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Dissipative ground state preparationin ab
initio electronic structure theory

M| Check for updates

Hao-En Li® 2 Yongtao Zhan ®° & Lin Lin ® %*

Dissipative engineering is a powerful tool for quantum state preparation, and has drawn significant
attention in quantum algorithms and quantum many-body physics in recent years. In this work, we
introduce a novel approach using the Lindblad dynamics to efficiently prepare the ground state for
general ab initio electronic structure problems on quantum computers, without variational parameters.
These problems often involve Hamiltonians that lack geometric locality or sparsity structures, which
we address by proposing two generic types of jump operators for the Lindblad dynamics. Type-l jump
operators break the particle number symmetry and should be simulated in the Fock space. Type-l
jump operators preserves the particle number symmetry and can be simulated more efficiently in the
full configuration interaction space. For both types of jump operators, we prove that in a simplified
Hartree-Fock framework, the spectral gap of our Lindbladian is lower bounded by a universal constant.
For physical observables such as energy and reduced density matrices, the convergence rate of our
Lindblad dynamics with Type-I jump operators remains universal, while the convergence rate with
Type-Il jump operators only depends on coarse grained information such as the number of orbitals and
the number of electrons. To validate our approach, we employ a Monte Carlo trajectory-based
algorithm for simulating the Lindblad dynamics for full ab initio Hamiltonians, demonstrating its
effectiveness on molecular systems amenable to exact wavefunction treatment.

Quantum state preparation is a fundamental task in quantum simulation
and quantum algorithm design' . While eigenstates of a Hamiltonian can,
in principle, be prepared using quantum phase estimation (QPE) and its
variants, these algorithms themselves often require an initial state that has a
significant overlap with the target state’””. Dissipative state engineering
offers a very different perspective on this problem. Rather than treating
dissipation as a source of decoherence due to system-environment coupling,
properly designed dissipative dynamics, such as those governed by the
Lindblad equation, can encode a wide variety of strongly correlated states as
the steady states of a dynamical process. Dissipative techniques and state
preparation techniques using mid-circuit measurements, in general, have
been widely employed in preparing matrix product states, ground states of
stabilizer codes, spin systems, and other states exhibiting long-range
entanglement”'*””. There has been also growing recent interest in using
Lindblad dynamics as an algorithmic tool for thermal state and ground state
preparation””™'. However, many applications have focused on Hamilto-
nians with special structures, as the dissipative terms often need to be
carefully engineered based on the special properties of the Hamiltonian. In
contrast, in quantum chemistry and materials science, ab initio

Hamiltonians lack specific geometric locality or sparsity, which significantly
complicates the design of dissipative terms.

In this work, we overcome this difficulty and present a novel
method for using Lindblad dynamics to efficiently prepare the ground
state for general ab initio electronic structure problems on quantum
computers. Our approach builds upon recent developments in quantum
ground state preparation®, which has the advantage of being applicable
to both commuting and non-commuting Hamiltonians on an equal
basis. Unlike ref. 25, which prepares the ground state using a single jump
operator together with a coherent term, we propose two sets of Lindblad
jump operators, termed Type-I and Type-II. Each set contains poly(L)
jump operators (L is the number of spatial orbitals), which are agnostic
to chemical details and thus can readily be applied to ab initio Hamil-
tonians with unstructured and long-range coefficients. The process does
not involve variational parameters. Type-I Lindblad dynamics break the
particle-number symmetry and must be simulated in the Fock space. In
contrast, Type-II jump operators preserve the particle number, allowing
for more efficient simulation (on both classical and quantum computers)
in the full configuration interaction (FCI) space.
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Fig. 1 | Conceptual workflow illustrating the
proposed dissipative ground state preparation
method. We consider the ab initio Hamiltonian in
electronic structure theory for molecular systems.
The central task in this framework is to construct
Lindblad jump operators, derived from either Type-
I or Type-II coupling operators. An active-space

H
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strategy is employed to reduce the simulation cost.
The Lindblad dynamics can be efficiently simulated
on quantum devices using only a single ancilla qubit,
and the approach is classically validated using a
wavefunction trajectory method.
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The efficiency of Lindblad dynamics for quantum state preparation is
quantified by the mixing time, which is the time required to reach the target
steady state to a certain precision from an arbitrary initial state””. Theo-
retical analysis of the mixing time is in general a challenging task, and is
often feasible only for specific systems, parameter regimes, or simplified
settings™. Our strategy is to first theoretically analyze the spectral gap of
the Lindbladian, as well as dynamics of observables, such as the energy and
the reduced density matrix (RDM), within a simplified Hartree-Fock (HF)
framework. In this setting, the combined action of the jump operators
effectively implements a classical Markov chain Monte Carlo within the
molecular orbital basis. We prove that the convergence can be provably
agnostic to specific chemical details, and in some cases, the convergence rate
can be universal. We then perform numerical simulations to examine the
transferability of this behavior to the full ab initio Hamiltonian, using an
approach based on unraveled Lindblad dynamics. We also present an
active-space-based strategy to reduce the number of jump operators in the
implementation, thereby lowering the simulation cost while preserving the
convergence behavior. This is applied to molecular systems, such as BeH,,
H,0, and Cl,, which are amenable to exact wavefunction treatment within
the FCI space. We also apply our method to investigate the stretched square
H, system, which has nearly degenerate low-energy states and poses chal-
lenges for highly accurate quantum chemistry methods, such as CCSD(T).
In all cases, the Lindblad dynamics can prepare a quantum state with an
energy that achieves chemical accuracy, even in the strongly correlated
regime. A schematic workflow of our approach is shown in Fig. 1.

