

RESEARCH ARTICLE

10.1029/2025MS005057

Key Points:

- We developed an end-to-end workflow that calibrates gravity wave generation in E3SMv3, improving quasi-biennial oscillation (QBO) realism
- The fundamental frequency model compressed wind field data into physically interpretable quantities, isolated the QBO signal, and reduced dimensionality while retaining key QBO variability
- Our workflow reveals no single optimal configuration for QBO realism, but a frontier of best-compromise solutions

Supporting Information:

Supporting Information may be found in the online version of this article.

Correspondence to:

L. Damiano,
ladamia@sandia.gov

Citation:

Damiano, L., Hannah, W., Chen, C.-C., Benedict, J. J., Sargsyan, K., Debusschere, B. J., & Eldred, M. S. (2025). Improving the quasi-biennial oscillation via a surrogate-accelerated multi-objective optimization. *Journal of Advances in Modeling Earth Systems*, 17, e2025MS005057. <https://doi.org/10.1029/2025MS005057>

Received 28 FEB 2025

Accepted 31 OCT 2025

Author Contributions:

Conceptualization: Luis Damiano
Data curation: Walter Hannah
Formal analysis: Luis Damiano, Michael S. Eldred
Investigation: Walter Hannah
Methodology: Luis Damiano, Khachik Sargsyan, Bert J. Debusschere, Michael S. Eldred

© 2025 The Author(s). *Journal of Advances in Modeling Earth Systems* published by Wiley Periodicals LLC on behalf of American Geophysical Union. This is an open access article under the terms of the [Creative Commons Attribution-NonCommercial-NoDerivs License](#), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Improving the Quasi-Biennial Oscillation via a Surrogate-Accelerated Multi-Objective Optimization

Luis Damiano¹ , Walter Hannah² , Chih-Chieh Chen³ , James J. Benedict⁴ , Khachik Sargsyan⁵ , Bert J. Debusschere⁵ , and Michael S. Eldred¹

¹Optimization & Uncertainty Quantification, Sandia National Laboratories, Albuquerque, NM, USA, ²Atmospheric Earth & Energy Science, Lawrence Livermore National Laboratory, Livermore, CA, USA, ³Climate and Global Dynamics Division, NSF National Center for Atmospheric Research, Boulder, CO, USA, ⁴Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM, USA, ⁵Plasma & Reacting Flow Science, Sandia National Laboratories, Livermore, CA, USA

Abstract Accurate simulation of the quasi-biennial oscillation (QBO) is challenging due to uncertainties in representing convectively generated gravity waves. We develop an end-to-end uncertainty quantification workflow that calibrates these gravity wave processes in E3SM for a realistic QBO. Central to our approach is a domain knowledge-informed, compressed representation of high-dimensional spatio-temporal wind fields. By employing a parsimonious statistical model that learns the fundamental frequency from complex observations, we extract interpretable and physically meaningful quantities capturing key attributes. Building on this, we train a probabilistic surrogate model that approximates the fundamental characteristics of the QBO as functions of critical physics parameters governing gravity wave generation. Leveraging the Karhunen–Loëve decomposition, our surrogate efficiently represents these characteristics as a set of orthogonal features, capturing cross-correlations among multiple physics quantities evaluated at different pressure levels and enabling rapid surrogate-based inference at a fraction of the computational cost of full-scale simulations. Finally, we analyze the inverse problem using a multi-objective approach. Our study reveals a tension between amplitude and period that constrains the QBO representation, precluding a single optimal solution. To navigate this, we quantify the bi-criteria trade-off and generate a set of Pareto optimal parameter values that balance the conflicting objectives. This integrated workflow improves the fidelity of QBO simulations and offers a versatile template for uncertainty quantification in complex geophysical models.

Plain Language Summary Simulating the quasi-biennial oscillation (QBO), a regular pattern of alternating winds high in the atmosphere, remains a major challenge for climate models. We developed an end-to-end workflow to calibrate gravity wave processes in the Energy Exascale Earth System Model, leading to more realistic simulations. We began by compressing complex spatio-temporal data into a few key, physically meaningful quantities, such as the oscillation's amplitude and period. This data reduction allowed us to isolate the QBO signal from noise and other atmospheric phenomena. Next, we built a fast statistical model that predicts QBO behavior based on critical physics parameters. This surrogate efficiently captures relationships among various atmospheric features, reducing the need for computationally expensive full-scale simulations. Our analysis revealed a trade-off between QBO amplitude and period, meaning that improving one aspect often worsened the other. Rather than finding a single perfect solution, we identified a range of balanced settings that offer the best compromise. This integrated approach not only leads to more realistic QBO simulation but also provides a practical framework for tuning other complex atmospheric phenomena.

1. Introduction

The process of tuning Earth system model components entails adjusting uncertain parameters within imperfect parameterizations designed to represent unresolved processes, such as cloud representations in conventional global atmospheric models used for future projections. The primary objective is to achieve a realistic time-mean state while maintaining balanced net top-of-atmosphere energy fluxes, ensuring model stability over 100 to 1,000-year timescales in the absence of external forcing. Additionally, tuning can affect the model's representation of variability across timescales ranging from hours to decades. However, efforts to tune modes of variability may inadvertently degrade the time-mean state, thereby relegating the faithful representation of variability to a secondary priority.

Project administration: James J. Benedict
Software: Luis Damiano, Walter Hannah
Supervision: Michael S. Eldred
Visualization: Luis Damiano
Writing – original draft: Luis Damiano
Writing – review & editing:
Luis Damiano, Walter Hannah, Chih-Chieh Chen, James J. Benedict, Khachik Sargsyan, Bert J. Debusschere, Michael S. Eldred

The tuning process is often labor-intensive and relies on subjective judgment in order to (a) anticipate how tuning might impact the time mean and/or variability and (b) assess whether a given modification yields adequate improvements. Although this appears to be a natural candidate for automated calibration techniques, the extensive range of attributes requiring optimization can be daunting. Recent studies have successfully employed automated calibration to optimize the time-mean state (Yarger et al., 2024); however, these techniques have been less frequently applied to tuning variability. While time-mean fields can be readily compared to satellite observations, performance metrics for modes of variability are more complex than time-mean assessments and must be tailored to each phenomenon. Furthermore, many modes of variability are episodic, allowing a model to simulate a phenomenon “correctly” even when the timing of events does not coincide with observations. Developing an automated calibration workflow to target episodic phenomena is challenging; however, overcoming this challenge could pave the way for broader adoption of auto-calibration in the Earth science modeling community. To bridge the gap, we propose an intermediate “end-to-end” approach that keeps a human in the loop while moving significantly beyond manual trial-and-error. This process minimizes human involvement in what would otherwise be a slow, expensive, and subjective data analysis, particularly in the intermediate steps of data processing and diagnostic calculation.

In this study, we develop an end-to-end uncertainty quantification (UQ) workflow to calibrate the representation of convectively generated gravity waves in the U.S. Department of Energy’s Energy Exascale Earth System Model (E3SM, Golaz et al., 2022) using surrogate-accelerated multi-objective optimization. We focus our efforts on convectively generated gravity waves for two reasons. First, these waves represent a large portion of the forcing for the quasi-biennial oscillation (QBO), a dominant mode of stratospheric variability that has global impacts, yet is poorly represented in many Earth system models. Second, both atmospheric moist convection and the gravity waves it generates are usually unresolved on the physical model grid and therefore must be parameterized. Because the characteristics of gravity wave generation are not well observed, their representation is calibrated through adjustment of several physical parameters in an attempt to obtain a more realistic QBO.

The end goal is to systematically adjust the parameters to minimize discrepancies, ensuring that its outputs align as closely as possible with observational or experimental data (Santner et al., 2018). This process improves the model’s predictive capabilities and reduces epistemic uncertainty (Oberkampf & Roy, 2010). The fundamental statistical groundwork was established in the original works of Jones et al. (1998); Kennedy and O’Hagan (2001); Higdon et al. (2008). A thorough background on model calibration for climate models is provided by Hourdin et al. (2017). Applied scientists will find Mai (2023)’s 10 strategies toward successful calibration of environmental models particularly useful. More generally, we direct the reader to R. C. Smith (2024) for a comprehensive exploration of UQ, including model calibration, in complex systems across various scientific and engineering disciplines.

Running E3SM to generate a single simulation with sufficient temporal duration and an acceptable level of spatial resolution can require the allocation of substantial computational resources on exascale computing platforms, rendering direct optimization approaches impractical. To mitigate the computational cost, we build a statistical surrogate based on Gaussian processes (GPs) to obtain a probabilistic approximation of the quantities of interest (QoIs) that, once trained, can be evaluated at a small fraction of the cost of a single simulation. GPs, as a computationally efficient alternative, have proven successful in multiple climate applications, including ice sheet modeling (Berdahl et al., 2021), greenhouse gas emission modeling (Beusch et al., 2022), the calibration of atmospheric convection parameters in an idealized general circulation model (Dunbar et al., 2021), spatio-temporal ratios of the canonical idealized two-scale system (Lguensat et al., 2023), and non-orographic parameterizations of the atmospheric gravity waves in an idealized moist atmosphere (King et al., 2024). We direct the reader to Rasmussen and Williams (2005) for the most comprehensive self-contained treatment of GPs and to Gramacy (2020); Santner et al. (2018) for a modern overview of GPs in the context of design and analysis of computer experiments. For other constructions, Chowdhary et al. (2022) offers an extensive review of machine learning methods combined with projection-based model reduction techniques for data-driven surrogates, particularly for spatial or spatiotemporal field data.

This work includes a thorough discussion of QoI construction, an extensive analysis of the estimated quantities, and a sensitivity analysis. Although not strictly required for the calibration, sensitivity analysis yields two valuable complementary results: gaining insight into the effects of the parameterized convective gravity wave scheme on the QBO, and providing an opportunity for subject matter experts (SMEs) to assess the reasonableness

of the surrogate predictions through the study of feature importance and global trends in the predictions. This enables a more transparent calibration approach, providing insight into how and why the climate model is tuned, mitigating the risk of misattribution of skillful predictions to data accommodation and vice versa (Schmidt et al., 2017). Among numerous techniques better suited for different model characteristics (Cheng et al., 2020; Gan et al., 2014), Sobol' indices for variance-based decomposition (Saltelli et al., 2006; Sobol, 2001) are particularly effective for gaining insight into the factors influencing the computer model. They can be estimated using random sampling approaches (Jansen, 1999; Saltelli et al., 2010) as well as efficient closed-form methods (Crestaux et al., 2009; Sargsyan, 2015; Sudret, 2008).

Next, we continue onto model calibration. Numerous techniques for climate model tuning exist (Hourdin et al., 2017), including Bayesian optimization (Chang & Guillas, 2018; Salter et al., 2019), ensemble Kalman inversion (Cleary et al., 2021; King et al., 2024; Mansfield & Sheshadri, 2022), and history matching (Hourdin et al., 2021, 2023; Williamson et al., 2013). Rather than identifying the full plausible range of parameters consistent with observational and model uncertainties, our research specifically targets the conflicting relationship between the QBO's period and amplitude. We therefore selected multi-objective optimization (MOO), as it is designed to map this trade-off frontier and simultaneously optimize multiple conflicting objectives (Gunantara, 2018; Sharma & Kumar, 2022). In particular, we leverage our cost-efficient surrogate to find the Pareto frontier (Kang et al., 2024) and quantify an efficient trade-off between the QBO period and amplitude. This approach enables a direct diagnosis of structural model limitations and reveals the best possible performance compromises, our central goal. MOO has gained significant traction in the calibration of climate models (Langenbrunner & Neelin, 2017) as well as adjacent fields of study such as hydrology (Efstratiadis & Koutsoyannis, 2010), wind energy (Liu et al., 2020), geology (Gong et al., 2016), and environmental sciences (Sun et al., 2021). These advances reflect a growing recognition of the complexity of climate systems and the necessity of addressing diverse objectives in the calibration process.

The QBO is a regular variation of the winds that occurs in the tropical stratosphere (Baldwin et al., 2001). An alternating wind regime in the zonal direction is primarily observed in the equatorial stratosphere, between approximately 10 and 50 km altitude. The oscillation manifests as downward-propagating wind regimes, with westerly (west-to-east) and easterly (east-to-west) winds alternating in a quasi-periodic manner approximately every 28–30 months. The wind speeds can reach up to 40 m/s (Naujokat, 1986), and the regimes propagate from the upper stratosphere to the lower stratosphere at a rate of about 1 km per month (Baldwin & Dunkerton, 1998). To assess the quality of our results, we compare the physically interpretable QoIs, estimated from our domain knowledge-informed compressed representation of the high-dimensional spatio-temporal dense wind field, against these key attributes documented in the climate literature.

The QBO is a critical component of the Earth's atmospheric system, with far-reaching impacts on climate and weather. Although it manifests in the equatorial band, the QBO affects the global weather and climate via teleconnections (Anstey et al., 2021), defined as spatially remote responses to a local perturbation. It influences the frequency and intensity of tropical cyclones; for example, the QBO easterly phase (when lower stratospheric winds flow from east to west) is associated with reduced vertical wind shear, which can enhance cyclone development (Gray, 1984). The QBO affects the stratospheric circulation, which can in turn influence tropospheric weather patterns, including the jet streams and storm tracks (Baldwin & Dunkerton, 2001). QBO-related wind and temperature anomalies also modulate the distribution of ozone in the stratosphere, with implications for ultraviolet radiation reaching the Earth's surface (Hasebe, 1994). Additionally, the QBO impacts monsoon systems, particularly the Asian and African monsoons, by altering the large-scale atmospheric circulation (C. Li & Yanai, 1996). The QBO is also known to influence the boreal winter extratropical stratosphere (Naoe & Yoshida, 2019). Understanding and accurately simulating the oscillation remains a challenging but essential task for improving climate predictions and understanding atmospheric dynamics.

Mechanistically, the QBO is driven by the interaction of atmospheric waves with the mean flow in the stratosphere (Alexander & Holton, 1997; Booker & Bretherton, 1967; Holton & Lindzen, 1972; Lindzen & Holton, 1968). The primary waves involved are Kelvin waves, which are eastward-propagating equatorial waves that contribute to the westerly phase of the QBO; equatorial Rossby-gravity waves, which are westward-propagating waves that contribute to the easterly phase of the QBO; and gravity waves, generated by convection and other processes in the troposphere, which also play a crucial role in driving both phases of the QBO. In this article, we focus exclusively on the calibration of the parameterized convectively generated gravity waves via the deep

convection scheme (G. Zhang & McFarlane, 1995). These waves propagate from the troposphere upward into the stratosphere. As the waves interact with the mean flow in the stratosphere, they can break and deposit momentum, which alters the wind patterns. As one phase descends, it is eventually replaced by the opposite phase, completing the oscillation cycle (Plumb, 1977; Wallace & Kousky, 1968). These complex interactions result in a distinctive correlation structure over space and time that our workflow exploits to reduce the dimensionality of the data while guaranteeing spatial coherence across the atmosphere.

The QBO is notoriously challenging to simulate (Anstey et al., 2020). Although a realistic period can often be achieved by tuning the parameterized non-orographic gravity wave drag, the QBO signal frequently remains unrealistically weak in the lowermost tropical stratosphere, with underpredictions of up to 50% at some key pressure levels (Anstey et al., 2022; Bushell et al., 2020). This failure to capture the full amplitude and penetration represents a significant limitation in model fidelity, as it hinders the simulation of the QBO's downstream impacts on the troposphere (Garfinkel et al., 2022) E3SM (Golaz et al., 2019, 2022) has also struggled to reproduce the observed QBO characteristics in version 1 (Y. Li et al., 2023; Richter et al., 2019) and version 2 (Golaz et al., 2022; Y. Li et al., 2025). The QBO involves small-scale wave processes that require high vertical and horizontal resolution (Giorgi et al., 2002) and exhibit natural variability in its period and amplitude, which can be difficult to reproduce (Anstey & Shepherd, 2013). These challenges have been partially addressed by either recalibrating existing state-of-the-art parameterizations or developing yet more expressive parameterizations. Previous attempts at calibrating the representation of the QBO in E3SM versions 1 and 2 are documented in Richter et al. (2019) and Golaz et al. (2022), respectively. These attempts have been iterative, running E3SM using hand-picked values, which can result in a tedious, time-consuming, and subjective process. State-of-the-art automatic calibration workflows for E3SM, such as Yarger et al. (2024), do not include the QBO in their scope.

While formal calibration of the QBO in E3SM is new, advances in calibrating gravity wave parameterizations in other models provide a valuable contrast to our approach along several key dimensions, including the targeted QoIs, method of dimension reduction, and treatment of uncertainty. Our work diverges from recent calibration efforts that use Bayesian frameworks to quantify the full plausible parameter space (Chang & Guillas, 2018; King et al., 2024). Instead of mapping uncertainty, our primary objective is to use MOO to identify the optimal performance trade-off frontier and expose E3SM's structural limitations. This philosophical difference is reflected in our methodology. Whereas other approaches reduce dimensionality by calibrating against high-dimensional fields via basis representations (Chang & Guillas, 2018), or by simplifying the QBO down to its period and amplitude at a single pressure level estimated from transition times (King et al., 2024), our workflow achieves dimension reduction through physics-based feature extraction that preserves the QBO's key physical characteristics. To the best of our knowledge, our end-to-end UQ workflow is the first attempt at calibrating the QBO in E3SM by fully leveraging formal calibration tools. We successfully demonstrate the added value that statistical calibration has in improving the E3SM. While our workflow currently employs a human in the loop, it builds the necessary components required to construct an automated pipeline.

