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Abstract
The importance of nonlocality is assessed in modeling mean scalar transport for turbulent Rayleigh-

Taylor (RT) mixing at different Atwood numbers. Building on the two-dimensional incompressible

work of Lavacot et al. [1], the present work extends the Macroscopic Forcing Method (MFM) to

variable density problems in three-dimensional space to measure moments of the generalized eddy

diffusivity kernel in RT mixing for increasing Atwood numbers (A = 0.05, 0.3, 0.5, 0.8). It is found

that as A increases: 1) the eddy diffusivity moments become asymmetric, and 2) the higher-order

eddy diffusivity moments become larger relative to the leading-order diffusivity, indicating that

nonlocality becomes more important at higher A. There is a particularly strong temporal nonlocality

at higher A, suggesting stronger history effects. The implications of these findings for closure

modeling for finite-Atwood RT are discussed.

I. INTRODUCTION8

Rayleigh-Taylor (RT) instability occurs when a light fluid is accelerated into a heavy fluid9

through a perturbed interface. Over time, the instability results in turbulent mixing and10

enters a self-similar regime. Understanding the effects of this mixing is critical in engineering11

design applications, especially for inertial confinement fusion (ICF). In ICF, a plastic ablator12

is accelerated into deuterium gas to achieve high compression and, consequently, ignition.13

If perterbations exist at material interfaces in the capsule, RT instability will cause these14

perturbations to grow, which may result in mixing that ultimately reduces energy output15

[2, 3].16

In designing experiments for ICF, it is crucial to accurately predict the turbulent mixing in17

simulations. High-fidelity approaches such as direct numerical simulations and large eddy18

simulations have been used to accurately predict turbulent mixing in RT instability [4–6].19

However, the fine grids required to resolve turbulent scales make these methods prohibitively20

expensive for the iterative design process, in which thousands of simulations must be run. A21

more computationally feasible approach is simulation of the Reynolds-Averaged Navier-Stokes22

(RANS) equations, which requires resolution of only the ensemble-averaged fields. RANS has23

been previously employed in optimizing designs for ICF experiments [7–10]. Since only the24

mean quantities are evolved in RANS simulations, models are required to approximate the25

mean impact of the underlying fluctuations. It is then crucial in the RANS approach to use26

accurate models for the unclosed terms.27

The present work focuses on scalar transport, which characterizes the mixing of materials in28

RT instability. RANS modeling of scalar transport involves closing the turbulent species flux29

∗ Contact author: dlol@stanford.edu
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in the mean scalar transport equation. A common closure for this term is a gradient-diffusion30

approximation, which assumes the flux depends only on local gradients of the mean scalar field.31

A gradient diffusion closure is used in popular models for RT mixing such as the k–ϵ model32

[11] (modified by Gauthier and Bonnet [12] for RT) and the k–L model [13]. However, the33

gradient-diffusion closure has been shown to be insufficient for modeling scalar transport in34

RT mixing [14, 15]. Alternative models include those that use transport equations for the flux35

itself [16] and those based on two-point correlations [17–19], the latter of which are intended36

to capture nonlocality. While these models address nonlocal effects in RT mixing, they do so37

without directly examining the nonlocality of the closure operator. Traditional approaches38

towards studying nonlocality usually involve examination of two-point correlations.39

Nonlocality of the eddy diffusivity has been studied in a previous work [1] for two-dimensional40

(2D) RT mixing in the Boussinesq limit (A = 0.05). In that work, the Macroscopic Forcing41

Method (MFM) [20] was used to measure moments of the generalized eddy diffusivity kernel,42

which describes the nonlocal dependence of the turbulent flux on mean gradients. MFM is43

similar to the Green’s function approach described by Hamba [21] for determining the exact44

nonlocal eddy diffusivity but also allows for polynomial forcings that enable measurement of45

eddy diffusivity moments. Measuring the moments is more efficient than computing the full46

kernel, which becomes expensive for unsteady problems with large macroscopic spaces, like47

RT mixing.48

The goal of the present work is to extend MFM analysis to turbulent three-dimensional49

(3D) RT mixing at higher Atwood numbers. The extension to 3D is certainly necessary for50

investigation of truly turbulent RT. Additionally, simulations of higher Atwood numbers51

allow for the investigation of variable density effects on nonlocality. It is known that the52

behavior of the instability differs between the variable density regime and the Boussinesq53

limit. Particularly, asymmetry in the mixing layer arises at higher Atwood numbers, which54

also leads to asymmetries in turbulent statistics, as shown by Livescu et al. [22]. Thus, one55

purpose of this study is to investigate the strength of the dependence of nonlocality in RT56

mixing on Atwood number. Ultimately, findings from this study will inform development of57

more accurate turbulence models for variable density RT mixing that incorporate nonlocality58

and its dependence on Atwood number.59

This work is organized as follows. Numerical methods of this work are presented in §II, in60

which the governing equations and their numerical solution are described along with a brief61

overview of RT physics. In §III, moments of the spatio-temporally nonlocal eddy diffusivity62

are measured using MFM and analyzed. The importance of the eddy diffusivity moments in63

modeling is examined in §IV. Finally, the results and implications for modeling are discussed64

in the Conclusion in §V.65

3



LLNL-JRNL-2006019

II. NUMERICAL METHODS66

A. Governing equations67

An RT configuration is considered in which a heavy fluid sits on top of a light fluid, and68

gravity points in the negative y-direction. The fluids are miscible, and conservation of mass69

gives that the mass fraction of the heavy fluid, YH , and the light fluid, YL, sum to unity. The70

flow is governed by the compressible Navier-Stokes equations:71

∂ρYk

∂t
= − ∂

∂xj

(
ρujYk − ρDk

∂Yk

∂xj

)
, (1)

∂ρui

∂t
= − ∂

∂xj

(ρuiuj + pδij − τij) + ρgi, (2)

∂E

∂t
= − ∂

∂xj

((E + p)uj − τijui + qi) + ρgiui. (3)

Here, ρ is density, ui is velocity, Yk is the mass fraction of species α, Dk is the diffusivity of72

species α, p is pressure, δij is the Kronecker delta, τij is the viscous stress, gi is gravitational73

acceleration (in this work, g = (0,−g, 0)T ), E = ρ
(
e+ 1

2
ukuk

)
is the total energy, and qi is74

the thermal energy flux. The viscous stress is75

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
+

(
β − 2

3
µ

)
∂uk

∂xk

δij, (4)

where µ is the molecular viscosity and β is the bulk viscosity. The energy flux is76

qi = −κ
∂T

∂xi

, (5)

where T is temperature. Pressure and temperature are determined using the ideal gas law:77

p = ρ (γ − 1) e, T = (γ − 1)
e

R
, (6)

where γ is the ratio of specific heats cp
cv

and R is the specific constant. The specific heats are78

dependent on Yk:79

cv = YHcv,H + YLcv,L, cp = YHcp,H + YLcp,L, (7)

In general, the energy equation (Equation 3) would include an enthalpy diffusion term to80

account for energy fluxes due to the species’ diffusion, as described by Cook [23]. However,81

since ∆T across the heavy-light fluid interface at the A studied in this work is expected to be82

small, we choose to neglect this term. Additionally, our analysis is in the late-time self-similar83

regime, where the enthalpy diffusion term is expected to be small.84
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For MFM analysis, we also consider transport of a dilute scalar Yc, which is governed by the85

following transport equation:86

∂ρYc

∂t
= − ∂

∂xj

(
ρujYc − ρDc

∂Yc

∂xj

)
. (8)

For this dilute scalar, coupling from momentum is one way, and Yc does not affect ρ. Thus,87

the transport equation for Yc is linear.88

B. RT mixing and self-similarity89

The difference in density between the two fluids can be expressed nondimensionally as the90

Atwood number:91

A =
ρH − ρL
ρH + ρL

, (9)

where ρH is the density of the heavy fluid, and ρL is the density of the light fluid.92

As the instability develops, bubbles rise into the heavy fluid, and spikes sink into the light fluid.93

Over time, secondary Kelvin-Helmholtz instabilities are triggered, and the flow transitions94

into turbulence. In this turbulent state, RT instability becomes self-similar, and the growth95

of the bubbles and spikes are quadratic in time [24]:96

hb ≈ αbAgt
2, hs ≈ −αsAgt

2, (10)

where hb and hs are the bubble and spike heights, respectively, and αb and αs are the bubble97

and spike growth parameters, respectively. Based on the bubble height, a self-similar variable98

in space is defined:99

η ≡
y − 1

2

hb

, (11)

for y defined between 0 and 1. The mixing layer half-width is defined as h = 1
2
(hb − hs), and100

in the self-similar limit, the growth of h can be characterized with a single α:101

h ≈ αAgt2. (12)

At low A, hb ≈ hs. Increasing A increases the asymmetry of the mixing layer [22, 25] as the102

spikes sink faster than the bubbles rise. Thus, for finite A, h > hb. In this work, the growth103

of the bubbles is used for self-similar analysis rather than the total mixing layer growth104

parameter α, since the latter varies significantly across Atwood numbers [26].105

Using the analytical derivation of the mixing width from Ristorcelli and Clark [27], Cabot106

and Cook [5] defines the bubble growth parameter as107

αb =
ḣb

2

4Aghb

, (13)
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where ḣb is the rate of change of hb in time. This definition is used to observe the growth108

parameter over time and assess convergence to self-similarity. In the self-similar regime, αb109

should converge to a constant value over time.110

For self-similar analysis, the definition of αb by Livescu et al. [22] is used:111

αb =

(
hb(t)

1/2 − hb(t0)
1/2

(Ag)1/2(t− t0)

