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Abstract—Discrete GPUs are a cornerstone of HPC and data
center systems, requiring management of separate CPU and
GPU memory spaces. Unified Virtual Memory (UVM) has been
proposed to ease the burden of memory management; however, at
a high cost in performance. The recent introduction of AMD’s
MI300A Accelerated Processing Units (APUs)—as deployed in
the El Capitan supercomputer—enables HPC systems featuring
integrated CPU and GPU with Unified Physical Memory (UPM)
for the first time. This work presents the first comprehensive
characterization of the UPM architecture on MI300A. We first
analyze the UPM system properties, including memory latency,
bandwidth, and coherence overhead. We then assess the efficiency
of the system software in memory allocation, page fault handling,
TLB management, and Infinity Cache utilization. We propose a
set of porting strategies for transforming applications for the
UPM architecture and evaluate six applications on the MI300A
APU. Our results show that applications on UPM using the
unified memory model can match or outperform those in the
explicitly managed model—while reducing memory costs by up
to 44%.

Index Terms—Memory System Characterization, GPU Mem-
ory Management, High Performance Computing (HPC)

I. INTRODUCTION

GPUs are a critical component of leadership clusters and
high-performance computing (HPC) systems for their massive
parallelism and high computing power. Today, most top super-
computers are equipped with discrete GPUs [34], with separate
memory spaces for the CPU and the GPU. The memory speed
lags behind as the computing speed continually improves,
causing efficient data access to become increasingly critical
for exploiting the full potential of emerging systems [18].
Applications that require frequent data movement between the
CPU and GPU memories suffer from degraded performance
and increased energy usage. In the past decade, extensive
works have been proposed for optimizing memory access and
reducing data movements between CPU and GPU [1, 13, 25,
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To improve developer productivity, Nvidia introduced Uni-
fied Virtual Memory (UVM), enabling a unified memory pro-
gramming model without the programmer explicitly managing
data movement between CPU and GPU memory spaces [2, 14,
24]. UVM greatly simplifies code development by relying on
the runtime software to transparently migrate data between
CPU and GPU memories. However, as software solution, it
also introduces significant performance penalties due to page

faulting and page migrations [2, 3, 20]. One study found
that performance often degrades by 2-3x and sometimes
as much as 14x compared with traditional explicit memory
management [14]. Many works have proposed runtime and
system optimizations, including batching, prefetching, preevic-
tion, and migration mechanisms to enhance the performance
of UVM [2, 3, 14, 16, 24]. Vendors have also explored
architectures with more tightly integrated CPU and GPU
memory, such as the Grace Hopper Superchip from Nvidia
and the MI250X from AMD. Nonetheless, performance re-
mains workload-dependent, and applications using the unified
memory model enabled by UVM often result in suboptimal
performance compared to the explicitly managed memory
model.

In contrast to UVM, Unified Physical Memory (UPM) en-
ables the unified memory programming model with hardware
support. In a UPM system, a single physical memory space is
shared by the CPU and GPU. AMD has recently introduced
the first UPM architecture for HPC and Data Centers — the
MI300A APU [32], which is used to implement El Capitan,
the No. 1 supercomputer on the Top 500 list [34]. UPM could
fundamentally eliminate the performance overhead in previous
software-based unified memory solutions like UVM. However,
nearly all existing HPC applications are using the explicitly
managed model due to its superior performance compared to
the unified memory model using UVM. With the emergence
of UPM, this work aims to answer the open question of
whether the unified memory model can now compete with
the performance of explicit management.

In this work, we provide a timely full-stack characterization
study of the UPM architecture on the AMD MI300A APU,
including the system properties and system software support,
as well as application-level performance. Our characteriza-
tion methodology includes standard benchmarks and custom
benchmarks specifically designed for the UPM architecture, as
well as detailed insights from profiling tools, and a study of
six HPC workloads from the Rodinia suite [12]. We highlight
differences between memory allocators regarding performance
and overhead, and analyze TLB management and Infinity
Cache utilization on the UPM on MI300A APU. We identify
a set of porting strategies for transitioning existing codes from
the explicit model to the unified memory model. By analyzing
six applications on MI300A APU, we find that UPM enables



the unified memory model to have performance on par with

the explicitly managed model, while additionally reducing

memory cost by up to 44%. This impressive memory saving on
the UPM system enables much larger problems on one APU
within a smaller envelope compared to traditional discrete

GPUs. In summary, we made the following main contributions

in this work:

e We provide an in-depth characterization of the unified
physical memory architecture on the MI300A, including
latency, bandwidth, and coherence overhead.

o« We quantify the efficacy of system software support for
memory management on UPM on MI300A, including mem-
ory allocation, page fault handling, TLB management, and
Infinity Cache utilization.

o We transform six HPC workloads into the unified memory
model and compare their performance with that from the
explicitly managed model on UPM.

o Our results highlight that UPM enables the performance of
the unified memory model to be on par with the explicitly
managed model, while saving memory cost by up to 44%,
when applying our porting strategies.

II. UNIFIED CPU-GPU MEMORY

GPU memory is usually explicitly managed as a separate
memory space because the CPU and GPU have physically
separated memories, e.g. with the GPU connected through
PCle as a peripheral device. This discrete GPU architecture
naturally leads to the popularity of explicitly managed memory
model, as exemplified in Listing 1, where separate memory
allocations, e.g. via the malloc and hipMalloc allocators,
are needed in the CPU and GPU memories, and data is
copied between them explicitly via e.g. hipMemcpy. As a
result, data is duplicated in both the CPU and GPU memories.
Nevertheless, this explicit model is the most commonly used
programming model in today’s GPU applications due to its
high performance.

To improve programming productivity, the unified memory
programming model, as exemplified by Listing 2, was in-
troduced to support unified memory allocations in CPU and
GPU memories, and avoid the need for explicitly initiated data
movement. The unified memory model can be implemented by
either software-based solutions such as UVM (e.g., via using
hipMallocManaged allocator and implicit data movement
triggered by page faults), or hardware-based solutions such as
UPM, i.e., a single physical memory shared by CPU and GPU,
eliminating the need for data movement.

