: KEY

:':

(ownerld =
intervalValueld)

{type ="Active"}

«table»
Vertex

«column»
*PK vertexld: KEY
*FK ownerld: KEY
* type: KEY

(VertexType =type)

«enumeration»
VertexType

vertexld)

1
{type ="Active"}

1-Active
2 - Default (static)

(vertexid = \\

RecordType =
recordType

«enumeration»
RecordType

IS- Predicted Value
LA-Active Vertex
LA-Dual Cost
LA-Engagement Schedule
LA-Production Cost
LA-Reserve Margin
LA-Scheduled Power
MKT - Active Vertex
MKT - Dual Cost
MKT - Marginal Price
MKT - Net Power

MKT - Production Cost
NM - Active Vertex

NM -demand_Rate
NM-demandThreshold
NM-Dual Cost
NM-Production Cost
NM-Reserve Margin
NM-Scheduled Power

«table»
IntervalValue(Other)

«column»
*FK associatedObjectld: KEY
*FK timelntervalld: KEY
* recordType: KEY

(timelntervalld =.
timelntervalld)

(RecordType =
recordType)

Figure A.5. Market Object Table Relationships

44

«table»
MarketSeries

«column»

*PK marketSeriesld: KEY

I T T

initialMarketState: KEY
method: KEY
marketClass: TEXT

name: TEXT

commitment: BOOLEAN
duration: DATETIME
defaultPrice: REAL
dualityGapThreshold: REAL

marketClearinginterval: DATETIME

futureHorizon: DATETIME
intervalDuration: DATETIME
intervalsToClear: INTEGER
lastUpdate: DATETIME
marketOrder: INTEGER

I

A

«view»
Market Series View

last_update
market_series_id
market_series_name
class_name
commitment
default_price
duality_gap_threshold
future_horizon
initial_market_state
market_clearing_interval
interval_duration
number_of_intervals_to_clea
market_order

method

(marketSeriesld =
marketSeriesld)

«table»
MarketObject

«column»
*FK marketSeriesid: KEY

(initialMarketState = «enumerati...
MarketState key)————| MarketState
—7
7
——~_ (method = s

MarketMethod key) VZ -
e

\ Ve «enumerati...
s
‘o MarketMethod
At - - -
N
// * -
N
7 N ///
7 \//
<
L/ _-"%
- \
/// ~
// N

For each market
---------- series, many market
objects will likely be
spawned.

This refers to the
state machine and
market states that
were defined in TENT
Version 3.

In TENT Versions 1 & 2, this referred to whether
balance points were found by iteration or by
interpolation. This distinction is handled by the
new market state machine introducedin
Version 3. recommend this be used to
reference the nature of the market series price
discovery (e.g., "auction," "game," etc.)

The Market Series Table and View keep track of the
- <. __ | marketclasses from which market objects are
spawned. There might be just one entry, but there
could be many having priority indicated by the

revised and updated.

market_order parameter. Arecord should probably be
added or overwritten each time the market class is

Figure A.6. Market Series Table Relationships

45

MeterPoint %
«column» «enumerati...
*PK meterPointld: KEY MeasurementType
*FK associatedObjectld: KEY
* measurementType: KEY . .
* measurmentUnit: KEY (associatedObjectld = IntervalValue(Other) =) =7 /\
% class: TEXT 1 meterPointld) 7 [
* description: TEXT I «column» - - :
* lastUpdate: DATETIME *FK associatedObjectld: KE - |
* meaasurementinterval: DATETIME Pid |
* npame: TEXT P e |
* storelnterval: DATETIME Ve !
* writeFile: TEXT - «enumerati...
-~ M .
/\ e/ ementUnit
| AN e -
. - -7
| \ Ve -
| \ Ve _-"
| . e _-"
| ~ P - _-
-~
| AN - -~
s N -
P’g _-"
Meter Point View = LN e
' Y -
~ -
- update_datetime s -7 .
- meter_point_id /’/,/’ AN
- meter_point_name N
- meter_point_class N
- meter_point_description
- owner_object_name =~ ---J The Meter Point Table and View keep track of individual
- owner_object_class measurements that are available from a meter. Each meter
- measurement_type has an associated object, or owner, and that object must be
- measurement_unit referenced to getits name and class. (Owner classes differ,
- measurement_interval so this dependency is not shown in this diagram.)
- filename
Figure A.7. Meter Point Table Relationships
«table» (ownerObject = «table» . . «table»
InformationService neighborld) I Neighbor (assoc@tedobjectld = IntervalValue(Other)
1] I neighborld)
«column» «column» T «column»
*FK ownerObject: KEY *PK neighborld: KEY *FK associatedObjectld: KE
* class: TEXT * recordType: KEY
* .
«table)f (associatedObjectld) convergenceThreshold: REAL i
MeterPoint =neighborld) costParameters: REAL
“nelghbor N+ defaultPower: REAL crr
., i Record type keeps track of historical and
«column» deSCI’I'ptlon.TEXT current time series values for the
*FK associatedObjectld: KEY * effectivelmpedance: REAL neighbor object.
(neighborld = * friend: BOOLEAN
R g b isTransactive: BOOLEAN (associatedObjectld =
«table» neighborld) ne X -
TransactiveRecord] sl bie DAEE 1 neighborld)
* name:TEXT] «table»
ol A IntervalValue(Vertex)
*FK neighborld: KEY | ccolumy
* H H .
direstioial X L *PK intervalValueld: KEY
Javiewes *FK associatedObjectld: KEY
Neighbor View
P (ownerld=_,
«enumeration» : as _up: a.e neighborld) (ownerld=£<".
: : - neighbor_id N . BRI
Direction - ey game ' intervalValueld) AR
_ ' yy— f
1 Readyto Send - neighpor_class «tabley An Acdt';’e ve'rttex s |
2 Received - description Vertex ownedbyaninterva
3 Sent - convergence_threshold a "Default (static)" value.
- cpst_parameters [3] vertex is owned by a «column»
- default_power neighbor, local asset, *EK ownerld: KEY
- effective_impedance or market object.
- friend
- is_transactive

