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Abstract—Biotic and abiotic environmental stressors signifi-
cantly impact terrestrial carbon cycle dynamics, necessitating
robust methods for detecting and analyzing anomalous behavior
in plant productivity. This study presents a novel application of
variational autoencoders (VAE) for identifying extreme events
in gross primary productivity (GPP) from Community Earth
System Model version 2 simulations across four AR6 regions in
the Continental United States. We compare VAE-based anomaly
detection with traditional singular spectral analysis (SSA) meth-
ods across three time periods: 1850–80, 1950–80, and 2050–80
under the SSP5-8.5 scenario. The VAE architecture employs
three dense layers and a latent space with an input sequence
length of 12 months, trained on a normalized GPP time series
to reconstruct the GPP and identifying anomalies based on
reconstruction errors. Extreme events are defined using 5th

percentile thresholds applied to both VAE and SSA anomalies.
Results demonstrate strong regional agreement between VAE and
SSA methods in spatial patterns of extreme event frequencies,
despite VAE producing higher threshold values (179–756 GgC for
VAE vs. 100–784 GgC for SSA across regions and periods). Both
methods reveal increasing magnitudes and frequencies of negative
carbon cycle extremes toward 2050–80, particularly in Western
and Central North America. The VAE approach shows compa-
rable performance to established SSA techniques, while offering
computational advantages and enhanced capability for capturing
non-linear temporal dependencies in carbon cycle variability.
Unlike SSA, VAEs do not require pre-specifying periodicity of the
signals; patterns emerge from data. This research demonstrates
the potential of deep learning approaches for extremes detection
and provides a foundation for improved understanding of future
carbon cycle risks under future conditions.

Index Terms—carbon cycle extremes, variational autoencoders,
anomaly detection, gross primary productivity, extreme events.

I. INTRODUCTION

The terrestrial biosphere plays a crucial role in the global
carbon cycle, absorbing approximately 30% of anthropogenic
CO2 emissions through photosynthetic processes [1], [2].
Gross Primary Productivity (GPP), representing the total
carbon uptake by terrestrial ecosystems, is a fundamental
indicator of ecosystem functioning and carbon sequestration
capacity [3], [4]. However, the stability of this terrestrial
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carbon sink is threatened by increasingly frequent and intense
meteorological extremes and ecological disturbances, which
can disrupt normal patterns of terrestrial carbon cycle [5].

The detection and characterization of extreme events in
carbon cycle processes present significant methodological
challenges due to the complex, non-linear nature of vegetation-
climate interactions [6]. Traditional approaches have relied
on statistical methods such as percentile-based thresholds
and singular spectral analysis (SSA) to identify anomalous
behavior in biogeochemical time series [7], [8]. While these
methods have proven effective, they rely on domain knowledge
to predetermine temporal modes of variability and trends to
account for, and thus may not fully capture the intricate
temporal dependencies and non-linear patterns inherent in
carbon cycle dynamics.

Recent advances in machine learning, particularly deep
learning architectures, offer promising alternatives for anomaly
detection in Earth system data [9]–[13]. Autoencoders and
Variational autoencoders (VAE) have emerged as powerful
tools for unsupervised anomaly detection, capable of learning
complex data representations and identifying deviations from
normal patterns [14], [15]. VAEs have demonstrated success
in Earth science applications, including weather field synthesis
and extreme event detection [10], [11], [16], and wildfires [17].

Earth System Models (ESMs) such as Community Earth
System Model version 2 (CESM2) provide valuable datasets
for investigating long-term carbon cycle dynamics under dif-
ferent scenarios [3], [18], [19]. CESM2 incorporates sophis-
ticated representations of terrestrial biogeochemistry through
the Community Land Model version 5 (CLM5), enabling
detailed simulations of GPP and other carbon fluxes [18], [20].
The availability of multi-century CESM2 simulations presents
an opportunity to explore novel methods for extreme event
detection across different time periods and climate conditions.

The AR6 reference regions established by the Intergov-
ernmental Panel on Climate Change provide a standardized
framework for regional climate analysis [21], [22]. Within the
Continental United States (CONUS), four AR6 regions, West-
ern North America (WNA), Central North America (CNA),



Eastern North America (ENA), and Northern Central America
(NCA), represent distinct climate zones and biogeochemical
characteristics [21], [23].