Results
Dissipation engineering for ground state preparation
We consider Lindblad dynamics of the form:

%P = L[p] = Lylp] + Llpl
S & ot o1 e 1
= —i[H,p] + ;Kkak — (KK, p}- 0
For ground state preparation, the key object in Ref. 25 is the following jump
operator:

= f = DALy .
ij

)

Here, {A4} are called (primitive) coupling operators, whose selection will be
discussed in detail later. Each jump operator K is derived by reweighting Ay
in the eigenbasis {|‘//1>} N " of the Hamiltonian by a filter function f(w)

evaluated at the energy difference A; — A;. The filter function f(w) is only
supported on the negatlve axis. In other words f, =, ;) = 0 for any i
(assuming Ay <A;< -++ <Ay_1). Asaresult, the jump operator K only allows
transitions between the eigenvectors of H that lower the energy. Since the
Lindblad dynamics generate a completely positive, trace preserving (CPTP)
map'*, (yilp(f)|y;) is a normalized probability distribution at time any £. In
the energy basis, the dynamics continuously “shovels” high-energy states
toward low-energy ones, eventually reaching the ground state, as shown in
Fig. 2. Furthermore, we can easily verify K «lw,) = 0 since f (A —2)=0
for any j > 0. This immediately suggests that the ground state |1//0 (Wolisa
stationary point of the Lindblad dynamics. This dynamics is ergodic if the
ground state is the only stationary point, and this can be achieved by a
carefully chosen set of coupling operators {A}.

At first glance, it may seem that constructing the jump operator in
Eq. (2) requires diagonalizing H, which would clearly defeat the purpose.
However, we can reformulate the definition of K, in the time domain as

K, = /lR FE)AL) ds, )

where A;(s) = eifs A e~ is the Heisenberg evolution of Ay, and f (s) =
L f Rf (w)e™ s dw is the inverse Fourier transform of the filter function f in
the frequency domain.

In this form, the construction of the jump operator can be achieved
using standard Trotter expansions for digitally simulating the Hamiltonian
evolution. Additionally, the Trotter expansion can also be applied to
simulate the Lindblad dynamics in Eq. (1). The choice of the filter function
depends only on coarse-grained properties of the system, such as estimates
of the spectral radius and the spectral gap H. A brief review of the selection of
the filter function, the quantum simulation algorithm, as well as a rule of
thumb for resource estimates is provided in the Methods section and Section
I in the Supplementary Information (SI), respectively.

Types | and Il jump operators for ab initio calculations

Unlike lattice problems, the second-quantized Hamiltonians in ab initio
electronic structure calculations do not have clean forms, such as nearest-
neighbor interactions. Therefore, it is important to choose a simple yet
effective set of coupling operators {Ak} that are easy to implement and allow
the system to converge rapidly towards the ground state. In this work, we
introduce two simple sets of primitive coupling operators, referred to as
Type-1and Type-II, respectively. The corresponding jump operators can be
constructed according to Eq. (3).
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Fig. 2 | A conceptual illustration of the “shoveling”
process in ground state preparation via Lind-
bladians. The choice of jump operators ensures that
the Lindbladian only allows transitions from high-
energy eigenstates to low-energy eigenstates.

(ilp [s)

(ilp i)

Ao A1 A AN-1

We choose the set of Type-I coupling operators to be
A = {a;rli =1,2,---,2L}U{a;li=1,2,--- ,2L}. This includes all of
the 4L (counting spatial and spin degrees of freedom) fermionic creation
and annihilation operators. Each operator can be expressed in the atomic
orbital basis, molecular orbital basis, or some other basis set. These different
choices differ by a unitary matrix. Given the linear relationship between the
jump operator and the coupling operator, a unitary rotation of the coupling
operators will correspondingly induce a unitary rotation of the jump
operators. This unitary rotation can be viewed as a gauge degree of freedom.
Ideally, the numerical result should be independent of this gauge. We will
verify that this is indeed the case in a simplified HF setting.

The set of Type-II coupling operators is Ay = { a,Tajli J=
1,2,---,2L} which includes every fermionic creation and annihilation
pairs, and has 41?2 elements in total. Most Hamiltonians in ab initio elec-
tronic structure calculations are particle-number-preserving. Unlike Type-I
coupling operators, which break particle number symmetries and must be
simulated in the Fock space, Type-II coupling operators (and the corre-
sponding jump operators) preserve particle number symmetries. The cor-
responding Lindblad dynamics can be simulated in the FCI space. Note that
the dimension of the density matrix in the Fock formulation is 4% and that

2
of the FCI space is (ZZ\TL) , where N is the number of electrons. The
€

difference becomes particularly significant when N, is very small or large,
such as simulating alkali metals and halogen elements in a small basis set.
The particle number symmetry can be used also reduce the cost of quantum
simulations, such as the Trotter error for Hamiltonian simulation e Ht*#,
or the block encoding subnormalization factors of the Hamiltonian***“.

Both Type-I and Type-II sets are “bulk” coupling operators, meaning
that dissipation is introduced on every (atomic or molecular) basis function.
As will be seen below, this can be very effective in reducing the mixing time.
On the other hand, this comes at the cost of introducing a large number of
jump operators, which increases the simulation cost, both on quantum
computers™ and in classical simulation. We will also discuss how to reduce
the number using active space ideas.