(VertexType =type)

«enumeration»
VertexType

1-Active
2 - Default (static)

Figure A.8. Neighbor Table Relationships

46

(timelntervalld =
timelntervalld)

«table»
TransactiveRecord

«column»
*FK timelntervalld: KEY

(marketld =
«table» marketld) __— *
MarketObject *
«column»

*PK marketld: KEY

«table»
Timelnterval

«table»

(timelntervalld =
IntervalValue(Vertex)

timelntervalld)

«column»
*PK timelntervalld: KEY
*FK marketld: KEY
* startTime: DATETIME
timeStamp: DATETIME
duration: DATETIME
* name:TEXT

A N

(timelntervalld =
timelntervalld)

«column»
*FK timelntervalld: KEY

«table»
IntervalValue(Other)

«column»
*FK timelntervalld: KEY

~ I
~ ~
~ | S
market_name | S
AN : N
~. «view» S
S Time Interval View S
~ time_stamp The Time | I Table and View k kofth
- time_intervalid | | eTime r(ljtﬁrva .a Ieank Ie.W e.ep'tracI oft I’]e
- time_interval_name current and blstorlia msAr ettime intervals as they
- market_id are created by market objects.
- market_name
- start_time
- duration
Figure A.9. Time Interval Table Relationships
«table» «table»
Neighbor (neighborld = TransactiveRecord
ccolumes ” neighborld) The direction key lets it be known whether
*PK neighborld: KEY . «columny the transactive record was sent, received,
. name~TEX'|: *PK tra‘nsactlveRecordId:KEY oris calculated and ready to send to the
- N FK n.e|ghborld:KEY Neighbor, which can be indicated by an
neighbor_name *FK timelntervalld: KEY enumeration.
N (timelntervalld = direction: KEY .
«table» u « timelntervalld) | marginalPrice: REAL \
Timelnterval T PO S S,
AN * record: INTEGER K
) i «enumeration»
Keolamns A N * timeStamp: DATETIME St
*PK timelntervalld: KEY N /\
*FK marketld: KEY N ! AN 1 Ready to Send
* startTime: DATETIME V\market_id, N\ N (all others) AN 2 Received
start_time N 1 N =7 3Sent
S L « direction
(marketld =marketld) e «view» PR
N Transactive Record PN
~
~ e ~
«table» 1. time_stamp - N
MarketObject - transactive_recordld ™
market_clearing_time [- neighbor_id The Transactive Record Table keeps precise track of
*«column» e ——————— - neighbor_name signals that are prepared for, sent to, or received from
PK marketld:KEY - direction transactive neighbor objects. It can be mined usinga
*FK marketSeriesld: KEY - market_series_name =~ -1 minimal setofrelational keys to other database
* marketClearingTime: DATETIME - market_id tables.
- market_clearing_time The Transactive Record View contains much the same
_- start_time information, but it uses more textual information of the
- - record_number type that can be communicated to the neighbor object
(marketSeriesld = marketSeriesld) e ~ i ienal
_- pri as asignal.
- - power

«table»
MarketSeries

L//

«column»
*PK marketSeriesld: KEY
* name: TEXT

market_series_name

Figure A.10. Transactive Record Table Relationships

47

«table» |
I

(ownerld =
intervalValueld)

IntervalValue(Vertex)

«FK» {type ="Active"}
,

(v; rtexld =vertexld)

Used fora local asset
object's default

«column»
*FK associatedObjectld: KE'
*FK vertexld: KEY L7
N
SN
. .

Used for "active vertices."
See enumeration RecordType
and the perspective diagram
for the Interval Value Table.

«FK» {type ="Active"}

(VertexType =type)

1-Active

«enumeration»
VertexType

2 -Default (static)

owner_name
~

vertices. «table»
' LocalAsset
'
«table» ‘
Vertex (ownerld =localAssetld) M «column»
- ; T *PK localAssetld: KEY
G «FK» {type ="Default"} * name: TEXT
*PK vertexld: KEY
*FK ownerld: KEY e
: type:‘KEY) //
. marginalPrice: REAL (ownerld= 7 «table»
power: REAL neighborld) H Neighbor
«FK» {type ="Default"}
A - Th «column»
| d N *PK neighborld: KEY
1 e \/ =/1* name:TEXT
: owner_name ,’/ S
7/ -~ N
~ «view» % - S.
Vertex View _-7 g >
i owner_name
= UE S <7 Used for a neighbor
- vertex_id object's default
- owner_'ndame vertices.
- owner_j
- type
- marginal_price
- power

Figure A.11. Vertex Table Relationships

48

Appendix B: Methods to Harmonize Dynamic Prices and
Approved Rates

This appendix introduces two novel TENT processes that may be used in the future to harmonize the
dynamic and locationally unique electricity prices that TENT discovers with conventional, regulated cost-
recovery practices, as first described in (Hammerstrom 2022). This appendix teaches how the two
processes could be implemented in TENT, but the implementations of these processes will be deferred
until the processes are needed by a TENT implementer. This appendix documents a potential future
implementation of these processes in TENT, but the processes are not yet coded. The interactions of the
distribution utility and retail customer with these new use cases are summarized in Fig. B.1. The
implementation of these processes in TENT will introduce new price and quantity objects but should not
displace existing ones.

The first process (B.1) forces actual cost recovery under dynamic electricity pricing to track approved
cost recovery for an electricity customer class. The second method (Section B.2) makes sure that all
members in a customer class receive similar average electricity prices, even if the dynamic price at a
customer’s location is affected by transport constraints or other constraints that may cause locational price
discrepancies.

