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Abstract

The importance of nonlocality is assessed in modeling mean scalar transport for turbulent Rayleigh-
Taylor (RT) mixing at different Atwood numbers. Building on the two-dimensional incompressible
work of Lavacot et al. [1], the present work extends the Macroscopic Forcing Method (MFM) to
variable density problems in three-dimensional space to measure moments of the generalized eddy
diffusivity kernel in RT mixing for increasing Atwood numbers (A = 0.05,0.3,0.5,0.8). It is found
that as A increases: 1) the eddy diffusivity moments become asymmetric, and 2) the higher-order
eddy diffusivity moments become larger relative to the leading-order diffusivity, indicating that
nonlocality becomes more important at higher A. There is a particularly strong temporal nonlocality
at higher A, suggesting stronger history effects. The implications of these findings for closure

modeling for finite-Atwood RT are discussed.

s I. INTRODUCTION

o Rayleigh-Taylor (RT) instability occurs when a light fluid is accelerated into a heavy fluid
10 through a perturbed interface. Over time, the instability results in turbulent mixing and
u enters a self-similar regime. Understanding the effects of this mixing is critical in engineering
12 design applications, especially for inertial confinement fusion (ICF). In ICF, a plastic ablator
13 18 accelerated into deuterium gas to achieve high compression and, consequently, ignition.
1 If perterbations exist at material interfaces in the capsule, RT instability will cause these

15 perturbations to grow, which may result in mixing that ultimately reduces energy output
16 [2, 3].

17 In designing experiments for ICF, it is crucial to accurately predict the turbulent mixing in
18 simulations. High-fidelity approaches such as direct numerical simulations and large eddy
10 simulations have been used to accurately predict turbulent mixing in RT instability [4-6].
2 However, the fine grids required to resolve turbulent scales make these methods prohibitively
21 expensive for the iterative design process, in which thousands of simulations must be run. A
2 more computationally feasible approach is simulation of the Reynolds-Averaged Navier-Stokes
2 (RANS) equations, which requires resolution of only the ensemble-averaged fields. RANS has
21 been previously employed in optimizing designs for ICF experiments [7—10]. Since only the
s mean quantities are evolved in RANS simulations, models are required to approximate the
2 mean impact of the underlying fluctuations. It is then crucial in the RANS approach to use
27 accurate models for the unclosed terms.

s The present work focuses on scalar transport, which characterizes the mixing of materials in
2 RT instability. RANS modeling of scalar transport involves closing the turbulent species flux
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3 in the mean scalar transport equation. A common closure for this term is a gradient-diffusion
a1 approximation, which assumes the flux depends only on local gradients of the mean scalar field.
» A gradient diffusion closure is used in popular models for RT mixing such as the k— model
1 [11] (modified by Gauthier and Bonnet [12] for RT) and the k—L model [13]. However, the
. gradient-diffusion closure has been shown to be insufficient for modeling scalar transport in
s RT mixing [14, 15]. Alternative models include those that use transport equations for the flux
s itself [16] and those based on two-point correlations [17-19], the latter of which are intended
s7 to capture nonlocality. While these models address nonlocal effects in RT mixing, they do so
;s without directly examining the nonlocality of the closure operator. Traditional approaches
30 towards studying nonlocality usually involve examination of two-point correlations.

» Nonlocality of the eddy diffusivity has been studied in a previous work [1] for two-dimensional
a (2D) RT mixing in the Boussinesq limit (A = 0.05). In that work, the Macroscopic Forcing
2 Method (MFM) [20] was used to measure moments of the generalized eddy diffusivity kernel,
3 which describes the nonlocal dependence of the turbulent flux on mean gradients. MFM is
s similar to the Green’s function approach described by Hamba [21] for determining the exact
s»s nonlocal eddy diffusivity but also allows for polynomial forcings that enable measurement of
s eddy diffusivity moments. Measuring the moments is more efficient than computing the full
s kernel, which becomes expensive for unsteady problems with large macroscopic spaces, like
ss RT mixing.

2 The goal of the present work is to extend MFM analysis to turbulent three-dimensional
s0 (3D) RT mixing at higher Atwood numbers. The extension to 3D is certainly necessary for
s1 investigation of truly turbulent RT. Additionally, simulations of higher Atwood numbers
s2 allow for the investigation of variable density effects on nonlocality. It is known that the
s3 behavior of the instability differs between the variable density regime and the Boussinesq
s« limit. Particularly, asymmetry in the mixing layer arises at higher Atwood numbers, which
ss also leads to asymmetries in turbulent statistics, as shown by Livescu et al. [22]. Thus, one
ss purpose of this study is to investigate the strength of the dependence of nonlocality in RT
s7 mixing on Atwood number. Ultimately, findings from this study will inform development of
ss more accurate turbulence models for variable density RT mixing that incorporate nonlocality
so and its dependence on Atwood number.

o This work is organized as follows. Numerical methods of this work are presented in §II, in
&1 which the governing equations and their numerical solution are described along with a brief
e overview of RT physics. In §III, moments of the spatio-temporally nonlocal eddy diffusivity
63 are measured using MFM and analyzed. The importance of the eddy diffusivity moments in
s« modeling is examined in §IV. Finally, the results and implications for modeling are discussed
e in the Conclusion in §V.
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6 II. NUMERICAL METHODS
&7 A. Governing equations

¢ An RT configuration is considered in which a heavy fluid sits on top of a light fluid, and
s gravity points in the negative y-direction. The fluids are miscible, and conservation of mass
70 gives that the mass fraction of the heavy fluid, Yy, and the light fluid, Y7, sum to unity. The

7 flow is governed by the compressible Navier-Stokes equations:

dpYy, 0 Yy
— — 2 puys - pD 2 |
ot D (puﬂ kTP ’“aa:j)’ (1)
dpu; 0
— Y s o , 9
ot D (Puzuj + pdy; sz) + pgi, (2)
or 0
“C__ Y «E o . L
5 o, (B + p) uj — mijui + ;) + pgiu; (3)

22 Here, p is density, u; is velocity, Y} is the mass fraction of species «, Dy, is the diffusivity of
73 species a, p is pressure, 0;; is the Kronecker delta, 7;; is the viscous stress, g; is gravitational
7 acceleration (in this work, g = (0,—g,0)7), E =p (e + %ukuk) is the total energy, and ¢; is
75 the thermal energy flux. The viscous stress is

B Ou;  Ou, 2\ Ouy
Tij = M (8% + axi) + (5 g,u) a—xk%, (4)

76 where p is the molecular viscosity and [ is the bulk viscosity. The energy flux is

oT
qi = _Hﬁx- ) (5)

77 where T' is temperature. Pressure and temperature are determined using the ideal gas law:
e
p=ply=1e T=@-1) (6)
7s where ~y is the ratio of specific heats (C:_Z and R is the specific constant. The specific heats are
70 dependent on Yj:

Cy = YHCv,H + YLQ},L; Cp = YHCp,H + YLCp,L7 (7)

so In general, the energy equation (Equation 3) would include an enthalpy diffusion term to
a1 account for energy fluxes due to the species’ diffusion, as described by Cook [23]. However,
g2 since AT across the heavy-light fluid interface at the A studied in this work is expected to be
g3 small, we choose to neglect this term. Additionally, our analysis is in the late-time self-similar
s Tegime, where the enthalpy diffusion term is expected to be small.

4
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ss For MFM analysis, we also consider transport of a dilute scalar Y., which is governed by the
s following transport equation:

opY. 0 Y.
ot oz, (’"‘JYC ”Dcax)‘ ®)

g7 For this dilute scalar, coupling from momentum is one way, and Y, does not affect p. Thus,

gs the transport equation for Y, is linear.

o B. RT mixing and self-similarity

o The difference in density between the two fluids can be expressed nondimensionally as the
a1 Atwood number:

PH + PL
o where ppg is the density of the heavy fluid, and py, is the density of the light fluid.

a3 As the instability develops, bubbles rise into the heavy fluid, and spikes sink into the light fluid.
s Over time, secondary Kelvin-Helmholtz instabilities are triggered, and the flow transitions
os into turbulence. In this turbulent state, RT instability becomes self-similar, and the growth

s of the bubbles and spikes are quadratic in time [24]:
hy =~ apAgt®,  hg =~ —a,Agt?, (10)

oz where hy, and hg are the bubble and spike heights, respectively, and a4 and «y are the bubble
s and spike growth parameters, respectively. Based on the bubble height, a self-similar variable
o in space is defined:

= 11
n=T (11)

100 for y defined between 0 and 1. The mixing layer half-width is defined as h = = (hy, — hy), and

1
2

w1 in the self-similar limit, the growth of h can be characterized with a single a:
h ~ aAgt®. (12)

102 At low A, hy & h,. Increasing A increases the asymmetry of the mixing layer [22; 25] as the
103 spikes sink faster than the bubbles rise. Thus, for finite A, h > hy. In this work, the growth
14 of the bubbles is used for self-similar analysis rather than the total mixing layer growth

10s parameter «, since the latter varies significantly across Atwood numbers [26].

s Using the analytical derivation of the mixing width from Ristorcelli and Clark [27], Cabot
107 and Cook [5] defines the bubble growth parameter as
-2

hy

= — 13

p
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10s where h, is the rate of change of hy in time. This definition is used to observe the growth
100 parameter over time and assess convergence to self-similarity. In the self-similar regime, ay,

no should converge to a constant value over time.