)2

(14)

where t0 is an arbitrary time during the self-similar growth of the mixing layer. This definition112

is preferable for self-similar fits and normalizations, since it avoids temporal derivatives of113

the mixing width, which is not smooth in time due to statistical error.114

The bubble height can be computed from mass fraction profiles by taking it as the distance115

from the centerline of the domain to where the mean mass fraction of the light fluid is 0.999.116

The RT instability can be considered self-similar when this hb,99 becomes quadratic in time.117

Another metric for self-similarity is the mixedness parameter, defined as118

ϕ ≡ 1− 4

∫
Ỹ ′′
HY

′′
Hdy∫

ỸH ỸLdy
, (15)

where YH is the mass fraction of the heavy fluid, and YL = 1− YH is the mass fraction of the119

light fluid. For self-similar RT mixing, ϕ is expected to converge to a steady-state value of120

about 0.8 [5].121

It is additionally useful to assess the development of the RT flow by examining relevant122

Reynolds numbers. The Taylor microscale Reynolds number is defined as123

ReT =
k1/2λ

ν
, (16)

where k = 1
2
ũ′′
i u

′′
i , and124

λ =

√
10νL

k1/2
. (17)

L is a turbulent length scale, which can be approximated as 1
5
of the total mixing width,125

hb + hs [14]. The large scale Reynolds number [5] is defined as126

ReL =
h99ḣ99

ν
, (18)

where h99 is the total mixing width defined as the distance between the locations of mass127

fractions 0.001 and 0.999.128
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Dimotakis [28] describes a “mixing transition,” after which the amount of mixed fluid depends129

more weakly on Reynolds number. This mixing transition was identified to be when ReT > 100130

and ReL > 10, 000; we refer to these conditions here as critical Reynolds numbers for mixing.131

Zhou [29] also identifies a minimum Reynolds number for turbulence, ReL > 1.6×105; we refer132

to this as the critical Reynolds number for turbulence. While both of these transitions occur133

before the transition to the self-similar regime, they are still useful metrics for understanding134

the stage of development of an RT flow.135

C. Numerical solution to governing equations136

Pyranda [30], an open source finite difference solver, is used to solve Equations 1-3. Its137

numerical methods are the same as those used in Miranda, a hydrodynamics code developed at138

Lawrence Livermore National Laboratory [31, 32]. The codes use fourth-order Runge-Kutta139

in time and a tenth-order compact differencing scheme in space, and due to this high-order140

spatial scheme, they use artificial fluid properties for stability. Details on the artificial fluid141

method can be found in Appendix A142

To prevent the numerical diffusion from dominating the physical turbulent diffusion, the143

numerical Grashof number is kept small. This Grashof number is defined as144

Gr =
−2gA∆3

ν2
. (19)

where ∆ = ∆x = ∆y = ∆z is the grid spacing. In line with the findings of Morgan and Black145

[33], Gr = 12 is used in order to keep numerical diffusion finite but still allow turbulence to146

develop before the edges of the mixing layer reach the domain boundaries. The authors also147

approximate the ratio of the Kolmogorov scale ηK to grid size ∆ as148

ηK
∆

≈
(

123

Gr3Nh

) 1
8

, (20)

where Nh is the number of points across the mixing layer, h
∆
. Based on this, ηK/∆ ≈ 0.5 at149

the end of the simulations, indicating that resolution extends into the viscous range.150

The other relevant nondimensional numbers of the RT mixing problem are the Mach number151

(Ma), Peclet number (Pe), and Schmidt number (Sc):152

Ma =
u

c
, (21)

PeT = ReTSc, (22)

PeL = ReLSc, (23)

Sc =
ν

DM

. (24)

7



LLNL-JRNL-2006019

Nondimensional number A = 0.05 A = 0.3 A = 0.5 A = 0.8

Mamax 0.04 0.12 0.17 0.32

ReT , P eT 114 112 113 114

ReL, P eL 1.34× 104 1.15× 104 1.27× 104 1.23× 104

TABLE I: Values of nondimensional numbers at the end of the simulation for each A case. Mamax

is reported from one realization. The Reynolds and Peclet numbers are computed from averaged

realizations.

Here, c is the speed of sound and is set by the heat capacity ratio γ, which is 5/3 in the153

simulations presented here. The Schmidt number is chosen to be unity. The Peclet numbers154

are determined by the Reynolds and Schmidt numbers, and the Reynolds numbers are set155

through the numerical Grashof number, which fixes ν through choice of g, A, and ∆. Values156

of these nondimensional numbers at the final timesteps of the simulations are listed in Table157

I.158

The simulation domain is 0.5× 1.0× 0.5 cm, so the length in y is twice the lengths in x and z,159

and the grid is 512× 1024× 512 cells. The domain is periodic in x and z, and no slip and no160

penetration conditions are applied at y = 0 and y = 1 cm. Sponge layers of finite thickness161

are applied to the velocity and density fields at the boundaries in y to prevent reflection of162

acoustic waves that arise from the high-order numerics.163

The mass fraction profile is initialized as a tanh profile with approximately ten cells across164

the interface. A multi-mode perturbation is added at the interface:165

E0 =
∆/2

κmax − κmin + 1
, (25)

ξ(x, z) =E0

κmax∑
kx=κmin

κmax∑
kz=κmin

(cos (2πkxx+ ϕ1,k) + sin (2πkxx+ ϕ2,k))

× (cos (2πkzz + ϕ3,k) + sin (2πkzz + ϕ4,k)) , (26)

YH(x, y, z) =
1

2

(
1 + tanh

(
y − Ly/2− ξ

2∆

))
, (27)

where ϕ1,k, ϕ2,k , ϕ3,k , and ϕ4,k are phase shift vectors randomly taken from a uniform166

distribution. The minimum and maximum wavenumbers are set to κmin = 8 and κmax = 64,167

respectively. These minimum and maximum wavenumbers are within the range found by168

Livescu et al. [34] to result in converged α by the end of their DNS of RT instability.169

Density is computed from this initial mass fraction profile as ρHYH + ρLYL. The light fluid170

density is set to unity for all simulations, and the heavy fluid density is determined from this171

8
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(a) A = 0.05 (b) A = 0.3

(c) A = 0.5 (d) A = 0.8

FIG. 1: Contours of density for each A case.

and the Atwood number. Pressure is initialized as a hydrostatic pressure based on the initial172

density field, p = ρg
(
y − 1

2

)
+ 1. The velocity field is initially zero.173

The simulation is stopped when h99 reaches 0.5 cm, which is half the computational domain in174

y. This stop condition is chosen to avoid the effects of lateral confinement [35] as well as allow175

the mixing layer to reach the turbulent and self-similar regimes while avoiding interference176

from the top and bottom walls.177

For statistical convergence, nine realizations are run for each A case. Unique realizations are178

achieved by varying seeds for the random number generator. Example contours of density179

9
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(a) A = 0.05 (b) A = 0.3

(c) A = 0.5 (d) A = 0.8

FIG. 2: Contours of Mach number for each A case.

and mach number from one realization of each Atwood number case are shown in Figures 1180

and 2, respectively.181

Figure 3 shows self-similar metrics for the RT simulations, averaged over all realizations for182

each A case. αb computed using the definitions from Equations 13 and 14 for comparison.183

The αb computed from Equation 13 it is not perfectly flat, but this is likely due to statistical184

error in h and its time derivative. On the other hand, αb computed from Equation 14 is185

smoother. The two definitions do not match at early times when the flow is not self-similar186

but converge to similar values at late time.187
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(a) (b) (c)

FIG. 3: Self-similarity metrics for each A case: (a) bubble height, (b) mixedness, (c) bubble

growth parameter. In (c), thick lines are from Equation 13, and thin lines are from Equation 14.

(a) (b)

FIG. 4: Reynolds numbers over time for each of the A cases. The horizontal lines indicate critical

values for each Reynolds number.

The A = 0.05 case appears to be safely in the self-similar regime, as its ϕ seems converged188

to approximately 0.8. Its αb is also somewhat converged to approximately 0.03, which is189

within the range reported in the literature [5, 22]. The A = 0.5 case also appears to be in190

the self-similar regime, having converged to similar values of αb and ϕ as the A = 0.05 case,191

but the former does not appear to be as far into the self-similar state as the latter. The192

A = 0.8 case gives αb and ϕ that are only beginning to converge, indicating that this case is193

just barely in the self-similar regime. Nevertheless, this case gives an αb close to the other194

cases and can be used to make quadratic fits for hb needed for self-similar analysis.195

The plots of Re in Figure 4 show that the flows in all the A cases studied here develop past196

the critical Reynolds numbers for the mixing transition from Dimotakis [28]. These plots197

are given in nondimensional time τ = t/τ0, where τ0 =
√

h0/Ag, and h0 is the dominant198

length scale determined by the peak of the initial perturbation spectrum. The critical Re are199

11
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(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

FIG. 5: Energy spectra at different Atwood numbers at the last timesteps of the simulations.