Universal fast convergence with Type-I set in HF theory

We first consider the ground state preparation via Lindbladians at the HF
level before moving on to the interacting regime. We refer readers to the
Methods section for a brief review of the HF theory. Essentially, after self-
consistency is reached, all the information of the HF theory is encoded in a
non-interacting Hamiltonian

2L

H=>_ Fyapa, )

pq=1

where the Hermitian matrix F s called the Fock matrix. Let ® be the unitary
matrix that diagonalizes F, then the new basis set, known as molecular
orbitals, is obtained by transforming the atomic orbitals using ®. For such
Hamiltonians, the information contained in the many-body density

operator p is entirely stored in the one-particle RDM (1-RDM), defined as
P, =Tr(paja), 1<ij<2L. 5)
According to the Thouless theorem™***,
élal = Z al(e),e, ea; = Z (e F)qa,e. ©)
P q
Therefore, we have
IA<p‘+ = jﬁf(s)emsa;e*msds
2L ) I
— fRf(s) ; aI(EIFS)r.p eifls g—iHs q¢ (7)
A
=2 4B,
and similarly
I%q‘_ = fRf(s)eiHSaqe_iH‘ds
A I
— fRf(S) r:zl (e"Fs)q",a,e‘Hse"H’ds (8)
a
= Zl ar(f(_F))q‘r'

This implies that for the Type-I set, the jump operators are all linear in
fermionic creation and annihilation operators. The corresponding Lindblad

dynamics is quasi-free* ", and we can derive a closed-form equation of

motion for the 1-RDM
9,P(t) = —i[F, P(t)] + B — %[P(t)(B +O)+B+OPWH]. (9
Here

B=f(B)(F) =F(P),

A 5 (10)
C=f(-Pf(-B =f (-P),

and we use the fact that the Fock matrix Fis Hermitian. A detailed derivation
of Eq. (9) can be found in Section II in the SI. For any filter function f
satisfying f (w) = 1on[-2 || H||,, —A]and f(w) = 0 on [0, + <o), we have

(11

where 1 is the identity matrix. The equation of motion Eq. (9) then takes a
very simple form

B+C=f(B)+f (-F)=1,

9,P(t) = —i[F, P(t)] — P(t) + f(F). (12)
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Fig. 3 | A conceptual illustration of the evolution
of the diagonal elements of the 1-RDM for ground
state preparation with Type-I set. The occupation

| linear bulk dissipation (Type-l set) }

numbers on each molecular orbital increase or
decrease independently in an exponential rate.
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nl (O)G_t

4 : v :
: § M v
: v
I molecular
orbitals
(n1) (n2) -+ (nn,) | (eN g )nNa2) - - - (nap)
|HF)
molecular
orbitals

(n1) (n2) ... (nn,)

(nN+1)(nNa2) - - - (nar)

In particular, if we perform a unitary rotation of the fermionic creation and
annihilation operators used to define the primitive coupling operators, this
amounts to a gauge choice, and the final equation of motion Eq. (12) is
gauge-invariant. .

From Eq. (12) we can easily see that P* = f(F) is the unique stationary
point. In fact, let P(¢) and P'(¢) be the solution to solve Eq. (12) with different
initial values P(0) and P'(0), then

Il P(t) = P'(t) Il = e "Il P(0) — P'(0) g, (13)
where || A [|p := 4/ Tr(A'A) denotes the Frobenius norm of matrices. The
detailed derivation of Eq. (13) is provided in Section IV in the SL

We may get more insight by rewriting Eq. (12) in the energy basis.
Specifically, we define

P=afpp = (Tr(pcjci )1 ) (14)
<ij<

where @ is the coefficient matrix of the molecular orbitals. Then we have

3,P(t) = —i[A, P(t)] — P(t) + f(A). (15)

Here we use FA =
£1S~~S£NeSO<eNEHS~-
given by

A® and A = diag(e, » &) with
< g,; . Therefore, the stationary point P* is

ﬁ*:f(A)zdlag(177l70770)
S—— ——

N,

e

(16)

2L—N,

e

which is consistent with the aufbau principle, and this is achieved without
explicitly diagonalizing the Fock matrix. In particular, the diagonal elements
of P(t) evolves as follows:

_<ni> + 17

i=1,---,N,, a7)
_(ni>a

9,({n;) = (T)(t))ii = { i=N.+1,--- 2L

Assume the initial occupation numbers Nof the molecular orbitals (i.e., the
diagonal elements of the initial 1-RDM P(0)) is given by 7,(0), then

i:l’...7Ne’ (18)

1= =ng0)e,
<”")_{ i=N,+1,--- 2L

i’li(())eft,

Therefore, in the energy basis, the Lindblad dynamics with Type-I jump
operators can drive the occupation numbers of the lowest N, molecular
orbitals to approach 1 exponentially, while the occupation numbers of the
remaining 2L — N, high-energy molecular orbitals exponentially approach
zero (see Fig. 3). The convergence rate is universal and is independent of any
chemical details or initial starting point. The numerical validation of this
statement will be presented in the later sections.

Convergence with Type-Il set oblivious to chemical details in
HF theory

Let us now carry out the calculation for Type-II jump operators in the HF
setting. Recallf(a)) =1lon[-2] H||2, —A] andf(a)) =0 on [0, + o),
using the Thouless theorem, the jump operators satisfy

IA<,-]- = jﬁf(s)eiﬂsa;raje*iﬁsds

W - (19)
= > fle, —e)cpc, @505 = 37 cpc, @7, D.
pg=1 pP<q

Note that K, is a quadratic operator in the fermionic operators and not
Hermitian. This means that the Lindblad dynamics is not quasi-free, and the
1-RDM cannot satisfy a closed-form equation of motion™. Despite this, we
demonstrate below an explicit description of the dynamics in the energy
basis. For the coherent part,
‘ ofr ot . ¥

EL(CZ c) =i[H,c/c] =i(e, — &)clc,. (20)
Here EL denotes the adjoint of the superoperator £;; with respect to the
Hilbert-Schmidt inner product. Moreover, using that @ consists of
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Fig. 4 | A conceptual illustration of the evolution
of the diagonal elements of the 1-RDM for ground
state preparation with Type-II set. It is a “mass