1 For self-similar analysis, the definition of a3 by Livescu et al. [22] is used:

(o) = hoto)
w= ("G ) -

12 where tj is an arbitrary time during the self-similar growth of the mixing layer. This definition

u3 is preferable for self-similar fits and normalizations, since it avoids temporal derivatives of

us the mixing width, which is not smooth in time due to statistical error.

us The bubble height can be computed from mass fraction profiles by taking it as the distance
s from the centerline of the domain to where the mean mass fraction of the light fluid is 0.999.
17 The RT instability can be considered self-similar when this hy 99 becomes quadratic in time.

us Another metric for self-similarity is the mixedness parameter, defined as

YYjd
=14 iy (15)
f YHYLdy
no where Yy is the mass fraction of the heavy fluid, and Y;, = 1 — Y}y is the mass fraction of the
10 light fluid. For self-similar RT mixing, ¢ is expected to converge to a steady-state value of

121 about 0.8 [5].

122 It is additionally useful to assess the development of the RT flow by examining relevant
123 Reynolds numbers. The Taylor microscale Reynolds number is defined as
kY2 )\
ReT = ; (16)

14

[10vL

1
5

12 where k = $u/u!, and

s L is a turbulent length scale, which can be approximated as
126 hy, + hy [14]. The large scale Reynolds number [5] is defined as

of the total mixing width,

hooh
Rep = ﬂ%, (18)

127 where hgg is the total mixing width defined as the distance between the locations of mass
128 fractions 0.001 and 0.999.
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120 Dimotakis [28] describes a “mixing transition,” after which the amount of mixed fluid depends
130 more weakly on Reynolds number. This mixing transition was identified to be when Rep > 100
w and Rep > 10, 000; we refer to these conditions here as critical Reynolds numbers for mixing.
122 Zhou [29] also identifies a minimum Reynolds number for turbulence, Rey, > 1.6 X 10°; we refer
133 to this as the critical Reynolds number for turbulence. While both of these transitions occur
134 before the transition to the self-similar regime, they are still useful metrics for understanding
135 the stage of development of an RT flow.

136 C. Numerical solution to governing equations

137 Pyranda [30], an open source finite difference solver, is used to solve Equations 1-3. Its
138 numerical methods are the same as those used in Miranda, a hydrodynamics code developed at
13 Lawrence Livermore National Laboratory [31, 32]. The codes use fourth-order Runge-Kutta
1o in time and a tenth-order compact differencing scheme in space, and due to this high-order
1 spatial scheme, they use artificial fluid properties for stability. Details on the artificial fluid
12 method can be found in Appendix A

13 To prevent the numerical diffusion from dominating the physical turbulent diffusion, the
s numerical Grashof number is kept small. This Grashof number is defined as

_ —2gAN®

2

Gr (19)

14

s where A = A, = A, = A, is the grid spacing. In line with the findings of Morgan and Black
ue [33], Gr = 12 is used in order to keep numerical diffusion finite but still allow turbulence to
17 develop before the edges of the mixing layer reach the domain boundaries. The authors also
us approximate the ratio of the Kolmogorov scale ng to grid size A as

ne [ 128 \®
KN<GT’3N]1) 7 (20)

19 where N, is the number of points across the mixing layer, %. Based on this, g /A ~ 0.5 at

150 the end of the simulations, indicating that resolution extends into the viscous range.

151 The other relevant nondimensional numbers of the RT mixing problem are the Mach number
152 (Ma), Peclet number (Pe), and Schmidt number (Sc):

U

Ma = — 21
o=t (21)
PGT = ReTSc, (22)
Pe;, = RerSe, (23)

v
= — 24
Sc Do (24)
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Nondimensional number A =0.05 A=0.3 A=0.5 A=0.8
M amayx 0.04 0.12 0.17 0.32
Rer, Per 114 112 113 114
Rey, Pey, 1.34 x 10* 1.15 x 10% 1.27 x 10* 1.23 x 10*

TABLE I: Values of nondimensional numbers at the end of the simulation for each A case. M amax
is reported from one realization. The Reynolds and Peclet numbers are computed from averaged

realizations.

153 Here, ¢ is the speed of sound and is set by the heat capacity ratio 7, which is 5/3 in the
15« simulations presented here. The Schmidt number is chosen to be unity. The Peclet numbers
155 are determined by the Reynolds and Schmidt numbers, and the Reynolds numbers are set
155 through the numerical Grashof number, which fixes v through choice of g, A, and A. Values
157 of these nondimensional numbers at the final timesteps of the simulations are listed in Table

158 I

159 The simulation domain is 0.5 x 1.0 x 0.5 cm, so the length in y is twice the lengths in x and z,
10 and the grid is 512 x 1024 x 512 cells. The domain is periodic in x and z, and no slip and no
161 penetration conditions are applied at y = 0 and y = 1 cm. Sponge layers of finite thickness
162 are applied to the velocity and density fields at the boundaries in y to prevent reflection of
163 acoustic waves that arise from the high-order numerics.

1« The mass fraction profile is initialized as a tanh profile with approximately ten cells across

165 the interface. A multi-mode perturbation is added at the interface:

A/2
Fy = 25
0 Rmax — Rmin + 1’ ( )
&(z,2) =E Z Z (cos (2mk,x + Py x) + sin 27k, x + Pay))
kz=Kmin kz=Kmin
X (cos (2mk,z + ¢35 k) + sin (27k,2 + dak)) , (26)
1 —L,/2—
Yu(z,y,2) =3 (1 + tanh (yzy—éf)) , (27)

166 Where @15, ¢2r , ¢35k , and ¢gy are phase shift vectors randomly taken from a uniform
167 distribution. The minimum and maximum wavenumbers are set to Kpin = 8 and Kpax = 64,
168 respectively. These minimum and maximum wavenumbers are within the range found by
160 Livescu et al. [34] to result in converged « by the end of their DNS of RT instability.

1o Density is computed from this initial mass fraction profile as pgYy + prYr. The light fluid
i density is set to unity for all simulations, and the heavy fluid density is determined from this
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1.9
1
(a) A=0.05 (b) A=0.3
0.5 —73.08 0.5 —9.46
1
X X
(c) A=0.5 (d) A=08

FIG. 1: Contours of density for each A case.

12 and the Atwood number. Pressure is initialized as a hydrostatic pressure based on the initial
173 density field, p = pg (y — %) + 1. The velocity field is initially zero.

174 The simulation is stopped when hgg reaches 0.5 cm, which is half the computational domain in
175 . This stop condition is chosen to avoid the effects of lateral confinement [35] as well as allow
176 the mixing layer to reach the turbulent and self-similar regimes while avoiding interference
17 from the top and bottom walls.

s For statistical convergence, nine realizations are run for each A case. Unique realizations are

179 achieved by varying seeds for the random number generator. Example contours of density
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0.12
0.03
0.0 0.0
0.17 0.32
0.0 0.0
X A
(c) A=0.5 (d) A=08

FIG. 2: Contours of Mach number for each A case.

180 and mach number from one realization of each Atwood number case are shown in Figures 1

11 and 2, respectively.

12 Figure 3 shows self-similar metrics for the RT simulations, averaged over all realizations for
183 each A case. «; computed using the definitions from Equations 13 and 14 for comparison.
18« The oy, computed from Equation 13 it is not perfectly flat, but this is likely due to statistical
185 error in h and its time derivative. On the other hand, «; computed from Equation 14 is
185 smoother. The two definitions do not match at early times when the flow is not self-similar

17 but converge to similar values at late time.

10
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0.08 A=0.05
' A=03
_ A=05
0.06 A=08
S0.04) |
0.02
T T T
(a) (b) (c)

FIG. 3: Self-similarity metrics for each A case: (a) bubble height, (b) mixedness, (c¢) bubble

growth parameter. In (c), thick lines are from Equation 13, and thin lines are from Equation 14.

: 15000 —— 4—
00 S 15000 A=
7/ A=
S I A=
- 7 : |
B 75 7 Sloooo =
& 50 57 e~
7 5000
25 Vg -
/ 2
ol 0ol—~
0 10 20 0 10 20
T T
(a) (b)

FIG. 4: Reynolds numbers over time for each of the A cases. The horizontal lines indicate critical

values for each Reynolds number.