TENT Methods

rale ﬁ-:__.__*'_:' :ﬂ
RegulatedRates D

P “'"‘“’k“” Electricity Regulator
TransactiveNode
e
correct_cost rewvenr
retailCustomer:
wincluden TransactiveNode
~ e

update_global_price_correction

correct_local_price
oo

~

caxtends
Avoid Windup
o

Figure B.1. New Use Cases

The methods are applicable when a transactive node represents a regulated electricity supplier like a
distribution utility that offers regulated electricity rates. The retail customer is a member of an electric
customer class, all members of which should expect similar access to electricity from their electricity
supplier.

B.1 Correction of Distribution Utility Cost Recovery

We begin with the method that makes actual cost recovery track approved cost recovery. This sequence is
summarized in Fig. B.2.

49

In parallel, the retail customers of a customer class send their transactive signals to the distribution utility,
as already facilitated by TENT.

retailCustomer: -distributionUtility:NeighborMpdel
NeighborModel

I
par Send transactive signals /

*Tran=zactiveSiznal()

receive_transactive_signal
[TranzactiveRecord):
CorrectedLocalPrice, Power

int get_approved_rate /

update_global_price_correction hrl.lj/)

send_transzactive_signall: TransactiveSignal

Figure B.2. UML Sequence Diagram of the method correct_cost_recovery()

The distribution utility accesses an approved electricity rate for the customer class. The method to do so is
summarized in Fig. B.3. In the simplest case, the rates are static or change with a predicted pattern, in
which case the rates may be retrieved from lookup tables. If the approved rates include dynamically
changing prices, then such prices must be retrieved in real time. For example, critical peak pricing events
and new market prices must be electronically queried or published. The method of querying may be
unique to the approved rate and its source.

50

distributionUtility:
TransactiveNode

:distributionUtility:NeighborModel :RegulatedRates

X

:Electricity Regulator

T

|

I alt Static vs. Dynamic Rates)
|

: [RateTable] i

get_approved_rate{Timelnterval, ApprovedRate}: IntervalValue
s

ApprovedRate= lookup_rate(time}: float

[Dynamic Markgt Rate] Ii; :
ApprovedRate= querry_dynamic_rate{): float !

-
i

ApprovedRate= float [S-—m— == 7 r ~u

-
5
H
i
g
I
5%
83
<
) —
= a
w
B
oo

Various au'tomated
mechanisms may
exist for determining
an interval's
approved rate.

Simple rate
tables may be
referenced when
rates are static.

Figure B.3. Sequence Diagram for Method get_approved_rate()

Then the global price correction is updated. The price correction process is summarized by the activities
of Fig. B.4.

CLPGY:
Corrected| ocalPrice

B
TCR: Total Cost Recovery

ToRW

update_global_price_correction
P(if): Power1.1]
= Total Cost

Recovery in
Interval i

SCP: Sum Gustomer
Power

ACR: Approved Cost
Recovery

———LJ ACR(y

E CCRE(H1)

(] GPC{t)=GTG* (CCRE(t-1)+ AR(f)- TCR()) / SCP(t) | (1+GTG) CumuveCostRecoveryError
— ()

CRE[t) = ACRIt) - TCR{t) - GPC{t) * SCP{t)

LH

GlobalTrackingGain

GPC{Y:

CRE: Cost Recovery
Error

CRE(Y

("] CCRE{t)=CCRE(t-1)+ CRE(t) |

i
CCRE()
CumuiaiiveCosiRecoveryError

Figure B.4. Activity Diagram for Method update global price correction()

Two activities initiate this process, as shown at the top of Fig. B.4. The first calculates the total electricity
to be consumed in a market time interval ¢ by the members i of a customer class, as shown in Fig. B.5.
Scheduled average interval powers are already conveyed via TENT transactive signals. However, actual
electricity consumption can be different from that which is scheduled in a time interval by TENT. It

51

would be preferrable for the distribution utility to glean actual interval energy by using smart customer
meters, not TENT signals.

7)

Sum Customer Power

P: Customer Power
i: Customer index

start SCP: 5um Customer Power

P{i,t): Ppwer[1..%]

=

SCP{i+1.t)=SCPfit) # Pt} | |
SCP{it)

SCP(i+1,t)

[next customer i

[done]

e A
-

SCP(t)

Figure B.5. Activity sum_customer_power()

The next activity of Fig. B.4 sums the total cost recovery, which is the sum product of customers’
electricity and corrected dynamic prices in each market time interval. The calculation is shown in Fig.
B.6. In each time interval, each customer’s interval electricity (i.e., the same as the input to the activity
diagram of Fig. B.5) is multiplied by the customer’s corrected local price. The corrected local interval
price will be a new object to TENT. It is the sum of the dynamic locational price, which exists in TENT
already, the global price correction that the customer receives from the distribution utility, and the
approved rate, which is also received from the distribution utility. The sum of these products is the total
revenue from the customer class in the time interval.

Total Cost Recovery in Interval

CLRStDmEI"C.DSl :] CLP{i,t)
Recovery in CorractedLocalPrice[1..%]
Interval

::] Pli,t): Power[1..*]

|_|_|

) ceRit

CCR: Customer Cost Recovery b|

TCR(i+1,£) =TCR(i,t} + CCRit) | |

A

| CCR: Customer Cost Recovery
CLP: Corrected Local Price

i: Customer index

P: Customer Power

[done] t:Time index

) TCR: Total Cost Recovery

[next customer i]

=¥
TCRt)

Figure B.6. Activity total cost recovery()

52

All remaining steps in update global price correction() (i.e., Fig. B.4) are simple actions or functions
that calculate:

e the approved cost recovery in the time interval

e aglobal price correction for the market time interval

e acost recovery error for the market time interval, and

e a cumulative cost recovery error.

Note that a constant global tracking gain is defined, which specifies the high-pass cutoff frequency with
which the integrating filter tracks approved cost recovery.