[quadratic bulk dissipation (Type-li set)}

transport” process from higher energy orbitals to
lower energy orbitals.

| | | | | | molsfullar
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orthonormal columns, we find For the diagonal elements,
oA ~ ~
K K Z >3 cqcpc,csq)q,(l);(l);@]s =2 Py + D Pyt > (npn,) — Do (n,ny)
ij=1 ij p<qr<s (21) p<r q>r p<r q>r
Z ¢ CP q — Z(l - Tl = Z<(1 - ﬂp)f’l,> + Z<(1 - nr)nq> (26)
pP<q pr<q p<r q>r
Similarly, for r # s, =—(Mn,) + ‘;("ﬁ
t YRR, o
Lx (C &)= Z KIJC’ CSKi 2 Ky Ky, e} (22) Further derivations of the equation of motion for the 2-RDM will lead
_ Mo+ M+ to the 3-RDM, and so forth. It resembles the renowned
- _5( rH Mo+ e Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy™. To
Here make the system solvable, we can truncate the equations by neglecting
the higher-order moment terms. At this point, if we consider these
_ P e B matrix elements as random processes, then the equations of motion
My = Zk G+ Zk 4% Zk(l "P) + Z n (23)  describe a classical continuous-time Markov chain, with the stationary
< > < ~
? ! ? distribution 1-RDM  approximately  given by P*=
Forr=s,
diag(1,---,1,0,---,0)according to the aufbau principle. Nonetheless,
- —— ——
Li(cle,) = Z(l —n)n, — Z(l — nyn, (24) N, 2L-N,

q>r p<r
In all the expressions above, the operators occurring in the Lindblad
dynamics are all invariant to the gauge choice in the primitive coupling
operators, and can all be expressed using simple operators in molecular
orbitals. For a detailed derivation of the above equations, interested readers
can refer to the Section III in the SL

Consider the 1-RDM in the molecular orbital basis

(Tr(cr csp))1 <sr<al = ®'P®. Then the equation of motion of the
entries of P depends on that of the 2-RDM. Specifically, for the off-diagonal
elements,

s)P —

3P — —i(e, (M, + M, + Dclc,) r<s,
e —i(e, — &,)P,,

L
f (25)
—Hcfe(M, + M, + 1)) r>s.

from Eq. (25) and Eq. (26), it is evident that the evolution of the RDMs
is oblivious to chemical details, and are solely determined by the
number of orbitals L and the number of electrons N.. Moreover, the
dynamics of the diagonal entries is independent of that of the off-
diagonal entries. For an intuitive understanding of this, it resembles a
“mass transport” process from higher energy orbitals to lower energy
orbitals. Therefore, the change in occupation number of each orbital is
influenced by the electronic population of other orbitals, leading to the
appearance of 2-RDM related terms in the equations (see Fig. 4).

Given that the equations of motion of the entries of the 1-RDM are not
closed, it is more challenging to analyze the convergence rate of the Type-II
settings. Nonetheless, we may provide a qualitative estimation of the con-
vergence rate using mean-field approximation. Let us first focus on the
diagonal elements. For both r > s and r < s, applying the mean-field
approximation to Eq. (25) results in the following linear homogeneous
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Fig. 5| The numerical verification of the chemical-detail-independence in the HF
setting under the two types of dissipation. a Convergence of energy using the Type-
I set for Hartree-Fock state preparation of the molecules H,, LiH, H,O, CH,, HCN,
C,H,, Ny, Hy and SOs. The y-axis is displayed on a logarithmic scale. The con-

vergence rate is universal. The dashed lines represent the convergence of energy for
different molecules, while the solid green line shows the exponential decay exp(—t).

®1

l - Fy, STO-3G, 10018e
1 Fy, STO-6G, 10018e
I LiH, STO-3G, 6o4e
LiH, STO-6G, 6ode
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b Convergence of energy using the Type-I1 set for F,, LiH and H, molecules (square
and chain geometries) in STO-3G and STO-6G. The convergence rate only depends
on the number of orbitals and the number of electrons. The dashed lines represent
STO-3G results, and the dash-dotted lines represent STO-6G results, for F,, LiH, and
H, (square and chain geometries).

equation:

- 1 -
0Py & | = (1 (M, + M) +i(e, ) |P. (27)

So under the mean-field approximation, the off-diagonal entry P,
converges exponentially to zero with an exponent of at least 1, since M is
positive semidefinite for any .

For the diagonal entries, applying the mean-field approximation on
Eq. (26) gives:

atPrr ~ _<Mr>Prr + quq‘

q>r

(28)

Note that M. = 1 for all » < N, and > N, + 1, the convergence rates of the
off-diagonal 1-RDM entries are exponential with the exponent of at least
1. The case r € {N,, N, + 1} is beyond the mean-field analysis. As will be
shown later, these convergence rate arguments can be verified
numerically. A detailed explanation of the results above can be found in
Section IV the SI.

Spectral gap of the Lindbladian in HF theory
In this section, we provide a direct characterization of the spectral gap of the
Lindbladian. The definition of the spectral gap of the Lindbladian is

max

Ap=—
Ae Spec (£)\{0}

RA). (29)

Briefly speaking, the inverse spectral gap of the Lindblad generator provides
an estimate for an upper bound on the mixing time, up to logarithmic
factors in the error tolerance and constants depending on the stationary
state™™".

Consider the following Hamiltonian, which corresponds to the dis-

sipative part of the Lindblad dynamics,

A 1 PN

Hg, =QZKkKk~ (30)
k

Since for every jump operator K k|1//0> = 0, by construction, H dp can be

viewed as a frustration-free parent Hamiltonian of the ground state |y, ).