18 The A = 0.05 case appears to be safely in the self-similar regime, as its ¢ seems converged
19 to approximately 0.8. Its «; is also somewhat converged to approximately 0.03, which is
10 within the range reported in the literature [5, 22]. The A = 0.5 case also appears to be in
101 the self-similar regime, having converged to similar values of o, and ¢ as the A = 0.05 case,
12 but the former does not appear to be as far into the self-similar state as the latter. The
13 A = 0.8 case gives a; and ¢ that are only beginning to converge, indicating that this case is
104 just barely in the self-similar regime. Nevertheless, this case gives an a4 close to the other
105 cases and can be used to make quadratic fits for h;, needed for self-similar analysis.

16 The plots of Re in Figure 4 show that the flows in all the A cases studied here develop past
107 the critical Reynolds numbers for the mixing transition from Dimotakis [28]. These plots
s are given in nondimensional time 7 = t/7y, where 7y = \/m, and hg is the dominant
199 length scale determined by the peak of the initial perturbation spectrum. The critical Re are

11
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107" 10712
10713 g
1n—14 1n—14
€a) 10-15 €3 10 53] 10
10717 10—16 10716
10! 10° 10! 10° 10! 107
(a) A=0.05 (b) A=05 (c) A=08

FIG. 5: Energy spectra at different Atwood numbers at the last timesteps of the simulations.
Different lines are the spectra at different y within the mixing layer. Lighter cyan lines are at

higher y, and darker lines are at lower y. The dashed black lines have —5/3 slopes.

200 reached at approximately 7 =19, 7 =20, 7 =19, and 7 = 16 for A = 0.05, A =0.3, A = 0.5,
20 and A = 0.8, respectively. Based on this, the RT instabilities simulated here pass the mixing

202 transition.

203 We also examine the energy spectra of the different Atwood cases to assess the laminar-
20 turbulent transition. To compute the energy spectra, we use the discrete Fourier transform

205 of a quantity g defined as follows:

Gl b y) = SNeg SN g,y 2)e 2T (RS, (28)
206 ' The wavenumbers are defined as
N, N, N N
. =, =1, . =, = 1. 30
ng € 5 5 } n, € [ ) ) (30)

27 N, and N, are the number of mesh points in x and z, respectively. The energy spectrum is
208 defined as

Eop(ke, kayy) = —d! . (31)

200 where Jg’ " is the conjugate of uA;’ . We define the radial wavenumber k = \/k2 + k2 to obtain
20 F(k,y), which is the annular sum of Esp(k,, k., y).

a1 The energy spectra within the mixing layer (for y between approximately 0.4 and 0.6 cm)
212 are plotted in Figure 5. The spectra are taken at the last timestep and for one realization.
213 We find that by the time they are stopped, our simulations are fully-turbulent, demonstrated

12
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1.0

(a) A=0.05 (b) A=05 (c) A=08

FIG. 6: Correlation curves over r1 at different Atwood numbers at the last timesteps of the

simulations. Curves are averaged over z and y within the mixing layer.

1.0 1.0
0.5 0.5
\
0.0 0.5 0.0 0.5
r3 r3
(a) A=0.05 (b) A=05 (c) A=08

FIG. 7: Correlation curves over r3 at different Atwood numbers at the last timesteps of the

simulations. Curves are averaged over z and y within the mixing layer.

auu by the existence of an inertial range in their energy spectra, presented in Figure 5 in the
25 Appendix. This is despite our Reyp from all A cases not attaining the critical Reynolds
2s number for turbulence, 1.6 x 103, identified by Zhou [29].

217 Additionally, we examine the normalized autocorrelation curves over x and z, which are
2z defined by Pope [36] for a quantity ¢ as

(q(z,y, z,t)q(x + 1r1,y, 2,1))
(q(2,y,2,1)%) ’

(g(z,y,2,t)q(@, y, 2 + 13,1))
(g(z,y,2,t)%)

210 In this case, (%) denotes averaging over the remaining homogeneous direction and y within

Paq(T1) = (32)

Paq(T3) = (33)

13
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20 the mixing layer. Figures 6 and 7 show the autocorrelation curves for Y] (denoted by pyy)
21 and v} (denoted by puw, puv, and py.,)over z and z, respectively, at the end of one realization
220 for each case. We observe the curves decay to zero, indicating the simulations stop before the
223 low encounters lateral confinement effects. This is supported by the energy spectra in Figure
224 5, which demonstrate no evidence of turbulent kinetic energy saturation at low wavenumbers.
25 We include the autocorrelations in y and the associated integral length scales in Appendix
226 B

27 ITI.  ANALYSIS OF NONLOCALITY
28 A. Modeling the mean scalar transport operator

20 To obtain the mean scalar transport equation, the Reynolds ((¢)) and Favre (q) averages of
230 quantity ¢ are defined:

(q) = %Z% (34)

~_ (ra)
TS

a1 where N is the number of ensembles. In the case where the flow is homogeneous (in space

(35)

22 and/or time), the homogeneous directions may be included in these ensembles. For the
213 RT mixing problem studied here, the homogeneous directions are x and z, so averages are
234 performed over x, z, and realizations. Fluctuations from the Reynolds and Favre means are

25 denoted as ¢ and ¢, respectively, so

=) +d=q+q. (36)

236 Substituting the Favre decomposition for velocity and mass fraction into Equation 1 and
237 taking its Reynolds average results in the mean scalar transort equation for compressible

238 ﬂOWZ

Wl 2 (a8 + (Vi — (oDu G ) (37)

239 The last term on the right hand side is negligible when Pe is large. The turbulent species flux
20 F' = (—pv"Y]]) is unclosed and needs to be modeled. This flux can be exactly expressed as

dy'dt’, (38)

’

)= ) [ Dy.e0) %

Yt

14
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.n where D is the eddy diffusivity kernel. This equation is an extension of the formulation for
22 incompressible flow described in Kraichnan [37], Hamba [21], and Mani and Park [20] . It is
213 & nonlocal formulation, in that it expresses F' based on mean scalar gradients not only at the
244 points in space and time (y and t) at which F' is measured, but also all other points in space
25 and time (3 and ). Numerical tests have shown that this formulation satisfies causality
26 without imposing it [38].

27 An exact model for F' requires full characterization of the eddy diffusivity kernel. This has
2 been done for simpler flows in the works of Hamba [39], Hamba [21], and Park and Mani
210 [40]. However, computation of the kernel is generally computationally expensive, since it
250 Tequires simulations on the order of the number of points in macroscopic space. On top of

251 this, chaotic flows, like RT mixing, require many realizations for statistical convergence.

2 The eddy diffusivity kernel can instead be approximated by its moments. This can be done
253 by employing a Taylor series expansion of the mean scalar gradient about y and ¢, which
254 Tesults in the Kramers-Moyal-like expansion:

oYy 2Yy Yy
F — DOO DlO 01
(y,t) = (p) (y,t)—ay + () D" (y,1) o7 + (p) D" (y, 1) ot 0y
Yy 02Yy 82Yy
20 11 02
+ () D" (y, 1) 3y + () D" (y,1) R + {p)D (y,t)atgy +... (39)

s where D™ are the eddy diffusivity moments. The first index m indicates space and the

26 second index n is time. The moments are defined as

D" (y,t) = // W —y)"t' - t)nD(y, y' ¢, dy'dt. (40)

min!

»s7 These moments are more computationally feasible to compute than the full kernel. To
s compute the moments, which will be described shortly, one equation per moment needs to
0 be added to the suite of equations being solved in a simulation. Though the number of
20 operations increases as more moments are computed, only one simulation needs to be run to
61 compute all moments. Statistically converged moments require multiple simulations; in this
262 work, it is found that O(10) simulations are needed for statistical convergence sufficient for

263 analysis, which is much lower than what is needed to compute the full kernel.

26« While the eddy diffusivity moments are locally defined (they are functions of y and t only),
25 higher-order moments contain information about the nonlocality of the full kernel. The
26 leading-order moment D is purely local, and truncation to the leading-order term is the
27 gradient-diffusion or Boussinesq approximation. The goal of this work is to determine the
xs importance of the higher-order terms and, therefore, the nonlocality of the mean scalar

15
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Numerical )
Navier—Stokes Equations Donor Simulation Postprocessing
Receiver
0pYy, 0 <[)Z v pD aYa) 00
__ 2 Y, — ——a ale D00 00 _ (=pv”
ot 8.LJ jta aaxj % -1 > Bt :[,00(600) -‘,—SOO | » DY — %
Opu; .
= — - — (pugu; + pdij — 7i5) + pgs
ot 0z Receiver
oE 0 >
Er ((E + p) uj — miju; + ;) + pgiu; aa<;-> . B| D0 _ £10(,10) 410 L) DL %
p=pYH + pYL
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5 22 D20 20 _ (—pv/ e
(a<i> oy A % _ [20(20) 450 || D= %

FIG. 8: MFM pipeline illustrating measurement of some spatial eddy diffusivity moments for the
mean scalar transport problem. £™" are the right-hand side operators corresponding to the <™ in

Equations 43-48, not including the macroscopic forcings s™".

oY,
Moment ¢
Jy
DY 1
DOt t
DlO _ %
02 1,2
D 3t
D! (y — 3)t
D* sy —3)?