Different lines are the spectra at different y within the mixing layer. Lighter cyan lines are at

higher y, and darker lines are at lower y. The dashed black lines have −5/3 slopes.

reached at approximately τ = 19, τ = 20, τ = 19, and τ = 16 for A = 0.05, A = 0.3, A = 0.5,200

and A = 0.8, respectively. Based on this, the RT instabilities simulated here pass the mixing201

transition.202

We also examine the energy spectra of the different Atwood cases to assess the laminar-203

turbulent transition. To compute the energy spectra, we use the discrete Fourier transform204

of a quantity q defined as follows:205

q̂(kx, kz, y) = ΣNx−1
x=0 ΣNz−1

z=0 q(x, y, z)e−2πi( kxx
Nx

+ kzz
Nz

). (28)

The wavenumbers are defined as206

kx =
nx

Lx

, kz =
nz

Lz

, (29)

nx ∈
[
−Nx

2
, . . . ,

Nx

2
− 1

]
, nz ∈

[
−Nz

2
, . . . ,

Nz

2
− 1

]
. (30)

Nx and Nz are the number of mesh points in x and z, respectively. The energy spectrum is207

defined as208

E2D(kx, kz, y) =
1

2
û′′
i û

′′
i

∗
. (31)

where û′′
i

∗
is the conjugate of û′′

i . We define the radial wavenumber k =
√
k2
x + k2

z to obtain209

E(k, y), which is the annular sum of E2D(kx, kz, y).210

The energy spectra within the mixing layer (for y between approximately 0.4 and 0.6 cm)211

are plotted in Figure 5. The spectra are taken at the last timestep and for one realization.212

We find that by the time they are stopped, our simulations are fully-turbulent, demonstrated213
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(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

FIG. 6: Correlation curves over r1 at different Atwood numbers at the last timesteps of the

simulations. Curves are averaged over z and y within the mixing layer.

(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

FIG. 7: Correlation curves over r3 at different Atwood numbers at the last timesteps of the

simulations. Curves are averaged over x and y within the mixing layer.

by the existence of an inertial range in their energy spectra, presented in Figure 5 in the214

Appendix. This is despite our ReL from all A cases not attaining the critical Reynolds215

number for turbulence, 1.6× 105, identified by Zhou [29].216

Additionally, we examine the normalized autocorrelation curves over x and z, which are217

defined by Pope [36] for a quantity q as218

ρqq(r1) =
⟨q(x, y, z, t)q(x+ r1, y, z, t)⟩

⟨q(x, y, z, t)2⟩
, (32)

ρqq(r3) =
⟨q(x, y, z, t)q(x, y, z + r3, t)⟩

⟨q(x, y, z, t)2⟩
. (33)

In this case, ⟨∗⟩ denotes averaging over the remaining homogeneous direction and y within219

13
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the mixing layer. Figures 6 and 7 show the autocorrelation curves for Y ′′
H (denoted by ρY Y )220

and u′′
i (denoted by ρuu, ρvv, and ρww)over x and z, respectively, at the end of one realization221

for each case. We observe the curves decay to zero, indicating the simulations stop before the222

flow encounters lateral confinement effects. This is supported by the energy spectra in Figure223

5, which demonstrate no evidence of turbulent kinetic energy saturation at low wavenumbers.224

We include the autocorrelations in y and the associated integral length scales in Appendix225

B.226

III. ANALYSIS OF NONLOCALITY227

A. Modeling the mean scalar transport operator228

To obtain the mean scalar transport equation, the Reynolds (⟨q⟩) and Favre (q̃) averages of229

quantity q are defined:230

⟨q⟩ = 1

N

N∑
i

qi, (34)

q̃ =
⟨ρq⟩
⟨ρ⟩

, (35)

where N is the number of ensembles. In the case where the flow is homogeneous (in space231

and/or time), the homogeneous directions may be included in these ensembles. For the232

RT mixing problem studied here, the homogeneous directions are x and z, so averages are233

performed over x, z, and realizations. Fluctuations from the Reynolds and Favre means are234

denoted as q′ and q
′′
, respectively, so235

q = ⟨q⟩+ q′ = q̃ + q
′′
. (36)

Substituting the Favre decomposition for velocity and mass fraction into Equation 1 and236

taking its Reynolds average results in the mean scalar transort equation for compressible237

flow:238

∂⟨ρ⟩ỸH

∂t
= − ∂

∂y

(
⟨ρ⟩ṽỸH + ⟨ρv′′

Y
′′

H⟩ − ⟨ρDH
∂YH

∂y
⟩
)
. (37)

The last term on the right hand side is negligible when Pe is large. The turbulent species flux239

F = ⟨−ρv′′Y ′′
H⟩ is unclosed and needs to be modeled. This flux can be exactly expressed as240

F (y, t) = ⟨ρ⟩
∫

D (y, y′, t, t′)
∂ỸH

∂y

∣∣∣∣∣
y′,t′

dy′dt′, (38)

14
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where D is the eddy diffusivity kernel. This equation is an extension of the formulation for241

incompressible flow described in Kraichnan [37], Hamba [21], and Mani and Park [20] . It is242

a nonlocal formulation, in that it expresses F based on mean scalar gradients not only at the243

points in space and time (y and t) at which F is measured, but also all other points in space244

and time (y′ and t′). Numerical tests have shown that this formulation satisfies causality245

without imposing it [38].246

An exact model for F requires full characterization of the eddy diffusivity kernel. This has247

been done for simpler flows in the works of Hamba [39], Hamba [21], and Park and Mani248

[40]. However, computation of the kernel is generally computationally expensive, since it249

requires simulations on the order of the number of points in macroscopic space. On top of250

this, chaotic flows, like RT mixing, require many realizations for statistical convergence.251

The eddy diffusivity kernel can instead be approximated by its moments. This can be done252

by employing a Taylor series expansion of the mean scalar gradient about y and t, which253

results in the Kramers-Moyal-like expansion:254

F (y, t) = ⟨ρ⟩D00(y, t)
∂ỸH

∂y
+ ⟨ρ⟩D10(y, t)

∂2ỸH

∂y2
+ ⟨ρ⟩D01(y, t)

∂2ỸH

∂t ∂y

+ ⟨ρ⟩D20(y, t)
∂3ỸH

∂y3
+ ⟨ρ⟩D11(y, t)

∂2ỸH

∂ty2
+ ⟨ρ⟩D02(y, t)

∂2ỸH

∂t2y
+ . . . (39)

where Dmn are the eddy diffusivity moments. The first index m indicates space and the255

second index n is time. The moments are defined as256

Dmn(y, t) =

∫ ∫
(y′ − y)m(t′ − t)n

m!n!
D(y, y′, t, t′)dy′dt′. (40)

These moments are more computationally feasible to compute than the full kernel. To257

compute the moments, which will be described shortly, one equation per moment needs to258

be added to the suite of equations being solved in a simulation. Though the number of259

operations increases as more moments are computed, only one simulation needs to be run to260

compute all moments. Statistically converged moments require multiple simulations; in this261

work, it is found that O(10) simulations are needed for statistical convergence sufficient for262

analysis, which is much lower than what is needed to compute the full kernel.263

While the eddy diffusivity moments are locally defined (they are functions of y and t only),264

higher-order moments contain information about the nonlocality of the full kernel. The265

leading-order moment D00 is purely local, and truncation to the leading-order term is the266

gradient-diffusion or Boussinesq approximation. The goal of this work is to determine the267

importance of the higher-order terms and, therefore, the nonlocality of the mean scalar268
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Donor

Dc00

Dt = L00(c00) + s00

Dc10

Dt = L10(c10) + s10

Dc20

Dt = L20(c20) + s20

Navier–Stokes Equations

∂ρYα
∂t

=− ∂

∂xj

(
ρujYα − ρDα

∂Yα
∂xj

)
∂ρui
∂t

=− ∂

∂xj
(ρuiuj + pδij − τij) + ρgi

∂E

∂t
=− ∂

∂xj
((E + p)uj − τijui + qi) + ρgiui

ρ =ρYH + ρYL

Receiver

Receiver

Receiver

∂⟨c⟩
∂x = 1

∂⟨c⟩
∂x = x

∂⟨c⟩
∂x = x2

2

Postprocessing
Numerical
Simulation

D00 = ⟨−ρv′′c00⟩
⟨ρ⟩

D10 = ⟨−ρv′′c10⟩
⟨ρ⟩

D20 = ⟨−ρv′′c20⟩
⟨ρ⟩

FIG. 8: MFM pipeline illustrating measurement of some spatial eddy diffusivity moments for the

mean scalar transport problem. Lmn are the right-hand side operators corresponding to the cmn in

Equations 43-48, not including the macroscopic forcings smn.

Moment
∂Ỹc
∂y

D00 1

D01 t

D10 y − 1
2

D02 1
2 t

2

D11 (y − 1
2)t

D20 1
2(y −

1
2)

2

TABLE II: Mean mass fraction gradients forced for each eddy diffusivity moment Dmn.

transport operator for the RT mixing cases studied here. In this way, measuring the eddy269

diffusivity moments is more computationally efficient than computing the full kernel, but it270

is still an insightful way to assess the nonlocality of the closure operator.271

B. Measuring the eddy diffusivity moments using the Macroscopic Forcing Method272

The MFM pipeline is conceptually illustrated in Figure 8. The method involves two sets of273

equations, called the donor and the receiver equations, which are solved simultaneously in a274

simulation. The donor equations represent the full set of governing equations (in this case,275

Equations 1-3) and provides quantities necessary for solution of the receiver equations, which276

involve additional forcing terms smn corresponding to each moment Dmn. For example, to277

determine closures for scalar transport, forcings are applied to the dilute scalar transport278
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equation, Equation 8, resulting in the following receiver equations:279