We have the following theorem (the proof is given in Section V in the SI).

Theorem 1.If [H, 1:%[ ap] = 0, then the spectral gap of the Lindbladian £ is
equal to the gap of Hy,.

In the HF setting, we have established that the equation of motion of
the 1-RDM in the molecular orbital basis is independent of chemical details.
Now we prove a stronger result, which states that the spectral gap of the
Lindbladian is rigorously bounded from below using Type-I and Type-II
jump operators in HF theory.

For Type-I jump operators, by calculating H dp in the molecular orbital
basis (see Section V in SI for details), we obtain

de%z(l—"p”%z Mg

p=N, 9>N,

€)Y

where 1y, g aTE number operators and commute with H, which is diagonal
in the molecular orbital basis. Applying 1, we find that the spectral gap of the
Lindbladian is the same as the gap of H. ap> Which is equal to 3.

For Type-II jump operators, from previous calculations,

N 1
Hy, = EZ(I = 1)1y,

pP<q

(32)

which again only consists of number operators. Applying 1, we find that the
spectral gap of the Lindbladian is also equal to 1.

For thermal state preparation, an estimate of the spectral gap provides a
direct upper bound on the mixing time of the Lindblad dynamics in trace
distance®. This relationship, however, assumes that the stationary state is
invertible, which is not satisfied by the ground state density matrix. In
practice, we observe that the convergence rate of observables aligns closely
with the spectral gap analysis and does not exhibit dependence on sys-
tem size.

Numerical verification in the HF setting

In this section, we numerically verify the convergence rate of observables,
such as energy and 1-RDM at the HF level. The detailed implementation of
these numerical tests can be found in Section VI in the SI.

Using the Type-I set, Fig. 5a shows that the convergence of the energy
towards the ground state energy follows a universal relation exp(—t), for any
molecule in any basis set. This is because the effect of the collection action of
the jump operators is to independently adjust the occupation number of each
molecular orbital, until the aufbau principle is reached. We perform each
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Fig. 6 | Numerical demonstration of the convergence rate of the diagonal and off-
diagonal entries of the 1-RDM with Type-II set. It is tested on the Hy system in
STO-3G. a Convergence of the diagonal entries ﬁ,, = (n,) of the 1-RDM for r<N..
The colored dashed lines are diagonal entries that increase faster than the expo-
nential reference exp(—t) (solid purple). The solid red line corresponds to the growth
of the HOMO occupation number. b Convergence of the diagonal entries IN’,, = (n,)

time ¢

of the 1-RDM for r=N, + 1. The colored dashed lines are diagonal entries that
decrease faster than the exponential reference exp(—t) (solid purple). The solid blue
line corresponds to the decay of the LUMO occupation number. ¢ Convergence of
the off-diagonal entries of the I-RDM. We plot \lsijl / \IN’ij(O)\ for each curve. The
dashed lines represent the decay of off-diagonal entries, which all converge faster
than the exponential reference exp(—t/2) shown in green solid line.

simulation by propagating the 1-RDM according to Eq. (9) using the
DOPRIS5 solver.

Figure 5b shows the convergence rate of the energy using the Type-II
set. The test systems are F, (1.4 A), LiH (1.546 A), chain H, (2.0 A) and
square H, (2.0 A) using STO-3G and STO-6G basis sets. For each molecule,
STO-3G and STO-6G have the same number of orbitals and electrons. The
two isomers of H, also share the same number of orbitals and electrons. We
observe that the convergence of the systems with the same L and N, are
exactly identical up to renormalization, but it varies across those molecules
with different numbers, indicating a nontrivial dependence on both L and
N.. In each system, we perform the simulation by directly propagating the
many-body density operator using DOPRI5 solver in the number-
preserving sector with random initialization.

To further examine the convergence rate, we track the evolution of the
diagonal and off-diagonal entries of the 1-RDM for the H, within STO-3G,
as shown in Fig. 6. From Fig. 6a, b, we see that the convergence rates of the
diagonal entries are faster than exp(—t) except for the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO). Additionally, the off-diagonal entries exhibit convergence expo-
nents of at least . All of the numerical results are in very good agreement
with the mean-field analysis discussed previously.

Transferability to full ab initio calculations

Both Type-I and Type-II coupling operators can be readily applied in full ab
initio calculations. However, the jump operators are no longer linear or
quadratic in fermionic operators. This is because, in the ab initio Hamil-
tonian

H ZP‘IP‘I

pg=1

LY s

P q.r,s=1

CCCC

pars“prqrtsy (33)

the presence of quartic terms prevent us from applying the Thouless the-
orem to simplify the Heisenberg evolution of the coupling operators
A(s) = e Ae~ 15 asin Equations (7), (8) and (19). Consequently, unlike in
the HF Hamiltonian setting, we cannot expect to obtain analytic or semi-
analytic solutions for the dynamics of physical observables like energy or
reduced density matrices. To conceptually demonstrate the transferability of
our approach to full ab initio calculations, we, therefore, perform numerical
simulations of the Lindblad dynamics with Types I and II jump operators in
the FCI space.

For small-sized systems up to 12 spin orbitals, we may choose to
propagate a many-body density operator, or a stochastic wavefunction by
“unraveling” Lindblad dynamics and performing stochastic averages (see
the Methods section as well as Section VI in SI), in the Fock space or in the

FCI space. For systems of larger sizes, the only feasible option for direct
simulation is to simulate the stochastic wavefunction using Type-II jump
operators in the FCI space. We quantify the convergence of the Lindblad
dynamics based on the rate of energy convergence.