TABLE II: Mean mass fraction gradients forced for each eddy diffusivity moment D™".

20 transport operator for the RT mixing cases studied here. In this way, measuring the eddy
270 diffusivity moments is more computationally efficient than computing the full kernel, but it

o is still an insightful way to assess the nonlocality of the closure operator.

o2 B. Measuring the eddy diffusivity moments using the Macroscopic Forcing Method

13 The MFM pipeline is conceptually illustrated in Figure 8. The method involves two sets of
s equations, called the donor and the receiver equations, which are solved simultaneously in a
25 simulation. The donor equations represent the full set of governing equations (in this case,
26 Equations 1-3) and provides quantities necessary for solution of the receiver equations, which
277 involve additional forcing terms s™" corresponding to each moment D™". For example, to

s determine closures for scalar transport, forcings are applied to the dilute scalar transport
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a9 equation, Equation 8, resulting in the following receiver equations:

oY 9 oy
ot oz, (puﬂ P B, )*5 ’ (41)

20 where Y™ is the dilute scalar field response to the forcing s™" used to obtain D™". The
281 solution of these receiver equations require velocity and density fields, which are obtained from
282 the donor equations. A key component of this method is that the forcings are macroscopic, in
23 that they have the property (s™") = s"", so the forcings do not interfere with the underlying
2sa turbulent flow.

285 In the present work, a new decomposition approach to the macroscopic forcing method is
286 Utilized to efficiently obtain the moments. Full details on this method can be found in the
267 companion work by [41]. Under this new method, fluctuations of the mass fraction field
28 are simulated, and the forcings are semi-analytically applied to achieve certain mean scalar
280 gradients that allow for the probing of each eddy diffusivity moment. Table II lists the mean
200 scalar gradients chosen to obtain each moment.

201 To formulate the forced equations, Y is first written as a Kramers-Moyal expansion analagous
202 to Equation 39:

//_00081/c +01082Y;3+ 01 82)/0 + 2063}/0_’_ 1182}/0

Y/ = + % O,

By a2 " atay O o | C oiy? Bi2y

o (42)

203 Substituting this expansion and the forced mean mass fractions derived from Table II into
204 Equation 1 gives the following equations for each ¢™"

Dpc 0 0 0
Dy—¢" — —pD 0o 43
Dt 8x]p H&ch pv+3yp HT S (43)
Dpc'® 0 0 d 0
D 10 00 D D .00 . D 00 10 44
Dt 8x]p Hax] pve” + pDyg +p Hc’?yc +8yp yc - + s, (44)
Dpc™ ) 0
f) — = 5 PDum—e" = pc™ —py+ ", (45)
J J
D002 0 0 0 10 0 10 20
Dy—— Dy Dy— —oDy 46
Dt ax]p H@xJ0 T pDie® +p 8y0 +8y'0 oot (46)
D001 0 0 11 10 01 0 01 d 01 1, 1 11
Dy—— — — Dy— —pD —y° — =
Dt ax] o’ Hax] ¢ pe pres Tt p H@y ot oy pRme +p 2y 8 T
(47)
Dpc?? 0 0
lp)ct = 8—ng6—002 — pet + 5%, (48)
Lj Lj

205 where each forcing s™" enforces the z-z mean of ¢™" to be zero, and ¢™" are initially zero.
206 To obtain the eddy diffusivity moments, the turbulent species flux based on the Y from
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FIG. 9: hy from simulations (solid blue) and fitted hy (dashed orange).

207 €ach equation is computed in postprocessing:

208 In the numerical simulation, solutions to the donors (Equations 1-3) are given to these receiver
200 equations, which are solved alongside the donors. Thus, if the cost to solve the suite of donor
300 equations is IV, the cost of MFM for the number of eddy diffusivity moments examined in
so1 this work is approximately 2/N. Of course, this cost increases as more moments are measured,
52 but it has been found that not many moments are required to characterize the nonlocality
303 of the eddy diffusivity kernel [1, 42], making the MFM measurement of moments relatively

s04 efficient and useful.

s05 C. Self-similar scaling

s Lavacot et al. [1] utilize a self-similar normalization for the analysis of F' and eddy diffusivity
sor moments. This analysis is applied directly to the variable density RT mixing studied here and

< N mn

—pvc
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s0s extended to the higher-order moments D' and D%, which have not been studied previously:

P "
- 00
R oy
- 01
D o
- 10
P o "
- 02
= "
. 11
B~ = >
po____ D" (56)

(a*Ag)*(t — )7

300 where o* is the growth parameter defined in Equation 14, and ¢ is a fitted time origin
s10 based on the measured bubble height. Figure 9 shows the bubble height measured from the
su simulations and the determined fits, which aim to match hy in late time (during self-similar
312 gl"OWth).

a3 In addition, since finite A are considered in this work, a self-similar scaling for the peak mean
a4 velocity Vp(t) is also used:

> Vo

" dg—g) o

s1s Due to this nonzero v at finite A, there is asymmetry in the RT mixing layer, and its midplane

a16 shifts in the negative y direction. This shift is incorporated into the self-similar variable:

- -wt-t) w-3 W
= Iy T Th, o (58)

siz All 77 in the following analyses are defined this way.

s1s Figures 10 and 11 show the density and the turbulent species flux profiles, respectively, using
s19 the 1) defined in 58. The flux is normalized according to 50. In these self-similar coordinates,
20 the profiles collapse in late time; these profiles are represented by the black lines in the figures.
s In the analyses to follow, the self-similar profiles from the last timesteps of the simulations

322 are used.
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FIG. 10: Self-similar collapse of p. Blue lines are before the transition to turbulence, and black

lines are after.
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FIG. 11: Self-similar collapse of F'. Blue lines are before the transition to turbulence, and black

lines are after.

3 D.  Eddy diffusivity moments

224 Figure 12 shows the eddy diffusivity moments for each Atwood number. The vertical axis is
s the self-similar variable 7, and the horizontal axis is the nondimensional time 7. Each row
326 corresponds to an eddy diffusivity moment, and Atwood number increases across the columns
327 from left to right. The contours show the values of the eddy diffusivity moments at each n
28 and 7, normalized by length and time scales such that units are the same across plots. First,
329 some expected behavior is observed at the lowest Atwood number:

s 1. D" is the largest in magnitude. It is also symmetric and positive.

2. D'9is antisymmetric. D'° is negative above the centerline ( = 0), indicating that at a

33 point yy above the centerline, mixing depends more on gradients closer to the centerline
333 rather than the edge of the mixing layer. That is, the kernel has a centroid that is a
334 negative distance away from 1, above the centerline. Similarly, D' is positive below
335 the centerline.

s 3. DY is symmetric and always negative. This is expected based on causality.
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FIG. 12: Eddy diffusivity moments of RT instability at different Atwood numbers. The y axis is 1,

and the x axis is 7. Moments are normalized by appropriate length and timescales so that all

dimensions match.

w 4. D' is antisymmetric.

1 5. DY and D?° are symmetric and always positive, which is characteristic of the moment

330 of inertia of a positive kernel.

a0 As A increases, the moments become asymmetric. This is expected for A above about 0.1,

21
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Ratio A=005 | A=03 | A=05 | A=08
D' (h, DY)~ 0.11 0.15 0.15 0.22
DO (¢p00) 0.15 0.27 0.36 0.52
D% (h2p%) 0.02 0.03 0.03 0.06
D' (nyt DY)~ 0.03 0.09 0.12 0.27
D2 (#2po0) ! 0.02 0.03 0.05 0.10

TABLE III: Ratios of maximum magnitudes of higher-order moments (normalized as in Figure 12)

to maximum magnitudes of leading-order moments for each A case.

sa since at these higher density differences, the heavy fluid falls deeper than the light fluid rises,
s2 moving the mixing layer center line downward. The asymmetry of RT instability with finite
a3 Atwood numbers is well known, and it has also been found that quantities in turbulence
s budgets (e.g., mass flux and turbulent kinetic energy) are skewed in these regimes [22]. Thus,
us peak magnitudes of moments that are symmetric at low A move further below the domain
us center line as Atwood increases. Similarly, below the centerline, the magnitudes of moments

w7 that are antisymmetric at low A become larger than the magnitudes above the centerline.

us A preliminary assessment of nonlocality can be done by examining the relative magnitudes of
u9 the measured moments, which is shown in Figure 13. Maximum relative magnitude values

50 are also provided in Table I11. For all Atwood numbers, the magnitudes of the first order

a

;51 moments are about one magnitude smaller than the leading order moment; the second order
2 moments are about two orders of magnitude smaller than the leading order moment. This

353 suggests that these higher-order moments may be significant and may not be excluded from

a1

3+ modeling right away. This was also observed by Lavacot et al. [1] for 2D RT instability at
355 A = 0.05. More notable are the changes in relative magnitude over the Atwood cases and

6 over time. Specifically, the following trends are observed:

a

357 The spatial moments increase in relative magnitude with A.

358 The temporal moments are higher in relative magnitude at early times.

359 The temporal moments appear to increase in relative magnitude with A, but this is

360 difficult to quantify due to the temporal decay of temporal moments.