∂ρY mn
c

∂t
= − ∂

∂xj

(
ρujY

mn
c − ρDc

∂Y mn
c

∂xj

)
+ smn, (41)

where Y mn
c is the dilute scalar field response to the forcing smn used to obtain Dmn. The280

solution of these receiver equations require velocity and density fields, which are obtained from281

the donor equations. A key component of this method is that the forcings are macroscopic, in282

that they have the property ⟨smn⟩ = smn, so the forcings do not interfere with the underlying283

turbulent flow.284

In the present work, a new decomposition approach to the macroscopic forcing method is285

utilized to efficiently obtain the moments. Full details on this method can be found in the286

companion work by [41]. Under this new method, fluctuations of the mass fraction field287

are simulated, and the forcings are semi-analytically applied to achieve certain mean scalar288

gradients that allow for the probing of each eddy diffusivity moment. Table II lists the mean289

scalar gradients chosen to obtain each moment.290

To formulate the forced equations, Y ′′
c is first written as a Kramers-Moyal expansion analagous291

to Equation 39:292

Y ′′
c = c00∂Ỹc

∂y
+ c10∂

2Ỹc

∂y2
+ c01 ∂2Ỹc

∂t ∂y
+ c20∂

3Ỹc

∂y3
+ c11 ∂

2Ỹc

∂ty2
+ c02 ∂

2Ỹc

∂t2y
+ . . . (42)

Substituting this expansion and the forced mean mass fractions derived from Table II into293

Equation 1 gives the following equations for each cmn:294

Dρc00

Dt
=

∂

∂xj

ρDH
∂

∂xj

c00 − ρv +
∂

∂y
ρDH + s00, (43)

Dρc10

Dt
=

∂

∂xj

ρDH
∂

∂xj

c10 − ρvc00 + ρDH + ρDH
∂

∂y
c00 +

∂

∂y
ρDHc

00 + s10, (44)

Dρc01

Dt
=

∂

∂xj

ρDH
∂

∂xj

c01 − ρc00 − ρy + s01, (45)

Dρc20

Dt
=

∂

∂xj

ρDH
∂

∂xj

c20 + ρDHc
00 + ρDH

∂

∂y
c10 +

∂

∂y
ρDHc

10 + s20, (46)

Dρc11

Dt
=

∂

∂xj

ρDH
∂

∂xj

c11 − ρc10 − ρvc01 + ρDH
∂

∂y
c01 +

∂

∂y
ρDHc

01 + ρ

(
1

2
y2 − 1

8

)
+ s11,

(47)

Dρc02

Dt
=

∂

∂xj

ρDH
∂

∂xj

c02 − ρc01 + s02, (48)

where each forcing smn enforces the x-z mean of cmn to be zero, and cmn are initially zero.295

To obtain the eddy diffusivity moments, the turbulent species flux based on the Y ′′
c from296
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(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 9: hb from simulations (solid blue) and fitted hb (dashed orange).

each equation is computed in postprocessing:297

⟨−ρv′′cmn⟩ = ⟨ρ⟩Dmn. (49)

In the numerical simulation, solutions to the donors (Equations 1-3) are given to these receiver298

equations, which are solved alongside the donors. Thus, if the cost to solve the suite of donor299

equations is N , the cost of MFM for the number of eddy diffusivity moments examined in300

this work is approximately 2N . Of course, this cost increases as more moments are measured,301

but it has been found that not many moments are required to characterize the nonlocality302

of the eddy diffusivity kernel [1, 42], making the MFM measurement of moments relatively303

efficient and useful.304

C. Self-similar scaling305

Lavacot et al. [1] utilize a self-similar normalization for the analysis of F and eddy diffusivity306

moments. This analysis is applied directly to the variable density RT mixing studied here and307
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extended to the higher-order moments D11 and D02, which have not been studied previously:308

F̂ =
F

α∗Ag(t− t∗0)
, (50)

D̂00 =
D00

(α∗Ag)2(t− t∗0)
3
, (51)

D̂01 =
D01

(α∗Ag)2(t− t∗0)
4
, (52)

D̂10 =
D10

(α∗Ag)3(t− t∗0)
5
, (53)

D̂02 =
D02

(α∗Ag)2(t− t∗0)
5
, (54)

D̂11 =
D11

(α∗Ag)3(t− t∗0)
6
, (55)

D̂20 =
D20

(α∗Ag)4(t− t∗0)
7
, (56)

where α∗ is the growth parameter defined in Equation 14, and t∗0 is a fitted time origin309

based on the measured bubble height. Figure 9 shows the bubble height measured from the310

simulations and the determined fits, which aim to match hb in late time (during self-similar311

growth).312

In addition, since finite A are considered in this work, a self-similar scaling for the peak mean313

velocity V0(t) is also used:314

V̂0 =
V0

Ag(t− t∗0)
. (57)

Due to this nonzero ṽ at finite A, there is asymmetry in the RT mixing layer, and its midplane315

shifts in the negative y direction. This shift is incorporated into the self-similar variable:316

η =

(
y − 1

2

)
− V0(t− t∗0)

hb

=

(
y − 1

2

)
hb

− V̂0

α∗ . (58)

All η in the following analyses are defined this way.317

Figures 10 and 11 show the density and the turbulent species flux profiles, respectively, using318

the η defined in 58. The flux is normalized according to 50. In these self-similar coordinates,319

the profiles collapse in late time; these profiles are represented by the black lines in the figures.320

In the analyses to follow, the self-similar profiles from the last timesteps of the simulations321

are used.322
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(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 10: Self-similar collapse of ρ. Blue lines are before the transition to turbulence, and black

lines are after.

(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 11: Self-similar collapse of F̂ . Blue lines are before the transition to turbulence, and black

lines are after.

D. Eddy diffusivity moments323

Figure 12 shows the eddy diffusivity moments for each Atwood number. The vertical axis is324

the self-similar variable η, and the horizontal axis is the nondimensional time τ . Each row325

corresponds to an eddy diffusivity moment, and Atwood number increases across the columns326

from left to right. The contours show the values of the eddy diffusivity moments at each η327

and τ , normalized by length and time scales such that units are the same across plots. First,328

some expected behavior is observed at the lowest Atwood number:329

1. D00 is the largest in magnitude. It is also symmetric and positive.330

2. D10 is antisymmetric. D10 is negative above the centerline (η = 0), indicating that at a331

point y0 above the centerline, mixing depends more on gradients closer to the centerline332

rather than the edge of the mixing layer. That is, the kernel has a centroid that is a333

negative distance away from y0 above the centerline. Similarly, D10 is positive below334

the centerline.335

3. D01 is symmetric and always negative. This is expected based on causality.336
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A = 0.05 A = 0.3 A = 0.5 A = 0.8

D00

D01/t

D10/hb

D02/t2

D11/hbt

D20/h2
b

FIG. 12: Eddy diffusivity moments of RT instability at different Atwood numbers. The y axis is η,

and the x axis is τ . Moments are normalized by appropriate length and timescales so that all

dimensions match.

4. D11 is antisymmetric.337

5. D02 and D20 are symmetric and always positive, which is characteristic of the moment338

of inertia of a positive kernel.339

As A increases, the moments become asymmetric. This is expected for A above about 0.1,340
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Ratio A = 0.05 A = 0.3 A = 0.5 A = 0.8

D10
(
hbD

00
)−1

0.11 0.15 0.15 0.22

D01
(
tD00

)−1
0.15 0.27 0.36 0.52

D20
(
h2bD

00
)−1

0.02 0.03 0.03 0.06

D11
(
hbtD

00
)−1

0.03 0.09 0.12 0.27

D02
(
t2D00

)−1
0.02 0.03 0.05 0.10

TABLE III: Ratios of maximum magnitudes of higher-order moments (normalized as in Figure 12)

to maximum magnitudes of leading-order moments for each A case.

since at these higher density differences, the heavy fluid falls deeper than the light fluid rises,341

moving the mixing layer center line downward. The asymmetry of RT instability with finite342

Atwood numbers is well known, and it has also been found that quantities in turbulence343

budgets (e.g., mass flux and turbulent kinetic energy) are skewed in these regimes [22]. Thus,344

peak magnitudes of moments that are symmetric at low A move further below the domain345

center line as Atwood increases. Similarly, below the centerline, the magnitudes of moments346

that are antisymmetric at low A become larger than the magnitudes above the centerline.347

A preliminary assessment of nonlocality can be done by examining the relative magnitudes of348

the measured moments, which is shown in Figure 13. Maximum relative magnitude values349

are also provided in Table III. For all Atwood numbers, the magnitudes of the first order350

moments are about one magnitude smaller than the leading order moment; the second order351

moments are about two orders of magnitude smaller than the leading order moment. This352

suggests that these higher-order moments may be significant and may not be excluded from353

modeling right away. This was also observed by Lavacot et al. [1] for 2D RT instability at354

A = 0.05. More notable are the changes in relative magnitude over the Atwood cases and355

over time. Specifically, the following trends are observed:356

• The spatial moments increase in relative magnitude with A.357

• The temporal moments are higher in relative magnitude at early times.358

• The temporal moments appear to increase in relative magnitude with A, but this is359

difficult to quantify due to the temporal decay of temporal moments.360

• The length of time over which the temporal moments decay increases with A, suggesting361

that history effects last longer with higher A.362

Based on these observations, there is a general dependence of nonlocality on Atwood number.363

Particularly, this Atwood dependence on non-locality should be considered when modeling364

RT mixing. This will be examined more closely in later sections.365
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A = 0.05 A = 0.3 A = 0.5 A = 0.8

D00

D01/t

D10/hb

D02/t2

D11/hbt

D20/h2
b

FIG. 13: Eddy diffusivity moments normalized by the maximum magnitude of the leading order

moment at every time slice for each Atwood number. The y axis is η, and the x axis is τ . Data for

τ > 5 is shown.