This study addresses the critical need for enhanced methods
to detect and characterize extreme events in terrestrial carbon
cycling. We introduce a VAE-based approach for identifying
GPP extremes in CESM2 simulations and compare its perfor-
mance with established SSA techniques across multiple time
periods and regions. This research contributes to methodology
for detection and analysis of spatiotemporal patterns of ex-
tremes in carbon cycle while also advancing the application
of machine learning in Earth System sciences.

II. DATA AND METHODS

A. CESM2 Model Data

We utilized monthly GPP output from CESM2 simula-
tions at about 1 degree spatial resolution spanning three
distinct time periods: 1850–80 (historical baseline), 1950–
80 (mid-20th century), and 2050–80 (future projection under
SSP5-8.5 scenario) [18]. The CESM2 model incorporates the
CLM5 with comprehensive biogeochemical processes, provid-
ing physically consistent representations of terrestrial carbon
dynamics [20]. GPP data were analyzed for four AR6 regions
within CONUS: Western North America (WNA), Central
North America (CNA), Eastern North America (ENA), and
Northern Central America (NCA), see Fig. 1.

Fig. 1: US AR6 regions reference map.

B. Variational Autoencoder Architecture

Autoencoders are unsupervised neural network models de-
signed to learn compressed, low-dimensional representations
of data. They consist of two main components: an encoder,
which maps the input into a latent representation, and a
decoder, which reconstructs the input from this representation.
The network is trained to minimize the reconstruction error
between the input and output, encouraging the latent space to
capture informative features of the data. [24] proposed varia-
tional autoencoders that extended autoencoders by introducing
a continuous and probabilistic latent space representation,
unlike discrete and fixed representation of autoencoders. The
VAE encoder maps the input variables to mean (µ) and log
variance (log σ2) (Eq. 1), defining the distribution in the latent
space (z ∼ N (0, I)).

µ = Encoderµ(X), log σ2 = Encoderσ(X) (1)

However, direct sampling from the latent space distribution
(N (0, I)) violates the differentiable property desired for gra-
dient descent backpropagation, since vector of random values
have no derivative. Thus, [24] introduced a reparameterization
trick by introducing a new parameter, ϵ, which is a random
value selected from the normal distribution between 0 and
1, reparameterizing latent variable z as in Eq. 2. Since the
random value ϵ is not derived from and has no relation to
the autoencoder model’s parameters, it can be ignored during
backpropagation.

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I) (2)

The decoder reconstructs the input (Eq. 3):

X̂ = Decoder(z) (3)

The loss function (Eq. 4) combines the reconstruction loss and
Kullback-Leibler divergence (Eq. 5) to constrain the encoder
output to follow standard normal distribution N (0, I).

LVAE = Eqϕ(z|x)
[
log pθ(x | z)

]︸ ︷︷ ︸
Reconstruction Loss

+β DKL(qϕ(z | x) ∥ p(z))︸ ︷︷ ︸
Regularization (KL Divergence)

(4)
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where qϕ(z | x) is the encoder, pθ(x | z) is decoder, p(z)
is prior distribution on the latent space, β = 0.5 balances
reconstruction and regularization.

We implemented VAE using the PyTorch library [25] and
Optuna framework [26] for hyperparameter optimization.

C. Singular Spectral Analysis Implementation

To provide baseline comparison for the results from the
VAE approach, we implemented SSA following established
methodologies for carbon cycle analysis [27]. SSA decom-
poses time series into independent components representing
different periodicities, enabling separation of trend (periodici-
ties of 10 years and more) and annual cycle (12 months and its
harmonic frequencies) [28]. The method effectively captures
non-linear trends and modulated annual cycles, making it par-
ticularly suitable for biogeochemical time series analysis under
changing climate conditions. The anomalies are computed by
removing the non-linear trends and modulated annual cycle
from the original timeseries, capturing inter-annual variations
(>1 and <10 years of periodicity) and intra-annual variations
(<12 months). Large-scale climate variability, such as El
Nino Southern Oscillation (ENSO) which has return periods
between 2 and 7 years [7], are known to have significant
impact on climate and ecological extremes and are captured
by SSA derived anomalies.