B.2 Correction of Customer Prices

This section introduces the process by which average customer prices are made similar across an entire
customer class. This is accomplished by having customers’ corrected dynamic prices track an approved
electricity rate. The calculation sequence is summarized in Fig. B.7.

The first action of Fig. B.7 updates the local price correction. The calculation uses a constant local
tracking gain that defines the high-pass dynamics of the tracking process—typically defining a high-pass
response period between 1 week and 1 month, or so. That is, the chosen gain should, upon excitation by a
step change in the dynamic price, relax to the new condition within a period between 1 week and 1
month.

refaiCustomer;
TransaciveNode

|
|
|
I\
|
|
|

LPC(t) = LTG * (CLPE(t-1) + AR(t) - GPC(t)) /(1+4LTG) J Tt TaCorethn

Caleulate Local Pricing Error ') ‘ I

AR: approved rate
Update Cumulative Local Price Error ’) CLP: correcled local price
CLPE: cumulafve local pricing error
__________________ | ‘Cumulsivel ocalPricngError GPC: global price correction
LPC: local price corracion
T LPE: local pricing error
T ! LTG: local tracking gain
|
optAvioml Y | MP: marginal price
[CLPE{#1) * LPE() < 0] : =
= [o
Calculate Local Pricing Error ’) | :
T |
|
| i
Update Cumulative Local Price Error| / : l
|
| - .
o) |
| |
| |
| |
| |
¥ | |
| |
CLP(t) = AR(t) + GPC(t) + LPC(t) + MP(t) J ! ‘CorreciedLocaPrice
S T "l ________
|

Figure B.7. UML Sequence Diagram for Method correct_local_price()
Once the price correction has been calculated, it is relatively straightforward to then calculate the

corresponding local pricing error for the market time interval (Fig. B.8) and to update a cumulative local
pricing error (Fig. B.9).

53

AR(Y: Caleulate Local Pricing Error
ApprovedRale
<=—{

LPCit):
LocalPriceCorrecfion
<]

GPC{H:
GlobalPriceCorrecion LPE(t) = AR(t) - LPC{t) - GPC(t) - MP(t)
E<—{]

MP(t) s
MarginalPrice LPE(f): LocalPrcingError

Em<— =)

A4 £

Figure B.8. Activity calculate_local_pricing_error()

Update Cumulative Local Price Error
CLPE{#1):

CumulafivelLocalPncingError,
LPE(): o CLPE(Y:
LocalPricingError CLPE(t) = CLPE(t-1) + LPE(t) Cumulaivel ocalPricingError

Figure B.9. Activity update_cumulative_local_price_error()

The process could end at this point (i.e., after the first use of “Update Cumulative Local Price Error” in
Fig. B.7), but the results would be vulnerable to integrator windup and oscillatory behaviors when excited

by sudden, extreme price changes. Optional sequence avoid windup() may be invoked to mitigate
integrator windup, as shown in Fig. B.7.

The details of method avoid windup() are shown in Fig. B.10. The local price correction, local and
cumulative pricing errors become recalculated if the local pricing error and cumulative local pricing error
have different signs. If this condition is true, the local pricing error is reverted to its original value, and the
local and cumulative pricing errors are again updated (Figs. B.8 and B.9).

54

siart

[otherwise]

~
‘ Avoid Windup

This guard condiion means that integrator windup
is occurring. Aveid windup by NOT changing the
local price correchion.

-~ | [LCE[Y) * CLCE(t-1) < 1]

LPC(1):
LocalPriceCorrecion

LPC{t:
]

LocalPriceGorrecion
LPC(t) =LPC(t-1) [i)

AR():

rovedRae
s Calculate Local
GPCH: Pricing Error

CLPE(1): CLPE(): N
CumulaiiveLocalPricingError Cumulaiivel ocalPricingError

)

Update Cumulative
(| Local Price Error

-~

J
Figure B.10. Activity avoid windup()

Finally, the corrected local price may be calculated using current global and local correction terms, as
shown in the last action of Fig. B.7.

Reference

Hammerstrom, Donald James. 2022. "Harmonizaton of Dynamic Prices with Approved Rates." IEEE
Power Engineering Society General Meeting. Denver, Colorado: IEEE.

55

Appendix C: Accommodating Matching Engines in TENT

TENT was designed to accommodate alternative types of electricity markets. Initial TENT
implementations facilitated bilateral electricity markets and consensus methods that can discover an
electricity price for each location and time interval. TENT has been extended to facilitate matching
engines, which, like stock markets, asynchronously receive simple offers or bids (“aggressive orders™)
and attempt to match them from standing counteroffers or bids (“standing orders”) that await to be
matched. Principles of energy balance still underly the resulting electricity prices, but each bid or offer
can result in a different price.

Whereas TENT facilitates rich supply and bid curves, as can be represented by linear interpolation
between any nondecreasing ordering of Vertices, bids and offers submitted to market engines are
typically simple “orders” that pair a single quantity with a strike price. The current work allows that
practice to continue, but TENT also accommodates richer bid and offer curves, as well. If a match is
successfully made, the result pairs a single price and quantity, regardless of the complexity of the bids and
offers being matched.

Bids and offers into matching engines can include various constraints to be placed on the matching
process. TENT was extended to accommodate some, but not all, these constraints.

e A distinction might be made between “limit orders” that include both a quantity and strike price
and “market orders” that state a quantity that should be matched regardless of price. TENT
already facilitated this distinction because the price of a VERTEX object can be assigned any
price, including positive or negative infinity.

e An aggressive order may be flagged to indicate whether it should be included among standing
orders if it is not initially matched. TENT can be extended to include this persistence flag, but this
feature is not fully implemented and tested.

An aggressive order may be flagged to indicate whether its quantity must be entirely matched, or whether
it may be partially matched, leaving an unmatched quantity remainder. For example, if an electricity
generator has only binary on and off operational states, no option should exist to match only part of its
offered generation.! TENT was extended to flag VERTEX objects to indicate the continuity of bids and
offers, and matching engine processes were designed to respect the continuity or discontinuity of bids and
offers.