361 The length of time over which the temporal moments decay increases with A, suggesting

362 that history effects last longer with higher A.

3

o)

s Based on these observations, there is a general dependence of nonlocality on Atwood number.
ss Particularly, this Atwood dependence on non-locality should be considered when modeling
ss RT' mixing. This will be examined more closely in later sections.
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FIG. 13: Eddy diffusivity moments normalized by the maximum magnitude of the leading order

moment at every time slice for each Atwood number. The y axis is 7, and the x axis is 7. Data for

7 > 5 is shown.

36 Here, the self-similarity of the eddy diffusivity moments is also examined. Figure 14 shows

s7 the temporal eddy diffusivity moments at each Atwood number normalized according to

s self-similarity as in the Equations 51-56; the self-similar collapse of all moments are in the

30 Appendix in Figures 30-33. Qualitatively, the higher-order moments do not collapse as well as
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FIG. 14: Self-similar collapse of leading-order and higher-order temporal eddy diffusivity moments
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of RT instability at different Atwood numbers.
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FIG. 15: Maximum magnitudes of normalized eddy diffusivity moments over time. Plotting starts
after the time the critical Rer and Rej, for turbulence are reached. Data are normalized by the

values at the beginning of plotting for each Atwood case.

s0 lower-order moments. Additionally, the self-similar collapse worsens with increasing Atwood

sn1 number.

a2 The self-similarity of the moments can further be evaluated by examining the maximum
;3 magnitudes of the normalized eddy diffusivity moments. Figure 15 shows D% and DO over
s the time period after which Rer exceeds 100 and Rej, exceeds 10* in each Atwood case. If
s these criteria are sufficient for self-similarity of the eddy diffusivity moments, the plots of the
36 normalized moments are expected to be constant with time. This appears to be the case for
7 the lowest Atwood number simulation (A = 0.05). The higher Atwood number simulations

N

w8 (A = 0.5 and A = 0.8), however, give D and DO that still vary in time.

s9 Altogether, these observations suggest that higher-order moments take longer to converge
380 to a self-similar state than lower-order moments. Additionally, higher-order moments take
31 longer to reach self-similarity than lower-order quantities like the mixing width and F'. Thus,
;2 even if the flow in the MFM donor simulation fulfills criteria for self-similarity, such as
83 reaching the critical Reynolds numbers or achieving a convergent «, the eddy diffusivity
ss« moments, especially the higher-order moments, may not necessarily be self-similar. When
35 performing analysis on eddy diffusivity moments, one must be careful then to not only
36 check the traditional self-similarity metrics of RT but also the self-similarity of the moments

ss7 themselves.

;s Based on this, for the higher-Atwood cases, the higher-order moments are not far into the
380 self-similar regime. The following analysis is performed in self-similar space in the following
300 sections, and it is recognized that there will be some error due to the weak self-similarity of
so1 the higher-order moments.
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32 E.  Nonlocal length and time scales

33 Measurement of the eddy diffusivity moments using MFM allows for the quantification of
s nonlocal length and time scales. These are defined nondimensionally as

1 /D% 1 D"
NINL = 7,V Do TNL = ~1 oo (59)

305 Figure 16 shows the nonlocal length scale contours for each of the A cases. Qualitatively,
s they look similar across A, with minimum values at the centerline and maximum values at
307 the edges of the mixing layer. Unsurprisingly, there is increased asymmetry at higher A, with
s mixing layer edge values below the centerline greater than those above the centerline. In
300 the self-similar regime, profiles of the nonlocal length scales in Figure 17 show maximum
a0 values of approximately nyp = 0.35, nyr = 0.37, ny = 0.35, and ny = 0.57 for A = 0.05,
o A =03, A=0.5, and A = 0.8, respectively. The minimum 7y, for all A is around 0.1.
w2 Based on these observations, the following statements can be made about spatial nonlocality
a03 for late-time RT:

404 e [ at a location near the mixing layer edge depends on gradients further away from
405 that location than does the flux at the centerline. Since mixing spreads outward,
406 information generally propagates from the center towards the edges of the mixing layer,
407 not the other way around. In this way, mixing at the edges is linked to the mean scalar
408 gradients at the center through the flow’s time history, while mixing at the center is
409 not strongly dependent on gradients at the edges.

410 e For 7 at the mixing layer edges, F' depends on gradients approximately 0.3 — 0.6 mixing
a11 half-widths away, and this value increases with A.

a2 e For 7 at the centerline, F' depends on gradients approximately 0.1 mixing half-widths

413 away, and this appears to be A-independent.

a2 The nonlocal time scales are also examined in Figure 18. In contrast to the nonlocal length
a1s scale, the nonlocal time scale differs greatly over the A studied here. Particularly, the max
a6 values of 7, increase with A, indicating that ' depends more on earlier times for higher A.
a7 Additionally, the contours for 77 become more asymmetric with increasing A—max 7n7,
ais shifts towards the edge of the mixing layer above the centerline as A increases. It is expected
a0 that 7, profiles collapse in the self-similar unit, which is inspected for each A case in Figure
w20 19. It must be noted that the quality of the collapse worsens as A increases, indicating that
w21 our highest A cases may not be far into the self-similar regime. Nevertheless, the profiles
a2 there show maximum values of approximately 7y = 0.217, 7vr = 0.397, 7y = 0.587, and
w3 Ty, = 1.167 for A = 0.05, A = 0.3, A = 0.5, and A = 0.8, respectively. Based on these
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FIG. 16: Contours of nonlocal length scales for each A case.
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FIG. 17: Profiles of nonlocal length scales for each A case. Darker lines are earlier times; lighter

lines are later times.

24 Observations, the following statements can be made about temporal nonlocality for late-time
a5 RT":

426

427

428

429

430

431

432

e As A increases, across the mixing layer, F' depends more on the flux at earlier times.

e At low A, the dependence of F' on earlier times is relatively uniform across the mixing
layer.

e As A increases, F' near the upper edge of the mixing layer depends on earlier times
than does the flux at the lower edge. This suggests that, compared to the spikes, it
may take the bubbles a longer time to transition to a self-similar state where the flow
forgets its initial conditions, and this effect appears stronger at higher A.

133 The MFM measurements also reveal large 7y, at early times across A. These high 7y zones

34 appear to be higher in magnitude and last longer as A increases. This suggests that as A

a5 increases, the RT instability retains memory of the initial conditions for a longer period of

436 time.
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FIG. 18: Contours of nonlocal time scales for each A case.
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FIG. 19: Profiles of nonlocal time scales scaled by 7 for each A case. Darker lines are earlier times;

lighter lines are later times.

a7 Figure 20 shows the maximum 7y and 7ny7 and the centerline 7y over the studied A.
s The centerline 7y, do not change much with A. The maximum 7y appears to have some
w30 sensitivity to A and potentially increases at high A, but this is difficult to discern with the
mo limited data. On the other hand, the maximum 7y, increases rapidly with A. This indicates
a1 that while there is some dependence of spatial nonlocality on A, the dependence of temporal

* TN Lmax

1.0 _ee

T NLmid
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FIG. 20: Maximum nonlocal time scale, maximum nonlocal length scale, and nonlocal length scale

at centerline over A.
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FIG. 21: Terms of the Kramers-Moyal expansion for F' at different Atwood numbers. Each line
corresponds to terms with contributions from: D% (solid blue), D'* (dashed orange), D°!
(dash-dotted red), D?° (dotted green), D! (solid teal), and D°? (dashed lilac).

a2 nonlocality on A is larger and more important for modeling RT mixing. Such a dependence
a3 should be captured by RANS models for accurate prediction of mixing due to RT instability.