D. Extreme Event Definition and Threshold Calculation

Following protocols for extreme event identification pro-
posed by [2], we defined extreme events using 5th percentile
thresholds applied to GPP anomalies from both VAE and
SSA methods. This approach ensures that 5% of the most
extreme negative and positive anomalies are classified as ex-
treme events, providing a consistent framework for comparison
across methods and time periods. Anomalies from the VAE
method were calculated as the difference between original and
reconstructed GPP values at each grid cell. For SSA, anomalies
represent the residual after removing trend and annual cycle
components. Thresholds were computed separately for each
region and time period, allowing for adaptation to changing
baseline conditions and variability characteristics.

It is important to note that the length of the reconstructed
GPP time series is shortened by the sequence length used
in the VAE method (12 months in this case). Because the
model requires a full input window to perform reconstruction,
it cannot generate values at the very beginning and end
of the record, leading to a reduced effective time span. To
calculate extremes consistently, we therefore remove the first
and last year of anomalies from both the VAE- and SSA-
derived series. Consequently, results reported for the period
1850–80 actually correspond to 1851–79, and similarly for
other intervals. For clarity and readability, however, we present
the original periods in the text.

E. Spatial and Temporal Analysis

Regional aggregation of extreme event frequencies and
magnitudes was performed by integrating results across all
grid cells (with land fraction more than 10%) within each AR6
region. Time series analysis focused on monthly patterns of
extreme event occurrence and magnitude, enabling identifica-
tion of seasonal and inter-annual variations. Spatial distribution
patterns were analyzed using gridded frequency maps showing
the occurrence of extreme events at individual grid cells.

III. RESULTS

A. Variational Autoencoder Model

We implemented a VAE using Pytorch [25] to model
the GPP timeseries. Driven by heterogeneity in vegetation
distribution, GPP shows spatial and temporal variability across
the CONUS. We trained separate models for four selected AR6
regions and for three time periods as described in Section II-A.
To capture the annual seasonality of vegetation and vegetation
productivity well, we use a sequence of 12 months of GPP
values as input to the VAE. Choice of 12 months as sequence
length was made after testing varying sequence length from
6, 12, 18, 24 and 36 months. After conducting a number
of trials with various combinations of hyperparameters using
Optuna library [26] (number of hidden layers: [1, 2, 3]; size
of hidden layers: [8, 16, 32, 64, 128, 256]; size of latent
dimension: [2:10] dropout rate: [0:0.2], learning rate: [1e-4:1e-
2]; batch size: [32, 64, 128]), we selected an architecture and
set of hyperparameters (Fig. 2) that performed well for all
regions. Our VAE model architecture consists of three dense

TABLE I: Threshold for Extremes

Region Period VAE (GgC) SSA (GgC)
WNA 1850–80 179 100
WNA 1950–80 255 171
WNA 2050–80 457 368
CNA 1850–80 302 321
CNA 1950–80 520 412
CNA 2050–80 683 515
ENA 1850–80 308 211
ENA 1950–80 401 263
ENA 2050–80 462 324
NCA 1850–80 526 503
NCA 1950–80 635 510
NCA 2050–80 756 784

hidden layers of sizes 128, 64 and 32 respectively, latent space
dimension of 5, dropout rate of 0.01 and learning rate of 0.005.
A ReLU [29] activation function was used for each of the
hidden layers and a tanh [30] activation function as final layer
of the decoder. GPP timeseries was normalized between −1
and 1 before input to the VAE model.

Trained VAE model was applied to construct the GPP time-
series for all the study regions and periods. Fig. 3 demonstrates
the effectiveness of VAE for reconstructing the GPP timeseries
for all four regions for the period of 1850-1880. Time series
of GPP reconstruction error (original − reconstructed GPP)
was further used to detect and analyze the extremes in carbon
cycle.

Model trainings were conducted for maximum of 500
epochs. An early stopping criteria with patience of 50 was ap-
plied, stopping model training if accuracy did not improve for
50 epochs and preserving the best model. Most trainings were
completed under 200 epochs. Learning rate was adaptively
reduced using PyTorch ReduceLROnPlateau with a patience
of 5 and factor of 0.5. Fig. 4 show the training and validation
loss curves for four study regions. All model trainings were
conducted on Perlmutter supercomputer at National Energy
Research Scientific Computing Center (NERSC) using one
AMD EPYC 7763 CPUs and four NVIDIA A100 (40 GB)
GPUs.