We note that both Types I and II sets involve a large number of jump
operators, which can lead to increased simulation costs. However, in
practice, the number of jump operators can be significantly reduced with
minimal impact on efficiency. This is because the primary challenges in
simulating chemical systems often arise in the low-energy space, particularly
near the Fermi surface when we start with the HF initial guess. As a result, we
canapply “active space” techniques to reduce the number of jump operators,
focusing only on the most relevant degrees of freedom. For instance, if we
start from the vacuum state, it is unnecessary to include all operators from

theset A; =

{a P}ZL Uf{a } _,»asthe HF state is confined to the low-energy
sector. we

the
N +r

Sy ={eips¢ jT, Ci s tl}z N1 which includes only the 8r operators

Therefore, can instead  select subset

defined around the Fermi surface under the molecular orbital basis.

We perform the numerical tests for Sj. In all of the four systems
demonstrated in Fig. 7, we choose the initial state to be the HF state. We
observe that energy decreases to Ay with a fidelity within the chemical
accuracy, which shows a good transferability of the active space reduction
idea to full ab initio calculations for the Type-I setting.

Similarly, for the Type-II set, we can start from the HF state or low-
excited Slater determinant and include only the jump operators defined on a
small number of orbitals around the Fermi surface. In this case, we consider
the following reduced set of particle-number preserving coupling operators

S;I = {Czﬂcjﬂ'll.’j € {Ne —r+ 17 e 7Ne + r}707T € {T7 Jr}}7 (34)

which has 167” coupling operators in total. In practice, setting =1 or r=2is
typically sufficient to achieve convergence of the system to its ground state.
The corresponding numerical results are presented in Fig. 8. To compare the
convergence rates of the full ab initio and HF state preparation with the
reduced set Sjj, we begin from the (triplet) excited Slater determinant
cj\, +1,46n,, [HF). Notably, the convergence rate of the full ab initio state
preparation is observed to be not much slower than that of the HF method,
in the sense of Lindblad simulation time required to reach chemical
accuracy.

In fact, the set of Type-II orbitals can be further compressed. For
instance, we may take the subset 77 of Sj; that contains only the hopping
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(c) Chain-like Hy in STO-3G (d) Chain-like Hg in STO-3G

between nearest energy levels of molecular orbitals:

7—IrI = {Czacj,‘rli7j € {Ne —r+ 17 7Ne +r}7

(35)
li—jl=1, o,7e{tl}}

The number of operators in 7} increases only linearly with L for fixed
r. The numerical convergence behaviors 7 7; are shown in Fig. 8. We observe
that the further compression of S}; maintains the simulation efficiency, in
the sense that the Lindblad simulation time required to achieve chemical
accuracy with the 77 set remains comparable to or only slightly longer than
that needed with the S7; set.
The ground state preparation via Lindbladians with the set 7], can
perform well even in strongly correlated systems where the HF state
poorly approximates the true ground state. Examples like the stretched
square H, highlight these challenges due to their nearly degenerate low
energy states, which even highly accurate methods like CCSD(T), often
referred to as the “gold standard" in molecular quantum chemistry,
struggle with refs. 55-57. Our results show that Lindblad dynamics
effectively captures the correlation energy. As shown in Fig. 9a, as the
bond length of the square H, system increases, the energy accuracy of the
HF initial guess decreases. Concurrently, the initial overlap between the
HF state and the true ground state diminishes, indicating a growing
extent of strong correlation. However, as illustrated in Fig. 9b, the
convergence of Lindblad dynamics remains largely unaffected by the
degree of strong correlation starting from the HF initial state at various
bond lengths. Meanwhile, we observe that increasing the extent of strong
correlation leads to slower asymptotic convergence of the Lindblad
dynamics. Specifically, as shown in Fig. 9c, at bond lengths where the
Hamiltonian gap A (i.e., the gap between the ground and first excited
state energies) becomes smaller, the spectral gap of the Lindbladian is
also reduced. Correspondingly, the exponential fitting results in Fig. 9b
demonstrate slower asymptoticconvergence rates. These observations

suggest that stronger correlations in molecular systems can lead to
slower convergence to the ground state.

It is also noteworthy that in Fig. 9b, the behaviors at short and long
bond lengths are different. At short bond lengths, the pre-asymptotic decay
is relatively rapid and the error quickly falls below chemical accuracy,
making the preparation appear easier. In contrast, at long bond lengths, the
pre-asymptotic decay is shorter-lived and the convergence is dominated by
the smaller spectral gap, requiring a longer time to reach chemical accuracy.

Discussion

To our knowledge, this work is the first Lindblad-based ground state pre-
paration algorithm for ab initio electronic structure calculations. The
Lindblad dynamics is employed as an algorithmic tool for dissipative state
engineering, which can be constructed without relying on variationally
adjusted parameters. A notable advantage of this approach is that the
effectiveness of the method can be nearly independent of the quality of the
initial state. This stands in sharp contrast to QPE, whose cost depends
directly on the initial state’s overlap with the target state and can fail if this
overlap vanishes. The “shoveling” process in dissipative state preparation
shares some conceptual similarities with various forms of imaginary time
evolution (ITE)**, but also exhibits notable differences. A direct imple-
mentation of ITE through the application of e~™ does not yield a CPTP
map, and its quantum realization again requires nontrivial overlaps between
the initial and target states. The quantum imaginary time evolution (QITE)
algorithm® addresses some of these challenges, but it relies on a tomography
procedure and its cost can scale explicitly exponentially with system size.
In the dissipative state preparation framework, we prove that the
Lindblad dynamics with Types I and II jump operators can converge
rapidly in a simplified HF setting, and validate the transferability to full
ab initio calculations even for systems exhibiting strong correlation
behaviors. In order to perform numerical simulation for larger systems
with tens to hundreds of spin-orbitals, even propagating the state
vector in the FCI space can be very costly, and advanced simulation
methods, such as quantum Monte Carlo methods or tensor network-
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Fig. 8 | Monte-Carlo trajectory based simulations for full ab initio molecular
systems within the particle-number preserving sector with Sj; and 77},. In all
cases, we initialize with the (triplet) excited Hartree-Fock Slater determinant