ws F. Kramers-Moyal terms

ws To further assess the importance of nonlocality, the terms in the Kramers-Moyal expansion
us (Equation 39) for F' can be examined, as shown in Figure 21. These terms are calculated a
a7 priori: the donor simulation }7;{ is used for the mean mass fraction gradients, and the measured
us eddy diffusivity moments are substituted directly. Already at the lowest Atwood case of
ao A = 0.05, the higher-order terms appear non-negligible compared to the leading-order term;
w0 at least some of the higher-order terms will need to be retained for complete characterization
1 of the eddy diffusivity. This was also shown in the 2D case at the same Atwood number
w2 studied in Lavacot et al. [1]. Furthermore, as Atwood number increases, the higher-order
»s3 terms become closer in magnitude to the leading-order term, indicating that nonlocality
54 becomes more important with increasing Atwood. This also suggests that at higher Atwood
s numbers, more higher-order moments may be required for modeling than at lower Atwood
sss numbers. It is notable that the temporal moments are particularly large at high Atwood
»s7 numbers, indicating that temporal nonlocality may be especially important in those regimes.

s IV, IMPORTANCE OF MOMENTS IN MODELING

ss0 The previous section focused on assessment of nonlocality through the measurement of eddy
a0 diffusivity moments using MFM. While this processes revealed the importance of nonlocality,
w1 1t has not yet been shown which of the eddy diffusivity moments are important for modeling.
w2 By testing different combinations of moments in a model form, the moments most important

w3 for modeling can be determined, and it can be discerned whether this depends on Atwood
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s number. Here, an inverse operator is proposed to incorporate information about nonlocality

a5 from the eddy diffusivity moments.

w6 A. Matched Moment Inverse

w7 Truncation of Equation 39 represents an approximate model for the turbulent species flux. In
a8 fact, truncation to the first term is the gradient-diffusion approximation. However, a property
w0 of the Kramers-Moyal expansion is that it does not converge with finite terms, so adding
a0 higher-order terms to the leading-order term can lead to divergence [43].

w1 Instead, the Matched Moment Inverse (MMI) [42], a systematic method for constructing a
a2 model using eddy diffusivity moments, is employed. With MMI, the goal is to match the
a3 shape of the eddy diffusivity kernel using its moments. This is achieved by determining
ara coefficients a™"(y, t) for the inverse operator:

O
Ty

0 0 0?
1+ @10@ + CLOla + GZOw + ... | F= &00<p>

(60)
a5 The inverse operator on the left hand side can be expanded based on which moments are

n

a6 used; a™” corresponds to using D™". The model coefficients are determined numerically

a7 using MFM simulation data. For example, if D%, D% D and D% are used, the following

w7 system is solved for a®, a®!, a'%, and a?°:

[ 0 0 0% ]

1409 L m2 o 20 00 _ 400 1
_ +a 8y+a 8t+a 9 a”(p), (61)
I 0 0 0% ] 1

1409 L m2 o 20 10 _ 400 1 62
1 S | =) (- 1) (62
i 0 0 0% ]

1409 L m2 o 20 FO1 400/ )

e LR (63)
[ 0 0 0% ] 1 1\?

1409 02 o 20 20 _ 0002 (2 64
1 S P = (-3 (64

a0 where F™ is the post-processed turbulent species flux resulting from a macroscopic forcing

s0 achieving %ch = (y — 5)™t" to determine D™,

w1 The above is demonstrated for spatio-temporal variables for simplicity, but the analysis
a2 presented here is done in self-similar space. The self-similar inverse operator is

—~ 0 0 — ~ —~  OYy
1 10— 01 {1 —9p— 20" | F = g9 7
+a an +a ( 77377) +a e + } a{p) o (65)

453 where the self-similar coefficients are

30



LLNL-JRNL-2006019

0.75 L0
0.50 o prany
(B 4 -\\ (Z05 7\
0.25 A\ / \\
) k\
00— 1 0.0 1
7 7
(a) A=0.05 (b) A=03 (c) A=05 (d) A=08

FIG. 22: F predicted using a closure based on spatial moments. The solid black line is F
computed from the high-fidelity simulation. The other lines are predictions from model forms using
different combinations of moments, as follows: D% (dashed blue); D% and D'° (dotted orange);
and DY, D9 and D?Y (dash-dotted green).

~00 1 00
a% = a? A2g2(1 — t*)3a ’ (66)
— 1
aOl — — (1017 (67)
— 1

10 I L 68
“ a*Ag(t — t*)2a ’ (68)
—_ 1
a® = a®. (69)

a*2A292(t _ t*)4

ssa Since D™ are taken directly from MFM measurements, they contain some statistical error,
sss which would be amplified by the MMI fitting process and obfuscate analysis. To avoid this,
w6 & moving average filter is applied to the moments, and those filtered moments are used for
7 the inverse operator coefficient fitting process, done by solving Equations 61-64. Equation
488 60 is then solved using (p) and 17;1 obtained from the simulations. In the following sections,
a0 coefficients in Equation 60 are fit in self-similar space using different combinations of D™ to
a0 be tested in the inverse operator.
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FIG. 23: F predicted using a closure based on spatial and temporal moments. The solid black line
is F' computed from the high-fidelity simulation. The other lines are predictions from operators
using different combinations of moments, as follows: D% (dashed blue); D, D9 and D% (dotted
orange); and DY D% D10 and D? (dash-dotted green).

a1 1. Inverse operator using only spatial moments of eddy diffusivity

22 The inverse operator using only spatial moments is tested first. In physical space, the model

403 forms are

oY
00 H
F=a <p>_8y : (70)
0 oYy
{1 i @} F= a5, (71)
0 02 oYy
|:]. + CLIO@ + CLQO@] F = a00<p>8—yH. (72)

s Note the first model form uses only the leading-order moment and is equivalent to the
s0s truncation of Equation 39 to the leading-order term. Figure 22 shows F' predicted using the
a6 above model for each Atwood case. In these figures, the solid black lines are the self-similar
wr F' taken from the last timesteps of the donor simulations shown in Figure 11. Across all
ws A, there is little improvement when higher-order spatial moments are added. The biggest
a0 change with the addition of higher-order moments is at the edges of the mixing layer, as the
so0 width of the predicted F' becomes closer to I’ from the high-fidelity simulation—this is most
s obvious in the A = 0.05 case. This indicates that, while spatial nonlocality is non-negligible,
s02 oSt improvements will come from the temporal moments.

s3 2. Inverse operator using spatial and temporal moments of eddy diffusivity

s An inverse operator using D%, D D and D% is now assessed.

1—|—awi—i-ama—2—i—am2 F=a"{( N

dy 9y? o | F =g, (73)
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FIG. 24: The maximum —%é over n within the mixing zone as a funciton of time for each

Atwood case. Plotting starts after the time the critical Rer and Rej, for turbulence are reached.

sos Figure 23 shows predictions for F' using this spatio-temporal operator. There is a larger
so6 change in F' prediction when adding the first temporal moment than higher-order spatial
soo moments. Particularly, for A = 0.05, F' prediction is significantly improved by addition of
ss DO to the inverse operator and matches F' computed from the high-fideltiy simulation well
s00 in both magnitude and shape. Additionally, there is a marked improvement in the prediction
s10 for the A = 0.3 case, though it does not match the shape as well. While improvements are

5

iy

1 observed in F' predictions in these cases, there is diverging behavior in the higher Atwood
> cases of 0.5 and 0.8. This is because, for these Atwood cases, the MMI fitting process gives

5

ply

s13 coefficients of intuitively incorrect signs, resulting in operators that are not robust. The
suu requirements on the MMI coefficients for model robustness can be found by rearranging
si5 Fiquation 73:

0 1 a'® o a® 92 a®  OYy

ot =t gy T e gy (74

Ol must

s16 The first term on the right hand side must be a destruction term for stability. Thus, a
si7 be always positive for robustness. As demonstrated in Appendix D, this is achieved when

Dol
518 5% < 0.25.

s19 Figure 24 shows the maximum —% plotted over time for each of the Atwood numbers

s20 studied. In the self-similar regime, —%é is expected to be constant with 7. Indeed, the

s A = 0.05 and A = 0.3 cases both result in relatively constant —% at late 7 that goes
s2 under 0.25 before the end of the simulation, which explains why those cases give robust
523 models after the MMI process. Errors in Figure 23 are maybe due to fitting the inverse
saa operator coefficients to eddy diffusivity moments that are not yet self-similar. Thus, the —%
ss constraint discovered here may be another indicator of self-similarity of the RT instability
s eddy diffusivity moments. That is, though our simulations are fully-turbulent, the fact

s27 that the higher-Atwood simulations do not reach this —%3 threshold indicates that the
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s higher-order moments are not far into the self-similar regime, which is why the data leads to
s20 non-robust model coefficients for these cases.

s3 [t must be noted that while the predictions of F' in Figures 22 and 23 are fairly smooth, the
su1 inverse operator coefficients obtained through MMI (shown as the solid blue lines in Figure
s»2 25) contain large fluctuations over 7, even exhibiting some singlularities. This behavior of the
s13 MMI-obtained coefficients has been observed by Liu et al. [42]. Thus, these fitted coefficients
s3 should be used only as a guide for determining model coefficients. The following section
s35 proposes a framework for analytically representing the inverse operator coefficients for use in