Here, the self-similarity of the eddy diffusivity moments is also examined. Figure 14 shows366

the temporal eddy diffusivity moments at each Atwood number normalized according to367

self-similarity as in the Equations 51-56; the self-similar collapse of all moments are in the368

Appendix in Figures 30-33. Qualitatively, the higher-order moments do not collapse as well as369
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(a) A = 0.05

(b) A = 0.3

(c) A = 0.5

(d) A = 0.8

FIG. 14: Self-similar collapse of leading-order and higher-order temporal eddy diffusivity moments

of RT instability at different Atwood numbers.
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(a) (b)

FIG. 15: Maximum magnitudes of normalized eddy diffusivity moments over time. Plotting starts

after the time the critical ReT and ReL for turbulence are reached. Data are normalized by the

values at the beginning of plotting for each Atwood case.

lower-order moments. Additionally, the self-similar collapse worsens with increasing Atwood370

number.371

The self-similarity of the moments can further be evaluated by examining the maximum372

magnitudes of the normalized eddy diffusivity moments. Figure 15 shows D̂00 and D̂01 over373

the time period after which ReT exceeds 100 and ReL exceeds 104 in each Atwood case. If374

these criteria are sufficient for self-similarity of the eddy diffusivity moments, the plots of the375

normalized moments are expected to be constant with time. This appears to be the case for376

the lowest Atwood number simulation (A = 0.05). The higher Atwood number simulations377

(A = 0.5 and A = 0.8), however, give D̂00 and D̂01 that still vary in time.378

Altogether, these observations suggest that higher-order moments take longer to converge379

to a self-similar state than lower-order moments. Additionally, higher-order moments take380

longer to reach self-similarity than lower-order quantities like the mixing width and F . Thus,381

even if the flow in the MFM donor simulation fulfills criteria for self-similarity, such as382

reaching the critical Reynolds numbers or achieving a convergent α, the eddy diffusivity383

moments, especially the higher-order moments, may not necessarily be self-similar. When384

performing analysis on eddy diffusivity moments, one must be careful then to not only385

check the traditional self-similarity metrics of RT but also the self-similarity of the moments386

themselves.387

Based on this, for the higher-Atwood cases, the higher-order moments are not far into the388

self-similar regime. The following analysis is performed in self-similar space in the following389

sections, and it is recognized that there will be some error due to the weak self-similarity of390

the higher-order moments.391
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E. Nonlocal length and time scales392

Measurement of the eddy diffusivity moments using MFM allows for the quantification of393

nonlocal length and time scales. These are defined nondimensionally as394

ηNL =
1

hb

√
D20

D00
, τNL = −1

t

D01

D00
. (59)

Figure 16 shows the nonlocal length scale contours for each of the A cases. Qualitatively,395

they look similar across A, with minimum values at the centerline and maximum values at396

the edges of the mixing layer. Unsurprisingly, there is increased asymmetry at higher A, with397

mixing layer edge values below the centerline greater than those above the centerline. In398

the self-similar regime, profiles of the nonlocal length scales in Figure 17 show maximum399

values of approximately ηNL = 0.35, ηNL = 0.37, ηNL = 0.35, and ηNL = 0.57 for A = 0.05,400

A = 0.3, A = 0.5, and A = 0.8, respectively. The minimum ηNL for all A is around 0.1.401

Based on these observations, the following statements can be made about spatial nonlocality402

for late-time RT:403

• F at a location near the mixing layer edge depends on gradients further away from404

that location than does the flux at the centerline. Since mixing spreads outward,405

information generally propagates from the center towards the edges of the mixing layer,406

not the other way around. In this way, mixing at the edges is linked to the mean scalar407

gradients at the center through the flow’s time history, while mixing at the center is408

not strongly dependent on gradients at the edges.409

• For η at the mixing layer edges, F depends on gradients approximately 0.3− 0.6 mixing410

half-widths away, and this value increases with A.411

• For η at the centerline, F depends on gradients approximately 0.1 mixing half-widths412

away, and this appears to be A-independent.413

The nonlocal time scales are also examined in Figure 18. In contrast to the nonlocal length414

scale, the nonlocal time scale differs greatly over the A studied here. Particularly, the max415

values of τNL increase with A, indicating that F depends more on earlier times for higher A.416

Additionally, the contours for τNL become more asymmetric with increasing A—max τNL417

shifts towards the edge of the mixing layer above the centerline as A increases. It is expected418

that τNL profiles collapse in the self-similar unit, which is inspected for each A case in Figure419

19. It must be noted that the quality of the collapse worsens as A increases, indicating that420

our highest A cases may not be far into the self-similar regime. Nevertheless, the profiles421

there show maximum values of approximately τNL = 0.21τ , τNL = 0.39τ , τNL = 0.58τ , and422

τNL = 1.16τ for A = 0.05, A = 0.3, A = 0.5, and A = 0.8, respectively. Based on these423
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(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 16: Contours of nonlocal length scales for each A case.

(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 17: Profiles of nonlocal length scales for each A case. Darker lines are earlier times; lighter

lines are later times.

observations, the following statements can be made about temporal nonlocality for late-time424

RT:425

• As A increases, across the mixing layer, F depends more on the flux at earlier times.426

• At low A, the dependence of F on earlier times is relatively uniform across the mixing427

layer.428

• As A increases, F near the upper edge of the mixing layer depends on earlier times429

than does the flux at the lower edge. This suggests that, compared to the spikes, it430

may take the bubbles a longer time to transition to a self-similar state where the flow431

forgets its initial conditions, and this effect appears stronger at higher A.432

The MFM measurements also reveal large τNL at early times across A. These high τNL zones433

appear to be higher in magnitude and last longer as A increases. This suggests that as A434

increases, the RT instability retains memory of the initial conditions for a longer period of435

time.436
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(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 18: Contours of nonlocal time scales for each A case.

(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 19: Profiles of nonlocal time scales scaled by τ for each A case. Darker lines are earlier times;

lighter lines are later times.

Figure 20 shows the maximum τNL and ηNL and the centerline ηNL over the studied A.437

The centerline ηNL do not change much with A. The maximum ηNL appears to have some438

sensitivity to A and potentially increases at high A, but this is difficult to discern with the439

limited data. On the other hand, the maximum τNL increases rapidly with A. This indicates440

that while there is some dependence of spatial nonlocality on A, the dependence of temporal441

FIG. 20: Maximum nonlocal time scale, maximum nonlocal length scale, and nonlocal length scale

at centerline over A.
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(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 21: Terms of the Kramers-Moyal expansion for F at different Atwood numbers. Each line

corresponds to terms with contributions from: D00 (solid blue), D10 (dashed orange), D01

(dash-dotted red), D20 (dotted green), D11 (solid teal), and D02 (dashed lilac).

nonlocality on A is larger and more important for modeling RT mixing. Such a dependence442

should be captured by RANS models for accurate prediction of mixing due to RT instability.443

F. Kramers-Moyal terms444

To further assess the importance of nonlocality, the terms in the Kramers-Moyal expansion445

(Equation 39) for F can be examined, as shown in Figure 21. These terms are calculated a446

priori: the donor simulation ỸH is used for the mean mass fraction gradients, and the measured447

eddy diffusivity moments are substituted directly. Already at the lowest Atwood case of448

A = 0.05, the higher-order terms appear non-negligible compared to the leading-order term;449

at least some of the higher-order terms will need to be retained for complete characterization450

of the eddy diffusivity. This was also shown in the 2D case at the same Atwood number451

studied in Lavacot et al. [1]. Furthermore, as Atwood number increases, the higher-order452

terms become closer in magnitude to the leading-order term, indicating that nonlocality453

becomes more important with increasing Atwood. This also suggests that at higher Atwood454

numbers, more higher-order moments may be required for modeling than at lower Atwood455

numbers. It is notable that the temporal moments are particularly large at high Atwood456

numbers, indicating that temporal nonlocality may be especially important in those regimes.457

IV. IMPORTANCE OF MOMENTS IN MODELING458

The previous section focused on assessment of nonlocality through the measurement of eddy459

diffusivity moments using MFM. While this processes revealed the importance of nonlocality,460

it has not yet been shown which of the eddy diffusivity moments are important for modeling.461

By testing different combinations of moments in a model form, the moments most important462

for modeling can be determined, and it can be discerned whether this depends on Atwood463
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number. Here, an inverse operator is proposed to incorporate information about nonlocality464

from the eddy diffusivity moments.465

A. Matched Moment Inverse466

Truncation of Equation 39 represents an approximate model for the turbulent species flux. In467

fact, truncation to the first term is the gradient-diffusion approximation. However, a property468

of the Kramers-Moyal expansion is that it does not converge with finite terms, so adding469

higher-order terms to the leading-order term can lead to divergence [43].470

Instead, the Matched Moment Inverse (MMI) [42], a systematic method for constructing a471

model using eddy diffusivity moments, is employed. With MMI, the goal is to match the472

shape of the eddy diffusivity kernel using its moments. This is achieved by determining473

coefficients amn(y, t) for the inverse operator :474 [
1 + a10

∂

∂y
+ a01

∂

∂t
+ a20

∂2

∂y2
+ ...

]
F = a00⟨ρ⟩∂ỸH

∂y
. (60)

The inverse operator on the left hand side can be expanded based on which moments are475

used; amn corresponds to using Dmn. The model coefficients are determined numerically476

using MFM simulation data. For example, if D00, D01, D10, and D20 are used, the following477

system is solved for a00, a01, a10, and a20:478 [
1 + a10

∂

∂y
+ a01

∂

∂t
+ a20

∂2

∂y2

]
F 00 = a00⟨ρ⟩, (61)[

1 + a10
∂

∂y
+ a01

∂

∂t
+ a20

∂2

∂y2

]
F 10 = a00⟨ρ⟩

(
y − 1

2

)
, (62)[

1 + a10
∂

∂y
+ a01

∂

∂t
+ a20

∂2

∂y2

]
F 01 = a00⟨ρ⟩t, (63)[

1 + a10
∂

∂y
+ a01

∂

∂t
+ a20

∂2

∂y2

]
F 20 = a00⟨ρ⟩1

2

(
y − 1

2

)2

, (64)

where Fmn is the post-processed turbulent species flux resulting from a macroscopic forcing479

achieving ∂Ỹc

∂y
= (y − 1

2
)mtn to determine Dmn.480

The above is demonstrated for spatio-temporal variables for simplicity, but the analysis481

presented here is done in self-similar space. The self-similar inverse operator is482 [
1 + â10

∂

∂η
+ â01

(
1− 2η

∂

∂η

)
+ â20

∂2

∂η2
+ ...