The article is structured as follows. In Section 2, we introduce the observational and simulated data, discuss the structure of the wind fields, and present an exploratory analysis. In Section 3, we describe our end-to-end UQ workflow, including the novel fundamental frequency model that was developed to learn the QoIs from wind data (Section 3.1), a surrogate for highly correlated QoIs (Section 3.2), and a MOO strategy to efficiently search for physics parameter values (Section 3.3). In Section 4, we thoroughly examine the results from applying our workflow to the aforementioned data set, including a model-based characterization of the QBO (Section 4.1), an exploratory analysis of the simulations produced by E3SM (Section 4.2), a discussion on surrogate model selection and validation (Section 4.3), a global sensitivity analysis (Section 4.4), and a detailed account of the MOO results and limitations (Section 4.5). Finally, in Section 5, we summarize the most salient findings and allude to open questions for future research. Supporting Information S1 contains complementary details that are referenced throughout this manuscript.

2. Data

The purpose of our investigation is to calibrate E3SM to simulate wind fields showing a set of target characteristics learned from observational data. In this section, we describe the observations playing the role of reference data and an E3SM-generated simulations ensemble.

2.1. Reference Data

Among the multiple atmospheric global reanalysis data sets (Wu et al., 2024), a particularly important observational data set is the ERA5 reanalysis (Hersbach et al., 2017). ERA5 is the fifth generation atmospheric reanalysis of the global climate covering the period from 1940 to present, with an approximately 30 km horizontal grid resolution and 137 atmospheric levels from the surface up to a height of 80 km. Compared to its predecessors, such as ERA-Interim (Dee et al., 2011), ERA5 has significantly higher space-time resolution, a more sophisticated representation of physical processes in the atmosphere (including convection), and an improved representation of the stratosphere to better capture variability and extremes. Regarding the QBO, the main advancements include upgrades to the original parametrization of convection (Tiedtke, 1989) to improve the representation of mixed-phase clouds (Ahlgrimm & Forbes, 2014), tropical variability (Bechtold et al., 2008; Hiron et al., 2012), and the diurnal cycle of convection (Bechtold et al., 2014).

We subset the wind data from 1984 to 1993. This period excludes the anomalous behaviors associated with the more recent disruption events in 2015/2016 (Osprey et al., 2016; Watanabe et al., 2018) and 2019/2020 (Wang et al., 2023), which are likely driven by complex external factors that may not be closely linked to the fundamental driving mechanisms of the QBO targeted by our current workflow. The comparatively short window is chosen to be consistent with the simulation lengths of the large E3SM ensemble to be described in Section 2.2, and to ensure that computational costs do not become prohibitively expensive. The data are structured as a 2D field with 6 pressure levels displayed on the vertical axis (7–70 hPa of atmospheric pressure, or approximately 18–33 km in elevation) and a complete sequence of 120 evenly spaced monthly mean time steps on the horizontal axis. Each horizontal slice corresponds to a time series for a fixed pressure level.

2.2. Earth System Model Simulation Ensemble

We generate simulations using a version forked from E3SMv2 (Golaz et al., 2022; E3SM Project, 2023) that implements the redesigned vertical grid introduced in Yu et al. (2025). The length and time span of the simulation are comparable to the reference data, despite an apparent phase shift attributed to minor differences in the atmospheric initial conditions. E3SM surface temperatures are prescribed from observations over regions of ocean and sea-ice during 1984–1993, while the land surface is fully prognostic. While surface temperatures are prescribed, the surface flux calculations still depend on the atmospheric state. Trace gases such as CO₂ and CH₄ are also prescribed consistent with observations.

E3SM simulates signed wind speed, represented as a 4D tensor indexed across latitude, longitude, pressure, and time. Employing the standard 1° × 1° cubed-sphere horizontal grid (64,800 cells) and an 80-layer vertical grid configuration, a typical 10-year simulation consumes 400 CPU core-hours and produces 18 billion daily wind averages. Subject Matter Experts (SMEs) designed the vertical grid with unevenly distributed points, spanning from 0.1 hPa (64 km) down to the surface, to satisfactorily resolve atmospheric behaviors and mitigate model biases. Despite its massiveness, we exploit the nature of the QBO to reduce the data dimensionality. Because the QBO is in essence a tropical stratosphere phenomenon characterized by low-frequency dynamics (Baldwin et al., 2001), we constrain the geospatial and vertical domains as well as coarsen the time resolution. More specifically, we (a) only retain observations located in the 7–70 hPa pressure band and within the ±5° latitude band, (b) spatially aggregate the data via averages over latitude and longitude, and (c) temporally aggregate the data via monthly means. For rule (a), we build upon the empirical fact that the QBO is a lower stratosphere phenomenon and further trim the pressure band to exclude locations with overlapping atmospheric phenomena (e.g., semi-annual oscillation at altitudes above the 5 hPa pressure level (A. K. Smith et al., 2020)). All rules describing horizontal and temporal aggregation are consistent with the geotemporal aggregation criteria designed for the E3SM Diagnostics Package (C. Zhang et al., 2022), a comprehensive post-processing toolkit embedded in the E3SM process workflow. The resulting data set used in our study is reduced by these rules to 720 observations per simulation, structured as a 2D field over 120 months and 6 pressure levels (namely 7, 10, 20, 30, 50, and 70 hPa).

E3SM is controlled by numerous parameters, including both user-facing and internal variables. The key mechanistic QBO driver is the forcing generated by the breaking of vertically propagating and convectively generated gravity waves (Baldwin et al., 2001; Booker & Bretherton, 1967; Lindzen, 1987; Lindzen & Holton, 1968), and a correct QBO representation requires realistically represented large-scale (grid-resolved) atmospheric waves as well as small-scale (parameterized) gravity waves generated by convection (Richter et al., 2020). The oscillation

Table 1

Parameter Ranges, Default Values, and Corresponding Definitions for E3SM Version 2 (v2) and Version 1 (v1)

Name	Lower	Upper	Default (v2)	Default (v1)	E3SM parameter name
EF	0.00	1.00	0.35	0.40	effgw_beres
CF	0.00	1.00	0.10	0.08	1/gw_convect_hcf
HD	0.25	1.50	1.00	1.00	hdepth_scaling_factor

Note. The parameters include EF (efficiency factor), CF (conversion factor), and HD (heating depth multiplier), which are integral to the convective gravity wave generation scheme.

generated in E3SMv2 is characterized by a shorter period and stronger amplitude compared with its predecessor due to updates to the deep convection parameterization, which makes convection more intense but less frequent while leaving the time-mean convective heating tendency almost unchanged (Y. Li et al., 2025). Accordingly, we have selected three physics parameters closely linked to the deep convection scheme and gravity wave generation whose ranges and default values are reported in Table 1.

First, we consider the efficiency (EF) of convection in generating gravity waves from the Beres scheme (Beres et al., 2004). When the Zhang-McFarlane deep convection scheme (G. Zhang & McFarlane, 1995) activates convection, the EF range from 0 to 1 indicates the proportion of time that gravity waves are generated. The higher the EF value, the higher the

number of gravity waves generated over time. Second, we control the conversion factor (CF), which ranges between 0 and 1 and scales the grid-box-averaged heating rate resolved by E3SM. A higher value, indicative of more intense convection, results in a greater magnitude of localized heating. Treating the parameterization of convectively generated gravity waves as a black box, CF and EF are tightly coupled parameters scaling the input and output of the black box, respectively. The former scales the convective (condensational) heating that is provided to the scheme, while the latter scales the amount of gravity wave activity generated by the scheme. Third, we adjust the heating depth (HD) multiplier, which ranges from 0.25 to 1.50. HD is an empirical parameter determined heuristically rather than theoretically that scales the resolved heating depth, allowing for adjustments that increase or decrease the prescribed value. Both the vertical extent of positive convective heating values and the maximum amplitude of the heating vertical profile influence the spectrum of gravity waves that will be generated.

3. Methods

We now present our end-to-end UQ workflow for improving the QBO, which consists of domain-knowledge informed dimension reduction, surrogate modeling, and MOO.

3.1. Fundamental Frequency Model

The QBO is the leading mode of variability observed in the tropical stratosphere (Baldwin et al., 2001). It is not a directly observable quantity but serves as a framework for characterizing key patterns identified from observational data, which should be approximately replicated by the simulated wind field to be considered realistic. From a modeling perspective, we identify three key challenges to a successful formulation. First, as not every identifiable source of variability is of interest to our calibration efforts, we require a clear definition of the relevant signal to mitigate overloading the calibration process with information that has no mechanistic link to the ability to accurately simulate the QBO and, eventually, its teleconnections.

Second, calibrating the model to simulate a realistic QBO requires more than simply matching simulated fields to observations. The objective is to find optimal configurations that reproduce wind field patterns consistent with observations and grounded in physical principles, avoiding overly restrictive field-to-field comparisons that do not address the underlying scientific questions. As one simple example, an element-wise comparison between a wind field and a time-shifted copy would yield the same result when assessing the fundamental oscillatory characteristics that our model aims to reproduce. We intentionally de-emphasize strict temporal alignment to capture *how* the QBO oscillates (e.g., period and amplitude) rather than *when* specific events occur (their exact timing or phase). Achieving precise QBO phase alignment between observations and a free-running Earth System Model (ESM) cannot be expected for several reasons, including: (a) the initial conditions are from a previous simulation and do not match the observed atmospheric state on 1 January 1985; and (b) the simulated QBO events are largely forced by tropical convection, which is an inherently stochastic process.

Third, since E3SM is a high-resolution model that runs on exascale computers and generates high-dimensional data, dimensionality reduction is crucial for streamlining the analysis and improving computational efficiency. In the remainder of this subsection, we introduce the fundamental frequency model (FFM) to translate established principles from atmospheric science into QoIs amenable to UQ, isolate the QBO signal from other oscillations and random error, and reduce data dimensionality.

3.1.1. Formulation

We formulate a set of equations characterizing the essential dynamics of the QBO coupled with a minimal set of constraints. At the most basic level, the FFM learns a single frequency that optimally explains the cyclical wind patterns while ensuring an empirically motivated phase coherence in the vertical dimension.

Let $y_{tk} \in \mathbb{R}$ be the signed wind speed in m/s at month t and the k -th pressure level for $t = 1, \dots, T \in \mathbb{N}$ and $k = 1, \dots, K \in \mathbb{N}$. Positive and negative speed values correspond to eastward and westward winds, respectively. The wind field is driven by the following spatio-temporal set of equations,

$$y_{tk} = \beta_{0k} + \beta_{1k} \sin(2\pi t/\tau - \phi_k) + \varepsilon_{tk} \quad (1)$$

$$\phi_k = \alpha_0 + \alpha_1 \log_{10}(\text{pressure}_k) \quad (2)$$

where $\beta_{0k} \in \mathbb{R}$ is the QBO E-W (zonal wind) bias at the k -th pressure level, $\beta_{1k} \in \mathbb{R}^+$ is the QBO amplitude at the k -th pressure level, $\tau \in \mathbb{R}^+$ is the QBO period shared across all the pressure levels, $\phi_k \in [0, 2\pi]$ is the phase shift at the k -th pressure level, $\varepsilon_{tk} \sim \mathcal{N}(0, \sigma_k^2)$ is the error variance at the k -th pressure level, and $\alpha_0, \alpha_1 \in \mathbb{R}$ are the linear propagation coefficients. The E-W bias coefficients capture the mean wind speed over time, where positive values indicate the dominance of easterlies over westerlies. The amplitude coefficients measure the half-range of the signed wind speed or, more intuitively, half the distance between peaks and troughs. The period and the phase shift characterize the wave cycle length and starting point. Visually, y_{tk} for a fixed k behaves like a wave over time. The parameters β_{0k} and ϕ_k are associated with vertical and horizontal shifts, respectively, while β_{1k} and τ are associated with vertical and horizontal dilations.

In this parametrization, we allow the E-W biases β_{0k} and amplitudes β_{1k} to vary freely, the phase shift ϕ_k to propagate linearly, and the period τ is held constant over all pressure levels in the atmosphere. These three distinct levels of freedom are informed by previous empirical studies. The period τ is held constant as a function of pressure to enforce that the physical process remains coupled: even though it is possible to observe multiple waves with seemingly different periods in a finite sample, were the QBO period truly free over the atmosphere, the wind cycles at different pressure levels would eventually desynchronize. As for the phase shift ϕ_k , a downward propagation from the top of the troposphere until the signal dissipates near the tropopause has been widely documented observationally (Baldwin et al., 2001). The waves are allowed to be coherently off-phase across the multiple pressure levels and, since they share the same period in our parametrization, the phase shift translates directly into a time shift equal to $\tau \times \phi_k/2\pi$ months. The phase offset ϕ_k , however, is not erratic but follows a spatial progression. As a first-order approximation, the propagation equation in Equation 2 is log-linear in pressure, making it approximately linear with geopotential altitude. This simple parametric model mimics a descending wind regime that reaches the lower levels as a new regime begins to form in the upper levels. Finally, we allow the E-W wind bias and amplitude to vary freely in the vertical direction throughout the atmosphere. Although there is no reason to expect that they form a rough function over pressure levels or exhibit discontinuities, the limited number of pressure levels and the strength of the signal in the data rarely necessitate regularization to prevent unphysical fits. Enforcing smoothness, for example, by incorporating a penalization or regularization term, may be warranted in other applications.

A particularly appealing aspect of the FFM is that every QoI has a clear visual counterpart in the time-pressure cross-sections. The QBO essentially resembles a noisy sequence of diagonal stripes in alternating colors: (a) the linear propagation rate α_1 captures the stripes' inclination or angle; (b) the period τ captures the distance between two consecutive stripes of the same color; (c) the amplitudes β_{1k} determine the contrast between the darkest shades of red and blue (i.e., the local minima and maxima); and (d) the E-W wind biases β_{0k} capture the dominating color.

We present two additional minor considerations regarding Equation 1. First, because the FFM is designed to capture the leading mode of variability in signed wind speed, we incorporate an additive error term to account for potential secondary sources of variability, such as the semi-annual oscillation leaking above 5 hPa and wind variations associated with the El Niño-Southern Oscillation (Timmermann et al., 2018). While assuming an independent and identically distributed normal error simplifies parameter estimation considerably, time-aware alternatives, such as an autoregressive process, could yield more accurate estimates of the QoIs. Second,

although periodic waves are customarily parameterized as functions of frequency in the engineering and digital signal processing communities, we express the equation explicitly as a function of period to facilitate the direct estimation of the QoI and its associated uncertainty. Parameterizations in terms of both frequencies and periods are equivalent.

3.1.2. Estimation

Fitting the FFM to a data set involves learning $2K + 3$ parameters for the mean and K parameters for the variance from $T \times K$ data points. The log-likelihood is given by the expression

$$L(\boldsymbol{\theta} | \mathbf{Y}) = \sum_{k=1}^K \left[-\frac{1}{2}(\mathbf{y}_k - \mathbf{m}_k)^\top \mathbf{S}_k^{-1} (\mathbf{y}_k - \mathbf{m}_k) - \frac{1}{2} \log |\mathbf{S}_k| - \frac{T}{2} \log 2\pi \right] \quad (3)$$

$$\mathbf{m}_k = \beta_{0k} + \beta_{1k} \sin(2\pi t/\tau - \phi_k) \quad (4)$$

where \mathbf{m}_k is a vector of length T with the mean at time snapshots for the k -th pressure level, $\mathbf{S}_k = \sigma_k^2 \mathbf{I}$ is a diagonal matrix with a time-homogeneous variance at pressure level k , and $\boldsymbol{\theta}$ denotes the parameter vector. The log-likelihood, which is readily found by noticing that Equation 1 is a non-linear regression model with Gaussian additive error, reduces to a sum of $T \times K$ terms that can be computed efficiently.

There are several methods to estimate the parameters of the FFM and quantify their uncertainty. Maximum likelihood estimation (MLE) can be conducted by optimizing the log-likelihood in Equation 3. Note that, conditional on $(\tau, \alpha_0, \alpha_1)$, the MLE and ordinary least-squares estimates for $(\boldsymbol{\beta}_0, \boldsymbol{\beta}_1, \sigma^2)$ are equivalent. This effectively reduces the numerical optimization input dimension down to three free parameters facilitating a computationally efficient search even for large K . The parameter uncertainty matrix can be approximated by evaluating the Hessian at the MLE.

