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Why Do We Study Neutrino Interactions?




# Essential Input for All Neutrino Experiments

We can study neutrinos only in the case that there are
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# Essential Input for All Neutrino Experiments

We can study neutrinos only in the case that there are
 Neutrino source
 Neutrino detector
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# Essential Input for All Neutrino Experiments

We can study neutrinos only in the case that there are
* Neutrino source
* Neutrino detector
* Neutrino interaction model for interaction rate and outcomes
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# Essential Input for All Neutrino Experiments

We can study neutrinos only in the case that there are
* Neutrino source
* Neutrino detector
* Neutrino interaction model for interaction rate and outcomes

Phys.Rev. 92 (1953) 830-831

Detection of the Free Neutrino*

F. ReEines anp C. L. Cowan, Jr.

Los Alamos Scientific Laboratory, University of California,
Los Alamos, New Mexico

(Received July 9, 1953; revised manuscript received September 14, 1953)
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N experiment! has been performed to detect the free neu-

trino. It appears probable that this aim has been accom-

plished although further confirmatory work is in progress. The
cross section for the reaction employed, .

y_+p—n+pt, (1)

has been calculated?® from beta-decay theory to be given by the
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N experiment! has been performed to detect the free neu-

trino. It appears probable that this aim has been accom-

plished although further confirmatory work is in progress. The
cross section for the reaction employed, .

y_+p—n+pt, (1)

has been calculated?® from beta-decay theory to be given by the

expression o .
B -0

2 E. Konopinski and H. Primakoff (private communications).
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2% Essential Input for All Neutrino Experiments

We can study neutrinos only in the case that there are
* Neutrino source
* Neutrino detector
* Neutrino interaction model for interaction rate and outcomes
- Measured a fundamental property of neutrinos: their existence!

PhysRev 92 (7953) 830-831 Incident

antineutrino

Gamma rays

Detection of the Free Neutrino*

F. ReEines anp C. L. Cowan, Jr.

Los Alamos Scientific Laboratory, University of California,
Los Alamos, New Mexico

(Received July 9, 1953; revised manuscript received September 14, 1953)

Gamma rays
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Neutron capture

N experiment! has been performed to detect the free neu-
trino. It appears probable that this aim has been accom- iEeboul
plished although further confirmatory work is in progress. The
cross sectign fo e reaction employed,

Outcomes [RAESZz/E Jias (1
rom beta-decay theory to be given by the

Liquid scintillator
and cadmium

has been calculated®

i - BCCC0

2 E. Konopinski and H. Primakoff (private communications).

Neutron scope

(b) Positron scope



# Essential Input for All Neutrino Experiments

Neutrino Oscillation
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# Essential Input for All Neutrino Experiments

Neutrino Oscillation: Tool for neutrino studies
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# Essential Input for All Neutrino Experiments

Neutrino Oscillation: Tool for neutrino studies

- DUNE and T2HK: essential for deeper understanding to lepton mixings and validating charge-parity

(CP) symmetry violation in them
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# Essential Input for All Neutrino Experiments

Neutrino Oscillation: Tool for neutrino studies

- DUNE and T2HK: essential for deeper understanding to lepton mixings and validating charge-parity
(CP) symmetry violation in them

Neutrino cross section plays a critical role

FERMINATIONAL ACCELERATORLABORATORY



# Essential Input for All Neutrino Experiments

Neutrino Oscillation: Tool for neutrino studies

- DUNE and T2HK: essential for deeper understanding to lepton mixings and validating charge-parity
(CP) symmetry violation in them

FERMINATIONAL ACCELERATORLABORATORY

DUNE Collab. Eur.Phys.J.C 80 (2020) 10, 978
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# Essential Input for All Neutrino Experiments

Neutrino Oscillation: Tool for neutrino studies

- DUNE and T2HK: essential for deeper understanding to lepton mixings and validating charge-parity
(CP) symmetry violation in them
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DUNE Collab. Eur.Phys.J.C 80 (2020) 10, 978
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# Essential Input for All Neutrino Experiments

Neutrino Oscillation: Tool for neutrino studies

- DUNE and T2HK: essential for deeper understanding to lepton mixings and validating charge-parity
(CP) symmetry violation in them
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DUNE Collab. Eur.Phys.J.C 80 (2020) 10, 978

&\4_"”"""""""'_

Neutrino cross section plays a critical role — I LLINE (12 MVY) ]
X | — MINERVA i

- Event rate at near detector - 3 fc .
© - — NOVA :

. N(E]) = [@U(Ey)a(Ey)e(Ey)dEy §* I ? — BNB (SBND) |
section effect 2 | ]

S : 5 iz | Flux at the :

« In fact, it is more complicated than this! g - [E 42 Near Detector -
> i -

| BN :




# Essential Input for All Neutrino Experiments

Neutrino Oscillation: Tool for neutrino studies

- DUNE and T2HK: essential for deeper understanding to lepton mixings and validating charge-parity
(CP) symmetry violation in them