]
F̂ = â00⟨ρ⟩∂ỸH

∂η
, (65)

where the self-similar coefficients are483
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(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 22: F predicted using a closure based on spatial moments. The solid black line is F

computed from the high-fidelity simulation. The other lines are predictions from model forms using

different combinations of moments, as follows: D00 (dashed blue); D00 and D10 (dotted orange);

and D00, D10, and D20 (dash-dotted green).

â00 =
1

α∗2A2g2(t− t∗)3
a00, (66)

â01 =
1

t− t∗
a01, (67)

â10 =
1

α∗Ag(t− t∗)2
a10, (68)

â20 =
1

α∗2A2g2(t− t∗)4
a20. (69)

Since Dmn are taken directly from MFM measurements, they contain some statistical error,484

which would be amplified by the MMI fitting process and obfuscate analysis. To avoid this,485

a moving average filter is applied to the moments, and those filtered moments are used for486

the inverse operator coefficient fitting process, done by solving Equations 61-64. Equation487

60 is then solved using ⟨ρ⟩ and ỸH obtained from the simulations. In the following sections,488

coefficients in Equation 60 are fit in self-similar space using different combinations of Dmn to489

be tested in the inverse operator.490
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(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 23: F predicted using a closure based on spatial and temporal moments. The solid black line

is F computed from the high-fidelity simulation. The other lines are predictions from operators

using different combinations of moments, as follows: D00 (dashed blue); D00, D10, and D20 (dotted

orange); and D00, D01, D10, and D20 (dash-dotted green).

1. Inverse operator using only spatial moments of eddy diffusivity491

The inverse operator using only spatial moments is tested first. In physical space, the model492

forms are493

F = a00⟨ρ⟩∂ỸH

∂y
, (70)[

1 + a10
∂

∂y

]
F = a00⟨ρ⟩∂ỸH

∂y
, (71)[

1 + a10
∂

∂y
+ a20

∂2

∂y2

]
F = a00⟨ρ⟩∂ỸH

∂y
. (72)

Note the first model form uses only the leading-order moment and is equivalent to the494

truncation of Equation 39 to the leading-order term. Figure 22 shows F predicted using the495

above model for each Atwood case. In these figures, the solid black lines are the self-similar496

F̂ taken from the last timesteps of the donor simulations shown in Figure 11. Across all497

A, there is little improvement when higher-order spatial moments are added. The biggest498

change with the addition of higher-order moments is at the edges of the mixing layer, as the499

width of the predicted F becomes closer to F from the high-fidelity simulation—this is most500

obvious in the A = 0.05 case. This indicates that, while spatial nonlocality is non-negligible,501

most improvements will come from the temporal moments.502

2. Inverse operator using spatial and temporal moments of eddy diffusivity503

An inverse operator using D00, D10, D20, and D01 is now assessed.504 [
1 + a10

∂

∂y
+ a20

∂2

∂y2
+ a01

∂

∂t

]
F = a00⟨ρ⟩∂ỸH

∂y
. (73)
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FIG. 24: The maximum − D̂01

D̂00
over η within the mixing zone as a funciton of time for each

Atwood case. Plotting starts after the time the critical ReT and ReL for turbulence are reached.

Figure 23 shows predictions for F using this spatio-temporal operator. There is a larger505

change in F prediction when adding the first temporal moment than higher-order spatial506

moments. Particularly, for A = 0.05, F prediction is significantly improved by addition of507

D01 to the inverse operator and matches F computed from the high-fideltiy simulation well508

in both magnitude and shape. Additionally, there is a marked improvement in the prediction509

for the A = 0.3 case, though it does not match the shape as well. While improvements are510

observed in F predictions in these cases, there is diverging behavior in the higher Atwood511

cases of 0.5 and 0.8. This is because, for these Atwood cases, the MMI fitting process gives512

coefficients of intuitively incorrect signs, resulting in operators that are not robust. The513

requirements on the MMI coefficients for model robustness can be found by rearranging514

Equation 73:515

∂

∂t
F = − 1

a01
F − a10

a01
∂

∂y
F − a20

a01
∂2

∂y2
F +

a00

a01
⟨ρ⟩∂ỸH

∂y
. (74)

The first term on the right hand side must be a destruction term for stability. Thus, a01 must516

be always positive for robustness. As demonstrated in Appendix D, this is achieved when517

− D̂01

D̂00
< 0.25.518

Figure 24 shows the maximum − D̂01

D̂00
plotted over time for each of the Atwood numbers519

studied. In the self-similar regime, − D̂01

D̂00
is expected to be constant with τ . Indeed, the520

A = 0.05 and A = 0.3 cases both result in relatively constant − D̂01

D̂00
at late τ that goes521

under 0.25 before the end of the simulation, which explains why those cases give robust522

models after the MMI process. Errors in Figure 23 are maybe due to fitting the inverse523

operator coefficients to eddy diffusivity moments that are not yet self-similar. Thus, the − D̂01

D̂00
524

constraint discovered here may be another indicator of self-similarity of the RT instability525

eddy diffusivity moments. That is, though our simulations are fully-turbulent, the fact526

that the higher-Atwood simulations do not reach this − D̂01

D̂00
threshold indicates that the527
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higher-order moments are not far into the self-similar regime, which is why the data leads to528

non-robust model coefficients for these cases.529

It must be noted that while the predictions of F in Figures 22 and 23 are fairly smooth, the530

inverse operator coefficients obtained through MMI (shown as the solid blue lines in Figure531

25) contain large fluctuations over η, even exhibiting some singlularities. This behavior of the532

MMI-obtained coefficients has been observed by Liu et al. [42]. Thus, these fitted coefficients533

should be used only as a guide for determining model coefficients. The following section534

proposes a framework for analytically representing the inverse operator coefficients for use in535

a model.536

3. Atwood dependence of nonlocality in a model537

Here, a model is proposed using coefficients written algebraically in self-similar space based538

on the findings previously discussed. The main intent here is to present a framework for539

incorporation of nonlocality and its Atwood dependence based on the MFM analysis in540

the previous sections, not provide a complete model to be employed as is. The result is a541

geometrically-defined model depending on η, but a complete model should employ functions542

of other variables in the RANS model (e.g., k) to allow for generality. Thus, the model543

proposed here represents the first steps towards incorporating Atwood-dependent non-locality544

informed by direct measurements into a turbulent mixing model, and future work would545

involve integrating these findings into a complete, usable model. The algebraic model is of546

the following form:547 [
1 +a10 d

dη
+a20 d

dη2
+a01

(
1− 2

d

dη

)]
F̂ = a00⟨ρ⟩dỸH

dη
. (75)

amn are model coefficients associated with moments Dmn but algebraically defined within548

the mixing zone:549

a00 = (1.4A+ 0.58)

(
1−

(
η

ξ

)2
) 1

2

, (76)

a10 = (0.4A+ 0.38)
η

ξ
, (77)

a01 = 0.4A+ 0.18, (78)

a20 = (−0.05A− 0.04)

(
1−

(
η

ξ

)2
)
, (79)

where ξ is chosen to be 1.1, and amn are zero outside ±ξ. The functional forms of the model550

coefficients are chosen to match the shapes of the amn obtained through the MMI procedure551
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(a) (b) (c)

1

(d)

FIG. 25: Coefficients of proposed model (dashed orange) compared to amn determined from MFM

measurements (solid blue) at A = 0.05.

(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 26: F predictions from ensemble-averaged high fidelity simulations (solid blue), model using

analytically-defined coefficients (dashed orange), and model using coefficients determined from

MFM measurements (dotted green).

on the MFM measurements of the eddy diffusivity moments from the A = 0.05 case, as shown552

in Figure 25 . The dependence on A of each amn is determined such that the predictions553

of F resulting from the model are close to F from the high fidelity simulation. A linear554

dependence on A is chosen for its simplicity and appears to suit the cases considered here555

well. More data at different A could confirm the dependence proposed here or inform a more556

accurate fit.557

Figure 26 shows predictions of F using the proposed model and a model using coefficients558

found through the MMI (henceforth referred to as the MFM-based model) procedure compared559

to F from high fidelity simulations. These predictions are obtained by solving the proposed560

model in Equation 75 and the MFM-based model in Equation 73 using ⟨ρ⟩ and ỸH from the561

high fidelity simulations. The proposed model predicts F close to that from the high-fidelity562

simulations for all Atwood numbers. This is an improvement from the MFM-based model,563

which overpredicts F at higher Atwood number (A ≥ 0.5), since the simulations for those A564

give − D̂01

D̂00
above the threshold of 0.25. This suggests that the proposed linear dependence of565

the model on A may be sufficient for this range of A, but more data should be gathered to566
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confirm whether this is the case, especially at higher A not examined here.567