A. Unified Virtual Memory

UVM enables the unified programming model by providing
the illusion of a single coherent CPU-GPU memory by
leveraging transparent page fault handling and page migration
between CPU and GPU memories. Nvidia introduced UVM in
CUDA 6 with the cudaMallocManaged () allocator. Since
the Pascal GPU architecture, there is a dedicated hardware unit
for page translation and migration that enables accessed pages
in cudaMallocManaged-allocated memory regions to be

migrated on-demand. However, current UVM-based unified
memory model can cause significant performance impact on
applications due to page faults and migration costs [2, 14, 16,
24]. To mitigate performance overhead from page fault han-
dling and page migration, several works propose optimizations
for page prefetching and pre-eviction [2, 14].

Recently, more tightly connected CPU-GPU memory is
supported by cache-coherent interconnects, such as the
NVLink-C2C in Nvidia’s Grace Hopper Superchip and Infinity
Fabric on AMD’s MI250X. These architectures support high-
bandwidth low-latency data transfer between CPU and GPU
memory, mitigating the page fault and migration overhead in
traditional UVM by enabling the GPU to directly access CPU
memory at cacheline granularity. However, the unified memory
programming model on Grace Hopper and MI250X still needs
to manage separate physical CPU and GPU memories.

A benefit of UVM over UPM is that it enables over-
committing memory on the GPU by utilizing host memory.

B. Unified Physical Memory in MI300A

In UPM architectures, CPUs and GPUs are integrated into
the same die and share one physical memory. Such integrated
CPU-GPU units are known as Accelerated Processing Units
(APUs) on AMD systems. The AMD MI300A was recently
released as the first APU targeting HPC systems. The current
No. 1 HPC system on the Top500 list, the El Capitan su-
percomputer, features 44,544 MI300A APUs. UPM simplifies
the system architecture as separate CPU chips and memory
are not needed. Further, the architecture natively supports the
unified memory programming model, and the high overhead
of software management needed by UVM can be completely
eliminated on the physically unified hardware. Finally, CPU-
GPU data transfers, which are often the bottleneck in existing
GPU codes, are no longer needed on UPM.

In this work, we focus on the UPM on the MI300A APU as
it represents state-of-the-art HPC systems. The MI300A APU
is enabled by chiplet integration and is based on the AMD
CDNA 3 architecture [4, 32]. As illustrated in Fig. 1, the GPU
part consists of six accelerator complex dies (XCDs) while the
CPU part consists of three CPU complex dies (CCDs). The
six XCDs are presented as a single device to the user in the
standard configuration. Every two XCDs or three CCDs share
an [0 die (IOD). Four I0Ds on one APU implement cross-
die communication and the HBM3 interface to eight memory
stacks. Each memory stack has 16 memory channels and
16 GiB capacity. The AMD Infinity Fabric interconnects CCD
and XCD chiplets and routes memory requests to memory
channels. In total, each MI300A APU has 128 GiB HBM3
memory and a peak theoretical bandwidth of 5.3 TB/s.

The cache hierarchy consists of two levels in the GPU, three
levels in the CPU, and a 256 MiB Infinity Cache. Atomic
operations in the GPU are implemented with dedicated atomic
units located in the shared L2 cache [5], while the CPU
implements atomics by taking exclusive ownership of the data
in the private L1 cache [23]. The Infinity Cache is a memory-
side cache shared between the CPU and GPU, and is a new
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Fig. 1. An overview of the chiplet-based MI300A APU architecture including
six XCD (GPU) and three CCD (CPU).

float xh = cpu_alloc(n);

float *d = gpu_alloc(n);
init_on_cpu(h);
copy_to_gpu(d, h, n);
gpu_kernel<<<...>>>(d);
copy_to_cpu(h, d, n);

float »u = uni_alloc(n);
init_on_cpu(u);
gpu_kernel<<<...>>>(u);
gpu_synchronize () ;

AU AW —
AW -

Listing 1. Explicit model. Listing 2. Unified model.

feature of the AMD CDNA 3 architecture, aiming to increase
cache bandwidth and reduce off-chip memory accesses. The
peak bandwidth from the Infinity Cache can reach 17.2 TB/s,
approximately 3x the main memory bandwidth. The Infinity
Cache does not participate in coherency and thus does not need
to absorb or handle any snoop traffic, significantly improving
efficiency and reducing the latency of snooping from other
cache levels. It can also hold nominally uncacheable memory
such as I/O buffers.

The runtime API for programming AMD GPUs is called
HIP (Heterogeneous-compute Interface for Portability). It pro-
vides C++ interfaces for writing and launching GPU kernels,
managing GPU memory, synchronizing CPU and GPU, etc.

C. Memory Allocation on MI300A

Two page tables are used for managing address translation
on MI300A—a system page table on the CPU and a GPU page
table on the GPU. Unlike Nvidia’s Grace Hopper, where the
GPU can access both page tables, the GPU on MI300A can
only access its own page table. Thus, page table entries (PTEs)
must be propagated from the system page table to the GPU
table to enable GPU access. The two copies are kept in sync
using the Linux kernel’s heterogeneous memory management
(HMM) subsystem.

Table I lists memory allocators on MI300A and classifies
their physical memory allocation as either on-demand or up-
front. Up-front allocators allocate all physical pages immedi-
ately when the allocator is called while on-demand allocators
defer physical allocation until the first touch, relying on virtual
memory management with page faults.

First, malloc is the standard libc function for al-
locating (host) memory, and serves as a representative
for any standard memory allocator, including e.g. C++’s
new. hipHostRegister is used to make host mem-
ory (e.g. from malloc) accessible on GPUs by lock-
ing the pages and mapping them in the GPU page table.

TABLE I
MEMORY ALLOCATORS ON MI300A

Allocat GPU CPU Physical
ocator Access Access  Allocation
malloc v On-demand
malloc (XNACK=1) v v On-demand
malloc + hipHostRegister v v Up-front
hipMalloc v v Up-front
hipHostMalloc v v Up-front
hipMallocManaged v v Up-front
hipMallocManaged (XNACK=1) v v On-demand
TABLE II
OVERVIEW OF EXPERIMENTAL METHOD
Memory latency multichase [19, 21]
Memory bandwidth STREAM [6, 27]
Legacy transfer hip-bandwidth [7]
Benchmarks Coherence overhead  Custom
Allocation speed Custom
Page fault overhead = Custom
Memory usage libnuma
. GPU fragment size rocprofv3
Profiling tools CPU allocation size  perf

Code generation hipcc -save-temps

backprop
dwt2d
heartwall
hotspot
nn
srad_vl

HPC workloads Rodinia suite [12]

hipHostMalloc directly allocates GPU-accessible page-
locked memory. hipMalloc is the standard GPU memory al-
locator. Finally, hipMallocManaged is traditionally called
to allocate UVM buffers, which are accessible from both CPU
and GPU through migration (although no migration is used on
UPM).