Alternatively, Bayesian estimation may be performed by updating Equation 3 with possibly non-uniform priors. When fitting the model to the reference data, in particular, the following set of informative priors can be elicited from published empirical studies (Baldwin et al., 2001): $\tau \sim \mathcal{N}^+(28, 10^2)$ to center the mode around the widely accepted value of 28 months and place 80% of the truncated density in the 20–40 months window, $\alpha_1 \sim \mathcal{U}(0, \infty)$ to force downward propagation, and $\beta_{1k} \sim \text{Gamma}(2, 0.1)$ to place the central 80% of the density for wind speed amplitude in 5–40 m/s. Numerical optimization over the posterior surface can be performed using standard Bayesian inference methods (Gelman et al., 2013), such as the maximum a posteriori probability (MAP) estimate via derivative-based maximization algorithms or full posterior distribution estimates via Markov chain Monte Carlo (Brooks et al., 2011). Since the MLE and MAP under uniform priors are numerically equivalent, a computationally efficient plug-in estimate may be constructed by optimizing numerically over $(\tau, \alpha_0, \alpha_1)$ and interpreting the point estimate under the Bayesian framework. The plug-in estimate is likely to result in the underestimation of the uncertainties for certain QoIs (White, 1982), which may not be critical if these uncertainties are not propagated through downstream analyses.

The FFM can also be framed as a regression problem. Nonlinear least squares can be applied to Equations 1 and 2 to estimate the set of waves that best fit the data without assuming normal errors (D. M. Bates & Watts, 1988; Nocedal & Wright, 2006). Given the varying scale of residuals across the atmosphere, it may be beneficial to minimize a weighted sum of squares with weights inversely proportional to the wind speed variance: $w_k^{-1} = (T - 1)^{-1} \sum_t (y_{tk} - \bar{y}_k)^2$ for $\bar{y}_k = T^{-1} \sum_t y_{tk}$. Alternatively, cross-validation is often argued to be more robust against model misspecification (Wahba, 1990). For fixed parameters $(\tau, \alpha_0, \alpha_1)$, the leave-one-out predictive mean and variance can be computed analytically, reducing the computational burden of performing leave-one-out cross-validation,

$$E\langle \hat{y}_{-tk} | \tau, \phi_k \rangle = y_{tk} - \frac{[\mathbf{S}_k^{-1} \mathbf{y}]_t}{[\mathbf{S}_k^{-1}]_t} \quad \text{and} \quad V\langle \hat{y}_{-tk} | \tau, \phi_k \rangle = 1 / [\mathbf{S}_k^{-1}]_t \quad (5)$$

where $\mathbf{S}_k = \mathbf{b}_k \cdot \mathbf{b}_k^\top$, $\mathbf{b}_k = \sin(2\pi t/\tau - \phi_k)$ is the dot product matrix of the sine basis vector.

3.1.3. An Analogy to Dimension Reduction Techniques

Setting aside the physics motivating its formulation, the FFM can also be viewed as a tool for reducing the dimensionality of the wind field. A single model run typically produces $T \times K$ values arranged in a two-dimensional map over time and atmospheric pressure, whereas Equations 1 and 2 only require $2K + 3$ parameters, yielding a reduction factor of approximately $T/2$ except for very small K . The percentage of variance explained by the FFM is calculated using the standard coefficient of determination (R^2).

If dimension reduction were the sole intent, one might consider applying off-the-shelf data reduction techniques to the wind fields, such as the Karunen-Loëve expansion (Ghanem & Spanos, 2003), functional principal component analysis (Shang, 2013), or t-distributed stochastic neighbor embedding (van der Maaten & Hinton, 2008). However, the FFM has at least two added values: parsimony and scientific interpretability.

First, since the size of the low-dimensional representation is selected on conceptual grounds rather than based on goodness of fit or cross-validation, the FFM has a design that favors parsimony and mitigates the risk of overfitting. Although preserving a large percentage of the variance (e.g., 99%) is often preferred in many learning tasks, in line with the definition of the QBO, we focus on capturing only the primary mode of variability. This approach is analogous to tasks like sound processing, where the fundamental frequency corresponds to the first harmonic and captures the identity of the signal but not its full complexity, which arises from the combination of all the harmonics. In Section 4.2, we argue that the FFM captures a substantial portion of the wind field variability, though not all of it. However, this is intentional, as the goal is to avoid misattributing other atmospheric oscillations to the QBO.

Second, because the reduced quantities have an intrinsic physical meaning derived from a model, they can be subjected to evaluation by SMEs. Not only does this facilitate interdisciplinary collaboration, but it also integrates our results with the extensive theoretical and empirical knowledge in climate science. In contrast, low-dimensional variables such as spectral features or principal component scores lack tangible physical meaning, and any data-driven interpretation is fully dependent on the correlation structure realized in the training data, which may shift as new data are collected.

3.2. Probabilistic Surrogate

We construct a statistical model to approximate the QoIs as they would appear if E3SM were run with an arbitrary set of physics parameter values. Our discussion focuses on the QBO period and amplitude, noting that incorporating additional quantities into the proposed workflow is straightforward. At the core of the surrogate model are multiple independent GP regressions, each representing an unknown function that maps the physics parameter space to a truncated set of noisy spectral features associated with the QoIs. From these regressions, the predictive distribution of the QoIs is analytically reconstructed from the predictive distribution of the spectral features. Step-by-step derivations and resulting expressions are provided in Text S2 in Supporting Information S1.

3.2.1. Formulation

Let \mathbf{Q} be the $N \times J$ matrix containing the QoIs, where each row corresponds to a vector \mathbf{q}_n for the n -th E3SM ensemble member simulation. Since the QoIs are derived from noisy data rather than directly observed, $\{\mathbf{q}_n\}_{n=1}^N$ represents a collection of random vectors, each with a mean vector and a covariance matrix as discussed in Section 3.1.2. For the purpose of this analysis, however, we consider the vectors fixed and known and set them equal to the estimated mean. Although the FFM does not impose an explicit functional structure on the QoIs, these vector elements are often highly correlated as they describe a coherent set of physical characteristics from a single atmospheric phenomenon. It is therefore essential that our surrogate, when evaluated at a new location in the design space, generates joint predictions with an internal consistency similar to the E3SM simulations. To achieve this, we apply the Karhunen-Loëve expansion (KLE) (Ghanem & Spanos, 2003; Karhunen, 1946; Loëve, 1963) to represent the vector \mathbf{q}_n in terms of J zero-mean uncorrelated random variables \mathbf{z}_n referred to as *spectral features*. This strategy is closely related to well-established techniques for data decorrelation and dimension reduction in geophysics and climate science (Hannachi et al., 2007). KLE provides the general mathematical framework for optimally representing random processes using orthogonal basis functions derived from the covariance structure. Principal Component Analysis (PCA) is the discrete analog of the KLE when applied to finite data sets, whereas

Empirical Orthogonal Function (EOF) analysis applies PCA to spatiotemporal fields by decomposing them into a sum of spatial patterns weighted by their corresponding temporal amplitudes.

Let $\mathbf{Z} = \mathbf{Q}_0 \mathbf{V}$, where \mathbf{Z} is the matrix containing the spectral features, \mathbf{Q}_0 is the standardized version of \mathbf{Q} (centered by subtracting the sample mean and scaled by dividing by the sample standard deviation along each column), and \mathbf{V} consists of the right singular vectors of \mathbf{Q}_0 , or equivalently, the eigenvectors of the sample correlation matrix $\mathbf{Q}_0 \mathbf{Q}_0^\top$. Let \mathcal{X} and \mathcal{Z} be the physics parameter and the spectral feature spaces, respectively. We model the unknown mapping $f_j : \mathcal{X} \rightarrow \mathcal{Z}_j$ via a GP with mean zero and positive definite correlation function $r_j : \mathcal{X}^2 \rightarrow [0, 1]$,

$$\mathbf{z}_j = f_j(\mathbf{X}) \text{ unknown function} \quad (6)$$

$$f_j \sim \text{GP}\left(0, \sigma_f^2 r_j(\mathbf{x}, \mathbf{x}') + \sigma_{\epsilon_j}^2 \delta(\mathbf{x}, \mathbf{x}')\right) \text{ function prior} \quad (7)$$

where $\sigma_f^2 > 0$ is the signal variance for the j -th spectral feature, $\sigma_{\epsilon_j}^2 > 0$ is the error variance for the j -th spectral feature, and δ is the delta function. Implicit in the prior is the assumption of homogeneous signal variance and the inclusion of a nugget to model the response as a noisy, smooth function. The correlation, whose specification is discussed in Text S1 in Supporting Information S1, is often parameterized by $\{\sigma_{x_{pj}}^2 > 0\}$, where $\sigma_{x_{pj}}^2$ represents the length scale for the p -th physics parameter and the j -th spectral feature.

3.2.2. Training

The GP models are trained separately for each of the J spectral features. By setting up J separate non-parametric regressions, each targeting one dimension of the orthogonal space, and reconstructing the physical predictions from the predicted spectral features, the surrogate effectively preserves the correlation across different physical quantities (most notably, the negative correlation between QBO period and amplitude discussed in Section 4.2) as well as the spatial coherence in amplitude at multiple pressure levels. Each spectral dimension has $2 + P$ hyperparameters, leading to a total of $(2 + P) \times J$ tuning parameters for the surrogate. The separate length scales allow the surrogate to learn different degrees of variability in z_j with respect to x_p : the partial function $z_j = f_j(x_p)$ can become constant as $\sigma_{x_{pj}}^2 \rightarrow \infty$, linear for moderate values of $\sigma_{x_{pj}}^2$, and highly non-linear as $\sigma_{x_{pj}}^2 \rightarrow 0$ (Piironen & Vehtari, 2016). The distinct signal and error variances for each spectral feature provide individual signal-to-noise ratios (Ameli & Shadden, 2022). Details on hyperparameter tuning are provided in the Text S1 in Supporting Information S1.

3.2.3. Selection

The strong correlation among the QoIs allows the data analyst to introduce regularization into the surrogate by truncating the KLE to the top $\tilde{J} \leq J$ modes, particularly when the number of perturbed parameters is much smaller than the number of QoIs ($P \ll J$). While the effective dimensionality of the spectral space can be determined automatically, for example, as part of the Bayesian inference procedure (Bishop, 1998), the analysis of exascale computer experiments often benefits from a human-in-the-loop approach due to relatively small sample sizes and highly complex, coupled structures. For instance, the following training statistics can be used to monitor the retained information. First, the distribution of energy across the modes can be examined to identify a sharp decrease (or “elbow”) in the percentage of variance explained, given by $v_j / \sum_{j=1}^J v_j$, where v_j is the j -th eigenvalue (Cattell, 1966). Second, because the spectral features are ordered by decreasing variance, higher-order modes tend to be relatively noisier, that is, $\frac{\sigma_{f_1}}{\sigma_{f_1}} > \dots > \frac{\sigma_{f_{\tilde{J}}}}{\sigma_{f_{\tilde{J}}}}$. Thus, the learned signal-to-noise ratio can serve as a guideline for selecting the truncation constant (Gramacy, 2020, Section 5.3.4).

Alternatively, when the focus is on the surrogate's predictive capabilities, the optimal truncation can be determined via cross-validation. Under a Gaussian likelihood, the exact mean and variance for the leave-one-out prediction \hat{z}_{jn} are available analytically through two numerically distinct but mathematically equivalent expressions (Sundararajan & Keerthi, 2001; Vehtari et al., 2016). The coefficient of determination, $R_j^2 = 1 - \sum_{n=1}^N (z_{jn} - \hat{z}_{jn})^2 / \sum_{n=1}^N (z_{jn} - \bar{z}_j)^2$ quantifies the proportion of variance in the actual values of the j -th spectral feature that is predictable by the surrogate. The posterior predictive log-density,

$PPLD_j = \log p(\mathbf{z}_j \mid E\langle \hat{\mathbf{z}}_j \rangle, V\langle \hat{\mathbf{z}}_j \rangle)$, represents the log probability of the observed values under the model's predictive distribution, given that the model is trained on all other data points. A higher PPLD indicates more consistent predictability of a mode. Finally, the log-likelihood ratio, $LLR_j = -2[PPLD_j - \log p(\mathbf{z}_j \mid 0, 1)]$, provides a scaled version of the PPLD relative to a baseline model in which the spectral features follow a standard normal distribution. In other words, it quantifies the improvement gained by conditioning on the E3SM simulation ensemble rather than assuming their marginal distribution. A corresponding set of statistics can be defined analogously for the QoIs.

3.3. Multi-Objective Optimization

Our goal is to find physics parameter values that, based on the surrogate, are likely to generate wind fields with the period and amplitude similar to those estimated from the reference data. We set up a MOO, a decision-making method for optimizing under conflicting criteria supported by extensive literature offering theoretical guidance and algorithmic solutions (Chinchuluun & Pardalos, 2007; Collette & Siarry, 2004; Ruzika & Wiecek, 2005).

To define an appropriate set of objective functions, we note that the QoIs correspond to two physical quantities with markedly different characteristics. The period τ is measured in time units and quantifies the duration of one full cycle. The amplitude β_{1k} is a speed measured in m/s and represents the maximum displacement of the wind speed from its time mean at the k -th pressure level. Moreover, the amplitude is a heterogeneous quantity whose scale does not remain constant throughout the depth of the atmospheric layer examined. Period and amplitude exhibit competing behaviors due to a set of complex and unknown dynamics simulated by the E3SM. Multiple strategies could be employed in our application. We find scalarization of vector optimization (Gunantara, 2018) unappealing due to the heterogeneity in their physical meanings, measurement units, and scales. Alternatively, minimizing spectral discrepancy, as proposed by Mueller et al. (2025), would be immediate since the surrogate operates in the spectral domain. However, we decide against this approach to preserve the interpretability of the results introduced by the FFM.

We design the following pair of objective functions to capture the two most essential characteristics of the QBO, period and amplitude, as well as the trade-off between them:

$$\operatorname{argmin}_{\mathbf{x}^* \in \mathcal{X}} \begin{cases} (\hat{\tau}(\mathbf{x}^*) - \tau^{\text{REF}})^2 & \text{(period)} \\ \sum_k w_k (\hat{\beta}_{1k}(\mathbf{x}^*) - \beta_{1k}^{\text{REF}})^2 & \text{(amplitude.)} \end{cases} \quad (8)$$

Here, $\hat{\tau}(\mathbf{x}^*)$ and $\hat{\beta}_{1k}(\mathbf{x}^*)$ are the QBO period and amplitude predicted by the surrogate at a new design location \mathbf{x}^* in the design space \mathcal{X} , τ^{REF} and β_{1k}^{REF} are the QBO period and amplitude estimated from the reference data, and $w_k > 0$ are weights. Considering that amplitude varies in scale throughout the depth of the atmospheric layer, heteroskedasticity is mitigated by weighting observations inversely proportional to their variance.

Multiple mathematical programming approaches have been proposed to search for the Pareto efficient solutions. However, exploiting our highly economical surrogate, we conduct a simple grid search over a low-dimensional design space. For problems with a large number of parameters, a grid search would become impractical and more advanced algorithms would be required to efficiently identify the set of optimal solutions (Coello Coello, 2006). To find the physics parameter values on the Pareto frontier, we evaluate the surrogate over a fine tensor product grid covering the physics parameter space, plug the predicted mean of the QoIs into the objective functions in Equation 8, and subset the dominant solutions. The resulting set is a discrete approximation of the infinitely many solutions for which the QBO period cannot be improved without deteriorating the amplitude-weighted sum, and vice versa.

4. Results

In this section, we apply the workflow developed in Section 3 to the data described in Section 2 to achieve a more realistic representation of the QBO in E3SM. We center our attention on the period τ and the amplitudes β_{1k} over $K = 6$ pressure levels, working with a total of $J = K + 1 = 7$ QoIs.

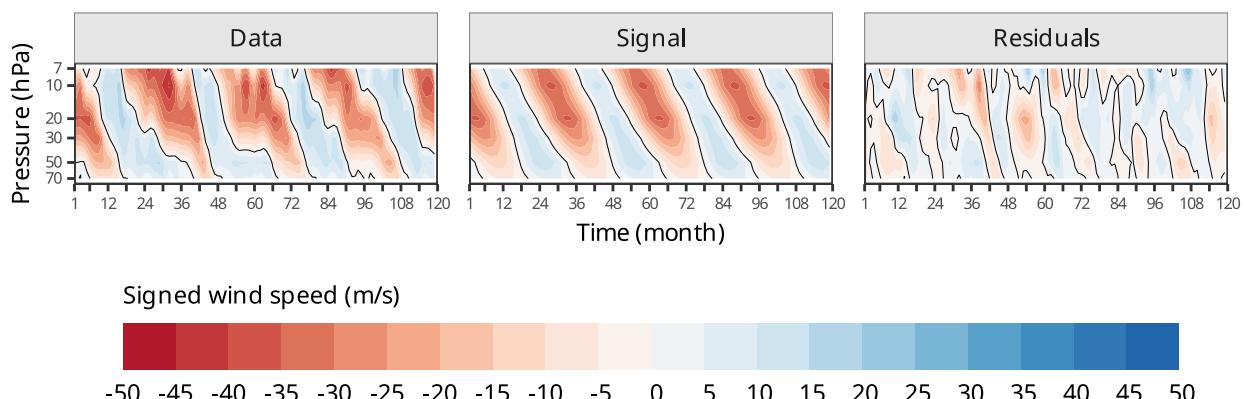


Figure 1. Monthly mean and zonally averaged zonal winds in the lower stratosphere based on (left) the reference data set (ERA5), (middle) the FFM (model mean), and (right) the ERA5-FFM difference (model residual or unexplained component).