53 a model.

s37 3. Atwood dependence of nonlocality in a model

s3s Here, a model is proposed using coefficients written algebraically in self-similar space based
s3 on the findings previously discussed. The main intent here is to present a framework for
ss0 incorporation of nonlocality and its Atwood dependence based on the MFM analysis in
ss1 the previous sections, not provide a complete model to be employed as is. The result is a
se2 geometrically-defined model depending on 7, but a complete model should employ functions
s3 Of other variables in the RANS model (e.g., k) to allow for generality. Thus, the model
saa proposed here represents the first steps towards incorporating Atwood-dependent non-locality
sss informed by direct measurements into a turbulent mixing model, and future work would
ss6 involve integrating these findings into a complete, usable model. The algebraic model is of

sz the following form:

d d d\| &
L+ a0+ s+ o (1 = Qd_n)] F=a®p)g (75)

sais " are model coefficients associated with moments D™" but algebraically defined within

2% = (144 + 0.58) ( - (g>2> (76)

210 = (0.44 + 0.38) g (77)

s40 the mixing zone:

2" = 0.4A+0.18, (78)

2% = (—0.054 — 0.04) ( - (92) , (79)

ss0 where £ is chosen to be 1.1, and «™" are zero outside £&. The functional forms of the model
ss1 coefficients are chosen to match the shapes of the ™" obtained through the MMI procedure
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FIG. 25: Coefficients of proposed model (dashed orange) compared to a" determined from MFM

measurements (solid blue) at A = 0.05.
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FIG. 26: F predictions from ensemble-averaged high fidelity simulations (solid blue), model using
analytically-defined coefficients (dashed orange), and model using coefficients determined from

MFM measurements (dotted green).

ss2 on the MFM measurements of the eddy diffusivity moments from the A = 0.05 case, as shown
ss3 in Figure 25 . The dependence on A of each «™" is determined such that the predictions
ssa Of F' resulting from the model are close to F' from the high fidelity simulation. A linear
sss dependence on A is chosen for its simplicity and appears to suit the cases considered here
ss6 well. More data at different A could confirm the dependence proposed here or inform a more
ss7 accurate fit.

ss8 Figure 26 shows predictions of F' using the proposed model and a model using coefficients
ss0 found through the MMI (henceforth referred to as the MEM-based model) procedure compared
seo to F' from high fidelity simulations. These predictions are obtained by solving the proposed
se. model in Equation 75 and the MFM-based model in Equation 73 using (p) and Yy from the
se2 high fidelity simulations. The proposed model predicts F' close to that from the high-fidelity
se3 simulations for all Atwood numbers. This is an improvement from the MFM-based model,
s« which overpredicts F at higher Atwood number (A > 0.5), since the simulations for those A
565 give —% above the threshold of 0.25. This suggests that the proposed linear dependence of
sso the model on A may be sufficient for this range of A, but more data should be gathered to
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ss7 confirm whether this is the case, especially at higher A not examined here.

sss 'T'he effective eddy diffusivity moments of the proposed model are now examined and compared
se0 with the eddy diffusivity moments measured from high fidelity simulations using MFM. To

sr0 obtain the model eddy diffusivity moments, MFM is applied directly to the model by specifying

dY —_—
7 in the self-similar MMI equations and solving them for F™". The resulting equations

571

572 Al'€

a4\ = A=
3— 277—) + a20d_7]2 F00 = q%{p), (80)

+ a20— | F10 = q%0(p\p, (81)

)
4— 277—) + a2 | FOL = g00(p), (82)
)

__ F00
5 (L — (84)
(p)

__ pw_ D00

Do — n{p) : (85)
(p)

0L _ (,\ D00

il _ () D* (86)
(p)

20 _ D0 _ 12 ( )\ D00

s.a Figure 27 shows the model eddy diffusivity moments compared to the eddy diffusivity
s7s moments from high-fidelity simulations, the latter of which is now referred to as the “true”
ste eddy diffusivities. It is not surprising that the model eddy diffusivity moments at A = 0.05
s77 are close to the true moments, since the model coefficients «™" are fit to that Atwood case.
sis Better fits could potentially be achieved by using more sophisticated functions of 1 to better
s7o capture the smoothness of the profiles at the edges of the mixing layer. As A increases,
ss0 the model moments are not as close to the true moments, since the coefficients are not
ss1 tuned to result in moments matching those measured in the high-fidelity simulations. The
ss2 most notable discrepancy is among the temporal moments—the model DO hecome lesser in
ss3 magnitude relative to the truth as A increases. It is not immediately clear whether these
ss4 differences are due to issues with self-similar convergence at high A or they are indicating

sss that the proposed model is lacking higher-order nonlocal information. To assess this, the
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FIG. 27: Eddy diffusivity moments of proposed model (dashed orange) compared to MFM

measurements (solid blue).

A
0.05  0.11
0.3 0.13
0.5 0.16
0.8 0.16

TABLE IV: Maximum ratio of magnitudes of first temporal moment and leading order moment

from the proposed model for each Atwood case.

sss Atwood dependency of nonlocality proposed here should be incorporated into a full RANS
ss7 model to be spatio-temporally evolved. This should be the subject of future work.

ses In Table IV, the —% from the proposed model is presented to confirm that it goes below the

sso threshold of 0.25 for all Atwood cases. For this model, —% increases with A but remains
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s00 below 0.25.

s0. V. CONCLUSION

se2 In this work, MFM is used to measure the eddy diffusivity moments associated with mean

s3 scalar transport in turbulent RT mixing for different Atwood numbers. Similarly to a past

se work studying 2D, low-Atwood RT [1], it is found here that nonlocality is important for

sos modeling 3D RT mixing. There are several takeaways from this work:
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1.

Over the Atwood numbers studied here (A = 0.05, A = 0.3, A =0.5, and A = 0.8), it
is found that the importance of nonlocality increases as A increases. This is observed
through examination of the eddy diffusivity moments measured using MFM and the
terms of the Kramers-Moyal expansion. Higher-order terms become closer in magnitude
to the leading order moment with increasing A. This suggests nonlocality is especially
important in modeling RT mixing at higher A.

. Temporal nonlocality appears to be more important than spatial nonlocality. In testing

different combinations of eddy diffusivity moments in an inverse operator, it is found
that addition of temporal moments results in the most significant changes in predictions
of F. The predictions for the A = 0.05 and A = 0.3 cases are close to F' from
high-fidelity simulations.

The eddy diffusivity moments must satisfy the constrain —% < 0.25 in the self-similar
zone for an inverse operator described by Equation 73 to be robust. That is, inverse
operators using moments that violate this constraint do not have dissipation terms,
resulting in unstable solutions. It appears that RT mixing that is not far into the

self-similar regime does not satisfy this constraint.

Higher-order eddy diffusivity moments take longer to reach self-similarity than lower-
order moments, and this effect is greater with increasing A. This means that even if
certain metrics for self-similarity (e.g., convergence of « or ¢) are met, higher-order
eddy diffusivity moments may not yet be self-similar. Thus, it is important to carefully
examine the self-similarity of the higher-order moments themselves when making

conclusions about the self-similarity of the turbulent mixing.

An inverse operator with algebraically-defined coefficients is proposed for mean scalar
transport. This is presented as a framework for incorporating non-locality and its
dependence on Atwood number, with the goal of utilizing this to improve RANS models

in future work.

s22 Througn examination of four Atwood number cases, an Atwood number dependence has
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s23 been identified in the relative importance of nonlocal terms. To further quantify the At-
s2« wood dependence, future work should perform these analyses at more Atwood numbers.
s2s Particularly, it would be helpful to study intermediate A between 0.05 and 0.3 to identify
s26 trends or transitions in behavior from low to intermediate Atwood numbers. This would give
s27 better insight into the Atwood dependence of nonlocality and potentially allow for robust
s2s quantification of this dependence.

s20 More work should be done to explore incorporation of the Atwood-dependence of nonlocality
630 into turbulence models. The model proposed in §IV A 3 uses fairly simple functions of n
e31 for its coefficients, and these functions were chosen to fit a limited amount of data. More
s32 Atwood cases should be studied to provide more data for tuning the coefficients to give more
s33 accurate predictions. Additionally, an a priori assessment of the model is presented here, in
e3¢ that quantities from the simulation, particularly (p) and 37;{, were used to solve F' transport
s3s equation. A more thorough assessment would involve solving the full set of model equations

s36 including those for scalar transport, momentum, and density.

e37 It is also found that the high Atwood simulations do not go far into the self-similar regime,
e3s and that the moments measured from these cases do not exhibit good self-similar collapse.
s30 Data from later in the self-similar regime for these Atwood cases would improve this analysis.
s0 This would likely require higher resolution simulations that allow the RT mixing to develop

sa1 further into the self-similar regime.