By default, the MI300A GPU does not resolve page faults,
i.e., it cannot access on-demand mapped pages. To enable the
GPU to resolve page faults, AMD GPUs feature a mecha-
nism known as XNACK (’non-acknowledgment”) in the TLB,
which enables page faults to be replayed [11]. With XNACK,
when a page fault occurs, the TLB waits for the PTE to
be updated by the fault handler before retrying the memory
access, thus allowing access to on-demand mapped memory.

III. CHARACTERIZATION METHODOLOGY

We summarize our characterization method, including
benchmarks, profiling tools, and HPC applications, in Table II.
All of our benchmarks are open-source and available at
https://github.com/KTH-Scal.ab/mi300a-benchmarks.

We run experiments on a testbed equipped with four AMD
MI300A APUs per node. Each APU has 228 GPU compute
units (CUs) and 24 CPU cores, and 128 GiB HBM3 mem-
ory. The software environment includes Cray Programming
Environment 24.11 and ROCm 6.3.1. We use numactl and
HIP_VISIBLE_DEVICES to bind experiments to a single
APU on MI300A.


https://github.com/KTH-ScaLab/mi300a-benchmarks

A. Benchmarks

1) Memory Latency: We use a pointer-chasing benchmark
adapted from Google’s multichase [21]. The GPU version is
based on a CUDA port [19], which we modified to support
HIP. We added the ability to use different memory allocators.
The benchmark uses a persistent kernel that periodically
increments an atomic counter, which measures the memory
access time at a granularity of 200 accesses over 0.5 s per
iteration from a CPU thread. We set the cache flush size to
256 MiB, the number of sample iterations to 10, and varied
the buffer size from 1 KiB to 4 GiB.

2) Memory Bandwidth: We used a modified STREAM
benchmark to measure the achievable memory bandwidth
using the TRIAD kernel. For CPU, we used the standard
STREAM implementation [27], and for GPU we used hip-
stream [6, 17]. We modified the benchmarks to support differ-
ent memory allocators and data initialization on either CPU
or GPU. The CPU benchmark used OMP_PROC_BIND=true
and various number of threads from 1 to 24, selecting the best
results. The CPU array size was 610 MiB, and the GPU array
size was 256 MiB.

3) Legacy CPU-GPU Data Transfer: Many existing ap-
plications are written assuming separate memory spaces for
CPU and GPU. These legacy applications can run on MI300A.
However, they may incur unnecessary data transfer overhead
between “host memory” and “device memory”, which no
longer exist on UPM. We evaluate the cost of legacy data
transfer by measuring the bandwidth of hipMemcpy with the
hip_bandwidth benchmark [7].

4) Coherence Overhead: Many lock-free algorithms rely
on high-performance atomics to resolve data races. However,
parallel atomics imply coherence overhead that increases with
the level of contention. The shared physical memory between
CPU and GPU on UPM could further exacerbate contention
and coherence overhead as data needs to be available to both
the CPU and GPU.

We designed a benchmark to measure the performance of
atomic operations and the coherence overhead when CPU and
GPU operate on the same data structure. The benchmark com-
putes a parallel histogram, where an array is initialized to zero,
and then randomly selected elements are incremented in a loop
using atomic addition. Both CPU threads and GPU threads can
be used to perform this update. The throughput is measured
similarly to the multichase benchmark by periodically reading
an update counter from a separate CPU thread.

The CPU kernel uses std::minstd_rand uniform
distribution to generate random numbers and is
launched using std::thread. The compiler intrinsic
__atomic_fetch_add() is used to implement atomic
increment. The GPU kernel uses 64 threads per block and
generates random numbers using XORWOW generator in
the rocRAND library. Atomic increment on the GPU is
implemented with atomicAdd_system (). (Note that the
function atomicAdd_system is documented as system
scope” while atomicAdd is documented as “device scope”.
They determine the scl bit in the generated instruction.

However, we did not observe any difference between the two
in performance or correctness.)

We performed experiments using four array sizes: 1, 1K,
IM, 1G (i.e. 20,210, 220 230y The | and 1K cases fit in LI
cache, 1M fits in L2 cache, and 1G does not fit in any cache.
The array contains either integer (UINT64) or floating point
(FP64) elements.

5) Allocation Speed: Understanding the performance of
different memory allocators is important for applications like
adaptive mesh refinement [10] and Lagrangian hydrodynam-
ics [22], which require allocating and deallocating memory
dynamically at runtime. We design a benchmark consisting
of two loops. The first loop allocates N chunks of memory
of size M, while the second loop frees the chunks. We used
10 warmup iterations and set N to 100. We measure the
loops using a CPU timer. There is no need for explicit device
synchronization since all the allocators are inherently syn-
chronous. We allocate 2 B to 1 GiB of data. This benchmark
excludes the time to touch the allocated memory, which is
studied separately in the next section on page faults.

6) Page Fault Overhead: On-demand memory allocators
offer low latency, but come with a cost of page faults
at runtime on the first touch of each page. We design a
benchmark for quantifying the latency and throughput for
handling different types of page faults on MI300A. The page
fault overhead is the difference in runtime between accessing
an already mapped page and accessing an unmapped page
(causing a page fault). Our benchmark issues a single load
to each page, and we measure the page fault time as the
difference between running it on a newly allocated array
(the faulting version) and a pre-faulted array (the non-faulting
version) with a CPU timer. On the GPU, we launch a kernel to
access the pages and measure the time from kernel submission
to completed device sync. For memory allocation, we use
mmap to ensure that each test is independent (malloc may
allocate a larger chunk of address space, which is faulted in
batch). The non-faulting baseline on the GPU is implemented
with hipHostRegister, and on the CPU with mlock.
We varied parameters such as how many pages are accessed
concurrently and investigated four scenarios. In GPU Major,
on-demand memory is allocated and directly accessed by the
GPU. In GPU Minor, the allocated memory is touched by the
CPU before measuring the fault overhead on the GPU. /CPU
uses a single CPU core for memory access, while /2CPU uses
12 cores. The benchmark consists of 10 warm-up iterations
followed by 100 timed iterations.