Secondary matching strategies

Matching always uses price as its initial matching strategy. If price alone cannot alone be used to uniquely
match orders, then the matched quantities of same-priced counteroffers must be matched using order age
or quantity volume as a preference. These alternative strategies will not be needed and invoked as
frequently for distributed transactive energy systems as for stock trading because the pools of standing
orders will be smaller. TENT was extended to facilitate these two preferences.

! This does not preclude matching a single aggressive order using multiple standing orders, which makes the logic
much more challenging.

Effects of partial fulfiilment on matching

Each time an order is partially fulfilled, newly spawned orders must be created for the matched and
unmatched quantities. These child orders must be traceable to the original parent order. Unmatched
residuals are modified by reducing the magnitudes of all the order’s vertices by the matched quantity.

New TENT Classes that Support Matching Engines

This appendix introduces two new TENT object classes and describes the extension of an existing base
class. The class MATCHINGENGINE is a child of class MARKET that facilitates the matching of an
aggressive supply or demand order with existing counteroffers from a resting order book. Class ORDER
and extended class VERTEX support MATCHINGENGINE markets and could also be used otherwise to
simplify TENT code. These classes and related enumerations may be imported using these commands:

> from matching_engine import MatchingEngine
> from order import Order, Vertex, OrderStatus, SupplyOrDemand

Extended Vertex Class

Class OrRDER.VERTEX extends original TENT class VERTEX.VERTEX. Base class VERTEX.VERTEX was
intended to represent an inflection point in a quantity-versus-price supply or demand curve. While it has
served its purpose well, VERTEX objects have been challenging to instantiate. Some original
VERTEX.VERTEX properties have not proven to be especially useful. An extended ORDER.VERTEX object can
be instantiated by supplying, at minimum, the object’s price. A power quantity should normally be
provided, as well. New ORDER.VERTEX properties “price” and “quantity” alias the existing VERTEX.VERTEX
properties “marginalPrice” and “power,” respectively. Electricity price is still assumed to use
measurement units “$/kWh,” and quantity or power is still assumed to use measurement units “average
kW.” Here is an example instantiation of an extended ORDER.VERTEX object:

> new_vertex = Vertex(
price=0.1, # $/kWh
quantity=100.0) #kW_e

dlass Vertex

. s | ubaze clazs e, & ;
power ———————————+ ’! R | marginalPrice

—=

extended Classy
Vertex
price:; float
quantity . gquantry: foat=o.0kw - price
continuity : boolean = Trise
orderid: int
Emestamp: datetime = datetime. now(} |
.-.-‘J__" -:'ﬁ"-. l‘-:‘."""‘a
- et
.-'-'.-.-"
I
Condinuty orderid timeStamp
! L

Figure 11. Vertex extends base class Vertex.

Extended ORDER.VERTEX properties:

o timeStamp (datetime): By default, timeStamp is set to the time and date at which the ORDER.VERTEX
object is created. Ideally, timeStamp should match that of the ORDER.ORDER object to which the
ORDER.VERTEX belongs.

e orderld (integer): This identifying integer should match the identifying integer of the ORDER.ORDER
object to which the ORDER.VERTEX belongs.

o Continuity (Boolean): This property should be assigned True if the supply or demand curve is
continuously defined between this ORDER.VERTEX object and the ORDER.VERTEX object representing the
next smaller quantity magnitude of the supply or demand curve. The property should be assigned
False if there is no quantity defined within that price range. See Figure 12. Observe especially how
discontinuity is assigned in supply curves (Figure 12b) and demand curves (Figure 12d).

quantity quantity

4—_"I'ryo—b False e—»
True <—0 True

» price » price
(a) Continuous supply curve (b) Discontinuous supply curve
» price —» price
y—' True e——»
True <4—9 False
quantity quantity
(c) Continuous demand curve (d) Discontinuous demand curve

Figure 12. ORDER.VERTEX continuity assignments for ORDER.VERTEX objects in various continuous and
discontinuous supply and demand curves

ORDER.ORDER Class

The new ORDER.ORDER class is used to collect one or more ORDER.VERTEX objects that belong together as a
supply or demand curve. Prior implementations used class INTERVALVALUE to bind an individual
VERTEX.VERTEX object with its market, time interval, the purpose that the VERTEX serves, and the system
actor that is making the bid or offer. An INTERVALVALUE object having a VERTEX object as its value
introduced challenging nuances. Complex price-quantity curves heretofore had to be recollected,
manipulated, and resaved as individual VERTEX objects, each within its own INTERVALVALUE object. The
ORDER.ORDER class simplifies this process and should lessen the chance that supply or demand curves get
corrupted.

The following commands could be used to instantiate a new ORDER.ORDER object and its requisite
parameter objects. “Datetimel”, “datetime2,” “datetime3,” and “timedelta” refer to times and dates and
time durations that have been instantiated using python module DATETIME.

> a_time_interval = Timelnterval(
activation_time: datetime = datetime1,
duration: timedelta = timedelta(hours=1),
market: Market = new_matching_engine,
market_clearing_time: datetime = datetime2,
start_time: datetime = datetime3)

> a_neighbor = Neighbor()

> new_order = Order(
market: Market = new_matching_engine,
time_interval: Timelnterval = a_time_interval,
actor: Neighbor or LocalAsset = a neighbor)

Order

HETHEMErZ T »

Drderstatus

KEW
-'__L:"hEg-"’_'pY:""_-::E Azoel UNMATCHED

By - gatetme i REVISED UNMATCHED
MATCHED

- CANCELLED

EXPIRED

o REVISED MATCHED
SUBMITTED

- RECEIVED

1 Mmoo

4+ H o W oH M o

status: Orderstatus

SupphyCrDenmand

L]