B. Threshold Comparison Between VAE and SSA Methods

The comparison of extreme event thresholds between VAE
and SSA methods reveals systematic differences across regions
and time periods (Table I). VAE consistently produces higher
threshold values than SSA, with differences varying by region
and temporal period. For the WNA region, VAE thresholds
range from 179 GgC (1850–80) to 457 GgC (2050–80), com-
pared to SSA thresholds of 100–368 GgC for the same periods.
This trend is consistent across most regions, with CNA and
ENA showing similar patterns of higher VAE thresholds.

The increasing magnitude of thresholds from 1850–80 to
2050–80 demonstrates the intensification of extreme events



Fig. 2: Architecture of variational autoencoder designed for detecting GPP extremes

Fig. 3: Comparison between original (blue line) and VAE-
based reconstructed GPP time series (orange line) for the
period 1850-1880 in four CONUS AR6 regions.

Fig. 4: Convergence of model training and validation loss over
epochs for the four study regions.



(a) VAE

(b) SSA

Fig. 5: Spatial distribution of total negative extremes in GPP
during 1850–1880, for VAE (top) and SSA (bottom) for each
of the AR6 regions analyzed separately. A separate color
schemes are used for each region to highlight the gradients.

under projected future climate conditions across both method-
ologies. The NCA region exhibits the highest threshold values,
most likely due to large variations in the plant productivity of
tropical forests that dominate the region.

C. Spatial Distribution of Extreme Events

Spatial analysis of negative extreme events reveal distinct
regional hotspots and consistent patterns between VAE and
SSA methods despite differences in absolute threshold values.
The frequency maps (Fig. 5 and 6) for 1850–80 and 2050–
80 periods demonstrate remarkable agreement in identifying
regions of elevated extreme event occurrence, particularly in
the western portions of the WNA region (including central
valley and coastal region of California, and southern Sierra
mountains), central areas of the CNA region (spanning arid
shrublands and grasslands) and deciduous forests along Ap-
palachian mountain range in ENA.

For the historical period (1850–80), both VAE and SSA
identify moderate frequencies of 10-30 extreme events across
most regions, with localized hotspots reaching 40-50+ events
in specific areas. The spatial coherence between methods sug-
gests robust identification of ecologically vulnerable regions
even with different analytical approaches.

Future projections (2050–80) show dramatic expansion of
high-frequency zones across all regions. The VAE method
identifies extensive areas experiencing 20-35+ extreme events,
while SSA shows similar patterns with slightly different
intensity distributions. Both methods consistently highlight

(a) VAE

(b) SSA

Fig. 6: Spatial distribution of total negative extremes in GPP
during 2050–2080, for VAE (top) and SSA (bottom) for each
of the AR6 regions analyzed separately. A separate color
schemes are used for each region to highlight the gradients.

the southwestern WNA region and central CNA region to
experience the highest frequencies of extreme events, with
some grid cells exceeding 50+ events over the 30-year period.
The strong spatial agreement between VAE and SSA methods,
despite their different mathematical foundations, provides ro-
bust evidence for the identified hotspot regions and supports
the reliability of future projections of carbon cycle extreme
event distributions.

D. Temporal Distribution of Frequency of Negative Extreme
Events

Analysis of time series of negative extreme events reveals
substantial temporal variability and long-term trends across
both VAE and SSA methods. The 1850–80 period (historical,
Fig. 7) shows relatively stable frequencies. Both methods
capture similar timing of major extreme events, demonstrating
consistency in temporal pattern detection.

The 2050–80 period (Fig. 8) exhibit markedly different
characteristics, with increased baseline frequencies and more
pronounced extreme events. VAE and SSA methods show
strong agreement in identifying peak extreme event periods,
particularly during the late 2060s and early 2070s across
multiple regions.

The CNA region displays the most dramatic increases in
negative extreme event frequency, with both methods detecting
severe events reaching 75+ negative extremes compared to
typical values of 10-25 extremes.