. . . GENIE 2.12.10, DUNE FD TDR CV Tune
Neutrino cross section plays a critical role —— CC Inclusive CC 1p1h+2p2h

—— CCRes 1 —— CCDIS
- Event rate at near detector e
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. N(ET*o) = [@V(EV)G(EV)G(EU)dEy
section effect
* Infact, it is more complicated than this!

do(E)
.o(E)e(E) = [76(0 | E,)dO,

where Q is final state particles kinematics
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# Essential Input for All Neutrino Experiments

Neutrino Oscillation: Tool for neutrino studies

- DUNE and T2HK: essential for deeper understanding to lepton mixings and validating charge-parity

(CP) symmetry violation in them DUNE Collab. Eur.Phys.J.C 80 (2020) 10, 978
0.14 ' _
1285 km il
Neutrino cross section plays a critical role m 5. =
e 0.12F%  Normal Ordering Haee=0

- Event rate at near detector | 8p =2
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N(ETeco) = J@U(EV)G(EV)G(Ey)dEU >
1

* Infact, it is more complicated than this!

do(E)
.o(E)e(E) = JTG(O | E,)dO,

where Q is final state particles kinematics

- Far detector: oscillation probabilities play too! % 2 3 4 5678
Neutrino Energy (GeV)



# Essential Input for All Neutrino Experiments

Neutrino Oscillation: Tool for neutrino studies
- DUNE and T2HK: essential for deeper understanding to lepton mixings and validating CP phase in them

Neutrino cross section plays a critical role
+ One of the leading systematic uncertainty source of modern long baseline experiment

NOvVA 2024 Result's Uncertainty Budget

T2K 2023 v, Disappearance Uncertainty Budget

TABLE II. Uncertainties on the number of events in each SK
sample broken down by error source after the near-detector
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Source |Am§2 | sin” 023 dcp analysis. The first two rows show the uncertainties when flux
Beam ﬂUX _|_002 /_00 5 +OO7 /_01 4 _|_0 18 /_1 15 and crosssection systen‘latics (constrai'ned by the near detf:c—
Calibration 40.57/-0.74 +0.58/-2.91 +1.95/-19.5 o et s b the et
Detector model  40.07/-0.11 +0.07/-0.71 +0.43/-3.79 . (iin. tht‘;near'fet_e"tf"é Ignjlz’iisg aln‘ii CorreSP(;nflstFO vahat
Lepton Reco. +0.37/-0.57 +0.49/-0.82 +0.70/-3.33 the SK detector teaponse, L nOCTAIHE oM
ND - FD Uncor. +010/-014 +044/-045 +091/-460 Error source (units: %) |1R/1, Il—mode|1Ru D-mode
Cross Sections +0.27/-0.45 +40.56/-0.93 +2.30/-11.2 — 5o v
Neutron model +0. 10/-0 16 +049/-009 +049/-1 .49 Xsec (ND constrained) 3.1 3.0
Systematic Unc. +40.70/-0.94 +1.20/-3.27 +3.33/-24.1 Flux+Xsec (ND constr.)| 2.1 2.3
Statistical Unc.  +1.31/-1.80 +4.00/-15.5 +7.59/-85.1 o oy Xsee 00 2

Total 3.0 4.0

NOVA Collab. FERMILAB-PUB-25-0619-PPD

T2K Collab. Phys.Rev.D 108 (2023) 7, 072011




2% Essential Input for All Neutrino Experiments

Neutrino Oscillation: Tool for neutrino studies
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Lef that is an excellent sole motivation to study deeper!

NI

Systematic Unc. 0.70/-0.94 +1.20/-3.27 +3.33/-24.1 Flux+Xsec (ND constr.)| 2.1 2.3
Statistical Unc.  +1.31/-1.80 +4.00/-15.5 +7.59/-85.1 gﬁgziy Ksec g? ?g

Total 3.0 4.0

NOVA collab. FERMILAB-PUB-25-0619-PPD

T2K Collab. Phys.Rev.D 108 (2023) 7, 072011
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Current Landscape

« U-nucleus interaction mechanisms
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Current Landscape

 U-nucleus interaction mechanisms for SBND and DUNE
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 U-nucleus interaction mechanisms for SBND and DUNE
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~MeV Q¥/2M

E,(MeV)

~GeV energy transfer
Nuclear ground state
100 Commr O lepton
C - 3% : -~ — /4
- E I R Q —_ Quasi-Elastic
- o> X (QE)
B 10 = ) Nucleon’ JNucleon"
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p. (MeV/c) Figure credit to

J. Lab. Hall A Collab. Phys.Rev.D 105 (2022) 11, 112002 Jeff Hartnell
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Nuclear effects to partons
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Final state interactions
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; Effort for Improving Models and Event Generators are very ACTIVE
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LAY More data in all topologies are important \
- Multi differential cross sections _f
- More exclusive channels 3
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Short Baseline Near Detector (SBND):
Setup for Neutrino Interaction Studies