4.1. Reference Data

We fit the FFM in Equations 1 and 2 to the ERA5 data and estimate, by numerically optimizing Equation 3, the reference period and amplitudes that will be used as target values in our optimization.

4.1.1. Time-Pressure Cross-Sections

Figure 1 shows lower stratospheric equatorial monthly mean and zonally averaged zonal winds in the time-pressure domain for the reference data, the FFM-based mean (signal), and the FFM-based deviations (residuals). The data display an alternating sequence of zonal wind. Over 120 months, we observe a total of four approximately evenly spaced cycles composed of two-thirds (right tail) of one cycle, three complete cycles, and one-third (left tail) of a fifth cycle. This indicates a reference period of approximately 30 months. The cycles shift over time with altitude due to downward propagation: the movement of these alternating wind regimes from higher to lower altitudes within the stratosphere. Each phase of the oscillation starts at higher altitudes (around 30 km) and gradually descends to lower altitudes, creating alternating bands of easterly and westerly winds (Plumb, 1977).

While the raw data manifests as a sequence of irregular stripes, the FFM signal has perfectly aligned, identical stripes. Both data and signal show five diagonal stripes with similar inclination ($\hat{\alpha}_{1k} > 0$), red peaks at 10 and 20 hPa (large positive coefficients $\hat{\beta}_{1k} : k = 2, 3$), and red stripes that are more prominent than the blue stripes ($\hat{\beta}_{0k} > 0$). Overall, the signal captures the essence of the data while also discarding high-frequency oscillations, and the FFM signal is consistent with the stylized understanding of the QBO in the climate literature.

The residuals exhibit an overall lighter shade accounting for approximately 20% of the variance in the raw data. The residual map reveals two main patterns. First, we observe short-wavelength wind structures of modest amplitude at 7–10 hPa with an approximate period of 6 months. This demonstrates that the FFM has successfully reduced the influence of the semi-annual oscillation while isolating the QBO signal at these altitudes. Second, we note a weak, secondary signal with a 12–16 month period. This feature is a known artifact of applying a periodic model to quasi-periodic data. Because the simulated QBO period varies from one cycle to the next, the residuals display a beat pattern driven by the mismatch between the fitted constant period and the data's local period. Contrary to the common practice of preferring residuals with a random unstructured pattern, the error need not be fully random as long as the residual structure is not attributable to the fundamental frequency. The irregularity in the residual stripes suggests that the constant period and linear propagation constraints are a reasonable approximation for the data. A limitation of the FFM, for example, is its simplified representation of vertical propagation, which does not fully capture the observed differences in the rate of descent and persistence of QBO wind regimes (Baldwin et al., 2001). However, specific analytical goals might warrant more expressive mechanisms to capture a wider range of QBO features.

Additional empirical results are reported in Text S3 in Supporting Information S1. A spectral analysis provides further evidence that the FFM learns the most relevant frequency and the residuals have active frequencies not

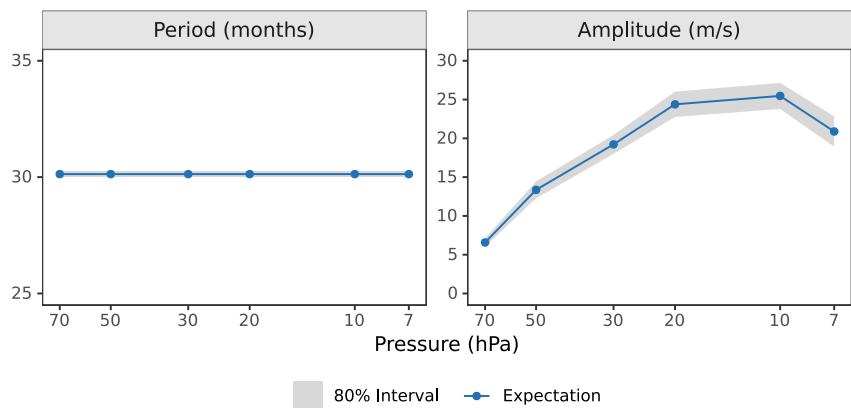


Figure 2. QoIs learned from the reference data set. These correspond to the period (left) and amplitude (right) of the sine waves in Figure S1 in Supporting Information S1. Expectation and interval found via maximum likelihood as discussed in Section 3.1.

associated with the QBO. Moreover, a time series analysis shows that the sinusoidal wave is sufficient to capture the global pattern and the local deviations from the signal belong to high-frequency oscillations that we want to separate from the QBO.

4.1.2. UQ Findings Align With the Consensus Across Varied Methodologies

Despite originating from a fundamentally different analytical approach, our findings show strong alignment with the established consensus in the literature. Figure 2 shows the QBO period and amplitude learned from the reference data set. The FFM captures 79.7% of the variance, achieving a 4:1 signal-to-noise ratio while reducing the data set dimensionality by a factor of 50 with as few as a single harmonic. The retained variability is comparable to the QBO contribution of 81% at 20 hPa reported for the ERA-40 data set in Pascoe et al. (2005, Section 4.1). The remarkably high information content in one single mode is the data-driven counterpart of the definition of the QBO as the main variation in the winds.

Because our dimension reduction technique produces highly interpretable coefficients, we can establish a direct comparison to the substantial amount of empirical findings reported in the climate literature. As our analyses do not rely on the same data set and methodology as the other studies, we expect our estimates to be congruent but not necessarily statistically identical. We estimate the QBO period to be between 29.9 and 30.2 months, consistent with the 26.4–30.4 months reported in Pascoe et al. (2005, Section 4.1), and marginally larger than the previously reported 27.7 months (Naujokat, 1986, Table 1), 28.2 months (Baldwin et al., 2001), and 29.4 months (Coy et al., 2020). We estimate the QBO peak amplitude to be between 23.8 and 27.2 m/s at 10 hPa. The estimate is nominally close to 23.1 m/s at 20 hPa (Naujokat, 1986, reconstructed from Table 3) and 25 m/s at 10 and 20 hPa (Coy et al., 2020, reconstructed from subfig. 2b and 2c). The peak vertical location, defined as the pressure level where amplitude attains its maximum, is similar to the peak shown between 10 and 11 hPa in Pascoe et al. (2005, Figure 4d), although our amplitude is larger in magnitude, possibly due to their band filtering. Although we did not enforce smoothness or regularization on the amplitude estimates across pressure, we observe no sudden jumps in the estimated quantities.

4.1.3. The FFM Satisfactorily Characterizes the QBO

In summary, we find that the goodness of fit is reasonable, the constraints are appropriate, the estimates are consistent with other studies, the free amplitudes display no sudden jumps despite the lack of a built-in smoothness mechanism, and the signal's local deviations from the data show a successful separation of the QBO from other high-frequency phenomena. On the downside, the standard error for the QBO period is optimistically narrow due to the simplistic nature of the FFM, leaving opportunities for future research.

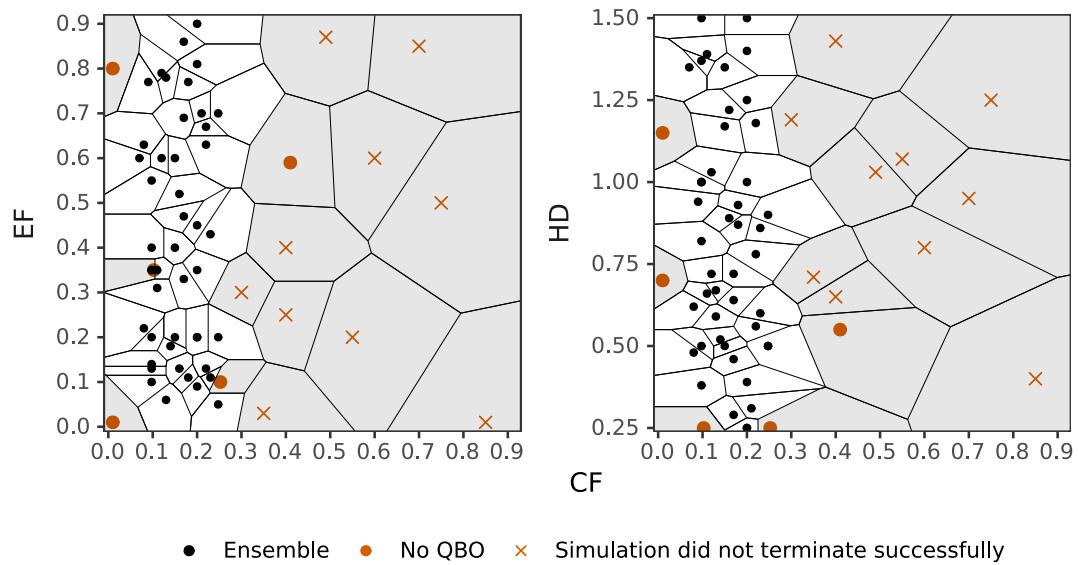


Figure 3. Locations in the E3SM physics parameter space where simulations were conducted. The black lines designate Voronoi cells (Lee & Schachter, 1980). Gray cells correspond to simulations that did not terminate successfully (numerically unstable, X marker) or did not show oscillating winds (nonphysical results, solid dot marker).

4.2. E3SM Simulation Ensemble

In the same manner as done directly above with the reference data, we fit the FFM in Equations 1 and 2 separately to each wind field generated by the E3SM simulation ensemble. To assess the goodness of fit, we compute the percentage of variance explained. The coefficients of determination, which differ across the ensemble members, range from 11% to 91% with an ensemble median of 71%. Since the FFM explains 80% of the reference data and more than 71% in half of the ensemble members, we affirm that the single, most important frequency provides a sufficient degree of compression. The small but significant unexplained portions indicate that the QBO is not the only source of variability, but it is indeed the dominant mode for every single ensemble member.

4.2.1. Extreme Parameter Values Destabilize the Simulated QBO

Not all of the attempted simulations are carried forward for the surrogate-accelerated MOO. A total of 61 instances were attempted to explore the physics parameter space, as shown in Figure 3. An initial space-filling design was constructed with a Latin hypercube sample (McKay et al., 1979; Stein, 1987) from the region defined in Table 1 and was sequentially augmented through manual inspection of the posterior predictive surface. E3SM did not terminate successfully for 10 parameter combinations with relatively large values of CF, suggesting that there is an implicit upper bound on the conversion factor beyond which the model becomes numerically unstable. The model terminated successfully but did not generate a pattern resembling the QBO for another 5 parameter sets located close to the sampling space boundaries. Formally, we deem the QBO non-existent in a simulation if the estimated signal has an excessively fast periodic component ($\hat{\tau} < 6$) or a periodic component slower than the Nyquist frequency ($\hat{\tau} > T/2$). The remaining 46 simulations are retained for downstream analysis. The ensemble member with the closest period is 3.3 months faster than the reference. There is at least one ensemble member that individually approximates the reference amplitude at least at one pressure level, but no simulation approximates the reference amplitude at all pressure levels simultaneously.

4.2.2. Simulated Period and Amplitudes Exhibit a Fundamental Trade-Off

The FFM does not establish any explicit dependence between the QBO period and amplitude. Nonetheless, the QoIs learned from the ensemble show a strong correlation structure with a profound impact on the optimization results. The pairwise analyses in Figure 4 highlight the two core empirical dynamics driving the three-block structure in the correlation. The relationship between period and amplitude at 20 hPa (left) is nonlinear, with an overall downward curve such that longer periods are associated with lower amplitudes. On the other hand, the relationship between period and amplitude at 70 hPa (right) has an approximately negative log-linear trend. The

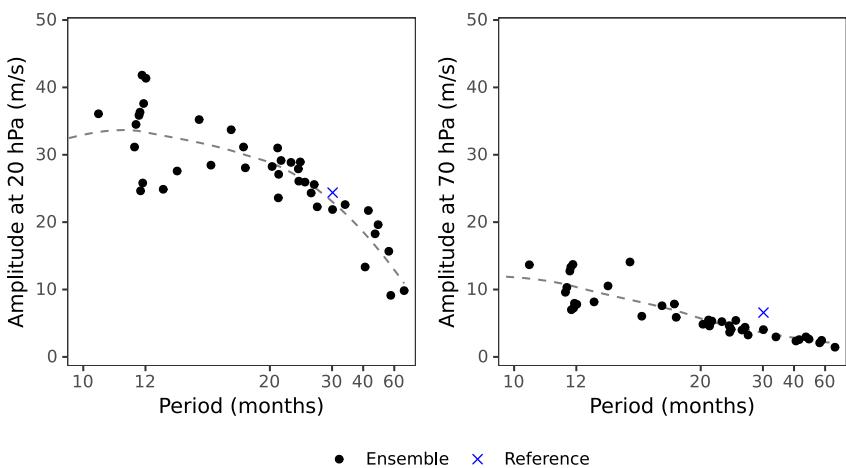


Figure 4. QBO period and amplitudes at 20 hPa (left) and 70 hPa (right) estimated by fitting the FFM to the 46 simulations under analysis (circle) and the reference data (cross). The dashed line, constructed using local smoothing (Cleveland & Loader, 1996), illustrates the approximate shape of the trend implied by E3SM.

strength and direction observed in both curves exhibit an evident tension between the simulated period and the amplitudes. More subtly, the dissimilarity in the shape of these associations implies that increasing amplitude at 20 hPa will increase amplitude at 70 hPa disproportionately, which conveys some of the challenge in matching the full set of amplitudes.

We examine the sample correlation to further characterize the implicit structure of the QoIs. Given that the first three eigenmodes of the sample correlation matrix account for 97.3% of the energy and the estimated effective rank size (Roy & Vetterli, 2007) is approximately two, we find that the nominally seven quantities, one period and six amplitudes at different pressure levels, do not vary independently within a hypercube but instead reside in a highly constrained subspace.

The oscillation co-dynamics are captured by the biplots in Figure 5, where the arrows indicate the direction and strength of the QoI's contribution to the eigenmodes (Gabriel, 1971). The first mode (81.2% variance explained) captures the tension between the period and the amplitudes, the second mode (10.1% variance explained) discriminates between lower- and upper-stratosphere amplitudes, and the third mode (6.0% variance explained) has a minuscule effect on the transition of the amplitude profile from the upper to the lower levels.

The top three components explain 97.3% of the variance in the data and provide insight into the underlying physics, while the remaining components are negligible and provide no further insight into the QBO correlation

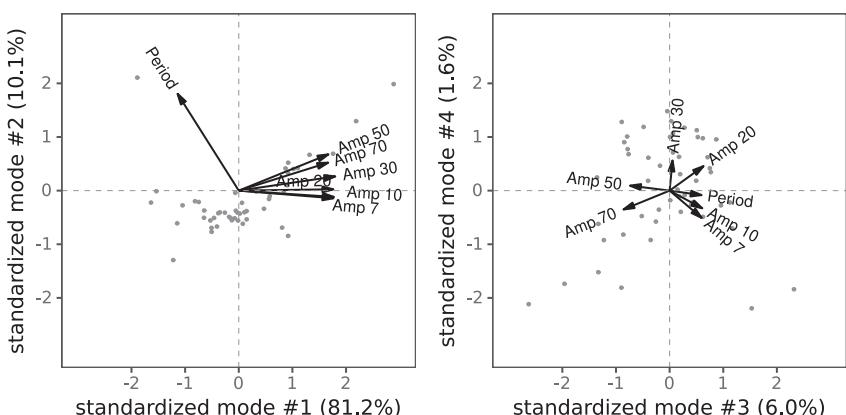


Figure 5. Biplots for the E3SM ensemble QoIs showing data points and arrows representing the eigenvectors, indicating the direction and magnitude of their influence. The first mode (left plot horizontal axis) discriminates between QBO period and amplitude. The second mode (left plot vertical axis) discriminates between QBO amplitude at lower and upper levels.

structure. The first mode, which establishes a negative linear association between the QBO period and the simple mean of QBO amplitudes at all pressure levels (Pearson correlation = -0.41), displays a strongly marked period-amplitude trade-off. Since amplitudes at all pressure levels contribute to the top mode of variation in approximately the same direction and magnitude, *calibrating the period will have a direct and opposite effect on the entire amplitude profile*. Consolidating the effects of the top two modes exposes a chain reaction in the calibration: adjusting the period will have a strong side-effect on the amplitude, and influencing the amplitude in the upper stratosphere will have a moderate side-effect on the lower stratosphere.

Zooming out to the MOO to improve the QBO, the correlation-based analysis of the E3SM ensemble data foreshadows a highly constrained system with limited capacity to target both period and amplitude simultaneously, and furthermore, to target amplitude at isolated pressure levels. Two complementary clustering analyses are reported in Text S4 in Supporting Information S1. The correlation- and distance-based analyses both reinforce the evidence that the QBO simulations are largely determined by two tensions among three sub-blocks. The QoI point estimates and 80% intervals are reported at an individual level in Text S5 in Supporting Information S1.