Fig. 7: Time series of sum of all negative extremes in GPP
for four AR6 regions during 1850–80.

Regional differences in temporal patterns are evident across
the four AR6 regions. WNA shows consistent but moderate
increases in extreme event frequency, while ENA exhibits
high variability with periodic intense events. The NCA region
demonstrates sustained elevated frequencies throughout the
2050–80 period, suggesting persistent stress conditions under
projected future climate conditions.

We see a 50% increase in the frequency of negative extremes
in WNA between the two periods. Since the extremes are
calculated using the percentile based method, increase in
negative extremes also indicate decrease in positive extremes.
This indicates that over time the vulnerability of forests to
losses in carbon uptake could increase.

E. Magnitude of Carbon Cycle Extremes

The magnitude of negative extreme events, measured as the
intensity of carbon uptake loss during extreme events, show
concerning trends toward more severe impacts. Both VAE
and SSA methods consistently identify periods of significant
carbon cycle disruption, with magnitudes reaching −10 to −40
TgC during the most severe events across different regions and
time periods.

Historical periods (1850–80, see Fig. 9) show relatively
contained extreme event magnitudes, typically ranging from
0 to −10 TgC for most regions. However, future projections

Fig. 8: Time series of sum of all negative extremes in GPP
for four AR6 regions during 2050–80.

(2050–80, see Fig. 10) demonstrate substantial intensification,
with extreme events reaching magnitudes of −20 to −60 TgC
in some regions. The CNA region exhibits the most severe
projected extremes, with both VAE and SSA detecting events
exceeding −60 TgC in magnitude during the late 2060s.

The consistency between VAE and SSA magnitude esti-
mates provides confidence in the robustness of these pro-
jections. Both methods capture similar seasonal patterns in
extreme event occurrence.

IV. DISCUSSION

The results demonstrate that VAE-based anomaly detection
offers a viable alternative to traditional SSA methods for
identifying extreme events in carbon cycle dynamics. The
systematic differences in threshold values between VAE and
SSA likely reflect the different mathematical foundations of
these approaches. VAE methods learn complex non-linear
patterns in data reconstruction, potentially capturing subtle
anomalies that manifest as higher threshold values [9], [14].
In contrast, SSA relies on spectral decomposition that may
be more sensitive to non-linear trend, which is calculated as
sum of frequencies with periodicity of 10 years and higher,
and seasonal and its harmonic components, resulting in lower
threshold values for equivalent anomaly intensities [7]. Unlike
SSA that requires the spectral frequencies of interest to be



Fig. 9: Time series of magnitude of sum of negative extremes
in GPP in four AR6 regions during 1850–80.

prescribed based on expert knowledge of the processes, VAE
learns the inherent patterns from the data and reconstruction
errors help identify the anomalies that does not fit those
learned patterns.

The strong spatial agreement between VAE and SSA meth-
ods despite threshold differences suggests both approaches
identify similar underlying physical processes driving extreme
events. This convergence provides confidence in the robust-
ness of identified hotspot regions and temporal patterns. The
computational advantages of VAE approaches, once trained,
enable rapid processing of large climate datasets and potential
real-time applications for extreme event monitoring [11].

A. Comparative Analysis of Positive and Negative Extreme
Magnitudes

Despite the systematic tendency of the VAE method to
yield higher extreme thresholds (as indicated in Table I),
the estimated magnitude of negative extremes, defined as
the aggregate loss in carbon uptake during extreme events,
remained similar between VAE and SSA across all four AR6
regions in the projected 2050–80 future period. For instance,
in 2050–80, the cumulative negative extremes (in TgC) for
VAE and SSA, respectively, were as follows: Western North
America (WNA): −1080 vs. −1288; Central North America
(CNA): −1322 vs. −1617; Eastern North America (ENA):

Fig. 10: Time series of magnitude of sum of negative extremes
in GPP in four AR6 regions during 2050–80.

−1783 vs. −1824; and Northern Central America (NCA):
−1752 vs. −1938. This strong agreement is visually evident
in the time series magnitude plots for negative extremes in
Fig. 9 and 10, where both methods track the largest episodes
of carbon uptake loss with similar timing and depth, despite
differences in extremes thresholds.