+ 4

t HH &

WETHHTSE DTN

=y supplyOrDemand

+ 4+

SLFPPLY
DEMANRD

T, unmatched Croer

BEOTH

Figure 13. Class ORDER.ORDER and two of its enumerations

ORDER.ORDER properties:

o market (MARKET): This property refers to a TENT MARKET object—typically the MATCHINGENGINE
object in which this ORDER.ORDER object is active.

o timelnterval (TIMEINTERVAL): This property refers to a TIMEINTERVAL object in which this
ORDER.ORDER object is active. The TIMEINTERVAL identifies the delivery time and duration. In a
MATHCINGENGINE object, there exists a one-to-one pairing between this property and the market.

o qactor (NEIGHBOR or LOCALASSET): This property points to a NEIGHBOR or LOCALASSET object that owns
the supply or demand represented by this ORDER.ORDER object. An agent may work with the supply
and demand of local devices or assets, or it may work with bids and offers from other neighboring
agents in its transactive energy system.

o cxpireBy (DATETIME): This is the date and time at which the ORDER.ORDER object, if not acted upon,
should expire.

o parentOrderld (integer): An ORDER.ORDER object may need to be revised as it is fixed or matched.
This property should point to the ID of the parent ORDER.ORDER object that has been revised.

o vertices (ordered list of ORDER.VERTEX objects): This list of ORDER.VERTEX objects represents the
ORDER.ORDER object’s supply or demand curve. The list should represent supply or demand, but not
both. The list should be ordered by increasing price and quantity.

e [d (integer): This is the unique identifier of the ORDER.ORDER object. This identifier is automatically
assigned as the ORDER.ORDER is created and should not be changed thereafter.

o timeStamp (DATETIME): A matching engine may prioritize ORDER.ORDER objects by their age. Ideally,
this timestamp should be set to the date and time at which the ORDER.ORDER object is placed in a

standing order book. By default, the timestamp is set to the time at which the ORDER.ORDER object is
created.

status (ORDER.ORDERSTATUS): This property keeps track of the status of the ORDER.ORDER object during
its lifetime. See enumeration ORDERSTATUS. An ORDER.ORDER object may start out “new” and
transition as it becomes revised, matched, superseded, expired, etc.

childOrderlds (list of integers): As the ORDER.ORDER object becomes revised and superseded, this
property should be used to list the new ORDER.ORDER objects that it parents.

supplyOrDemand (SUPPLYORDEMAND): An ORDER.ORDER object should represent either supply or
demand, not both. See enumeration SUPPLYORDEMAND.

ORDER.ORDER methods:

create_json_message: This method returns a flat jsoN file from an ORDER.ORDER object. The file is
suitable to convey a bid or offer to a neighboring transactive energy system agent. The message may
be interpreted by method load json message.

load _json_message: This method may be used to interpret a message and reconstruct an order from a
file that had been created by method create json message.

check _demand order: This method returns a proper demand ORDER.ORDER object from the original
one. If the original ORDER.ORDER is already a proper demand order, then it is returned unchanged. If
the original ORDER.ORDER object has no demand component, None is returned. If the original
ORDER.ORDER object has both supply and demand components, its demand component is returned as a
new revised Order object having the original ORDER.ORDER object as its parent.

check _supply order: This method returns a proper supply ORDER.ORDER object from the original one.
If the original ORDER.ORDER is already a proper supply order, then it is returned unchanged. If the
original ORDER.ORDER object has no supply component, None is returned. If the original ORDER.ORDER
object has both supply and demand components, its supply component is returned as a new revised
ORDER.ORDER object having the original ORDER.ORDER object as its parent.

get_prices_from_orders: Given a list of ORDER.ORDER objects, this method retrieves their
ORDER.VERTEX prices. Filtering is done to eliminate meaningless duplicates.

get_quanity from_price: A supply or demand quantity curve is necessarily a function of price. Given
an electricity price, this method returns the ORDER.ORDER object quantity that corresponds to that
price. None is returned if the supply or demand curve happens to be discontinuous (quantity is not
defined) at that price.

match: Given a matched counteroffer quantity and match price, this method returns two new
ORDER.ORDER objects—one for the match and another for the ORDER.ORDER object’s remainder
unmatched supply or demand curve. None is returned for the unmatched ORDER.ORDER object if there
is no remainder supply or demand curve. This important method is discussed further below.

order or_none: This method simply returns the ORDER.ORDER object if it represents any supply or
demand quantity. Otherwise, it returns None. This is a good method to use in conjunction with return
statements so that meaningless ORDER.ORDER objects will not be propagated.

sort_order: This method sorts an ORDER.ORDER object’s list of ORDER.VERTEX objects by price and
quantity. The sorting process is different for supply and demand ORDER.ORDER objects.

After the MATCHINGENGINE market discovers a power quantity and price at which an aggressive order and
standing order match, it calls method match(). See Figure 14. If this method is called about a standing

order, the quantity magnitudes in the standing order’s listed ORDER.VETEX objects are reduced by the
matched quantity and a new revised ORDER.ORDER object is created for the remaining unmatched
quantities of the give supply or demand curve. Typically, the original standing order is cancelled, but the
old and revised ORDER.ORDER objects point to the other’s ID using their parentOrder and childOrderlds
properties. A new limit order object is also created for the matched quantity and price.

Any match causes both the aggressive order and its standing counteroffer to be matched and revised. So,
the match method of class ORDER.ORDER is also called in respect to the aggressive order. Note that the sign
of the quantity magnitude is that of the order’s counteroffer, so the quantity signs are different for the
standing and aggressive orders that are becoming revised. The revised quantity is the sum of the
ORDER.ORDER object and matched quantities.

If no quantity of an order remains after the match, the unmatched order is returned as None.
These examples demonstrate calls made to method match() in respect to a standing order and an
aggressive order.

