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MOTIVATION

Li-ion batteries are becoming more
prevalent in larger systems
 Electric vehicles

* Energy storage systems

Thermal runaway is a major safety
concern
« Manufacturing defects

* Improper use
« Mechanical damage

Thermal runaway can spread to other
cells and through the system if not
contained.

Literature has focused on propagation
via conduction, less exists on heat
transfer from vented gases and solid
ejecta.
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VENTING HEAT TRANSFER

Goal: we want to design an apparatus to measure

heat flux of a venting jet impinging on a flat surface. \
- Typically, jet heat | ~ Cylindrical and prismatic
transfer correlations &= —=-— '] cells have vent ports
are created with well- =\
controlled steady ien ' oy

state systems. *

DISPLACEMENT TRANSDUCER

- High energy density
batteries can vent in
10 - 30 seconds,
meaning we need to
make transient
measurements.

Venting prismatic cell
ejecting particles and gas

air supply

In this work: we use simulations motivated by preliminary
experiments to design a heat flux measurement apparatus.

Image source: Popiel, C. O., Van der Meer, T. H., and Hoogendoorn, C., “Convective heat transfer on a plate in an impinging round hot gas jet
‘ of low reynolds number,” International journal of heat and mass transfer, 23(8), pp. 1055-1068 (1980)




VENTING SCENARIO N\

I

AN

N

N\

Thermocouple

Heat Flux Plate

Safety Vent

“rproe . ‘V, i e
. .
de RS S e
- \ 3
=29
— T35
S . 2
LN -
™
B - A
b e b ) B
2y < b\

Scoping experiments: plate with 1 - 3 thermocouples 12" above the cells
How do we go from temperature measurements to heat flux? Solve the inverse problem!
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SIMULATION METHODS Simulation Domain: Top View h

« Model: 3D finite element heat transfer
in SIERRA Aria

«  Symmetric domain
- 2'x 2'steel plate (variable thickness)

*  One symmetry plane
«  Thermocouples on the top (variable #)
« Heat flux applied to the bottom

Thermocouple

Symmetry
Plane

. Center of Vent Jet
- Given thermocouple temperatures, on Bottom

solve the inverse problem for heat
flux as a function of space and time.

* Inverse Aria uses adjoints for efficient
optimization of unknown heat fluxes.
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« Model: 3D finite element heat transfer
in SIERRA Aria

«  Symmetric domain
- 2'x 2'steel plate (variable thickness)

*  One symmetry plane
«  Thermocouples on the top (variable #)
« Heat flux applied to the bottom

Thermocouple

Symmetry
Plane

. Center of Vent Jet
- Given thermocouple temperatures, on Bottom

solve the inverse problem for heat

flux as a function of space and time.
* Inverse Aria uses adjoints for efficient « Inverse «
optimization of unknown heat fluxes. Model

We need to generate synthetic data to
test a range of scenarios.




GENERATION OF APPROXIMATE HEAT FLUX PROFILE
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hot particles
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Processed experimental TCs with a slug
calorimeter approximation that ignores

transverse losses:
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GENERATION OF APPROXIMATE HEAT FLUX PROFILE
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Generated approximate synthetic heat flux
profile to explore the inverse problem

Gaussian flux centered on jet, peaks at 15s




GENERATION OF APPROXIMATE HEAT FLUX PROFILE

Simulation Domain: Top View
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INVERSE HEAT FLUX PROBLEM \

Simulation Domain: Top View Inverse problem:

AN
« Symmetric 3-D domain \

 Each surface patch has spatially
constant heat flux and a thermocouple
centered on the patch

N
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RESULTS: PLATE THICKNESS

1/16" Plate
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RESULTS: THERMOCOUPLE DENSITY N\
3 x 3 Grid 7 x 7 Grid N\

N

- Large over-prediction at the center « Improved predictions with increased \
spatial resolution

« Under-prediction away from the center
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RESULTS: PREDICTION BIAS N
N\
Average heat flux Local heat flux at thermocouple \
- Some over-prediction at the center « Predictions biased towards local flux
300 300
6 —— Patch 1 6 —— Patch 1
—— Patch 2 —— Patch 2
250 315 —— Patch 3 250 315 —— Patch 3
1]2] 4 —— Patch 4 1|12])] 4] —— Patch 4
_ —— Patch 5 . —— Patch 5
NE 2009 —— Patch 6 NE 2009 —— Patch 6
= — Inverse = — Inverse
7 Synthetic 7 Synthetic
x 1501 x 1501
=) =)
L L
3 3
£ 100 £ 100
501 501

30 0 5 10 15 20 25 30
Time (s)




RESULTS: COMPUTATIONAL COST

Cost: ~30 minutes to do the inverse problem on 4 processors
Higher number of patches converges faster
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RESULTS: THERMOCOUPLE DENSITY N
More thermocouples = more assembly time
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RESULTS: INVERSE TIME INTERVAL

- Lower peak-over prediction compared to 3 seconds

 Insufficient sensitivity to early time heat fluxes
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RESULTS: MOVING VENT

- Experimental observations showed the vent moving during thermal runaway

- Example: vent moves from the right edge to the center over 20 seconds
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CONCLUSION

- Based on simulations, it should be possible to
estimate heat fluxes from experimental
temperature measurements using inverse
techniques.

- A 1/16" plate with either the 5 x 5 or hybrid
thermocouple grid is recommended.

- There is a bias towards over prediction at the center
of the jet.

- Adifferent spatial representation of the flux may
improve predictions compared to the square
patches.

« Future work will investigate a basis function
approach to heat flux inversion.
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