The effective eddy diffusivity moments of the proposed model are now examined and compared568

with the eddy diffusivity moments measured from high fidelity simulations using MFM. To569

obtain the model eddy diffusivity moments, MFM is applied directly to the model by specifying570

dỸH

dη
in the self-similar MMI equations and solving them for F̂mn. The resulting equations571

are572 [
1 + â10

d

dη
+ â01

(
3− 2η

d

dη

)
+ â20

d2

dη2

]
F̂ 00 = â00⟨ρ⟩, (80)[

1 + â10
d

dη
+ â01

(
5− 2η

d

dη

)
+ â20

d2

dη2

]
F̂ 10 = â00⟨ρ⟩η, (81)[

1 + â10
d

dη
+ â01

(
4− 2η

d

dη

)
+ â20

d2

dη2

]
F̂ 01 = â00⟨ρ⟩, (82)[

1 + â10
d

dη
+ â01

(
7− 2η

d

dη

)
+ â20

d2

dη2

]
F̂ 20 = â00⟨ρ⟩η

2

2
. (83)

The model D̂mn are computed from the F̂mn:573

D̂00 =
F̂ 00

⟨ρ⟩
, (84)

D̂10 =
F̂ 10 − η⟨ρ⟩D̂00

⟨ρ⟩
, (85)

D̂01 =
F̂ 01 − ⟨ρ⟩D̂00

⟨ρ⟩
, (86)

D̂20 =
F̂ 20 − η⟨ρ⟩D̂10 − η2

2
⟨ρ⟩D̂00

⟨ρ⟩
. (87)

Figure 27 shows the model eddy diffusivity moments compared to the eddy diffusivity574

moments from high-fidelity simulations, the latter of which is now referred to as the “true”575

eddy diffusivities. It is not surprising that the model eddy diffusivity moments at A = 0.05576

are close to the true moments, since the model coefficients amn are fit to that Atwood case.577

Better fits could potentially be achieved by using more sophisticated functions of η to better578

capture the smoothness of the profiles at the edges of the mixing layer. As A increases,579

the model moments are not as close to the true moments, since the coefficients are not580

tuned to result in moments matching those measured in the high-fidelity simulations. The581

most notable discrepancy is among the temporal moments—the model D̂01 become lesser in582

magnitude relative to the truth as A increases. It is not immediately clear whether these583

differences are due to issues with self-similar convergence at high A or they are indicating584

that the proposed model is lacking higher-order nonlocal information. To assess this, the585
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D̂00 D̂10 D̂01 D̂20

A = 0.05

A = 0.3

A = 0.5

A = 0.8

η

FIG. 27: Eddy diffusivity moments of proposed model (dashed orange) compared to MFM

measurements (solid blue).

A − D̂01

D̂00

0.05 0.11

0.3 0.13

0.5 0.16

0.8 0.16

TABLE IV: Maximum ratio of magnitudes of first temporal moment and leading order moment

from the proposed model for each Atwood case.

Atwood dependency of nonlocality proposed here should be incorporated into a full RANS586

model to be spatio-temporally evolved. This should be the subject of future work.587

In Table IV, the − D̂01

D̂00
from the proposed model is presented to confirm that it goes below the588

threshold of 0.25 for all Atwood cases. For this model, − D̂01

D̂00
increases with A but remains589
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below 0.25.590

V. CONCLUSION591

In this work, MFM is used to measure the eddy diffusivity moments associated with mean592

scalar transport in turbulent RT mixing for different Atwood numbers. Similarly to a past593

work studying 2D, low-Atwood RT [1], it is found here that nonlocality is important for594

modeling 3D RT mixing. There are several takeaways from this work:595

1. Over the Atwood numbers studied here (A = 0.05, A = 0.3, A = 0.5, and A = 0.8), it596

is found that the importance of nonlocality increases as A increases. This is observed597

through examination of the eddy diffusivity moments measured using MFM and the598

terms of the Kramers-Moyal expansion. Higher-order terms become closer in magnitude599

to the leading order moment with increasing A. This suggests nonlocality is especially600

important in modeling RT mixing at higher A.601

2. Temporal nonlocality appears to be more important than spatial nonlocality. In testing602

different combinations of eddy diffusivity moments in an inverse operator, it is found603

that addition of temporal moments results in the most significant changes in predictions604

of F . The predictions for the A = 0.05 and A = 0.3 cases are close to F from605

high-fidelity simulations.606

3. The eddy diffusivity moments must satisfy the constraint − D̂01

D̂00
< 0.25 in the self-similar607

zone for an inverse operator described by Equation 73 to be robust. That is, inverse608

operators using moments that violate this constraint do not have dissipation terms,609

resulting in unstable solutions. It appears that RT mixing that is not far into the610

self-similar regime does not satisfy this constraint.611

4. Higher-order eddy diffusivity moments take longer to reach self-similarity than lower-612

order moments, and this effect is greater with increasing A. This means that even if613

certain metrics for self-similarity (e.g., convergence of α or ϕ) are met, higher-order614

eddy diffusivity moments may not yet be self-similar. Thus, it is important to carefully615

examine the self-similarity of the higher-order moments themselves when making616

conclusions about the self-similarity of the turbulent mixing.617

5. An inverse operator with algebraically-defined coefficients is proposed for mean scalar618

transport. This is presented as a framework for incorporating non-locality and its619

dependence on Atwood number, with the goal of utilizing this to improve RANS models620

in future work.621

Througn examination of four Atwood number cases, an Atwood number dependence has622
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been identified in the relative importance of nonlocal terms. To further quantify the At-623

wood dependence, future work should perform these analyses at more Atwood numbers.624

Particularly, it would be helpful to study intermediate A between 0.05 and 0.3 to identify625

trends or transitions in behavior from low to intermediate Atwood numbers. This would give626

better insight into the Atwood dependence of nonlocality and potentially allow for robust627

quantification of this dependence.628

More work should be done to explore incorporation of the Atwood-dependence of nonlocality629

into turbulence models. The model proposed in §IVA3 uses fairly simple functions of η630

for its coefficients, and these functions were chosen to fit a limited amount of data. More631

Atwood cases should be studied to provide more data for tuning the coefficients to give more632

accurate predictions. Additionally, an a priori assessment of the model is presented here, in633

that quantities from the simulation, particularly ⟨ρ⟩ and ỸH , were used to solve F transport634

equation. A more thorough assessment would involve solving the full set of model equations635

including those for scalar transport, momentum, and density.636

It is also found that the high Atwood simulations do not go far into the self-similar regime,637

and that the moments measured from these cases do not exhibit good self-similar collapse.638

Data from later in the self-similar regime for these Atwood cases would improve this analysis.639

This would likely require higher resolution simulations that allow the RT mixing to develop640

further into the self-similar regime.641

While the present work is an analysis in the self-similar regime, future work should consider642

MFM analysis in spatio-temporal coordinates. Ultimately, a model that accurately predicts643

mixing across all regimes is desired, which would require departure from self-similar analysis.644

MFM analysis in spatio-temporal coordinates and examination of the eddy diffusivity moments645

across the turbulent transition could facilitate progress towards this goal.646

Overall, unique insights are acquired into the importance of nonlocality in variable density647

3D RT mixing. To make turbulent mixing models for RT instability more accurate, this648

nonlocality must be incorporated into the models. The work presented here lays out the first649

steps towards constructing such a model based on direct measurements of the eddy diffusivity650

governing mean scalar transport. Future work will investigate practical ways to incorporate651

this information into RANS models, such as the k–L model [13].652
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Appendix A: Artificial fluid method in Pyranda656

Artificial molecular viscosity, bulk viscosity, thermal conductivity, and species diffusivity are657

computed and added to the physical fluid properties to dampen numerical instabilities that658

may arise due to the high-order numerics:659

µ = µf + µ∗, (A1)

β = βf + β∗, (A2)

κ = κf + κ∗, (A3)

D = Df +D∗, (A4)

(A5)

where f denotes the physical fluid property, and ∗ denotes the artificial quantities, defined as660

follows:661

µ∗ = 10−4ρ|F(SijSij)|∆2, (A6)

β∗ = 7× 10−2ρ

∣∣∣∣F (∂ui

∂xi

)∣∣∣∣∆2, (A7)

κ∗ = 10−3ρcvF(T )

T

∆2

∆t
, (A8)

D∗ = max
[
10−4F(YH), 10

2|YH | − 1 + |1− YH |
] ∆2

∆t
. (A9)

(A10)

Above, the bar is the Gaussian filter described in Cook [44], and Sij is the strain rate tensor,662

defined as 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. F is the eighth-order operator:663

F = max

(
∂8

∂x8
∆8,

∂8

∂y8
∆8,

∂8

∂z8
∆8

)
. (A11)

664

Appendix B: Autocorrelation Curves in y from 3-D Simulations665

The autocorrelation in y is defined as666

ρqq(r2) =
⟨q(x, y, z, t)q(x, y + r2, z, t)⟩

⟨q(x, y, z, t)2⟩
, (B1)

which we take over the entire domain in y. Here, ⟨∗⟩ denotes averaging over x and z for667

one realization. The autocorrelations are plotted in 28, which we observe also decay to zero.668
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(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

FIG. 28: Correlation curves over r2 at different Atwood numbers at the last timesteps of the

simulations. Curves are averaged over x and z.

(a) A = 0.05 (b) A = 0.5 (c) A = 0.8

FIG. 29: Integral length scales at different Atwood numbers over time using Equation B3 (solid

blue) and Equation B2 for Y ′′
H (dashed orange), u′′ (dotted green), and v′′ (dash-dotted red).