4.3. Surrogate Modeling

Constructing the surrogate described in Section 3.2 requires specifying two components: the truncation constant $\tilde{J} \leq J$ and the form of the correlation function $r_j(\mathbf{x}, \mathbf{x}')$, as well as tuning several hyperparameters. The number of retained KLE modes introduces regularization in the predicted QoIs, while the choice of the correlation function influences the sensitivity of the predicted QoIs to input variations. We jointly select both components to balance smoothness and continuity in the data.

We begin by evaluating two complementary statistics related to surrogate training and goodness of fit. First, as discussed in Section 4.2, the first three modes capture up to 97.3% of the energy and correspond to physically interpretable rotations. In contrast, higher-order modes have a diminishing effect on QoI variance and offer little physical insight. Second, the surrogate-based signal-to-noise ratio $STN_j = \sigma_f / \sigma_{e_j}$ shows that signal strength decreases drastically—by several orders of magnitude—indicating significant signal quality deterioration. From the fourth-order mode onward, error dominates the signal. To further assess the impact of mode selection, we perform a leave-one-out cross-validation study and compute the statistics defined in Section 3.2.3 to quantify the effect of increasing the number of modes on generalization error. The details are provided in Text S6 in Supporting Information S1.

Together, these analyses reveal that higher-order modes are neither explainable nor predictable by the proposed surrogate, and that the choice of covariance function has limited impact. We select the Matérn 3/2 correlation and retain the first three modes as a compromise among the points of maximum curvature in variance explained (strong energy compaction), signal-to-noise ratio (goodness of fit), and leave-one-out statistics (accuracy). This selection preserves most of the predictive accuracy while introducing regularization on the QoIs' random error. The selected model has an RMSE of 5 months for period and 4.5 m/s for amplitude at 20 hPa, equivalent to 18% of the reference values, setting a practical limit on the surrogate's efficiency in finding an optimal calibration.

4.4. Sensitivity Analysis

The oscillation is most responsive to CF, which accounts for 30%–50% of the variance when considered alone and 65%–75% when interactions are included, consistently across all QoIs. EF plays a secondary role, with nonzero main effects for the period and lower-stratospheric (higher pressure levels) amplitudes, and affects all QoIs approximately equally after accounting for interactions. HD has a tertiary role, marginally influencing QBO amplitude only in the middle-upper stratosphere (lower pressure levels). Definitions and estimates are provided in Text S7 in Supporting Information S1.

To isolate the influence of convection on the simulated QBO, we estimated the main effect $\hat{\mathbf{q}}(x_{CF}) = E_{CF}(\mathbf{q}|\mathbf{x})$. This term represents the mean period and amplitude at a given CF averaged over all values of EF and HD. Figure 6 provides a parsimonious representation of an otherwise highly complex system and summarizes the essential relationship between the intensity of convection and the QBO: more intense convection is associated with faster and stronger oscillations. Our results show that the QBO's period and amplitude in E3SM are not independent properties but are co-dependent on the CF parameter. We find that as CF increases, the QBO period generally decreases while the amplitude increases. While this general trend holds, the main effect plots also reveal several

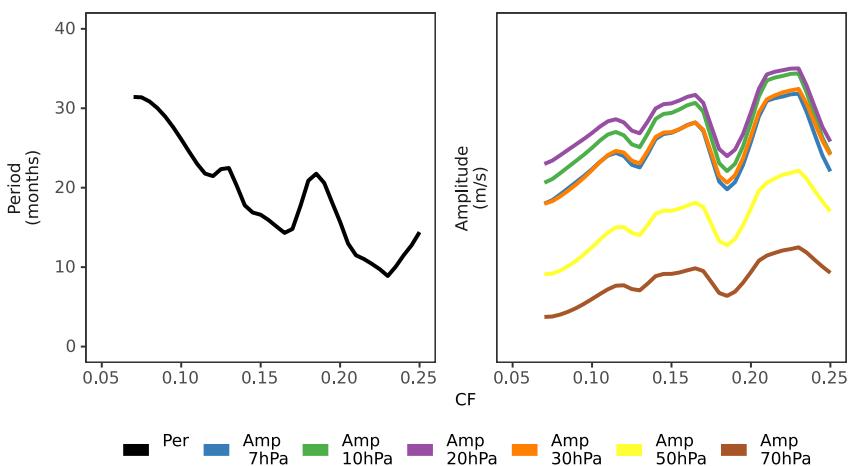


Figure 6. Main effects of CF on the simulated QBO period (left) and amplitude (right). An increase in CF is associated with a decrease in the period and an increase in the amplitudes that is approximately linear, with three local deviations from the trends. Different colors represent pressure levels, with the amplitude increasing with altitude.

local deviations (e.g., near $CF = 0.2$) that are present in the underlying simulation data, though their physical origin is undetermined at this point. This relationship establishes a fundamental trade-off, which foretells the limitations of our calibration efforts: one cannot, for instance, shorten the period to a more realistic value without also altering the amplitude. Therefore, no single value of CF can simultaneously satisfy all observational targets for the QBO.

4.5. Optimization

So far, we have formulated an efficient data reduction model to extract physically interpretable QoIs, built an inexpensive and sufficiently accurate surrogate, and identified the essential patterns linking convection and the QBO. We now proceed to set up a MOO problem to target parametric settings that best represent the fundamental dependence of equatorial winds on atmospheric deep convection.

4.5.1. No Single Parameter Set Achieves Both Realistic Period and Amplitudes

By studying the simulation ensemble in Section 4.2 and the surrogate-based main effects in Section 4.4, we established that the simulated period and amplitudes belong to a highly constrained space dominated by a significant tension between the period and amplitude, and a lesser rigidity between amplitudes in the lower and upper stratosphere. Therefore, we consider it unlikely that a single combination of the physics parameters in E3SM version 2 will generate a QBO that satisfactorily reproduces both the reference period and the amplitude at every pressure level simultaneously.

To motivate this argument, we evaluate the integrated predicted QoIs $\hat{\mathbf{q}}(x_{CF}, x_{EF}) = E_{-HD}(\mathbf{q}|\mathbf{x})$, where we integrate over HD to marginalize over the parameter with the least reduction in the output uncertainty. In Figure 7, red and blue represent integrated predicted values below and above the reference value, respectively, white regions represent small discrepancies, and black lines delineate the curves where a perfect match happens. Focusing solely on a single facet, the contour lines define the set of solutions where the QoI has a marginal expected value equal to the reference. The intersection of all the sets, which would result in a joint expectation matching all reference values, is empty. Instead of developing a methodology to bypass model discrepancy or structural error (Salter et al., 2019), our work estimates how much performance in one objective must be sacrificed to achieve a target in another, offering a clear picture of the competing physics within the model's parameterization.

4.5.2. The Pareto Frontier Reveals the Optimal Compromises

We evaluate the surrogate and predict the QoIs over a fine grid with 200,000 elements, covering the input space. This grid is created using a tensor product of sequences chosen to provide higher resolution for HD, EF, and CF, with input prioritization based on their sensitivities. Adopting a no-preference approach, we approximate the

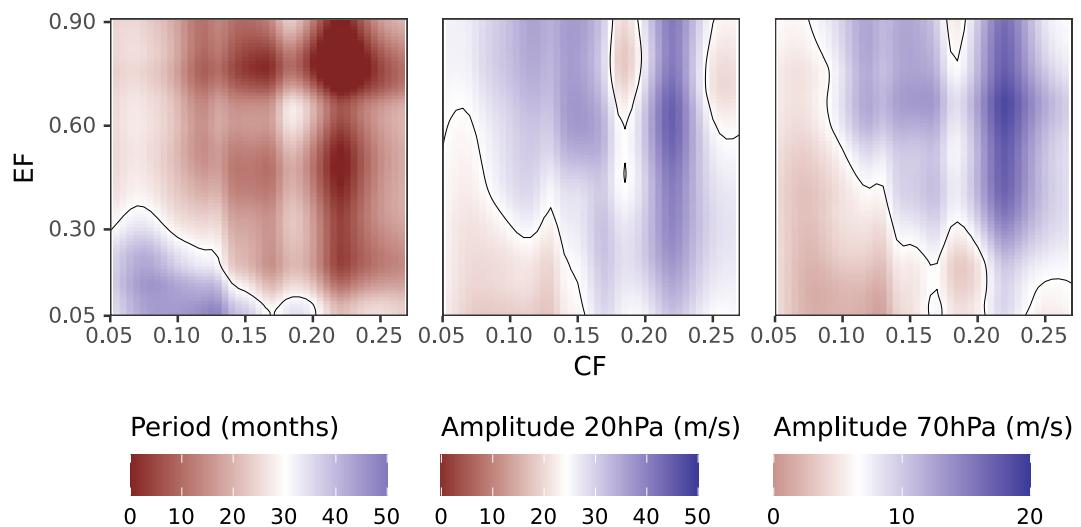


Figure 7. Predicted QBO period (left), amplitude at 20 hPa (middle) and 70 hPa (right) as a function of CF and EF after integrating out HD. Shading indicates whether the predicted value is above or below the reference. The contour delineates regions of zero difference, highlighting parameter combinations where predictions align with target values, but the empty intersection of the three contours indicates that no single point matches all reference values simultaneously.

Pareto efficient frontier to learn the trade-off between QBO period and amplitude. We opted against eliciting a preference function from the SMEs due to the absence of a natural hierarchy among the QoIs and the difficulty of combining variables with different physical meanings and measurement units. We compute the objective functions by substituting the predicted mean vector for each QoI in Equation 8, with weights equal to the inverse of the reference values, $w_k = 1/\beta_{2k}^{\text{REF}}$. Since the amplitude at 20 hPa is approximately four times larger than at 70 hPa, we balance the contribution of amplitudes across pressure levels by adjusting the weight of differences in the upper stratosphere and the lower stratosphere.

Figure 8 shows the surrogate-based objective functions, ensemble members, the origin representing perfect calibration, and the discrete approximation of the Pareto frontier. The Pareto frontier reflects a trade-off between QBO period and amplitude, representing the marginal rate of substitution between the two metrics. The gap between the frontier and the origin indicates that a near-perfect solution, aligning with reference amplitudes across all pressure levels, is unattainable. The vertical gap highlights the lower tension between amplitudes in the lower and upper stratosphere, as perfect alignment would cause the frontier to intersect the horizontal axis. The upper-left boundary contains solutions with improved amplitudes at the expense of longer periods, while the lower-right boundary shows solutions with improved periods, with minimal impact on amplitude. The “elbow” of the frontier represents the most cost-effective subset of solutions under a no-explicit-preference approach.

Figure 9 shows the physics parameters associated with the surrogate-based Pareto frontier. The range in CF covers the default value for E3SMv2, and the marginal distribution of HD shows a strong skew toward values smaller than 0.75. The efficient set reflects an internal structure that is ultimately learned from the E3SM ensemble data: to remain on the frontier, an increase in CF must primarily be compensated by a non-linear decrease in EF and secondarily coupled with an increase in HD. We separated the solutions into two groups for HD in [0.25, 0.75] and (0.75, 1.50]. Although there is a visually compelling argument that these two clusters display different correlation structures, we are unaware of a physical rationale behind this apparent change of regime.

4.6. An Optimal Configuration

We select a corner solution ($EF = 0.12$, $CF = 0.16$, $HD = 0.48$) from the Pareto frontier and run E3SM to validate this parameter set. The solution is not part of the ensemble upon which the surrogate was trained, and E3SM was run as an after-product, giving us a true albeit limited-in-size test for the surrogate accuracy. The predicted, simulated, and reference QoIs are summarized in Figure 10. The simulated QBO period is approximately 3 months shorter than the predicted value, the simulated upper-stratospheric QBO amplitudes are close to expectations, and the simulated lower-stratospheric QBO amplitudes are smaller than predicted. This illustrates the

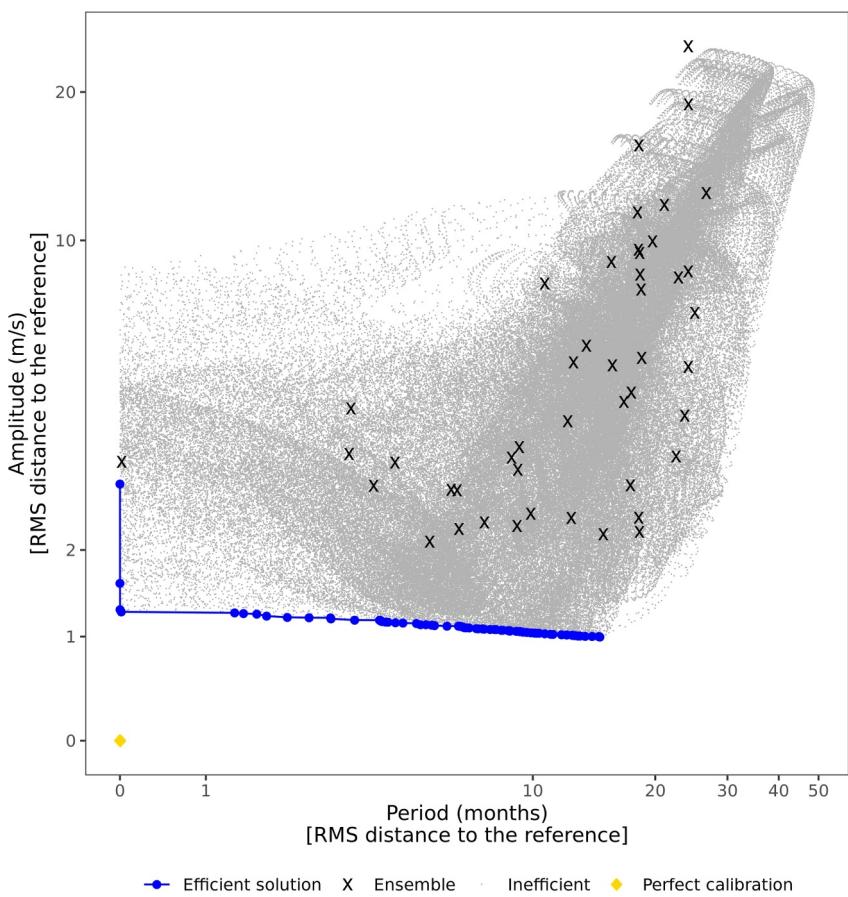


Figure 8. Surrogate-based objective functions (gray dots), E3SM ensemble members (black crosses), the origin representing perfect calibration (yellow diamond), and the discrete approximation of the Pareto frontier (blue circles). The axes are in log scale.

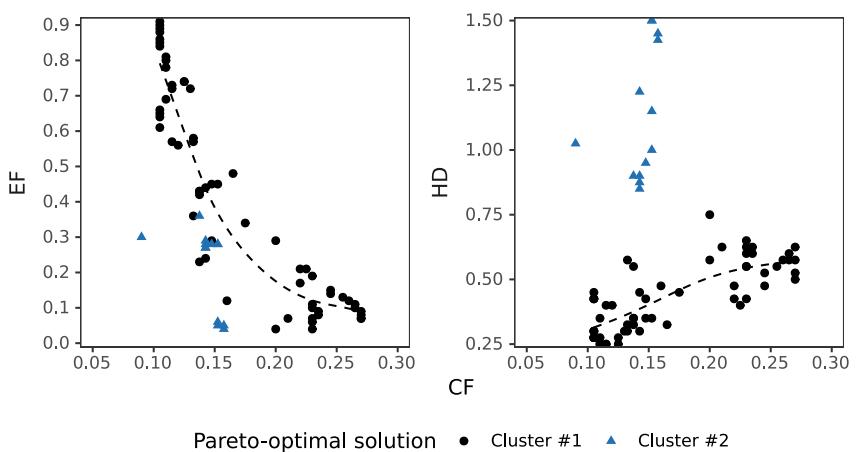


Figure 9. Physics parameter values along the discrete approximation to the surrogate-based Pareto frontier. Dashed lines indicate general trends in each panel. Left: Trade-off between CF and EF, where selecting optimal combinations of the QBO period and amplitudes requires increasing CF while decreasing EF. Right: The distribution of optimal CF and HD values reveals two distinct clusters. Cluster #1 (black circles) follows a positive trend, while Cluster #2 (blue triangles) exhibits elevated HD values, suggesting a different regime of parameter interactions.

