Simulation-based inference for neutrino interaction model
parameter tuning
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| « Limitation of traditional |
. methods: Conventional
Likelihood-based fits are
. slow and scale poorly
i | with dimensionality. H

. » Motivation: Neutrino |
. experiments depend on :

I | » Our approach: !
i1 Use Simulation-Based !
Inference (SBI) to learn
the mapping between |
.~ observables and model
. parameters. '

accurate simulations of

{ | « Challenge: Theoretical | |
 models remain |
incomplete, requiring

i experimental tuning of
. simulation parameters. |

| neutrino—nucleus 1
| Interactions. |}

- Fast, amortized inference after training

o Handles high-dimensional parameter spaces

o Well suited for large-scale, next-generation {
__neutrino experiments such as DUNE |
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Simulation setup
e Frameworks: GENIE + NUISANCE

 Data: Each configuration — 58-bin
histogram (T2K dataset [2])
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: g 2.0 testing
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-@“ 0.5  Framework: sbi python library with
£ Overcontident — Neural Posterior Estimation.
0.0 _23 0.0 .
e - (Gl . ; . « Embedding network: 3 layers —
| Confide.nce Inteﬁral of the -Posterior'Volume | ' ’ ’ ) reduceS 58 b|nS —> 24 featureS
_ : _  Density estimator: Masked
- Upper left: Posterior ~ Upper right: Residuals for 1k Autoregressive Flow (6
distributions of one test event test events (gray dashed = true). transformations, 55 hidden units)
(gray-dashed = true-values). _ | | « Training: Batch size of 512, converges
-~ Lower right: MicroBooNE fit at ~215 epochs, learning rate 1072
~ Lower left: Posterior coverage parameters (red) [3] vs. network- _ . .
_ , e Performance: Once trained, inference
of 1k test events (black-dashed iInferred parameters with 1o completes in under 5 min.
= perfect calibration; gray = 10— errors (blue); prior ranges in
20% miscalibration). orange.
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