B. Profiling Tools

1) Memory Usage: No single memory profiling interface
can provide a complete picture of memory allocations on
MI300A yet. Linux provides system-level memory usage
via /proc/meminfo, and the libnuma interface reports
the free memory per NUMA node, i.e., at the APU level.
As expected, both reflect allocations by up-front allocators
immediately, and on-demand allocators after the first touch.
The HIP interface hipMemGetInfo and the rocm-smi



command report free memory “on the device”, i.e. at the APU
level. However, they only capture allocations by hipMalloc.
Finally, process-level memory usage can be obtained from
the VmRss field in /proc/pid/status or the Rss field
in /proc/pid/smaps_rollup (as displayed in the top
command). However, they do not capture allocations by
hipMalloc. We choose to profile peak memory usage by
sampling from libnuma.

2) GPU Adaptive Fragment Size: AMD’s GPU page table
supports an adaptive scheme that uses fragments for improving
TLB reach. A fragment is a virtually and physically contiguous
range of pages with identical flags. The GPU L1 TLB can
store a single entry for a whole fragment, greatly increasing
its reach [8]. A larger reach means fewer TLB misses and
better performance. Each PTE has a 5-bit fragment field,
theoretically supporting sizes from a single page (4 KiB) to
231 pages (8 TiB). The amdgpu driver sets the fragment field
opportunistically by scanning for maximal contiguous page
ranges in the fault handler.

The size of fragments in the page table cannot be
read directly from userspace. Instead, we use the
number of GPU TLB misses as a proxy metric.
Using the rocprofvd GPU profiler, we measure the
TCP_UTCL1_TRANSLATION_MISS_sum counter to
track the number of TLB misses in the GPU. We compare
the number of misses in the TRIAD kernel of the GPU
STREAM benchmark using different allocators to understand
their interaction with memory fragments.

3) CPU Allocation Granularity: The memory allocation
granularity is impacted by the used allocator and whether
CPU or GPU performs first-touch. On the CPU, the number
of page faults and TLB misses can imply the granularity. We
track these metrics in the CPU STREAM benchmark using
perf stat.

4) Code Generation: To understand which CPU and GPU
instructions are generated by the compiler, we use the
-save—temps flag to the hipcc/clang compiler to output
assembly code. In particular, this enables us to understand
how atomic operations are implemented.

C. Porting Strategies for Unified Memory

This section outlines potential challenges arising from port-
ing codes in the explicit model to the unified memory model
and their respective porting strategies. We illustrate each
challenge with a simplified example code snippet.

1) Concurrent CPU-GPU Access: When a data structure is
accessed by CPU and GPU concurrently, simply merging them
into a single buffer could result in data race. Without changing
the algorithm or imposing synchronization, double buffering
could be a preferred solution, i.e. swapping the buffers in each
iteration instead of copying.

// gpu_kernel overlaps with next cpu_function

for (i = 0; i < n; i++) |
cpu_function (h_tmp, h_input[i]);
copy_to_gpu(d_tmp, h_tmp);

(R R S

gpu_kernel<<<...>>>(d_tmp, d_sum); }

2) Memory Usage Consideration: Some applications adapt
their buffering scheme based on free memory. Existing codes
access memory usage counters to determine the amount of
free memory capacity. However, as explained in Section III-B,
previous interfaces for querying memory usage may be in-
accurate to reflect all types of memory allocations on UPM.
Thus, such applications must change to reliable memory usage
counters, such as meminfo or libnuma. Moreover, they must
adapt their calculation of free space to consider all types of
memory allocations.

1 n = gpu_free_memory () / sizeof (element);
2 | h_array = cpu_alloc(n x sizeof (element));
3 d_array = gpu_alloc(n *» sizeof (element));

3) Partial Memory Transfer: Partial memory transfers arise
from situations where only a partial range of a memory buffer
are copied between corresponding CPU and GPU buffers.
They are often used in a pipeline to overlap data movement
with computation, which may become unnecessary in the
unified memory model.

for (i = 0; i < n; i += chunk_size) {
cpu_function (h_data+i, chunk_size);
copy_to_gpu(d_data+i, h_data+i, chunk_size);

gpu_kernel<<<...>>>(d_data+i, chunk_size); }

AW =

4) Stack Variables: While UPM enables the GPU to access
the host stack, the asynchronous execution model makes it
challenging to analyze the lifetime of stack variables from the
GPUs perspective. The host function cannot return until the
GPU kernel using the host variable has completed.

1 | x = cpu_function();
2 | copy_to_gpu(d_x, Xx);

3 | gpu_kernel<<<...>>>(d_x, d_sum);

5) Static Variables: Even with UPM, static host mem-
ory cannot be accessed from GPU code and vice versa
due to linker limitations. The options for unifying static
variables are using managed variables or modifying the
code to use dynamic memory allocation (e.g., hipMalloc)
instead. The __ _managed__ storage specifier is a CUD-
A/HIP language extension enabling unified variables similar
to hipMallocManaged. However, it comes with a perfor-
mance penalty (as we will show in Section IV-B). On the other
hand, using dynamic memory allocation requires restructuring
the code.

1 float h_data[100];
2 | __device__ float d_data[100];

6) Hidden Allocator: With libraries that allocate memory
on behalf of the user (e.g. C++ containers), it can be chal-
lenging to create a high-performance unified allocation. Either
a lower-performance allocator will be used (e.g. the default
in C++), or the developer has to use more complex APIs or
modify the library source code.

std::vector h_data;
while (more)

h_data.push_back (cpu_function());
d_data = gpu_alloc(h_data.size());
copy_to_gpu(d_data, h_data.data());
gpu_kernel<<<...>>>(d_data, h_data.size());
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Fig. 2. Memory latency on GPU (solid lines) and CPU (dashed lines) with
different allocators (semi-log).