CLE +116N,, HE). a-f display results for the Hy, F,, LiH, Cl,, H,O, and BeH,

molecules, respectively. In each panel, the orange line and the green line represent
the energy as a function of time using the Sj; and 77 sets respectively, while the blue

FCI with 7;] set
HF with &f; set
HF with 7} set

CIQ HQO BGHQ
line indicates the ground-state energy of the corresponding system. g presents the
Lindblad simulation time required to achieve chemical accuracy with full ab initio
and simplified Hartree-Fock Hamiltonians. The orange and green bars represent the
FCI simulation time using the Sj; and 77; sets, respectively, while the red bars and
blue bars represent the Hartree-Fock simulation time using the Sj; set and the 77

set, respectively.

based methods must be employed. For practical implementation on
quantum devices, the simulation of Lindblad dynamics involves
repeatedly applying circuit blocks with intermediate measurements,
continuing until the dynamics approach a fixed point. As a result, a
large mixing time in certain systems can lead to a substantial overall
simulation cost. It is, therefore, important to develop a stronger the-
oretical framework for analyzing convergence rates in the ground state
preparation problem. Recent progress in this direction can be found in
ref. 64. This work may also provide new perspectives of ground state

Methods
Choice of filter function and sketch of quantum simulation
algorithm
In this section, we discuss the choice of filter function in ref. 25 and briefly
review quantum algorithms for simulating the Lindblad dynamics.

We begin by reviewing the definition of the jump operator K. Since
the eigenvectors of H are typically not accessible, we express K, in the time
domain as follows:

preparation in other areas, such as nuclei physics, fermions with ran- R

dom coefficients (e.g., the SYK model), or optimization problems on Ky = /R F()A(s)ds (36)
unstructured graphs.
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Fig. 9 | Monte-Carlo trajectory based simulations for the strong-correlated H,
molecule in STO-3G at different bond lengths. a The accuracy of the HF, CCSD
and CCSD(T) energy and the initial overlap between the HF state and the true
ground state p, at different bond lengths for square H, system in STO-3G. The green,
yellow, and purple lines show the energy errors from HF, CCSD, and CCSD(T),
respectively; the blue line shows the initial overlap, and the red dashed line marks
chemical accuracy. b The energy error relative to FCI energy vs. Lindblad simulation
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time at bond lengths d = 1.2, 1.4, 1.6, and 2.0 A. The solid lines (blue, orange, green,
red) represent Lindblad dynamics at bond lengths d=1.2,1.4, 1.6, and 2.0 A; the red
dotted line indicates chemical accuracy, and the dashed lines show the fitting. ¢ The
spectral gaps of the Lindbladian £ and the Hamiltonian at bond lengths d=1.2, 1.4,
1.6 and 2.0 A. The blue line denotes the Lindbladian gap A, while the orange line
denotes the Hamiltonian gap A.

where > Ay(s) = e‘HSA e Hs s the Heisenberg evolution of A, and f(s) =
f Rf(w)e*“"sdw is the inverse Fourier transform of the filter f in the
frequency domain. One possible choice for the filter function in the fre-
quency domain f is given by the following form™
wtay _ wt+b
erf( 5a) erf( 617)
2

flw) = (37)

where erf(w) := f 077 e*’ dt denotes the error function. Here, a is chosen
to be an energy cutoff satisfying a>2 || H||, and b is chosen to be the
spectral gap of the Hamiltonian A := A, — Ao. The parameters &, and §; are
chosen to be on the same order of a and b, respectively. In this setup, f is
approximately supported on the interval [-2 || H I, —A] (Note that the
largest eigenvalue difference is [A; — /\j| <2 | H] »). The inverse Fourier
transform f can also be computed analytically as

(38)

f(s) =5— (exp<ms 8352 /4) — explibs — 857 /4))

where f(0) = %2 is obtained by taking the limit s — 0. f{s) is a smooth
complex- valued "function with the modulus |f(s)| exhibiting a rapid decay
when [s| — oo. Specifically, f(s) approximately vanishes when [s| > S, for
some S, = ©(1/A), which allows us to truncate the infinite integral and use
the trapezoidal quadrature rule to approximate the jump operator K :

R S, M,
ko~ [ J0A0s~ 3 foatm, (39)
2

where M is the number of quadrature nodes on [0, S] or [ — S;, 0], s;=IAs
and As = S/M;. The weights {w;} are chosen to be As/2 for | = + M and As for
~ M, +1<I<M, — 1.

To simulate the Lindblad dynamics exp(£t) on quantum devices, we
can begin with a first order Trotter splitting exp(Lt)~ (exp
(Ly7) - exp(L1))"". The coherent dynamics exp(Ly7) is just the
Hamiltonian simulation exp(—iH7). For the nonunitary dissipative part
exp(L T), we can reduce this problem to a dilated Hamiltonian simulation
up to a partial trace on the ancilla qubit, namely

xp(Lilp] = Tre S7(10,)(0,1 ® )7 + O(z).  (40)

Here, Tr, denotes the partial trace operation on the ancilla qubit. For
simplicity we consider only one jump operator K, and K is defined by the

0 Kf ) q
. Then the dilated Hamiltonian

Hermitian dilated matrix K =
ermitian ated matrix <K 0

simulation ¢Xv7 can be efficiently performed on a quantum computer using
a second-order Trotter splitting according to the discretized time evolution
of K shown in Eq. (39) (see ref. 25, Section III for details).