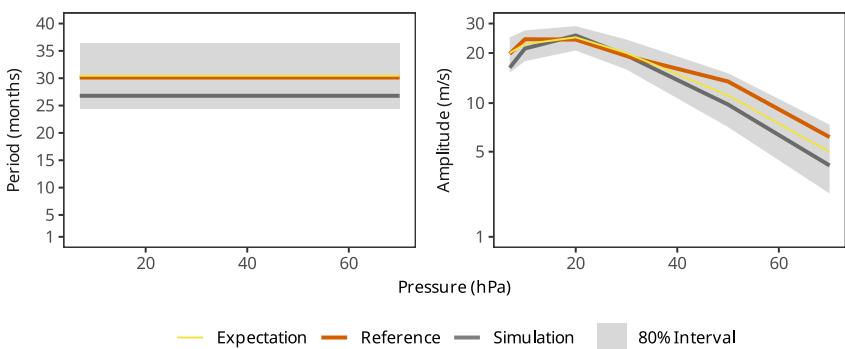


Figure 10. Predicted, reference, and simulated QoIs for the corner solution on the Pareto frontier. The expectation (yellow) is the predictive mean from the Gaussian Process, the reference (orange) denotes the target values, and the simulation (black) corresponds to the actual E3SM output. The shaded gray region indicates the 80% predictive interval of the Gaussian process, representing the uncertainty in the surrogate predictions. The results demonstrate that the simulation closely follows the reference values, particularly for QBO amplitude, with minor deviations in the higher-pressure (lower-stratospheric) levels. The width in the prediction intervals for QBO period and higher-pressure (lower-stratospheric) amplitudes indirectly suggests a limit to the efficiency in the surrogate-based calibration.

two tensions governing the simulations: the trade-off between QBO period and amplitude, and the tension between lower- and upper-level amplitudes. It is difficult to find a solution that closely matches more than one element in the triad. The width of the period interval highlights the surrogate's limitation. The QoIs estimated from the validation simulation show some variability, attributed to the expectedly imperfect but sufficiently accurate surrogate. The simulated QBO period and amplitudes fall within the 80% predictive intervals, suggesting that surrogate accuracy was satisfactory.

4.6.1. Our Workflow Significantly Improved the QBO Simulation

To conclude, we examine the model improvement sequence from E3SMv2 to the surrogate-based optimal configuration. This analysis includes two vertical grid configurations and three sets of physics parameter values. L72 and L80 refer to the prior and new vertical grids, composed of 72 and 80 atmospheric levels, respectively, as discussed in Yu et al. (2025). The prior default, new default, and surrogate-based optimal values are discussed in Golaz et al. (2022), Xie (2025), and Section 4.6, respectively. The simulated wind fields are shown in Figure 11, and the numerical results are provided in Text S8 in Supporting Information S1.

From (a)–(b) in the Figure 11 panels, we observe changes in the tropical wind structure solely due to the new vertical grid with 80 levels. Increasing the vertical resolution around the lower stratosphere largely improved the tropical wind, which now displays a clear sequence of alternating winds. Despite these more defined cycles, the simulated QBO is weaker and approximately 10 months slower than the reference data. The differences between panels (b) and (c) resulted from several upgrades to the E3SM source code that took place during analyses in Yu et al. (2025) and this paper. The many updates to model physics, including to the parameterization of tropical convection but not to the parameterization of convectively generated gravity waves, were conducted as part of the model development cycle that led to the creation of E3SMv3. Changes in the atmospheric component model accelerated the oscillations, causing the same nominal values of the physics parameters to produce a faster oscillation with noticeably steeper stripes.

In panel (d), we see a partial improvement selected for promotion to the v3 default values, stemming from our ongoing optimization work at the time of version freeze. Starting with E3SMv3 with the prior defaults, new parameter values based on the then-optimal process were selected, building upon an intermediate snapshot of the adaptive process. This coarse refinement only affected HD and led to improvements in the QBO period, amplitude, downward propagation, and east-west balance. Finally, in panel (e), we present the surrogate-based optimal solution highlighted in Figure 10. The latter part of the process fine-tunes CF and EF, representing the trade-off illustrated in Figure 9, while keeping HD virtually unchanged. All the simulated wind fields (a) to (e) show a secondary oscillation at 70 hPa that is not observed in the reference data.

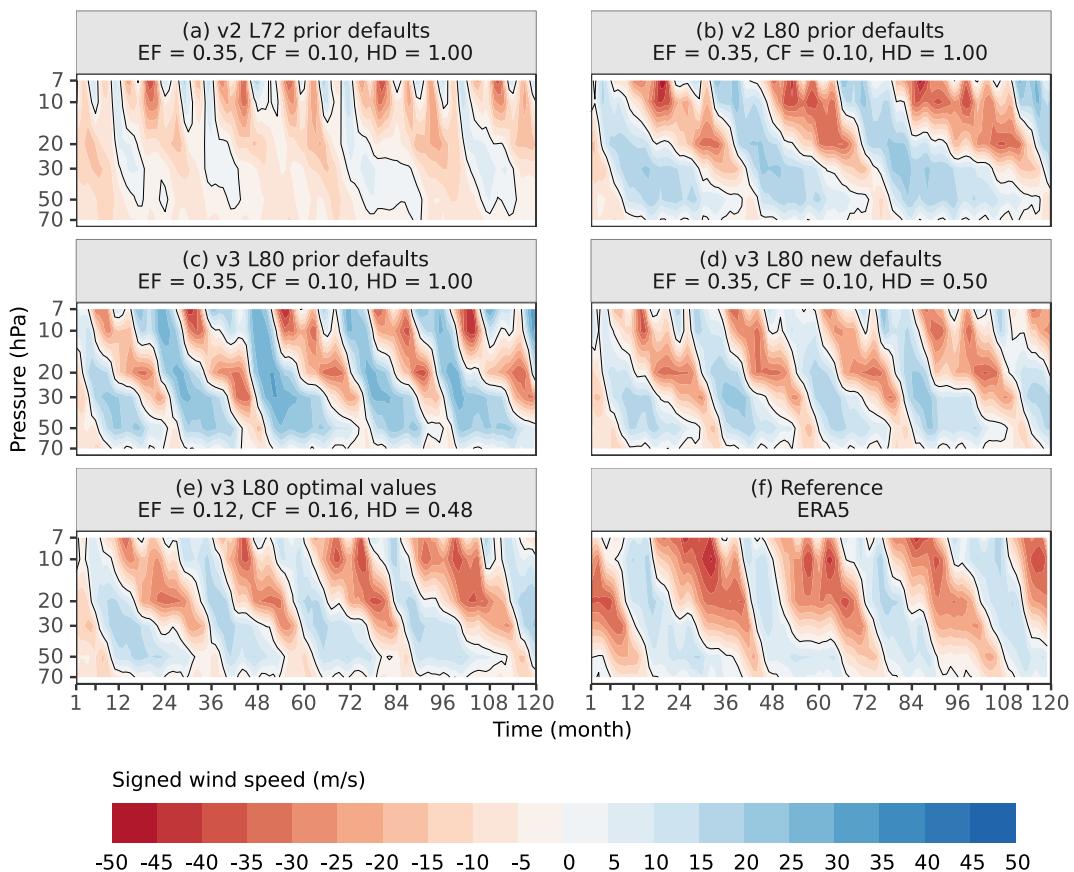


Figure 11. Improvement sequence of the wind fields from E3SMv2 to the surrogate-based optimal configuration applied to E3SMv3. The improvements resulting from the surrogate-assisted MOO are captured by the two-stage analysis (c–e), where (d) corresponds to an intermediate result during the adaptation loop.

Coordinating with related E3SM activities, our end-to-end surrogate-assisted MOO progressed from (c) to (e). The first stage, from (c) to (d), involved a coarse refinement with a large correction to HD. The second stage, from (d) to (e), was a more precise refinement using small corrections to CF and EF. We observe that E3SMv3 still simulates a slightly faster and weaker QBO. However, the jump from (d) to (e) is significantly smaller than from (c) to (e), suggesting that we have reached diminishing returns in our optimization. At this point, we concluded this phase of our QBO calibration process. We expect that continuing the optimization with surrogate refinement iterations would only produce marginal numerical improvements, as we've exhausted most of the potential in our current parametric formulation.

5. Discussion

We developed an end-to-end UQ workflow that calibrates the representation of convectively generated gravity waves in E3SM and yields a more realistic QBO through surrogate-accelerated MOO. We introduced the FFM to compress massive wind field data and extract physically interpretable QoIs. The FFM effectively translated established principles from atmospheric science into QoIs amenable to UQ, isolated the QBO signal from other oscillations and random error (Figure 1), and reduced data dimensionality. A single sinusoidal wave captured the signal in the reference data, retaining 79.7% of the variance and achieving a 4:1 signal-to-noise ratio while reducing dimensionality by a factor of 50 and producing estimates consistent with existing literature (Figure 2). The goodness of fit was acceptable, constraints were appropriate, estimates aligned with previous studies, free amplitudes exhibited smooth transitions despite the absence of an explicit smoothness mechanism, and local signal deviations effectively separated the QBO from other sources.

We generated a simulation ensemble to explore the physics parameter space (Figure 3). We identified two implicit forces in the simulated QBO: a nonlinear relationship between period and amplitude at 20 hPa, wherein longer periods were associated with lower amplitudes, and a negative log-linear trend between period and amplitude at 70 hPa (Figure 4). The seven QoIs, comprising the period and amplitudes at six pressure levels in the stratosphere, exhibited a strong correlation structure. The first three eigenmodes of the sample correlation matrix accounted for 97.3% of the total variance (Figure 5), yielding an estimated effective rank of approximately two. Higher-order modes were neither explainable nor predictable by the proposed surrogate. These constraints produced a highly restricted output space.

Next, we developed a statistical surrogate to predict E3SM-generated QBO behavior with satisfactory accuracy and at a fraction of the computational cost of a full simulation. CF explained 30%–50% of the variance when considered in isolation and 65%–75% when interactions were included, consistently across all QoIs. Its near-zero length scales across all modes suggested a rapid response to small perturbations and the presence of localized features. At the core of a complex physical system, the QBO in E3SM could be characterized by noting that increases in CF were associated with approximately linear decreases in period and increases in amplitude, aside from three local deviations (Figure 6). Furthermore, we identified an implicit upper bound on CF beyond which the model became numerically unstable.

Finally, we employed our cost-efficient surrogate to discretely approximate the Pareto frontier and quantify the trade-off between the QBO period and amplitude. A near-optimal solution aligning with reference amplitudes across all pressure levels was unattainable (Figure 7). Even when disregarding the period, tensions in QBO amplitudes between the lower and upper stratosphere precluded fine-tuning at individual pressure levels (Figure 8). The overall trend in the solution set shows that an increase in CF necessitates a primary non-linear decrease in EF, along with a secondary increase in HD (Figure 9). We validated our workflow by running E3SM near the Pareto elbow and confirmed that the surrogate accuracy was satisfactory (Figure 10). After observing diminishing returns in the optimization process, we concluded our calibration. Analysis of the end-to-end model improvement sequence, from E3SMv2 to the surrogate-based optimal configuration applied to E3SMv3, suggests that our workflow substantially contributed to an improved QBO (Figure 11).

Our application also revealed several opportunities for future workflow enhancements. Although the FFM was both parsimonious and effective, it could benefit from further refinement. The standard error for the QBO period appeared optimistically narrow due to the FFM's simplistic formulation. Incorporating a time-aware correlation structure for the error could lead to more accurate uncertainty estimates (White, 1982). Furthermore, a secondary periodicity between 12 and 16 months emerged in the residuals, likely resulting from the extraction of a periodic signal from quasi-periodic data. Increasing the number of active frequencies within the FFM, analogous to adopting a polyphonic rather than monophonic approach, could address this issue. Also, mechanistic (Holton & Lindzen, 1972) and empirical (Baldwin et al., 2001) studies suggest that the QBO exhibits partially distinct characteristics during its easterly and westerly phases. This concept could be incorporated into the FFM by permitting certain coefficients to vary according to wind speed sign or magnitude. Said dependence of coefficients on wind direction might be modeled through structural changes or smooth transitions.

Enhancing surrogate accuracy would further benefit the workflow. The surrogate's RMSE, which amounts to 18% of the reference values, imposes a practical limit on optimization efficiency in this application. Exploring alternative predictive models, such as polynomial chaos expansion (Sargsyan et al., 2014) or neural networks (Diaz-Ibarra et al., 2025), may improve performance. Alternative surrogate modeling approaches that do not require explicit FFM construction warrant consideration. For instance, the surrogate modeling workflow for random fields proposed by Mueller et al. (2025) aligns well with the pressure–time data structure shown in Figure 1. Spectral analysis techniques, such as wavelets (Torrence & Compo, 1998), can address quasi-periodicity via time localization, thereby reconciling phase differences between reference and ensemble data. A hybrid approach that integrates these components may yield an efficient and novel representation.

The final step in our workflow, MOO, offers several avenues for improvement. Distance- and similarity-based analyses of the ensemble revealed that QBO period and amplitude are primarily driven by tensions among period, lower-stratospheric, and upper-stratospheric amplitudes. A three-dimensional loss function could more effectively resolve the solution space. More radically, rather than targeting summary quantities in Equation 8, estimating the Pareto frontier in a seven-dimensional space, where all QoIs are independently optimized, could

resolve all partial trade-offs. High-dimensional Pareto optimization, however, poses increasing computational challenges (Sülflo et al., 2007).

Our loss function was constructed as a plug-in estimator that treated the predictive mean as a fixed known quantity. A natural extension would incorporate prediction uncertainty, following Bayesian model calibration (Kennedy & O'Hagan, 2001) or efficient global optimization (Jones et al., 1998). Although predictive surface uncertainty is one component, a comprehensive approach should integrate multiple sources of uncertainty, including aleatoric uncertainty in QoI estimates, structural uncertainty in the FFM, and surrogate construction uncertainties such as hyperparameter tuning and model selection. Moreover, reference values derived from reanalysis data are subject to data assimilation and random errors (Bosilovich et al., 2013; Parker, 2016), thereby introducing additional aleatoric and epistemic uncertainty. Although it is difficult to judge a priori which of these sources have the largest impact, their inclusion would enhance the robustness of the workflow.

Finally, we acknowledge that simulating the QBO remains a challenging problem. Our workflow reveals a strong tension between period and amplitude, which limits the degrees of freedom of the calibration. Although our study is limited to E3SMv3, this trade-off may represent a more general challenge in atmospheric modeling (Garfinkel et al., 2022; Geller et al., 2016; Giorgetta et al., 2006). Modifying E3SM to alleviate this tension could boost the workflow's effectiveness and impact. Potential improvements include exposing currently hard-coded parameters, introducing new physics parameters, refining convection physics, further adjusting the vertical grid, or increasing geospatial resolution. Although atmospheric scientists are best suited to propose and evaluate such modifications, UQ can support these efforts through global sensitivity analysis (Iooss & Lemaître, 2015) to evaluate the effects of the additional parameters, surrogate-based optimization with multi-fidelity (Eldred & Dunlavy, 2006) to efficiently allocate simulations with varying degrees of spatial resolution and complexity, and embedded (Sargsyan et al., 2019) or external (Brynjarsdóttir & O'Hagan, 2014) model discrepancy methods to further examine the trade-offs among the QoIs. Regarding the latter, model discrepancy not only leads to biased and over-confident parameter estimates, but more importantly, it reflects a fundamental inability of the model's structure to reproduce all the features of the observed QBO.

Conflict of Interest

The authors declare no conflicts of interest relevant to this study.

Data Availability Statement

ERA5 data (Hersbach et al., 2017) is available from ECMWF MARS tape archive. Simulation data was generated from a version forked from E3SMv2 (Golaz et al., 2022; E3SM Project, 2023) that implements the redesigned vertical grid introduced in Yu et al. (2025). Data processing and analysis procedures were implemented in the R programming language (R Core Team, 2024) leveraging infrastructure (Barrett et al., 2024; Ooms, 2014; Pierce, 2023; Solymos & Zawadzki, 2023), statistical (D. Bates et al., 2024; Binois & Gramacy, 2021; Genz & Bretz, 2009; Iooss et al., 2024), visualization (Aphalo, 2024; Henry et al., 2024; Neuwirth, 2022; Paradis & Schliep, 2019; Pedersen, 2024; Schloerke et al., 2024; Slowikowski, 2024; Turner, 2024; van den Brand, 2024; Vu & Friendly, 2024; Wickham, 2016; Wickham et al., 2023), and table generation (Dahl et al., 2019) community packages.