2 While the present work is an analysis in the self-similar regime, future work should consider
sa3s MFM analysis in spatio-temporal coordinates. Ultimately, a model that accurately predicts
sas mMixing across all regimes is desired, which would require departure from self-similar analysis.
sss MEF'M analysis in spatio-temporal coordinates and examination of the eddy diffusivity moments

sss across the turbulent transition could facilitate progress towards this goal.

sz Overall, unique insights are acquired into the importance of nonlocality in variable density
sas 3D RT mixing. To make turbulent mixing models for RT instability more accurate, this
sa9 nonlocality must be incorporated into the models. The work presented here lays out the first
ss0 steps towards constructing such a model based on direct measurements of the eddy diffusivity
es1 governing mean scalar transport. Future work will investigate practical ways to incorporate
es2 this information into RANS models, such as the k—L model [13].

ss3 Acknowledgements. This work was performed under the auspices of the US Department
esa of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-
ess 0TNA27344.
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ess Appendix A: Artificial fluid method in Pyranda

es7 Artificial molecular viscosity, bulk viscosity, thermal conductivity, and species diffusivity are
sss computed and added to the physical fluid properties to dampen numerical instabilities that

ss0 ay arise due to the high-order numerics:

o= pug+p" (A1)
B =B+ 5" (A2)
K=K+ K", (A3)
D = D; + D", (A4)

(A5)

sso where f denotes the physical fluid property, and * denotes the artificial quantities, defined as
s61 follows:

= 107"p| F (55551 A%, (AG)
ou

=7x1 L)A?

B =17x10" p‘]—“(axl)' , (A7)
* -3 pCUF(T) A_Q
k" =10 —r AP (A8)
AQ

D* = max [10—4f(YH), 102V — 1+ 1 — YH|] = (A9)
(A10)

sz Above, the bar is the Gaussian filter described in Cook [44], and \S;; is the strain rate tensor,
o3 defined as 3 <g;“ + 8“’) F is the eighth-order operator:

o® o® o®
F = max A8, —AS N All
<8x8 "oyt 028 (ALL)
664
665 Appendix B: Autocorrelation Curves in y from 3-D Simulations
s 1 he autocorrelation in y is defined as
<q(£L’, Y, =z, t)Q(xa Y+, z, t)>
Paq(T2) = (B1)

(q(z,y, z,1)?) ’

se7 which we take over the entire domain in y. Here, () denotes averaging over x and z for
scs one realization. The autocorrelations are plotted in 28, which we observe also decay to zero.
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FIG. 28: Correlation curves over ro at different Atwood numbers at the last timesteps of the

simulations. Curves are averaged over x and z.
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FIG. 29: Integral length scales at different Atwood numbers over time using Equation B3 (solid
blue) and Equation B2 for Y}; (dashed orange), u” (dotted green), and v" (dash-dotted red).

se0 Based on py,(r2), we define the normalized integral length scale:

_J pry(r2)drs (B2)

qu h/b

0 Ly can also be approximated using the energy spectrum, as shown by Morgan et al. [14]:

1 [k B(k)dk

Lr=73, [ E(k)dk

(B3)
sz 'These length scales are plotted in Figure 29. Lyy and L,,, which are based on quantities
e3 dominated by the gravitational acceleration, are similar and larger than L,, over all 7. In
e late time, Ly is nearly parallel with Lyy and Lvv. At early times, L; deviates more from
s Lyy and Lvv, and this mismatch becomes larger as A increases.
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e76 Appendix C: Self-similar collapse of eddy diffusivity moments

o7 Figures 30 - 33 show the self-similar collapse of the eddy diffusivity moments. Normalization
e7s is applied according to Equations 51 - 56.
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FIG. 30: Self-similar collapse of eddy diffusivity moments at A = 0.05. Dark lines are earlier times,

and light lines are later times.
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FIG. 31: Self-similar collapse of eddy diffusivity moments at A = 0.3. Dark lines are earlier times,

and light lines are later times.
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FIG. 32: Self-similar collapse of eddy diffusivity moments at A = 0.5. Dark lines are earlier times,

and light lines are later times.
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FIG. 33: Self-similar collapse of eddy diffusivity moments at A = 0.8. Dark lines are earlier times,

and light lines are later times.

679 Appendix D: Requirements on eddy diffusivity moments for a robust model form

s0 For simplicity and ease of algebra, we derive the requirements on eddy diffusivity moments

es1 for a robust inverse operator using the moments D, D' and D°. It has been found that
. 10 . . .

e the same requirement on —25 is recovered for inverse operators using D, D', D% and

ess D0 through a similar analysis.
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FIG. 34: MMI coefficients determined using D%, D0, and D% for different Atwood numbers.

sa The inverse operator using D%, D' and D is

Yy

0 0
1+a10_+a01_ F:a00<p>W‘

y ot (D1)
ess Figure 34 shows the MMI coefficients a™" for the above model, determined from the MFM-
sss easured eddy diffusivity moments for each Atwood case. The two lowest Atwood cases,
v A = 0.05 and A = 0.3, have positive a’. It appears that for higher Atwood numbers, the
sss MMI process results in negative a! and, therefore, models with no destruction terms. This
ss0 indicates that 1) the MMI process may not always produce a robust model, depending on the
s00 form of the inverse operator, and 2) there must be some crossover A over which the model
so1 that results from the MMI process changes from robust to non-robust.

se2 Based on the observation that, with certain combinations of eddy diffusivity moments, MMI
s03 does not produce robust models for higher Atwood numbers, there must be a requirement
s0a on eddy diffusivity moments for MMI to result in a robust model, depending on the form
ss Of the inverse operator. To determine this requirement for different operators, the MMI
s0s equations (Equations 61 - 64) are analytically solved in self-similar space and obtain the MMI
sor coefficients in terms of the eddy diffusivity moments used in the models and their derivatives.

sss The self-similar MMI equations for the operator in Equation D1 are

— ~ d — — d — —
a00<p> _ alod_FOO —_ " (3 _ 277d_) F00 — FOO’ (DQ)
n n
— ~ d — — d — —
a00<p>77 _ alod_nFlo — " (5 _ 277d_77> F10 — Flo7 (D3)
a00<p> _ CLlod_nFOI — g0 (4 _ 277(1_77) [0l — [o1 (D4)
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FIG. 35: Numerators of the MMI coefficients for the moment combination D%, D% and D! for

each A. Solid blue: a?, dashed orange: a'®, dotted green: a°!.

s00o An MMI fitting matrix M is constructed from the terms on the left-hand sides of these
700 equations. The determinant of that matrix is

— e — 9 e — —
D = det(M) = (p)* (4DU D0 + DODIV 4 4DV DO 4+ DO — 2y D1 D0 — 5DI0DI ).

(D5)
700 The MMI coeflicents are then
— oo - D10 . Do1
g0 — 2 g2 ol 2 (D6)

702 where

D () (~2q DD + 2gDODI DO 1 DI 4. DX2DI 4 55 4. DODI I

_DWDID _ 9poo pIo ot 4 I/DEZ/)EI/)&Q , (D7)
DO —(p)? (-2771/)55%' 4 2pDODI — DODIO fﬁl/?l\o) , (D8)

703 Concerning the robustness of this inverse operator, the relevant coefficient is a%%. As scen
704 in Figure 35, over the A studied, the numerator of this coefficient does not change sign, so
705 whether or not the coefficient changes sign is determined by the determinant of the MMI
706 fitting matrix. Figure 36 shows the determinants of the MMI matrix. At A = 0.05, the
707 determinant is always positive, but flips sign between A = 0.3 and A = 0.5. Additionally, D
708 for A = 0.3 crosses zero for some 7. Since eddy diffusivity moments from the A = 0.05 case
00 (Figure 34) gives MMI coefficients that have the correct signs, D must be positive for this
70 operator (using DY, D% and DY) to be robust.

1 To determine the requirements on the eddy diffusivity moments for D > 0,the terms that
712 compose D, which are plotted in Figure 37, are examined. Based on those plots, 4D% D% and
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FIG. 36: Determinants of the MMI fitting matrix for the moment combination D, D and D0

for each A.
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FIG. 37: Terms composing the determinants of the MMI fitting matrix for the moment
— —2
combination D% D% and D for each A. Solid lines are the terms 4D D00 (teal) and DO
(blue).

ool

—2
713 DY are the dominant terms in the determinant. Thus, when —55 & 0.25, the determinant

714 becomes zero, and there are no solutions for the coefficients. For —%é < 0.25, the model

715 coefficients have the correct sign; at A = 0.05, —% ~ 0.1. For —% > (.25, the model

76 coefficients flip sign; at A = 0.5, —%é ~ 0.4. Thus, for a robust first spatio-temporal inverse

01
n7 operator, —2= must be under 0.25.
’ D00
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