Review of HF theory in the second quantized representation
The HF theory finds a self-consistent single-particle operator approxima-
tion to the many-body Hamiltonian taking the form

=3

pg=1

=h

Pq -K

F ala g

PaTpTq q +V

Pq

(41)

Here L is the number of spatial orbitals, and 2L is the number of spin
orbitals. The operators ap and a,, are fermionic creation and annihilation
operators with respect to the orthonormalized spin orbitals. Here, h, is a
fixed single-particle matrix. The direct Coulomb and Fock exchange terms,
denoted by V,; and K, respectively, should be solved self-consistently with
respect to the one-particle density matrix (1-RDM), defined as

N,
D,, = Z D, D7, ,2L. (42)

P7q=1727"'

Here ® € C*"**" s a unitary matrix called the molecular orbital coeffi-
cients, which are eigenfunctions of the Fock matrix F. We denote FA = A®
with A = diag(ey, - , &21).

Once D is fixed, the HF Hamiltonian in Eq. (41) is a quadratic
Hamiltonian. Its ground state has an explicit expression in the Slater-
determinant form:

g

[HF) = ¢; ey, [vac), (43)

where the new set of creation operators {c } are given by the unitary
transform of {a } via

(ay,--- ,al,)®. (44)

.
(- dp)=

npj Quantum Information | (2025)11:183

10


www.nature.com/npjqi

https://doi.org/10.1038/s41534-025-01124-8

Article

Note that |HF) is the ground state of the converged Hamiltonian Hyy;; with
eigenvalue E; = ZkN;l & This sum of eigenvalues can also be expressed as
Tr(FD), which differs from the HF energy by a nonlinear term that depends
only on D.

Monte-Carlo trajectory-based method for unraveled Lindblad
dynamics

To solve the Lindblad dynamics for ground state preparation at the FCI
level, we may directly propagate the many-body density operator p(t) €
c¥ using a differential equation solver65. Another approach is to
“unravel” the Lindblad dynamics for the many-body density operator®**”.
Broadly speaking, we employ a family of Monte-Carlo-type algorithms
where we only propagate the state vector [y(#)) in some stochastic schemes,
and the many-body density operator p(t) at the time ¢ can be retrieved by
taking the average of the random matrix |y(t)){y(t)l, ie, p(t) =
E| V’(t)> <w(t) |. The deterministic Lindblad equation for the dynamics of the
many-body density operator is now expressed using stochastic pure-state
trajectories, thus leading to a quadratic reduction in dimensionality, at the
cost of incorporating statistical averaging across multiple runs.

The simplest setting is the discrete form of unraveling, or quantum
jump method”. The quantum-jump pure-state dynamics are evolved under
an effective non-Hermitian Hamiltonian H — i/23", K ,LI% 1 with stochastic
quantum jumps occurring intermittently throughout the evolution. Speci-
fically, it can be described by the following stochastic differential equation
(SDE):GS—TlD

ay = (=it = IS @I, - K[k )y
k
+Z< 5 _ 1>de’:-
k (K Ky)

Here, N; denotes a Poisson process with a splitting N, = 5", N¥. For a
sufficiently small time step Af, the Poisson increment AN, takes the values 0
(no  jump) or 1 (ump)  with  expectation  value

EAN,) = >l Ky ||2At = Zk(f(,tf(k)At. The Poisson processes {N¥}

are mutually independent with intensities given by || K v ||2 = (I%,:I% o)

(45)

This implies that, in the event of a jump, we select the jump operator K}, to
apply to y with a probability proportional to (K z K,)fork=1,2,+,N.Itcan
be shown that the density operator, defined as p(t) = E|u/(t)> <1//(t)| indeed

solves the Lindblad dynamics, by calculating d\g_‘t#/* using Itd’s lemma for the
Poisson process and then taking the expectation.

For a Monte-Carlo-type simulation of Eq. (45), we first discretize the
time interval by the time step At. Then at each step, we randomly pick up k €
[N + 1] (assume we have N jump operators in total) with respect to the
distribution

- 2
| Key, II'At, k<N

Pk = (46)

N
1->p, k=N+1
=1

If k=1, ---, N, we update the trajectory using v, , = I%kwn/(f(,tf(k). If
K=N+ 1, we update using v, ., = v, — GH + %Zkfdf(k)wnm. Then,
the many-body density operator p(t,,) at time ¢, can be approximated by
taking the average of the pure states |1//(tn)> <l//(tn)| over the trajectories®.

We can also consider a variant of the Monte Carlo-type algorithm that
is slightly different but essentially equivalent to the one described above.

Notice that®”

2

exp(—i (H - f<2f<k) Atyy(t)
k

=1-3% 1Ky (D12 At + O(A))

(47)

which implies that the decaying evolution governed by the non-Hermitian
effective Hamiltonian primarily dictates the probability distribution.

A 2
Consequently, we actually do not need to compute || Ky, || at every
time step. Instead, we can first calculate || v, > and sample a random

number R ~ U(0, 1) to decide whether jump or not. If R< || y,, 1%, we just

propagate the trajectory using v, | = v, — (iH + %Zkf(,tf(k) v, At If
R2|| v, ||, we calculate each (Kzf(k) and update v, = I(Akt//n/(f(,tf(k)

with a probability proportional to (I%,tf( o fork=1,2,---, N. After this, we
reset the random number R ~ U(0, 1). Essentially, this corresponds to
evolving the trajectory using H — i/23" kf(,tf( « deterministically causing
the norm of y to decrease, until a random quantum jump occurs. At this
point, the norm is restored to 1, and the process repeats™.

In all of the steps in the unraveling algorithm, only matrix-vector
multiplication is involved.

Data availability

The data that support this study are available upon request. The codes that
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