References

Ahlgrimm, M., & Forbes, R. (2014). Improving the representation of low clouds and drizzle in the ECMWF model based on arm observations from the Azores. *Monthly Weather Review*, 142(2), 668–685. <https://doi.org/10.1175/mwr-d-13-00153.1>

Alexander, M. J., & Holton, J. R. (1997). A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves. *Journal of the Atmospheric Sciences*, 54(3), 408–419. [https://doi.org/10.1175/1520-0469\(1997\)054<408:AMSOZF>2.0.CO;2](https://doi.org/10.1175/1520-0469(1997)054<408:AMSOZF>2.0.CO;2)

Ameli, S., & Shadden, S. C. (2022). Noise estimation in Gaussian process regression. arXiv. <https://doi.org/10.48550/ARXIV.2206.09976>

Anstey, J. A., Butchart, N., Hamilton, K., & Osprey, S. M. (2020). The sparc quasi-biennial oscillation initiative. *Quarterly Journal of the Royal Meteorological Society*, 148(744), 1455–1458. <https://doi.org/10.1002/qj.3820>

Anstey, J. A., Osprey, S. M., Alexander, J., Baldwin, M. P., Butchart, N., Gray, L., et al. (2022). Impacts, processes and projections of the quasi-biennial oscillation. *Nature Reviews Earth & Environment*, 3(9), 588–603. <https://doi.org/10.1038/s43017-022-00323-7>

Anstey, J. A., & Shepherd, T. G. (2013). High-latitude influence of the quasi-biennial oscillation. *Quarterly Journal of the Royal Meteorological Society*, 140(678), 1–21. <https://doi.org/10.1002/qj.2132>

Anstey, J. A., Simpson, I. R., Richter, J. H., Naoe, H., Taguchi, M., Serva, F., et al. (2021). Teleconnections of the quasi-biennial oscillation in a multi-model ensemble of QBO-resolving models. *Quarterly Journal of the Royal Meteorological Society*, 148(744), 1568–1592. <https://doi.org/10.1002/qj.4048>

Aphalo, P. J. (2024). ggpp: Grammar extensions to “ggplot2” [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=ggpp>

Baldwin, M. P., & Dunkerton, T. J. (1998). Quasi-biennial modulation of the southern hemisphere stratospheric polar vortex. *Geophysical Research Letters*, 25(17), 3343–3346. <https://doi.org/10.1029/98gl02445>

Baldwin, M. P., & Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous weather regimes. *Science*, 294(5542), 581–584. <https://doi.org/10.1126/science.1063315>

Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., et al. (2001). The quasi-biennial oscillation. *Reviews of Geophysics*, 39(2), 179–229. <https://doi.org/10.1029/1999rg000073>

Barrett, T., Dowle, M., Srinivasan, A., Gorecki, J., Chirico, M., & Hocking, T. (2024). data.table: Extension of “data.frame” [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=data.table>

Bates, D., Maechler, M., & Jagan, M. (2024). Matrix: Sparse and dense matrix classes and methods [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=Matrix>

Bates, D. M., & Watts, D. G. (1988). *Nonlinear regression analysis and its applications*. Wiley. <https://doi.org/10.1002/9780470316757>

Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell, M. J., et al. (2008). Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. *Quarterly Journal of the Royal Meteorological Society*, 134(634), 1337–1351. <https://doi.org/10.1002/qj.289>

Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., & Bormann, N. (2014). Representing equilibrium and nonequilibrium convection in large-scale models. *Journal of the Atmospheric Sciences*, 71(2), 734–753. <https://doi.org/10.1175/jas-d-13-0163.1>

Berdahl, M., Leguy, G., Lipscomb, W. H., & Urban, N. M. (2021). Statistical emulation of a perturbed basal melt ensemble of an ice sheet model to better quantify Antarctic sea level rise uncertainties. *The Cryosphere*, 15(6), 2683–2699. <https://doi.org/10.5194/tc-15-2683-2021>

Beres, J. H., Alexander, M. J., & Holton, J. R. (2004). A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. *Journal of the Atmospheric Sciences*, 61(3), 324–337. [https://doi.org/10.1175/1520-0469\(2004\)061<0324:AMOSTG>2.0.CO;2](https://doi.org/10.1175/1520-0469(2004)061<0324:AMOSTG>2.0.CO;2)

Beusch, L., Nicholls, Z., Gudmundsson, L., Hauser, M., Meinshausen, M., & Seneviratne, S. I. (2022). From emission scenarios to spatially resolved projections with a chain of computationally efficient emulators: Coupling of MAGICC (v7.5.1) and MESMER (v0.8.3). *Geoscientific Model Development*, 15(5), 2085–2103. <https://doi.org/10.5194/gmd-15-2085-2022>

Binois, M., & Gramacy, R. B. (2021). hetGP: Heteroskedastic Gaussian process modeling and sequential design in R. *Journal of Statistical Software*, 98(13), 1–44. <https://doi.org/10.18637/jss.v098.i13>

Bishop, C. (1998). Bayesian PCA. In M. Kearns, S. Solla, & D. Cohn (Eds.), *Advances in Neural Information Processing Systems* (Vol. 11). MIT Press. Retrieved from <https://dl.acm.org/doi/10.5555/340534.340674>

Booker, J. R., & Bretherton, F. P. (1967). The critical layer for internal gravity waves in a shear flow. *Journal of Fluid Mechanics*, 27(3), 513–539. <https://doi.org/10.1017/s0022112067000515>

Bosilovich, M. G., Kennedy, J., Dee, D., Allan, R., & O’Neill, A. (2013). On the reprocessing and reanalysis of observations for climate. In *Climate Science for Serving Society* (pp. 51–71). Springer. https://doi.org/10.1007/978-94-007-6692-1_3

Brooks, S., Gelman, A., Jones, G., & Meng, X.-L. (2011). *Handbook of Markov Chain Monte Carlo*. Chapman and Hall/CRC. <https://doi.org/10.1201/b10905>

Brynjarsdóttir, J., & O’Hagan, A. (2014). Learning about physical parameters: The importance of model discrepancy. *Inverse Problems*, 30(11), 114007. <https://doi.org/10.1088/0266-5611/30/11/114007>

Bushell, A. C., Anstey, J. A., Butchart, N., Kawatani, Y., Osprey, S. M., Richter, J. H., et al. (2020). Evaluation of the quasi-biennial oscillation in global climate models for the SPARC QBO-initiative. *Quarterly Journal of the Royal Meteorological Society*, 148(744), 1459–1489. <https://doi.org/10.1002/qj.3765>

Cattell, R. B. (1966). The scree test for the number of factors. *Multivariate Behavioral Research*, 1(2), 245–276. https://doi.org/10.1207/s15327906mbr0102_10

Chang, K.-L., & Guillas, S. (2018). Computer model calibration with large non-stationary spatial outputs: Application to the calibration of a climate model. *Journal of the Royal Statistical Society - Series C: Applied Statistics*, 68(1), 51–78. <https://doi.org/10.1111/rssc.12309>

Cheng, K., Lu, Z., Ling, C., & Zhou, S. (2020). Surrogate-assisted global sensitivity analysis: An overview. *Structural and Multidisciplinary Optimization*, 61(3), 1187–1213. <https://doi.org/10.1007/s00158-019-02413-5>

Chinchuluun, A., & Pardalos, P. M. (2007). A survey of recent developments in multiobjective optimization. *Annals of Operations Research*, 154(1), 29–50. <https://doi.org/10.1007/s10479-007-0186-0>

Chowdhary, K., Hoang, C., Lee, K., Ray, J., Weirs, V., & Carnes, B. (2022). Calibrating hypersonic turbulence flow models with the hifire-1 experiment using data-driven machine-learned models. *Computer Methods in Applied Mechanics and Engineering*, 401, 115396. <https://doi.org/10.1016/j.cma.2022.115396>

Cleary, E., Garbuno-Íñigo, A., Lan, S., Schneider, T., & Stuart, A. M. (2021). Calibrate, emulate, sample. *Journal of Computational Physics*, 424, 109716. <https://doi.org/10.1016/j.jcp.2020.109716>

Cleveland, W. S., & Loader, C. (1996). Smoothing by local regression: Principles and methods. In W. Härde & M. G. Schimek (Eds.), *Statistical Theory and Computational Aspects of Smoothing* (pp. 10–49). Physica-Verlag HD. https://doi.org/10.1007/978-3-642-48425-4_2

Coello Coello, C. (2006). Evolutionary multi-objective optimization: A historical view of the field. *IEEE Computational Intelligence Magazine*, 1(1), 28–36. <https://doi.org/10.1109/mci.2006.1597059>

Collette, Y., & Siarry, P. (2004). *Multiojective optimization*. Springer. <https://doi.org/10.1007/978-3-662-08883-8>

Coy, L., Newman, P. A., Strahan, S., & Pawson, S. (2020). Seasonal variation of the quasi-biennial oscillation descent. *Journal of Geophysical Research: Atmospheres*, 125(18), e2020JD033077. <https://doi.org/10.1029/2020jd033077>

Crestaux, T., Le Maître, O., & Martinez, J.-M. (2009). Polynomial chaos expansion for sensitivity analysis. *Reliability Engineering & System Safety*, 94(7), 1161–1172. <https://doi.org/10.1016/j.ress.2008.10.008>

Dahl, D. B., Scott, D., Roosen, C., Magnusson, A., & Swinton, J. (2019). xtable: Export tables to latex or html [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=xtable>

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. *Quarterly Journal of the Royal Meteorological Society*, 137(656), 553–597. <https://doi.org/10.1002/qj.828>

Díaz-Ibarra, O. H., Sargsyan, K., & Najm, H. N. (2025). Surrogate construction via weight parameterization of residual neural networks. *Computer Methods in Applied Mechanics and Engineering*, 433, 117468. <https://doi.org/10.1016/j.cma.2024.117468>

Dunbar, O. R. A., Garbuno-Íñigo, A., Schneider, T., & Stuart, A. M. (2021). Calibration and uncertainty quantification of convective parameters in an idealized GCM. *Journal of Advances in Modeling Earth Systems*, 13(9), e2020MS002454. <https://doi.org/10.1029/2020ms002454>

E3SM Project, D. (2023). Energy exascale Earth system model v2.1.0 [Computer Software]. <https://doi.org/10.11578/E3SM/DC.20230110.5>

Efstratiadis, A., & Koutsoyiannis, D. (2010). One decade of multi-objective calibration approaches in hydrological modelling: A review. *Hydrological Sciences Journal*, 55(1), 58–78. <https://doi.org/10.1080/02626660903526292>

Eldred, M., & Dunlavy, D. (2006). Formulations for surrogate-based optimization with data fit, multifidelity, and reduced-order models. In *11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference*. American Institute of Aeronautics and Astronautics. <https://doi.org/10.2514/6.2006-7117>

Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. *Biometrika*, 58(3), 453–467. <https://doi.org/10.1093/biomet/58.3.453>

Gan, Y., Duan, Q., Gong, W., Tong, C., Sun, Y., Chu, W., et al. (2014). A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model. *Environmental Modelling & Software*, 51, 269–285. <https://doi.org/10.1016/j.envsoft.2013.09.031>

Garfinkel, C. I., Gerber, E. P., Shamir, O., Rao, J., Jucker, M., White, I., & Paldor, N. (2022). A QBO cookbook: Sensitivity of the quasi-biennial oscillation to resolution, resolved waves, and parameterized gravity waves. *Journal of Advances in Modeling Earth Systems*, 14(3), e2021MS002568. <https://doi.org/10.1029/2021ms002568>

Geller, M. A., Zhou, T., Shindell, D., Ruedy, R., Aleinov, I., Nazarenko, L., et al. (2016). Modeling the QBO—Improvements resulting from higher-model vertical resolution. *Journal of Advances in Modeling Earth Systems*, 8(3), 1092–1105. <https://doi.org/10.1002/2016ms000699>

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). *Bayesian data analysis*. Chapman and Hall/CRC. <https://doi.org/10.1201/b16018>

Genz, A., & Bretz, F. (2009). *Computation of multivariate normal and t probabilities*. Springer-Verlag. <https://doi.org/10.1007/978-3-642-01689-9>

Ghanem, R. G., & Spanos, P. D. (2003). *Stochastic finite elements: A spectral approach (Revised ed.)*. Dover Publications. <https://doi.org/10.1007/978-1-4612-3094-6>

Giorgetta, M. A., Manzini, E., & Roeckner, E. (2002). Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. *Geophysical Research Letters*, 29(8). <https://doi.org/10.1029/2002gl014756>

Giorgetta, M. A., Manzini, E., Roeckner, E., Esch, M., & Bengtsson, L. (2006). Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. *Journal of Climate*, 19(16), 3882–3901. <https://doi.org/10.1175/jcli3830.1>

Golaz, J., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., et al. (2019). The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. *Journal of Advances in Modeling Earth Systems*, 11(7), 2089–2129. <https://doi.org/10.1029/2018ms001603>

Golaz, J., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., et al. (2022). The DOE E3SM model version 2: Overview of the physical model and initial model evaluation. *Journal of Advances in Modeling Earth Systems*, 14(12), e2022MS003156. <https://doi.org/10.1029/2022ms003156>

Gong, W., Duan, Q., Li, J., Wang, C., Di, Z., Ye, A., et al. (2016). Multiobjective adaptive surrogate modeling-based optimization for parameter estimation of large, complex geophysical models. *Water Resources Research*, 52(3), 1984–2008. <https://doi.org/10.1002/2015wr018230>

Gramacy, R. B. (2020). *Surrogates: Gaussian process modeling, design and optimization for the applied sciences*. Chapman Hall/CRC. <https://doi.org/10.1201/9780367815493>

Gray, W. M. (1984). Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. *Monthly Weather Review*, 112(9), 1649–1668. [https://doi.org/10.1175/1520-0493\(1984\)112<1649:ASHFPI>2.0.CO;2](https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2)

Gunantara, N. (2018). A review of multi-objective optimization: Methods and its applications. *Cogent Engineering*, 5(1), 1502242. <https://doi.org/10.1080/23311916.2018.1502242>

Hannachi, A., Jolliffe, I. T., & Stephenson, D. B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. *International Journal of Climatology*, 27(9), 1119–1152. <https://doi.org/10.1002/joc.1499>

Hasebe, F. (1994). Quasi-biennial oscillations of ozone and diabatic circulation in the equatorial stratosphere. *Journal of the Atmospheric Sciences*, 51(5), 729–745. [https://doi.org/10.1175/1520-0469\(1994\)051<0729:QBOOOA>2.0.CO;2](https://doi.org/10.1175/1520-0469(1994)051<0729:QBOOOA>2.0.CO;2)

Henry, L., Wickham, H., & Chang, W. (2024). ggstance: Horizontal “ggplot2” components [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=ggstance>

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2017). Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate. *Copernicus Climate Change Service (C3S) Data Store (CDS)*. <https://doi.org/10.24381/cds.143582cf>

Higdon, D., Gattiker, J., Williams, B., & Rightley, M. (2008). Computer model calibration using high-dimensional output. *Journal of the American Statistical Association*, 103(482), 570–583. <https://doi.org/10.1198/016214507000000888>

Hironi, L. C., Inness, P., Vitart, F., & Bechtold, P. (2012). Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process-based diagnostics. *Quarterly Journal of the Royal Meteorological Society*, 139(675), 1427–1444. <https://doi.org/10.1002/qj.2059>

Holton, J. R., & Lindzen, R. S. (1972). An updated theory for the quasi-biennial cycle of the tropical stratosphere. *Journal of the Atmospheric Sciences*, 29(6), 1076–1080. [https://doi.org/10.1175/1520-0469\(1972\)029<1076:AUTFTQ>2.0.CO;2](https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2)

Hourdin, F., Feser, B., Deshayes, J., Mignot, J., Musat, I., & Williamson, D. (2023). Toward machine-assisted tuning avoiding the underestimation of uncertainty in climate change projections. *Science Advances*, 9(29), eadf2758. <https://doi.org/10.1126/sciadv.adf2758>

Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., et al. (2017). The art and science of climate model tuning. *Bulletin of the American Meteorological Society*, 98(3), 589–602. <https://doi.org/10.1175/bams-d-15-00135.1>

Hourdin, F., Williamson, D., Rio, C., Couvreux, F., Roehrig, R., Villefranque, N., et al. (2021). Process-based climate model development harnessing machine learning: II. Model calibration from single column to global. *Journal of Advances in Modeling Earth Systems*, 13(6), e2020MS002225. <https://doi.org/10.1029/2020ms002225>

Iooss, B., & Lemaître, P. (2015). A review on global sensitivity analysis methods. In *Uncertainty Management in Simulation-Optimization of Complex Systems* (pp. 101–122). Springer US. https://doi.org/10.1007/978-1-4899-7547-8_5

Iooss, B., Veiga, S. D., Janon, A., Pujol, G., with contributions from Baptiste Broto, Boumhaout, K., et al. (2024). Sensitivity: Global sensitivity analysis of model outputs and importance measures [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=sensitivity>

Jansen, M. J. (1999). Analysis of variance designs for model output. *Computer Physics Communications*, 117(1–2), 35–43. [https://doi.org/10.1016/s0010-4655\(98\)00154-4](https://doi.org/10.1016/s0010-4655(98)00154-4)

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. *Journal of Global Optimization*, 13(4), 455–492. <https://doi.org/10.1023/a:1008306431147>

Kang, S., Li, K., & Wang, R. (2024). A survey on Pareto front learning for multi-objective optimization. *Journal of Membrane Computing*, 7(2), 128–134. <https://doi.org/10.1007/s41965-024-00170-z>

Karhunen, K. (1946). *Zur spektraltheorie stochastischer prozesse* (Vol. 34). Suomalainen tiedeakatemia.

