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Abstract

We find extraordinary enhancement of sensitivity by
integrating non-Hermitian and squeezing effects in a
general framework for quantum sensing. When a bosonic-
mode sensor operates at the parametric oscillation (PO)
threshold and an exceptional point (EP), the sensing
precision exhibits a quartic scaling with the perturbation
strength, leading to ultrahigh sensitivity. The result
generalizes to multimode squeezed-state sensors with
higher-order EPs, with potential applicability across a wide
range of quantum sensing platforms.

Quantum noise theory for bosonic-mode sensors

A bosonic-mode sensor consists of two harmonic oscillators
coupled to Input-output channels. The squeezing Is
concurrently generated by parametric-down conversion or
Kerr nonlinearity. Perturbation, which shifts the resonance
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Sensing at an exceptional point (EP)

EPs are singularities in the parameter space of non-
Hermitian systems, where eigenvalues and eigenstates
become degenerate. Driving the non-eigenstate leads to
field amplification as it evolves towards the eigenstate,
leading to enhanced sensitivity to external perturbation.
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Squeezing-enhanced sensor at an EP

Precision limit exhibits a quartic scaling with perturbation
(60,yp~0%) for a second-order EP sensor at PO threshold.
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