D. Programming Model Comparison

We compare the traditional explicit programming model
to the UPM-enabled unified memory model on MI300A. We
select six applications (shown in Table II) covering a diverse
set of coding practices from Rodinia, a widely used suite
of GPU-accelerated HPC applications written in CUDA and
OpenCL [12]. For each application, we create two variants.
The first variant using the explicit model (corresponding to
Listing 1) is a baseline version that ports the original CUDA
code to HIP using hipify-perl with minor manual adjustments.
The second variant uses the unified memory model (corre-
sponding to Listing 2) by replacing duplicated CPU and GPU
allocations with a single unified allocation.

We also modified the input problems to increase the memory
usage and runtime. The baseline version uses from 487 MiB
memory in heartwall to 43 GiB memory in nn. We measured
the total execution time with /usr/bin/time, and inserted
timers to measure the main compute phase. The total execution
time ranges from 5.23 s in dwt2d to 109 s in nn.

IV. MEMORY SYSTEM CHARACTERIZATION

In this section, we provide a characterization of the UPM
system properties.

A. Memory Latency

The latency results are shown in Fig. 2. GPU memory
accesses reveal three cache levels — 57 ns at 1 KiB (in L1),
100-108 ns at 1 MiB (in L2), 205-218 ns at 128 MiB (Infinity
Cache), and finally 333-350 ns at 4 GiB (in HBM). The CPU
memory latency is lower than GPU memory latency. At 1 KiB
(in L1), the CPU memory latency is only 1 ns, while at
4 GiB (in HBM), the CPU memory latency is 236-241 ns.
For latency-bound tasks, the CPU has a significant advantage
over the GPU. The relative difference is especially apparent
for data that fits in the CPU L3 cache (96 MiB), which is
missing in the GPU.

While GPU memory latency on MI300A is insensitive to the
allocator in use, CPU memory latency is not. On the CPU, all
allocators eventually plateau at 240 ns latency around 2 GiB.
However, between L3 (96 MiB), Infinity Cache (256 MiB) and
this plateau point, there is a distinction between the allocators.
With 256 MiB size, the full dataset fits in IC, and at 512 MiB
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Fig. 3. The maximum measured memory bandwidth obtained from GPU (top)
and CPU (bottom) using different allocators.

size, half of the accesses should hit IC. Given that, we would
expect the CPU latency at 256-512 MiB to be significantly
lower than 240 ns, which is observed with HIP allocators,
which increase gradually. However, at 512 MiB, malloc and
malloc+register already result in a latency of 230 ns.
This suggests that malloc on the CPU cannot leverage the
full power of the IC (we explore this further in Section V-D).

B. Memory Bandwidth

The memory bandwidth results are shown in Fig. 3. The
GPU memory bandwidth is independent of whether the mem-
ory is first touched by the CPU or the GPU. The best GPU
bandwidth is achieved with hipMalloc at 3.5-3.6 TB/s,
while hipHostMalloc, hipMallocManaged (xnack=0),
and malloc+hipHostRegister give 2.1-2.2 TB/s. The
on-demand allocators malloc and hipMallocManaged
(xnack=1) give the worst performance of the dynamic allo-
cators at 1.8-1.9 TB/s. Finally, static unified variables with
__managed___ have the lowest bandwidth at 103 GB/s.

The performance of hipMallocManaged depends on
whether XNACK is enabled. As shown in Table I, with
XNACK disabled, it allocates up-front, while with XNACK
enabled, it allocates on-demand. Disabled XNACK gives
higher bandwidth for both CPU and GPU.

On the CPU, the best achieved bandwidth was either
208 GB/s (case A) or around 180 GB/s (case B). The baseline
bandwidth with malloc memory is 181 GB/s, while the
bandwidth with HIP allocators is 208 GB/s. If the memory is
first touched by the GPU, then malloc memory also achieves
208 GB/s. hipMallocManaged with XNACK performs
similarly to malloc at 179 GB/s.

In case A, the peak bandwidth was reached with 24 threads
(i.e. when all 24 cores were used). In contrast, in case B,
the peak bandwidth was reached with only 9 threads, with
performance dropping to 173-176 GB/s when using all cores
(not pictured).

Regardless, the CPU is far from utilizing the full bandwidth
of the memory with only 3% of the theoretical peak, compared
to 67% for the GPU. For bandwidth-bound codes, the GPU
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Fig. 4. Atomics throughput in billion updates/s on an array with 20, 210,
220 or 230 elements. Note the different axis scales for CPU and GPU.

has a clear advantage over the CPU. We found that the highest
bandwidth is provided by hipMalloc, which is 1.6-2.0 times
faster than other options on the GPU. On the CPU, on-demand
allocators have a disadvantage compared to up-front allocators,
unless the data is GPU-initialized, in which case all allocators
provide the same bandwidth.

C. Legacy CPU-GPU Data Transfers

Using hipMemcpy between “host memory” (i.e.
malloc or hipHostMalloc)) and “GPU memory”
(i.e. hipMalloc) is significantly slower than the achievable
memory bandwidth. hipMemcpy only achieves a peak
bandwidth of 58 GB/s, or 850 GB/s when SDMA is disabled.
However, ”GPU to GPU” memory transfer (i.e. hipMalloc
to hipMalloc) can reach close to the GPU memory
bandwidth at 1900 GB/s. A possible explanation is that
hipMemcpy uses DMA transfers, which are more expensive
when buffers are not page-locked (as in the case of malloc).

D. Coherence Overhead

1) Isolated Performance: The CPU results are shown in
the first row of Fig. 4. For the three smaller array sizes, the
throughput at 1 thread is higher than 2 or 3 threads, due to
the introduced coherence overhead. On the 1 M array, the 1
thread case is overtaken with 6 threads and continues to scale
linearly. 1 G also scales linearly but with a lower slope. These
large arrays scale well since collisions between threads are
relatively unlikely. 1 M is faster as it fits inside L2 cache,
while 1 G requires frequent accesses to main memory. The
smaller arrays 1 and 1 K have more collisions between threads.
With only 1 element, performance decreases with the number
of threads. The integer version (UINT64) is about 3x faster
than the floating-point version (FP64). Interestingly, on the 1 K
array, the FP64 version is similar or slower than 1 G, while
the UINT64 version is consistently faster than 1 G.