Kennedy, M. C., & O'Hagan, A. (2001). Bayesian calibration of computer models. *Journal of the Royal Statistical Society - Series B: Statistical Methodology*, 63(3), 425–464. <https://doi.org/10.1111/1467-9868.00294>

King, R. C., Mansfield, L. A., & Sheshadri, A. (2024). Bayesian history matching applied to the calibration of a gravity wave parameterization. *Journal of Advances in Modeling Earth Systems*, 16(4), e2023MS004163. <https://doi.org/10.1029/2023ms004163>

Langenbrunner, B., & Neelin, J. D. (2017). Multiobjective constraints for climate model parameter choices: Pragmatic pareto fronts in CESM1. *Journal of Advances in Modeling Earth Systems*, 9(5), 2008–2026. <https://doi.org/10.1002/2017ms000942>

Lee, D. T., & Schachter, B. J. (1980). Two algorithms for constructing a Delaunay triangulation. *International Journal of Computer & Information Sciences*, 9(3), 219–242. <https://doi.org/10.1007/bf00977785>

Lguensat, R., Deshayes, J., Durand, H., & Balaji, V. (2023). Semi-automatic tuning of coupled climate models with multiple intrinsic timescales: Lessons learned from the Lorenz96 model. *Journal of Advances in Modeling Earth Systems*, 15(5), e2022MS003367. <https://doi.org/10.1029/2022ms003367>

Li, C., & Yanai, M. (1996). The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. *Journal of Climate*, 9(2), 358–375. [https://doi.org/10.1175/1520-0442\(1996\)009<0358:toaiwo>2.0.co;2](https://doi.org/10.1175/1520-0442(1996)009<0358:toaiwo>2.0.co;2)

Li, Y., Chen, C., Benedict, J. J., Huang, K., Richter, J. H., & Bacmeister, J. (2025). Mechanisms in regulating the quasi-biennial oscillation in exascale Earth system model version 2. *Journal of Geophysical Research: Atmospheres*, 130(3), e2024JD041868. <https://doi.org/10.1029/2024jd041868>

Li, Y., Richter, J. H., Chen, C., & Tang, Q. (2023). A strengthened teleconnection of the quasi-biennial oscillation and tropical easterly jet in the past decades in E3SMV1. *Geophysical Research Letters*, 50(15), e2023GL104517. <https://doi.org/10.1029/2023gl104517>

Lindzen, R. S. (1987). On the development of the theory of the QBO. *Bulletin of the American Meteorological Society*, 68(4), 329–337. [https://doi.org/10.1175/1520-0477\(1987\)068<0329:OTDOTT>2.0.CO;2](https://doi.org/10.1175/1520-0477(1987)068<0329:OTDOTT>2.0.CO;2)

Lindzen, R. S., & Holton, J. R. (1968). A theory of the quasi-biennial oscillation. *Journal of the Atmospheric Sciences*, 25(6), 1095–1107. [https://doi.org/10.1175/1520-0469\(1968\)025<1095:ATOTQB>2.0.CO;2](https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2)

Liu, H., Li, Y., Duan, Z., & Chen, C. (2020). A review on multi-objective optimization framework in wind energy forecasting techniques and applications. *Energy Conversion and Management*, 224, 113324. <https://doi.org/10.1016/j.enconman.2020.113324>

Loève, M. (1963). *Probability theory*. D. Van Nostrand Company Inc.

Mai, J. (2023). Ten strategies towards successful calibration of environmental models. *Journal of Hydrology*, 620, 129414. <https://doi.org/10.1016/j.jhydrol.2023.129414>

Mansfield, L. A., & Sheshadri, A. (2022). Calibration and uncertainty quantification of a gravity wave parameterization: A case study of the quasi-biennial oscillation in an intermediate complexity climate model. *Journal of Advances in Modeling Earth Systems*, 14(11), e2022MS003245. <https://doi.org/10.1029/2022ms003245>

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. *Technometrics*, 21(2), 239. <https://doi.org/10.2307/1268522>

Mueller, J. N., Sargsyan, K., Daniels, C. J., & Najm, H. N. (2025). Polynomial chaos surrogate construction for random fields with parametric uncertainty. *SIAM/ASA Journal on Uncertainty Quantification*, 13(1), 1–29. <https://doi.org/10.1137/23m1613505>

Naoe, H., & Yoshida, K. (2019). Influence of quasi-biennial oscillation on the boreal winter extratropical stratosphere in QBOI experiments. *Quarterly Journal of the Royal Meteorological Society*, 145(723), 2755–2771. <https://doi.org/10.1002/qj.3591>

Naujokat, B. (1986). An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. *Journal of the Atmospheric Sciences*, 43(17), 1873–1877. [https://doi.org/10.1175/1520-0469\(1986\)043<1873:AUOTQO>2.0.CO;2](https://doi.org/10.1175/1520-0469(1986)043<1873:AUOTQO>2.0.CO;2)

Neuwirth, E. (2022). Rcolorbrewer: Colorbrewer palettes [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=RColorBrewer>

Nocedal, J., & Wright, S. J. (2006). *Numerical optimization*. Springer. <https://doi.org/10.1007/978-0-387-40065-5>

Oberkampf, W. L., & Roy, C. J. (2010). *Verification and validation in scientific computing*. Cambridge University Press. <https://doi.org/10.1017/cbo9780511760396>

Ooms, J. (2014). The jsonlite package: A practical and consistent mapping between JSON data and R objects. arXiv:1403.2805 [stat.CO]. Retrieved from <https://arxiv.org/abs/1403.2805>

Osprey, S. M., Butchart, N., Knight, J. R., Scaife, A. A., Hamilton, K., Anstey, J. A., et al. (2016). An unexpected disruption of the atmospheric quasi-biennial oscillation. *Science*, 353(6306), 1424–1427. <https://doi.org/10.1126/science.aaa4156>

Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. *Bioinformatics*, 35(3), 526–528. <https://doi.org/10.1093/bioinformatics/bty633>

Parker, W. S. (2016). Reanalyses and observations: What's the difference? *Bulletin of the American Meteorological Society*, 97(9), 1565–1572. <https://doi.org/10.1175/bams-d-14-00226.1>

Pascoe, C. L., Gray, L. J., Crooks, S. A., Juckes, M. N., & Baldwin, M. P. (2005). The quasi-biennial oscillation: Analysis using era-40 data. *Journal of Geophysical Research*, 110(D8). <https://doi.org/10.1029/2004jd004941>

Pedersen, T. L. (2024). Patchwork: The composer of plots [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=patchwork>

Pierce, D. (2023). ncdf4: Interface to unidata NETCDF (version 4 or earlier) format data files [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=ncdf4>

Piironen, J., & Vehtari, A. (2016). Projection predictive model selection for Gaussian processes. In *2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP)* (pp. 1–6). IEEE. <https://doi.org/10.1109/mlsp.2016.7738829>

Plumb, R. A. (1977). The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation. *Journal of the Atmospheric Sciences*, 34(12), 1847–1858. [https://doi.org/10.1175/1520-0469\(1977\)034<1847:TIOTIW>2.0.CO;2](https://doi.org/10.1175/1520-0469(1977)034<1847:TIOTIW>2.0.CO;2)

Rasmussen, C. E., & Williams, C. K. I. (2005). *Gaussian processes for machine learning*. The MIT Press. <https://doi.org/10.7551/mitpress/3206.001.0001>

R Core Team. (2024). R: A language and environment for statistical computing [Computer software manual]. Retrieved from <https://www.R-project.org/>

Richter, J. H., Anstey, J. A., Butchart, N., Kawatani, Y., Meehl, G. A., Osprey, S., & Simpson, I. R. (2020). Progress in simulating the quasi-biennial oscillation in CMIP models. *Journal of Geophysical Research: Atmospheres*, 125(8), e2019JD032362. <https://doi.org/10.1029/2019jd032362>

Richter, J. H., Chen, C., Tang, Q., Xie, S., & Rasch, P. J. (2019). Improved simulation of the qbo in e3smv1. *Journal of Advances in Modeling Earth Systems*, 11(11), 3403–3418. <https://doi.org/10.1029/2019ms001763>

Roy, O., & Vetterli, M. (2007). The effective rank: A measure of effective dimensionality. In *2007 15th European Signal Processing Conference* (pp. 606–610).

Ruzika, S., & Wiecek, M. M. (2005). Approximation methods in multiobjective programming. *Journal of Optimization Theory and Applications*, 126(3), 473–501. <https://doi.org/10.1007/s10957-005-5494-4>

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. *Computer Physics Communications*, 181(2), 259–270. <https://doi.org/10.1016/j.cpc.2009.09.018>

Saltelli, A., Ratto, M., Tarantola, S., & Campolongo, F. (2006). Sensitivity analysis practices: Strategies for model-based inference. *Reliability Engineering & System Safety*, 91(10–11), 1109–1125. <https://doi.org/10.1016/j.ress.2005.11.014>

Salter, J. M., Williamson, D. B., Scinocca, J., & Kharin, V. (2019). Uncertainty quantification for computer models with spatial output using calibration-optimal bases. *Journal of the American Statistical Association*, 114(528), 1800–1814. <https://doi.org/10.1080/01621459.2018.1514306>

Santner, T. J., Williams, B. J., & Notz, W. I. (2018). *The design and analysis of computer experiments*. Springer. <https://doi.org/10.1007/978-1-4939-8847-1>

Sargsyan, K. (2015). Surrogate models for uncertainty propagation and sensitivity analysis. In *Handbook of Uncertainty Quantification* (pp. 1–26). Springer International Publishing. https://doi.org/10.1007/978-3-319-11259-6_22-1

Sargsyan, K., Huan, X., & Najm, H. N. (2019). Embedded model error representation for Bayesian model calibration. *International Journal for Uncertainty Quantification*, 9(4), 365–394. <https://doi.org/10.1615/int.j.uncertaintyquantification.2019027384>

Sargsyan, K., Safta, C., Najm, H. N., Debusschere, B. J., Ricciuto, D., & Thornton, P. (2014). Dimensionality reduction for complex models via Bayesian compressive sensing. *International Journal for Uncertainty Quantification*, 4(1), 63–93. <https://doi.org/10.1615/int.j.uncertaintyquantification.2013006821>

Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., et al. (2024). Ggally: Extension to “ggplot2” [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=GGally>

Schmidt, G. A., Bader, D., Donner, L. J., Elsaesser, G. S., Golaz, J.-C., Hannay, C., et al. (2017). Practice and philosophy of climate model tuning across six us modeling centers. *Geoscientific Model Development*, 10(9), 3207–3223. <https://doi.org/10.5194/gmd-10-3207-2017>

Shang, H. L. (2013). A survey of functional principal component analysis. *ASTA Advances in Statistical Analysis*, 98(2), 121–142. <https://doi.org/10.1007/s10182-013-0213-1>

Sharma, S., & Kumar, V. (2022). A comprehensive review on multi-objective optimization techniques: Past, present and future. *Archives of Computational Methods in Engineering*, 29(7), 5605–5633. <https://doi.org/10.1007/s11831-022-09778-9>

Slowikowski, K. (2024). ggrepel: Automatically position non-overlapping text labels with “ggplot2” [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=ggrepel>

Smith, A. K., Holt, L. A., Garcia, R. R., Anstey, J. A., Serva, F., Butchart, N., et al. (2020). The equatorial stratospheric semiannual oscillation and time-mean winds in QBOI models. *Quarterly Journal of the Royal Meteorological Society*, 148(744), 1593–1609. <https://doi.org/10.1002/qj.3690>

Smith, R. C. (2024). *Uncertainty quantification: Theory, implementation, and applications, second edition*. Society for Industrial and Applied Mathematics. <https://doi.org/10.1137/1.9781611977844>

Sobol, I. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. *Mathematics and Computers in Simulation*, 55(1–3), 271–280. [https://doi.org/10.1016/s0378-4754\(00\)00270-6](https://doi.org/10.1016/s0378-4754(00)00270-6)

Solymos, P., & Zawadzki, Z. (2023). pbapply: Adding progress bar to “*apply” functions [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=pbapply>

Stein, M. (1987). Large sample properties of simulations using latin hypercube sampling. *Technometrics*, 29(2), 143–151. <https://doi.org/10.1080/00401706.1987.10488205>

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. *Reliability Engineering & System Safety*, 93(7), 964–979. <https://doi.org/10.1016/j.ress.2007.04.002>

Sülfloow, A., Drechsler, N., & Drechsler, R. (2007). Robust multi-objective optimization in high dimensional spaces. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, & T. Murata (Eds.), *Evolutionary Multi-Criterion Optimization* (pp. 715–726). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_54

Sun, R., Duan, Q., & Huo, X. (2021). Multi-objective adaptive surrogate modeling-based optimization for distributed environmental models based on grid sampling. *Water Resources Research*, 57(11), e2020WR028740. <https://doi.org/10.1029/2020wr028740>

Sundararajan, S., & Keerthi, S. S. (2001). Predictive approaches for choosing hyperparameters in Gaussian processes. *Neural Computation*, 13(5), 1103–1118. <https://doi.org/10.1162/08997660151134343>

Tiedtke, M. (1989). A comprehensive mass flux scheme for cumulus parameterization in large-scale models. *Monthly Weather Review*, 117(8), 1779–1800. [https://doi.org/10.1175/1520-0493\(1989\)117<1779:ACMFST>2.0.CO;2](https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFST>2.0.CO;2)

Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A., et al. (2018). El Niño–Southern Oscillation complexity. *Nature*, 559(7715), 535–545. <https://doi.org/10.1038/s41586-018-0252-6>

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. *Bulletin of the American Meteorological Society*, 79(1), 61–78. [https://doi.org/10.1175/1520-0477\(1998\)079<0061:APGTWA>2.0.CO;2](https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2)

Turner, R. (2024). deldir: Delaunay triangulation and dirichlet (voronoi) tessellation [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=deldir>

van den Brand, T. (2024). ggh4x: Hacks for “ggplot2” [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=ggh4x>

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. *Journal of Machine Learning Research*, 9(86), 2579–2605. <http://jmlr.org/papers/v9/vandermaaten08a.html>

Vehtari, A., Mononen, T., Tolvanen, V., Sivila, T., & Winther, O. (2016). Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models. *Journal of Machine Learning Research*, 17(1), 3581–3618. <http://jmlr.org/papers/v17/14-540.html>

Vu, V. Q., & Friendly, M. (2024). ggbiplots: A grammar of graphics implementation of biplots [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=ggbiplots>

Wahba, G. (1990). *Spline models for observational data*. Society for Industrial and Applied Mathematics. <https://doi.org/10.1137/1.9781611970128>

Wallace, J. M., & Kousky, V. E. (1968). Observational evidence of kelvin waves in the tropical stratosphere. *Journal of the Atmospheric Sciences*, 25(5), 900–907. [https://doi.org/10.1175/1520-0469\(1968\)025<0900:oeokwi>2.0.co;2](https://doi.org/10.1175/1520-0469(1968)025<0900:oeokwi>2.0.co;2)

Wang, Y., Rao, J., Lu, Y., Ju, Z., Yang, J., & Luo, J. (2023). A revisit and comparison of the quasi-biennial oscillation (QBO) disruption events in 2015/16 and 2019/20. *Atmospheric Research*, 294, 106970. <https://doi.org/10.1016/j.atmosres.2023.106970>

Watanabe, S., Hamilton, K., Osprey, S., Kawatani, Y., & Nishimoto, E. (2018). First successful hindcasts of the 2016 disruption of the stratospheric quasi-biennial oscillation. *Geophysical Research Letters*, 45(3), 1602–1610. <https://doi.org/10.1002/2017gl076406>

White, H. (1982). Maximum likelihood estimation of misspecified models. *Econometrica*, 50(1), 1. <https://doi.org/10.2307/1912526>

Wickham, H. (2016). *ggplot2: Elegant graphics for data analysis*. Springer-Verlag. <https://doi.org/10.1007/978-3-319-24277-4>

Wickham, H., Pedersen, T. L., & Seidel, D. (2023). scales: Scale functions for visualization [Computer software manual]. Retrieved from <https://CRAN.R-project.org/package=scales>

Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L., & Yamazaki, K. (2013). History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble. *Climate Dynamics*, 41(7–8), 1703–1729. <https://doi.org/10.1007/s00382-013-1896-4>

Wu, L., Su, H., Zeng, X., Posselt, D. J., Wong, S., Chen, S., & Stoffelen, A. (2024). Uncertainty of atmospheric winds in three widely used global reanalysis datasets. *Journal of Applied Meteorology and Climatology*, 63(2), 165–180. <https://doi.org/10.1175/jamc-d-22-0198.1>

Xie, S. (2025). The energy exascale Earth system model version 3. Part I: Overview of the atmospheric component. *Journal of Advances in Modeling Earth Systems*, 17, e2025MS005120. <https://doi.org/10.1029/2025MS005120>

Yarger, D., Wagman, B. M., Chowdhary, K., & Shand, L. (2024). Autocalibration of the E3SM version 2 atmosphere model using a PCA-based surrogate for spatial fields. *Journal of Advances in Modeling Earth Systems*, 16(4), e2023MS003961. <https://doi.org/10.1029/2023ms003961>

Yu, W., Hannah, W. M., Benedict, J. J., Chen, C., & Richter, J. H. (2025). Improving the qbo forcing by resolved waves with vertical grid refinement in E3SMv2. *Journal of Advances in Modeling Earth Systems*, 17(5), e2024MS004473. <https://doi.org/10.1029/2024ms004473>

Zhang, C., Golaz, J.-C., Forsyth, R., Vo, T., Xie, S., Shaheen, Z., et al. (2022). The E3SM diagnostics package (e3sm diags v2.7): A python-based diagnostics package for EARTH system model evaluation. *Geoscientific Model Development*, 15(24), 9031–9056. <https://doi.org/10.5194/gmd-15-9031-2022>

Zhang, G., & McFarlane, N. A. (1995). Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. *Atmosphere-Ocean*, 33(3), 407–446. <https://doi.org/10.1080/07055900.1995.9649539>