The intensification of extreme events from historical to fu-
ture periods aligns with established understanding of climate-
carbon feedbacks under warming scenarios [2]. The particu-
larly severe projections for the CNA region reflect the vulnera-
bility of continental interior regions to enhanced drought stress
and temperature extremes. These findings support concerns
about weakening terrestrial carbon sinks under continued
environmental change [5].

The reason for the relatively small discrepancy in negative
extremes despite higher VAE thresholds can be traced to
properties of the anomaly distributions. The 5th percentile
approach identifies the top 5% of anomalies regardless of
sign and can be sensitive to the distribution’s shape and skew-
ness [2]. The VAE anomaly distributions are more positively
skewed than those of SSA, resulting in greater calculated
magnitudes for positive extremes (carbon uptake gains using
extremes) in the future period, as seen in Fig. 11. For 2050–80,
positive extremes (TgC) for VAE vs. SSA were: WNA: 1731



vs. 1349; CNA: 2584 vs. 1647; ENA: 1751 vs. 1288; NCA:
1521 vs. 1765. Thus, the VAE method not only identifies more
intense negative events but also projects a substantial shift
toward higher magnitude positive carbon uptake extremes,
particularly in WNA, CNA, and ENA.

Fig. 11: Time series of magnitude of sum of positive extremes
in GPP in four AR6 regions during 2050–80.

These findings have important implications for interpreting
extremes detection under changing environmental conditions
vegetation experience. The conservative (right-skewed) bias in-
duced by VAE’s latent representation causes positive extremes
to be more pronounced, especially under higher atmospheric
CO2 concentrations with stronger seasonal carbon uptake and
intermittent recovery events. Meanwhile, the negative extremes
remain robust and comparable between VAE and SSA across
spatiotemporal domains, suggesting that both methods identify
periods of greatest carbon cycle vulnerability. This also points
to the suitability of VAEs for robust, unsupervised quantifica-
tion of extremes even when underlying anomaly distributions
do not strictly conform to Gaussian or symmetric distributions.

B. Limitations

The findings in section IV-A reinforce that while method-
ological differences exist, both machine-learning and tradi-
tional spectral approaches can yield convergent estimates of
biogeochemical system vulnerability, provided their limita-
tions and biases are carefully interpreted in context.

Limitations of the current approach include the relatively
simple VAE architecture and limited exploration of alternative
latent space dimensions. Future work should investigate more
sophisticated temporal modeling approaches, such as recurrent
VAE architectures with Long Short Term Memory (LSTM)
layers, and explore the interpretability of latent space represen-
tations for understanding physical drivers of extreme events.

V. CONCLUSION

This study successfully demonstrates the application of
variational autoencoders for detecting extreme events in terres-
trial carbon cycle dynamics using CESM2 model output. The
VAE approach shows strong agreement with established SSA
methods in identifying spatial and temporal patterns of carbon
cycle extremes, while offering computational advantages and
enhanced capability for non-linear pattern recognition. While
SSA methods require the temporal periodicity of trends and
seasonal cycle in the data to be defined based on expert
knowledge, VAE inherently discovers them from the data.

Key findings include: (1) VAE methods consistently produce
higher threshold values than SSA but maintain similar spatial
and temporal pattern identification; (2) both methods project
intensification of extreme events toward 2050–80, with the
CNA region showing the most severe increases; (3) spatial
distributions of extreme event frequencies show remarkable
consistency between methods, supporting the robustness of
identified hotspot regions; and (4) the temporal patterns of
extreme events reveals concerning trends toward more frequent
and severe carbon cycle disruptions under projected future
conditions.

The successful application of VAE methods opens op-
portunities for enhanced detection of extreme events using
deep learning approaches. Future research should explore
more sophisticated architectures and investigate the physical
interpretability of learned representations. The methodology
presented provides a foundation for operational extreme event
monitoring and improved understanding of carbon-climate
feedbacks under changing environmental conditions. The in-
creasing frequency and magnitude of projected extreme events
across all regions underscore the urgent need for enhanced
monitoring and prediction capabilities. The convergence of
machine learning and traditional analytical approaches demon-
strated here offers promising pathways for advancing our
understanding and early warning capabilities.
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