The GPU results are shown in the second row of Fig. 4. The
GPU exhibits the same performance for the FP64 and UINT64
versions and is significantly higher than the CPU performance,
except when using very few threads (1 or 64) or if there is only
one element. Similar to the CPU, the 1 M case has the highest
throughput and scales linearly with the number of threads.
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Fig. 5. Relative performance of the CPU (first row) and GPU (second row)
atomics performance when co-running.

The compiler generated native atomic_add instructions
for both integer and floating-point versions for the GPU.
However, for the CPU, the compiler generated lock incqg
(atomic increment) instructions for integers, but CAS loops
(using lock cmpxchgq) for floats because the x86 in-
struction set does not support native atomic floating-point
operations. Collisions are more expensive with the CAS loop
as they lead to extra iterations through the loop. Therefore the
1 and 1 K array sizes are slower with FP64 than UINT64 on
the CPU.

2) Hybrid CPU-GPU Overhead: Fig. 5 presents the rel-
ative performance of co-running CPU and GPU threads, as
compared to the isolated performance in Fig. 4. The 1K array
has the highest contention of the tested hybrid cases. This
affects the CPU performance more than the GPU performance.
The CPU performance is at best within 13% of the base-
line, but with 3328 GPU threads or more the relative CPU
performance is only between 11%-25%. Below 3328 GPU
threads, the GPU performance is similar to the baseline. With
an increasing number of CPU and GPU threads, the GPU
performance drops off to 79%.

The 1M array has lower contention and thus higher perfor-
mance. Counter-intuitively, with UINT64 the performance is
slightly improved in most configurations compared with the
isolated baseline. The CPU improvement is largest with 6
CPU threads and 2304-6400 GPU threads with a speedup of
1.14x. The GPU speedup is 1.02-1.03x in many cases, with a
geometric mean of 1.01x. With FP64, the CPU performance
is lower. There is still a region of speedup centered around
the same thread configurations as for UINT64. However, with
fewer than 1280 or more than 10496 GPU threads, the CPU
kernel is slower than the baseline. The GPU performance is
similar to the baseline with a geometric mean of 1.00.

In summary, atomics can be used to synchronize threads
on both CPU and GPU. The GPU can perform more atomic
operations per second than the CPU, while keys to improve
atomics performance are minimizing the probability of colli-



sions and ensuring that the dataset can fit in L2 cache. The
CPU FP64 performance is even more sensitive to contention
since it does not support native floating-point atomics. These
effects also carry over to CPU-GPU hybrid algorithms, where
the CPU is more disadvantaged than the GPU by contention.

V. SYSTEM SOFTWARE FOR MEMORY MANAGEMENT

In this section, we evaluate the effectiveness of memory
management for memory allocation, page fault handling, TLB
management, and Infinity Cache utilization.

A. Memory Allocation

The fastest allocator is malloc, taking only 14 ns for
allocating 32 B and 6 ps for 1 GiB, as shown in Figure 6.
This is expected since malloc is an on-demand allocator
that does not allocate physical pages until first touch. The
time for all up-front allocators is constant for allocating up
to 16 KiB, indicating that this is their minimum granularity
of physical memory allocation. The pattern is most revealing
in hipMalloc, which takes 10 us up to 16 KiB, and then
scales to 37 ms at 1 GiB. Finally, hipHostMalloc and
hipMallocManaged (without XNACK) follow a similar
curve, from around 15-34 ps up to 16 KiB and then scaling to
200-400 ms at 1 GiB. Note that hipMallocManaged with
XNACK enabled becomes an on-demand allocator, however,
its execution time is constant regardless of allocation size. We
believe it is caused by the overhead in the HIP implementation
that is optimized for discrete GPUs.

The deallocation (figure omitted) follows a similar pattern.
Interestingly, free is faster than malloc until 16 MiB.
From 32 MiB, free takes 4-9x longer time than malloc.
For hipMalloc, deallocation is faster than allocation until
2 MiB, from which deallocation becomes significantly slower
than allocation by up to 22x at 256 MiB. Freeing allocation
by hipMallocManaged with XNACK takes 3-21 ps while
freeing hipHostMalloc and hipMallocManaged (no
XNACK) memory takes from 220 ps to 67 ms at 1 GiB.

Overall, the recommended interface is malloc for on-
demand memory and hipMalloc for up-front memory. For
most allocations, malloc provides the fastest allocation and
de-allocation. However, on-demand allocators pay the page
fault cost at runtime, which depends on how densely or
sparsely the application touches the allocated memory (see
Section V-B). hipMalloc is the fastest up-front allocator
and should be used for applications that want to avoid page
fault cost at runtime.

B. Page Fault Overhead

We evaluate the overhead of page faults on GPU and CPU
in terms of throughput and latency. Throughput measures
the maximum number of concurrent page faults that can be
handled per second while latency measures the minimum time
needed for handling a single page fault.

The measured throughput of page fault handling is presented
in Fig. 7. It initially increases with the number of pages until
reaching a plateau at 10°-10° pages. GPU Major reaches a
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steady state at 10 K pages with around 1.1 M pages/s, while
GPU Minor throughput increases up to 9.0 M pages/s at
10 M pages, corresponding to a third of the total memory
capacity. A single CPU core saturates at 1 K pages, reaching
872 K pages/s while the 12-core CPU case saturates at 10 K
pages, reaching 3.7 M pages/s. The throughput of pre-faulting
on CPU and then minor faulting on the GPU (12CPU + GPU
Minor), compared to the GPU Major case, achieves up to 2.2x
improvement at 10 M pages (40 GiB).

Faults on the CPU have lower latency than GPU faults, as
shown in Figure 8. The CPU single-page latency is 9 ps on
average with 11 ps tail latency (95" percentile). The GPU
latency is 1.8-2.0 times higher with 16 ps for a minor fault
and 18 ps for a major fault. The GPU tail latency is also higher
with 20 ps for minor and 22 ps for major faults, indicating
higher variability.

The recommended strategy for applications exhibiting high
concurrent page faults on GPU is to use CPU pre-faulting to
transform them into GPU minor faults in advance. This is also
an effective strategy for applications whose GPU runtime is
dominated by GPU fault latency. However, if the time of CPU
pre-faulting cannot be overlapped with GPU computation,
directly faulting on GPU reduces the total latency.