Based on ρqq(r2), we define the normalized integral length scale:669

Lqq =

∫
ρY Y (r2)dr2

hb

. (B2)

LI can also be approximated using the energy spectrum, as shown by Morgan et al. [14]:670

LI =
1

hb

∫
k−1E(k)dk∫
E(k)dk

. (B3)

These length scales are plotted in Figure 29. LY Y and Lvv, which are based on quantities671672

dominated by the gravitational acceleration, are similar and larger than Luu over all τ . In673

late time, LI is nearly parallel with LY Y and Lvv. At early times, LI deviates more from674

LY Y and Lvv, and this mismatch becomes larger as A increases.675
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Appendix C: Self-similar collapse of eddy diffusivity moments676

Figures 30 - 33 show the self-similar collapse of the eddy diffusivity moments. Normalization677

is applied according to Equations 51 - 56.678

FIG. 30: Self-similar collapse of eddy diffusivity moments at A = 0.05. Dark lines are earlier times,

and light lines are later times.
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FIG. 31: Self-similar collapse of eddy diffusivity moments at A = 0.3. Dark lines are earlier times,

and light lines are later times.
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FIG. 32: Self-similar collapse of eddy diffusivity moments at A = 0.5. Dark lines are earlier times,

and light lines are later times.
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FIG. 33: Self-similar collapse of eddy diffusivity moments at A = 0.8. Dark lines are earlier times,

and light lines are later times.

Appendix D: Requirements on eddy diffusivity moments for a robust model form679

For simplicity and ease of algebra, we derive the requirements on eddy diffusivity moments680

for a robust inverse operator using the moments D00, D10, and D01. It has been found that681

the same requirement on −D10

D00 is recovered for inverse operators using D00, D10, D01, and682

D20 through a similar analysis.683
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(a) a00 (b) a10 (c) a01

FIG. 34: MMI coefficients determined using D00, D10, and D01 for different Atwood numbers.

The inverse operator using D00, D10, and D01 is684 [
1 + a10

∂

∂y
+ a01

∂

∂t

]
F = a00⟨ρ⟩∂ỸH

∂y
. (D1)

Figure 34 shows the MMI coefficients amn for the above model, determined from the MFM-685

measured eddy diffusivity moments for each Atwood case. The two lowest Atwood cases,686

A = 0.05 and A = 0.3, have positive a01. It appears that for higher Atwood numbers, the687

MMI process results in negative a01 and, therefore, models with no destruction terms. This688

indicates that 1) the MMI process may not always produce a robust model, depending on the689

form of the inverse operator, and 2) there must be some crossover A over which the model690

that results from the MMI process changes from robust to non-robust.691

Based on the observation that, with certain combinations of eddy diffusivity moments, MMI692

does not produce robust models for higher Atwood numbers, there must be a requirement693

on eddy diffusivity moments for MMI to result in a robust model, depending on the form694

of the inverse operator. To determine this requirement for different operators, the MMI695

equations (Equations 61 - 64) are analytically solved in self-similar space and obtain the MMI696

coefficients in terms of the eddy diffusivity moments used in the models and their derivatives.697

The self-similar MMI equations for the operator in Equation D1 are698

â00⟨ρ⟩ − â10
d

dη
F̂ 00 − â01

(
3− 2η

d

dη

)
F̂ 00 = F̂ 00, (D2)

â00⟨ρ⟩η − â10
d

dη
F̂ 10 − â01

(
5− 2η

d

dη

)
F̂ 10 = F̂ 10, (D3)

â00⟨ρ⟩ − â10
d

dη
F̂ 01 − â01

(
4− 2η

d

dη

)
F̂ 01 = F̂ 01. (D4)
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(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 35: Numerators of the MMI coefficients for the moment combination D00, D01, and D10 for

each A. Solid blue: a00, dashed orange: a10, dotted green: a01.

An MMI fitting matrix M is constructed from the terms on the left-hand sides of these699

equations. The determinant of that matrix is700

D = det(M) = ⟨ρ⟩3
(
4D̂01D̂10

′
+ D̂00D̂10

′
+ 4D̂01D̂00 + D̂00

2
− 2ηD̂01

′
D̂00 − 5D̂10D̂01

′)
.

(D5)

The MMI coefficents are then701

â00 =
D00

D
, â10 =

D10

D
, â01 =

D01

D
, (D6)

where702

D00 =⟨ρ⟩3
(
−2ηD̂00

2
D̂01

′
+ 2ηD̂00D̂01D̂00

′
+ D̂00

3
+ D̂002D̂01 + D̂00

2
D̂10

′
+ D̂00D̂01D̂10

′

−D̂00D̂10D̂00
′
− 2D̂00D̂10D̂01

′
+ D̂01D̂10D̂00

′)
, (D7)

D10 =⟨ρ⟩3
(
−2ηD̂01D̂10

′
+ 2ηD̂10D̂01

′
− D̂00D̂10 + D̂01D̂10

)
, (D8)

D01 =⟨ρ⟩3
(
−D̂00D̂01 − D̂01D̂10

′
+ D̂10D̂01

′)
. (D9)

Concerning the robustness of this inverse operator, the relevant coefficient is â01. As seen703

in Figure 35, over the A studied, the numerator of this coefficient does not change sign, so704

whether or not the coefficient changes sign is determined by the determinant of the MMI705

fitting matrix. Figure 36 shows the determinants of the MMI matrix. At A = 0.05, the706

determinant is always positive, but flips sign between A = 0.3 and A = 0.5. Additionally, D707

for A = 0.3 crosses zero for some η. Since eddy diffusivity moments from the A = 0.05 case708

(Figure 34) gives MMI coefficients that have the correct signs, D must be positive for this709

operator (using D00, D01, and D10) to be robust.710

To determine the requirements on the eddy diffusivity moments for D > 0,the terms that711

compose D, which are plotted in Figure 37, are examined. Based on those plots, 4D̂01D̂00 and712
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(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 36: Determinants of the MMI fitting matrix for the moment combination D00, D01, and D10

for each A.

(a) A = 0.05 (b) A = 0.3 (c) A = 0.5 (d) A = 0.8

FIG. 37: Terms composing the determinants of the MMI fitting matrix for the moment

combination D00, D01, and D10 for each A. Solid lines are the terms 4D̂01D̂00 (teal) and D̂00
2

(blue).

D̂00
2
are the dominant terms in the determinant. Thus, when − D̂01

D̂00
≈ 0.25, the determinant713

becomes zero, and there are no solutions for the coefficients. For − D̂01

D̂00
< 0.25, the model714

coefficients have the correct sign; at A = 0.05, − D̂01

D̂00
≈ 0.1. For − D̂01

D̂00
> 0.25, the model715

coefficients flip sign; at A = 0.5, − D̂01

D̂00
≈ 0.4. Thus, for a robust first spatio-temporal inverse716

operator, − D̂01

D̂00
must be under 0.25.717
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[35] S. Thévenin, B.-J. Gréa, G. Kluth, B. T. Nadiga, Leveraging initial conditions memory for797

modelling Rayleigh–Taylor turbulence, Journal of Fluid Mechanics 1009 (2025) A17.798

[36] S. B. Pope, Turbulent Flows, Cambridge University Press, 2000.799

[37] R. H. Kraichnan, Eddy viscosity and diffusivity: exact formulas and approximations, Complex800

Systems 1 (1987) 805–820.801

[38] J. Liu, Analysis of Nonlocal Effects in Turbulence Closures With Application to Wall-Bounded802

Flows, Stanford University, 2024.803

[39] F. Hamba, An analysis of nonlocal scalar transport in the convective boundary layer using the804

Green’s function, Journal of Atmospheric Sciences 52 (1995) 1084–1095.805

[40] D. Park, A. Mani, Direct calculation of the eddy viscosity operator in turbulent channel flow806

at reτ= 180, Journal of Fluid Mechanics 998 (2024) A33.807

[41] D. L. O.-L. Lavacot, J. Liu, B. E. Morgan, A. Mani, Techniques for improved statistical808

convergence in quantification of eddy diffusivity moments, 2025. URL: https://arxiv.org/809

abs/2503.06418. arXiv:2503.06418.810

[42] J. Liu, H. Williams, A. Mani, Systematic approach for modeling a nonlocal eddy diffusivity,811

Physical Review Fluids 8 (2023) 124501.812

[43] R. F. Pawula, Approximation of the linear Boltzmann equation by the Fokker-Planck equation,813

Phys. Rev. 162 (1967) 186–188.814

[44] A. W. Cook, Artificial fluid properties for large-eddy simulation of compressible turbulent815

mixing, Physics of fluids 19 (2007).816

51

https://arxiv.org/abs/2503.06418
https://arxiv.org/abs/2503.06418
https://arxiv.org/abs/2503.06418
http://arxiv.org/abs/2503.06418

	CoverPage-Main-1d6c10df1b7db2d08c875428624bcb39.pdf
	Disclaimer-Auspices.pdf
	RR0048574.pdf
	Atwood effects on nonlocality of the scalar transport closure in Rayleigh-Taylor mixing 
	Abstract
	Introduction
	Numerical methods
	Governing equations
	RT mixing and self-similarity
	Numerical solution to governing equations

	Analysis of nonlocality
	Modeling the mean scalar transport operator
	Measuring the eddy diffusivity moments using the Macroscopic Forcing Method
	Self-similar scaling
	Eddy diffusivity moments
	Nonlocal length and time scales
	Kramers-Moyal terms

	Importance of moments in modeling
	Matched Moment Inverse
	Inverse operator using only spatial moments of eddy diffusivity
	Inverse operator using spatial and temporal moments of eddy diffusivity
	Atwood dependence of nonlocality in a model


	Conclusion
	Artificial fluid method in Pyranda
	Autocorrelation Curves in y from 3-D Simulations
	Self-similar collapse of eddy diffusivity moments
	Requirements on eddy diffusivity moments for a robust model form
	References