> matched_order, unmatched_order = standing_order.match(
match_price: float = 0.1,
quantity: float = 100.0)

matched_order, unmatched_order = aggressive_order.match(
match_price: float = 0.1,
quantity: float = -100.0)

att Order.match{} /I

Ordar.match{}

— ¥
= g

Collect ander |
vertices !

Figure 14. Given a matched quantity and price, the ORDER.ORDER class method match returns
ORDER.ORDER objects representing the matched limit order and unmatched remainder after the
transaction.

MATCHINGENGINE Class

The MATCHINGENGINE class inherits many useful attributes and methods from parent class MARKET.
However, discussion will focus on new attributes.

MATCHINGENGINE properties:

o matchingStrategy (MATCHINGSTRATEGY): Price is always the dominant matching strategy. When price
alone cannot arbitrate between multiple competing standing counteroffers, an alternative strategy
must be invoked. There are many possible such strategies, but only two are defined here: order age
and order volume. The first gives priority to ORDER.ORDER objects that are oldest. The latter gives
priority to ORDER.ORDER objects that represent the greatest quantity magnitude.

e hasMarket (Boolean): By default, this property is set False and it is assumed that a transactive agent
does not itself operate a matching-engine process. Any agent may, however, use the matching-engine
process.

o orderList (list of ORDER.ORDER objects): This property holds a list of ORDER.ORDER objects that may be
used as counteroffers when a new aggressive ORDER.ORDER object is received. This list is often called
an “order book.” It is possible for listed ORDER.ORDER objects to be matched and revised, creating new
ORDER.ORDER objects for the orderList or matchList.

o matchList (list of ORDER.ORDER objects): This property holds a list of ORDER.ORDER objects that
represent successful match transactions. ORDER.ORDER objects should not be removed from this list.

market
aCwatonlssdTime: tmedelta=0h
defiverleadTime: datetme=0,25h
defverystanTime: datstime
InimalMarketState: MarketStates = NEGOTIATION —
intervaiDuration: tmedeita=1h R 2% aemmerstions
intervaiTollear mi=1 MarketState
shewsstMarket: boslean = True 5
marketClearngintervel tmedeita=1h mf
marketCleanngTime: datetime = defveryStanTi.. Ina.me
marketleadTime: tmedeita=0h e
$ marketCrderint=2 Deiiverylead
marketSenesName: char="Matching_Engine™ Exp-m-ﬂ
marketToBerefined: char = "Subscription_M... Explomng
+ marketType: MarketTypes = MATCHING_ENGINE i B L
+ name:char="" Neg?tam
negotisticnlesdTime: tmedeita=24h P"b"""h__
prgrMarketinSenes: Market = None T
Tender
+ check_intervais]): woid Transaction
events|TransasctiveNods): void
model_proes|datetime, flost]: float, foat
schedule{TransactiveNode): void
tansition_from_gefvery lead to defivery|TransactiveNode): woid
transition_from_defvery to recondie|TransactiveMode): void
transition_from market_lesd_to_defvery lead{TransactiveNode]: void
tansition_from_negofiztion_to market lead{Transactivelods): void
tonsition_from_reconcie to expired{ TransactiveNode): woid
whie_in_defvery[Transactivenods]: void
whiie_in_defivery_lead{TrRnsactivetods): woid
|
Matching Engine

hasnmarket: boolean = Fake P =7 senumemfions

matchingStratesy: MatchingStrategy = ORDER_AGE T natchingStrategy

+ matohlist: ist of Order object==[]

+ ordertist: Estof Order objeds = ORDER_AGE

CROER VOLUME

get_countenpffer vertices{fioat, SupplyOrDemand]: fist of PricePoint ohjects NONE

get_counterpifers{SupplyCrDemand): st of PricePoint objedts

get_market orders by sctor|Meighboror Locaiisset): st of Crder obiects

get_onder by wd[int): Order

match{Onder): voud

order_id E_unipeefint)c boolean

zpawn_markets{TranssctiveNode, datetime}: void

while_in_negotistion|TrensacthreNode): woid

while_in_reconcis| TransactiveMode): void

o T‘\
orderlist f====== sk “Cider Book™ matchiist
{1 B
standing: Order matched: Order

defined. Most important are the orderList and matchList attributes.

Figure 15. Class MATCHINGENGINE is a child of base class MARKET. Four new attributes and methods are

Objects of the new MATCHINGENGINE class are instantiated as follows.

> new_matching_engine = MatchingEngine()

MATCHINGENGINE methods:

get_counteroffer vertices: Given an electricity price and the designation of the aggressive
ORDER.ORDER object as either supply or demand, this method creates an ORDER.VERTEX object for
counteroffers offering nonzero quantity. ORDER.VERTEX objects are returned instead of a simple list of
quantities because matching engines must keep track of the provenance of counteroffers, including
whether the counteroffer supply or demand curve is continuous in this price region.

get_counteroffers: Given the designation of an aggressive ORDER.ORDER object as either supply or
demand, this method collects valid counteroffers from orderList (i.e., the order book). Standing
counteroffers are “valid” if they are designated as either standing orders or as revised standing orders.

get _market _orders by actor: Given a transactive energy system actor (either NEIGHBOR or
LOCALASSET object), this method gathers and returns a list of orders from among matchList and
orderList objects that are attributed to the actor.

get_order by id: Given an order’s ID, this method finds the corresponding ORDER.ORDER object from
among the matchList and orderList orders.

match: Given a new aggressive order, this method attempts to match the order from among eligible
counteroffers found in the orderList. The matching process may be affected by the current
MATCHINGENGINE object’s matching strategy (see enumeration MATCHINGSTRATEGY). If no match is
possible, the aggressive offer is moved to orderList, where it becomes a standing order for future
matches. If one or more matches can be made, the aggressive order and its counteroffers are revised
accordingly, and the matched and unmatched ORDER.ORDER objects are moved into the matchList and
orderList lists.

order id is unique: This method returns True if an ID integer cannot be found among existing
ORDER.ORDER objects in matchList or orderList.