C. Adaptive Memory Fragments

The fragment size in the GPU page table is related
to the number of TLB misses. Fig. 9 presents the num-
ber of GPU TLB misses in STREAM. All configurations,
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except hipMalloc, have 1.0-1.2 M TLB misses, while
hipMalloc has only 158 K misses. Since the driver sets the
fragment field opportunistically based on contiguous pages,
the number of GPU TLB misses on a memory range depends
on the level of contiguity. On-demand allocators are naturally
disadvantaged in this respect, as they allocate physical pages
incrementally in a non-deterministic order. Up-front allocators
can more easily ensure high contiguity by allocating all pages
at once.

Our findings indicate that hipMalloc allocates memory with
higher virtual and physical contiguity and thus uses larger
fragment sizes in the GPU TLB. Consequently, memory from
hipMalloc has fewer TLB misses, explaining the significant
bandwidth advantage of hipMalloc shown in Section IV-B.

D. Infinity Cache Utilization

The CPU-side memory latency and bandwidth characteri-
zation in Section IV indicates that CPU-based allocators (i.e.
malloc) and CPU initialization may result in less effective
utilization of the memory-side Infinity Cache, compared with
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Fig. 10. The total number of page faults in the CPU STREAM benchmark, 10
iterations (log scale). Three configurations: baseline (XNACK=0), XNACK=1,
and GPU init (first-touch by GPU).

HIP’s up-front allocators (e.g. hipMalloc) and GPU ini-
tialization. It cannot be explained by different fragment sizes
since memory fragments are not used in the CPU page table.
Also, all allocators lead to the same number of CPU-side TLB
misses.

Instead, a possible explanation for the difference in cache
effectiveness lies in the mapping of data to individual mem-
ory channels, as the Infinity Cache is partitioned into slices
mapped to individual memory channels [4]. Physical pages
are interleaved among the eight memory stacks at a 4 KiB
granularity [4]. The allocator must allocate the same number
of physical pages from each corresponding physical range to
evenly distribute data across channels. Any bias in the physical
address mapping would result in less effective utilization of the
Infinity Cache and thus higher latency and lower bandwidth
for data sizes near the Infinity Cache capacity. The observed
results suggest that the GPU-based allocators evenly allocate
physical addresses (likely by allocating larger contiguous
chunks), while CPU-initialized malloc-based memory has
a larger bias in physical memory mapping.

Indeed, the number of CPU-side page faults (Fig. 10)
varies significantly depending on the allocator. The most
number of faults, around 472 K, occur with malloc and
hipMallocManaged with XNACK, while hipMalloc
and hipHostMalloc only have 3.7-4.6 K faults (when CPU
initialized) or 8.0-8.9 K faults (when GPU initialized). The
difference in page faults indicates that memory allocation
granularity differs.

In summary, our findings advise developers to use up-front
memory allocation (e.g. hipMalloc) or first-touch data on
the GPU to ensure optimal physical address mapping for
maximizing the utilization of the Infinity Cache.

VI. HPC APPLICATIONS ON UPM

We employed the strategies of Section III-C to port six HPC
applications to the unified memory model. We summarize the
implementation of each applied strategy as follows.

« Concurrent accesses arise in heartwall due to the pipelining
of pre-processing on the CPU with computing on the GPU.
We used double buffering with stream events synchroniza-
tion in the unified version.

o In nn, hipGetMemlInfo is used to calculate if the dataset
will fit on the GPU. Our pragmatic solution was to remove
the check and let the code fail if enough memory is not
available.

o Partial memory transfers are used in a pipeline to overlap
data movement with computation in dwt2d and srad_vl1. In
both cases, merging the buffers obviates the need for data
movement altogether.

o A scalar flag was stored as a stack variable in srad_v1. The
flag is set from a GPU kernel to determine the loop stop
condition and is thus safe to access from the kernel.

o Static memory is used extensively for both host and de-
vice data structures in heartwall. We created two versions:
heartwall-v1 is close to the original code by using managed
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Fig. 11. The performance of six applications using the UPM-enabled unified

memory model, normalized to the baseline using the explicit model. Total
execution time and compute time (upper plot) and memory usage (lower plot).

static variables, while heartwall-v2 is a restructured version
without static variables and repeated allocation.

e Innn, a std: :vector is initialized on the CPU and later
passed to the GPU. We decided to keep the default vector
in the unified version for simplicity.

Fig. 11 presents the relative memory usage, the total ex-
ecution time, and the compute time of the unified memory
version, compared to the baseline, for each application. We
use hipMalloc as the default unified allocator where possible,
since it is the best performing in the characterization study.

The total execution time improved in the backprop applica-
tion. By using the unified memory model, several data transfers
in the main compute phase are removed, thereby reducing the
compute time by 35% and total time by 19%. In dwt2d, the
compute time was dominated by data transfer, and was reduced
in the unified version by 86%. However, the total execution
time was dominated by I/O operations outside the compute
phase, and thus the two versions result in similar total runtime.
In srad_v1, only a small amount of data transfer is performed
in each iteration, while the runtime is dominated by kernel
execution. Therefore, the compute time of srad_vl was not
significantly affected.

Static managed variables are used in heartwall-vl, lead-
ing to an 18% performance loss. In contrast, heartwall-v2
is a restructured version using dynamic memory allocation
according to our porting strategy. This adaptation results in
the unified memory model reaching the same performance as
the explicitly managed version.

There was one performance outlier in the form of the
compute time in nn, which was significantly higher than
the baseline. GPU page faults on the std::vector sig-
nificantly increased the compute time in the unified version.
The magnitude of the increase is due to the relatively simple

computational kernel compared to the cost of page faults. For
optimal performance, the std::allocator API could be
applied to use hipMalloc instead.

We also evaluate the memory usage of the applications. In
four applications (backdrop, hotspot, nn, and srad_vl), the
peak memory usage was reduced by 10-44% in the unified
memory version, as their duplicated data in CPU and GPU
buffers are merged into a unified buffer with UPM. In dwt2d
and heartwall, the peak memory usage was unaffected in the
unified version. In dwt2d, the peak memory usage occurs
during the CPU-only IO phase, and is therefore not affected
by unifying GPU data. In heartwall, the explicit host buffer
plus device buffer have the same total memory usage as the
UPM double buffering strategy.

In summary, the execution time of the unified memory
version on UPM is competitive with the explicit model version.
This is a significant step forward compared to UVM-based
unified memory, which incurs high performance overhead for
offering a simplified programming model [2, 3, 20]. With sim-
ilar performance, UPM-enabled unified memory programming
further saves up to 44% of memory usage in these applications,
compared with the explicit model.

VII. RELATED WORKS

Some previous works have studied UPM on MI300A in
an application-specific context. Tandon et al. [33] present
OpenMP GPU offloading for UPM, porting the CFD code
OpenFOAM to MI300A with OpenMP directives. Bertolli et
al. [11] identify a 1.2-1.3x improved performance in QMC-
Pack with direct access to the APU GPU memory, compared
to the copy configuration of discrete GPUs. They also report
the potential overhead of page table initialization on the APU
GPU and provide the configuration of eager maps as a solution.
Markidis et al. [26] ported the implicit particle-in-cell code
iPIC3D to MI300A, observing only a 2% overhead from using
the unified memory model while enabling simulations with a
larger number of particles on up to 32,768 APUs. Schieffer et
al. [30] studied inter-APU communication on MI300A systems
using micro-benchmarks and the proxy applications Quicksil-
ver and CloverLeaf, finding that hipMalloc buffers provide
the best communication performance. Nataraja et al. [28§]
propose improvements to the system-level coherence for AMD
APUs with a 14.4% average performance improvement on
a hardware simulator. Other works characterize the memory
system of earlier architectures such as Grace Hopper with
various memory allocation strategies, data placement, and
memory access patterns [19, 29].

Cooper et al. [16] investigate unified virtual memory in
the Linux kernel’s HMM, and study the performance impacts
on a diverse set of GPU workloads, revealing an aggressive
prefetching strategy for demand paging. Landaverde et al. [24]
investigate the performance of UVM in CUDA on synthetic
and Rodinia benchmarks. They identify that UVM is limited
by its high overhead and argue that the improvement in code
complexity is not worthwhile. Chien et al. [ 14] further examine
the impact of memory prefetch and hints in CUDA UVM



on application performance, showing the performance benefit
from memory hints when the GPU memory is oversubscribed.
In addition to UVM overhead and the impact on performance,
Allen et al. [2] analyze the effectiveness of prefetch and
eviction techniques in fault elimination. Choi et al. [15] focus
on UVM for multi-GPU systems, providing a new approach to
dynamically incorporate the spare memory of neighbor GPUs
with a custom memory manager.

GPU profilers use a diverse set of methods, including API
overloading, driver modification, and hardware event capture,
to track the various memory behaviors like memory usage,
page faults, etc. Lin et al. [25] proposed the DrGPUM profiler
to automatically identify inefficient memory coding practices
in GPU-accelerated applications without modification to the
application, hardware, or OS. They focused on problematic
memory usage, object-level and intra-object memory ineffi-
ciencies, and GPU memory optimization targets for appli-
cations. Bachkaniwala et al. [9] propose Lotus for profiling
machine learning applications in PyTorch on GPUs. They
focus on the preprocessing pipelines by linking the fine-
grained timing of each preprocessing step to hardware-level
events. Allen et al. [3] modifies the GPU driver to track events
associated with servicing on-demand faults in UVM. They
focus on exploiting the batch features to mitigate the high
overhead in UVM.

VIII. CONCLUSIONS

In summary, this work provides the first in-depth charac-
terization of Unified Physical Memory for CPU and GPU in
AMD MI300A, including the architectural properties of the
memory system, the efficiency of system software for memory
management, as well as application-level performance. In six
HPC applications, UPM enables the unified memory model to
achieve competitive performance compared to the explicitly
managed model, while saving up to 44% memory usage, when
using our presented porting strategies. These results indicate
that the unified memory model, once seen as a tradeoff of
performance for programmability (due to software overhead
in UVM), can now become the optimal choice on UPM for
its high performance and significant memory saving.
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APPENDIX
A. Abstract

The source code for the benchmarks used in this
work is available at https://github.com/KTH-Scalab/
mi300a-benchmarks. Each benchmark is contained within a
separate directory, with an accompanying makefile or build
script.

B. Artifact check-list

« Compilation: Makefile or build.sh script.

o Run-time environment: ROCm 6.3.1, Cray Programming En-
vironment 24.11

« Hardware: AMD MI300A APU

o Metrics: Atomics throughput, coherence overhead, page fault
overhead, memory allocation cost, memory bandwidth, memory
latency

« How much time is needed to complete experiments (approx-
imately)?: < 1 h for atomics and faults, < 10 min for others

« Publicly available?: Yes

o Code licenses (if publicly available)?: MIT, Apache 2.0,
STREAM

C. Description

1) How to access: https://github.com/KTH-Scalab/
mi300a-benchmarks or  https://doi.org/10.5281/zenodo.
16900964.

2) Hardware dependencies: We use the benchmarks to
study the AMD MI300A APU, but they will work on any
GPU system supported by HIP/ROCm. Atomics and memory
latency benchmarks require CPU-GPU coherent atomics. CPU
benchmarks can run without a GPU.

3) Software dependencies: ROCm software environment,
GPU drivers, numactl.

D. Installation

All benchmarks can be compiled using a makefile or
build.sh script.

E. Experiment workflow

All of the experiments are executed on a single
APU. On nodes with multiple APUs, use the follow-
ing setup to bind to the first APU on the system:
HIP_VISIBLE_DEVICES=0 numactl -NO -mO. Each
benchmark has scripts or makefile rules to help with running
using the correct parameters.

F. Evaluation and expected results

The results from each benchmark are written to standard
output or log files. Latency, bandwidth, and allocation speed
are directly reported. The fault benchmark reports the latency
of each trial; these have to be summarized as a post-processing
step. The atomics benchmark reports the raw throughput; co-
herence overhead is obtained by calculating the ratio compared
with the isolated case. The results of each benchmark should
be similar to those presented in the paper.

G. Experiment customization

Most benchmarks support changing a variety of parameters,
e.g. the memory allocator.


https://github.com/KTH-ScaLab/mi300a-benchmarks
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