Important MARKET methods that are redefined by MATCHINGENGINE:

spawn_markets: This redefined method should create the next MARKETENGINE.MARKET object when
invoked to do so. The new market object inherits many of its properties from its predecessor, but the
delivery time and other times and dates must be updated. For a MARKETENGINE object, there is a one-
to-one relationship between the market object and its TIMEINTERVAL object. A new market must be
created for every new electricity delivery period.

while_in_negotiation: This redefined method facilitates the asynchronous calculations of new supply
and demand curves by LOCALASSET and NEIGHBOR objects, the conveyance of signals that represent
such supply and demand curves, and the matching of these ORDER.ORDER objects from among
standing counteroffers. Negotiations are permitted until just prior to the delivery period at a time that,
for other market types, corresponds to a market clearing time. (No trigger has been determined to
stimulate the formulation of new supply or demand curves in this asynchronous manner. Perhaps the
creation of new supply or demand ORDER.ORDER objects should be initiated when predicted supply or
demand diverge by some metric from that which has been contracted via prior markets.)

while_in_reconcile: This redefined method should facilitate the gathering of successful match
transactions and reconcile the aggregate impact of these transactions with actual electricity usage

during the delivery period. (This process cannot be completed currently because TENT is not itself
integrated with metering needed to perform this reconciliation.)

The new MATCHINGENGINE class has properties orderList and matchList that store collections of
ORDER.ORDER objects. Property orderList is for the market’s standing orders, and matchList is the market’s
ledger of completed match transactions.

Testing

File test order.py contains unit tests for the extended ORDER.VERTEX and ORDER.ORDER classes. This code
may be run to confirm many of the expected behaviors of ORDER.ORDER methods.

File test matching engine.py contains tests for new class MATCHINGENGINE and its methods. This code
may be run to confirm many of the expected results of MATCHINGENGINE methods.

TENT is currently limited in its ability to support system-level tests, and efforts are underway to address
this limitation. Additionally, we have not yet determined the logic by which agents should be induced to
create new supply or demand curves for an asynchronous matching-engine market, as was mentioned
earlier. For these reasons, TENT’s ability to support matching engines is not yet confirmed at the system
level.

MATCHINGENGINE.match() Logic

1. Gather eligible supply counteroffers.
2. Get and sort all the unique Vertex prices from the eligible standing orders and aggressive order.
3. Index through those Vertex prices (order depends on whether aggressive order is supply or demand).
3.1. Determine effective limit orders for the supply orders and aggressive order at this price.
3.2. Sum eligible supply order quantities at this price.
3.2.1. <CASE> Aggressive order quantity is 0 or is undefined at this price
3.2.1.1. Stop.
3.2.2. <CASE> Total supply-order quantity = 0
3.2.2.1. Continue to next price.
3.2.3. <CASE> Aggressive-order quantity >= total limit supply-order quantity
3.2.3.1. <CASE> Aggressive-order quantity is not continuous
3.2.3.1.1. Continue to next price.
3.2.3.2. <CASE> Aggressive-order quantity is continuous
3.2.3.2.1. Index through supply effective limit order quantities
3.2.3.2.1.1. Create and save match order for supply-order quantity at indexed price
3.2.3.2.1.2. Revise standing order
3.2.3.2.1.3. Create and save match order for matched aggressive-order quantity
3.2.3.2.1.4. Update total matched, transacted aggressive-order quantity and unmatched
aggressive-order quantity remainder
3.2.3.2.2. Revise aggressive order using total transacted and remainder aggressive-order
quantities
3.2.4. <CASE> Aggressive-order quantity < total limit supply-order quantity
3.2.4.1. Index through list of matching priorities
3.2.4.1.1. <CASE> Matching priority is by proportion
3.2.4.1.1.1. Continue to next matching priority
3.2.4.1.2. <CASE> Matching priority is by order age
3.2.4.1.2.1. Sort standing limit order quantities by age
3.2.4.1.2.2. See Code Logic Block A
3.2.4.1.3. <CASE> Matching priority is by order volume
3.2.4.1.3.1. Sort active supply limit order quantities by volume
3.2.4.1.3.2. See Code Logic Block A

<Begin Code Logic Block A>
1. Initialize unmatched aggressive-order quantity at aggressive-order quantity for this price
2. Index through sorted supply-order quantities
2.1. <CASE> Aggressive-order remainder quantity < supply-order quantity
2.1.1. <CASE> Supply-order quantity is not continuous
2.1.1.1. Next supply-order quantity
2.1.2. <CASE> Supply-order quantity is continuous
2.1.2.1. Record the tentative supply-order and aggressive-order matches
2.1.2.2. Update aggressive-order quantity remainder
2.1.2.3. Stop. There should be no aggressive order remainder.
2.2. <CASE> Aggressive-order remainder quantity >= supply-order quantity
2.2.1. Record the tentative supply-order and aggressive-order matches
2.2.2. Update aggressive-order quantity remainder
2.2.3. <CASE> There is an unmatched aggressive-order remainder and aggressive-order continuity is
false
2.2.3.1. Next supply-order quantity
2.2.4. <CASE> There is no unmatched aggressive-order remainder, or aggressive-order continuity is
true
2.2.4.1. Index through the tentative supply-order and aggressive-order quantity matches
2.2.4.1.1. Create and record match order for matched supply-order quantity
2.2.4.1.2. Revise order for unmatched supply-order quantity
2.2.4.1.3. Create and record order for matched aggressive-order quantity
2.2.4.2. Revise and record a new order for the unmatched aggressive-order quantity
<End Code Logic Block A>

Pacific
Northwest

NATIONAL LABORATORY

www.pnnl.gov

902 Battelle Boulevard
P.O. Box 999

Richland, WA 99352
1-888-375-PNNL (7665)

U.S. DEPARTMENT OF

ENERGY