# Short Baseline Neutrino (SBN) Program

Use the same neutrino source with MiniBooNE: Booster Neutrino Beam (BNB) @ Fermilab
- Liquid argon time projection chamber (LArTPC) detector technology: R&D for future LArTPCs!
- Three LArTPCs at different baselines

FERMINATIONAL ACCELERATORLABORATORY
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# Short Baseline Neutrino (SBN) Program

Use the same neutrino source with MiniBooNE: Booster Neutrino Beam (BNB) @ Fermilab
- Liquid argon time projection chamber (LArTPC) detector technology: R&D for future LArTPCs!
- Three LArTPCs at different baselines

. Combined analyses to maximize sensitivity for eV-scale sterile neutrino: also v, disappearance
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# Short Baseline Neutrino (SBN) Program

Use the same neutrino source with MiniBooNE: Booster Neutrino Beam (BNB) @ Fermilab
- Liquid argon time projection chamber (LArTPC) detector technology: R&D for future LArTPCs!
- Three LArTPCs at different baselines

. Combined analyses to maximize sensitivity for eV-scale sterile neutrino: also v, disappearance

- A wide physics program includes precise v-Ar interaction studies and BSM searches

- i.e. Dark matters, heavy neutral leptons
=g '

~
BNB >
B ¢

source
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Active Mass
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Uniqueness of SBND

Proximity: 110 m from the BNB target

« High neutrino flux — high neutrino event rate — the world's largest v-Ar scattering data set to-date

« ~ 3 years of operation — ~ 6 million neutrino events

SBND Neutrino Flux at TPC Front Face
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Muon Neutrinos SBND Simulation

CC Exclusive Channels
vy CC Om, 4.3M Events

vy CC 1r*, 0.9M Events
v, CC 11°, 0.5M Events

vy CC multi-pion, 0.4M Events

Event Rates for 10 x 102° POT
in Active Volume (80m3)
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¢ /10% POT / m? / 50 MeV

2 Uniqueness of SBND

Proximity: 110 m from the BNB target
« High neutrino flux — high neutrino event rate — the world's largest v-Ar scattering data set to-date

« ~ 3 years of operation — ~ 6 million neutrino events
- Off-axis neutrino flux inside the active volume

* Opportunity to further constrain neutrino interactions models NOVA: Phys.Rev.D 106 (2022) 3, 032004

T2K: Phys.Rev.D 108 (2023) 7, 072011
- Constrain v flux and v-argon interaction models as a near detector for the SBN oscillation studies

SBND Collab. arXiv:2508.20239

SBND Neutrino Flux at TPC Front Face Muon Neutrinos SBND Simulation Area Normalized
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2= High Statistics!

For 3.5 X 10% POT data, neutrino interactions in SBND TPC active volume

» Based on GENIE v3.04.02 AR23_20i_00_000 (DQOI:10.5281/zenodo.15635784) %
Neutrino Interactions in SBND TPC Active Volume -
Inclusive ~2.07 M é
1 proton (Ex > 50 MeV), ~0.90 M =
No = (EK > 30 MeV) and ™ s
2 protons (Ex > 50 MeV), ~0.32 M E
No & (EK > 30 MeV) and 1 =
Exactly 1 r (Ex > 30 MeV) and no o ~0.27 M i
Exactly 1 © and no t(Ex > 30 MeV) ~0.16 M =
Inclusive ~ 15k
Exactly 1 = (Exk > 30 MeV) and no m© ~2.6 Kk
Inclusive ~0.84 M
NC At least 1 proton (Ex > 50 MeV) ~042M
At least 1 © ~0.14 M
CC ~3.7k
Coherent NG 29k
NC ~175

Scatter to e-

CC ~9


https://doi.org/10.5281/zenodo.15635784

SBN-wide work toward the publication of the updates is currently in progress

l)
Current Coming Updates
(Ar23) (Ar25)

Nuclear Ground State

Axial Form Factor

Resonant
Coherent Pion Production
DIS/SIS

Hadronization

Final State Interction

# Current GENIE Models and Coming Updates

Correlated Fermi Gas
Phys.Lett.B 785 (2018) 304-308

Z-expansion fit to Deuterium data
J.Phys.G 52 (2025) 6, 065003

Valencia
Phys.Rev.C 83 (2011) 045501

Charm: Kovalenko
Sov.J.Nucl.Phys. 52 (1990) 934-936

Strange: Pais
Annals Phys. 63 (1971) 361-392

Meson exchange current
SuSAv2

Berger-Sehgal
Phys.Rev.D 76 (2007) 113004

Berger-Sehgal
Phys.Rev.D 76 (2007) 113004

Bodek-Yang
Nucl.Phys.B Proc.Suppl. 112 (2002) 70-76

AGKY
Eur.Phys.J.C 63 (2009) 1-10

GENIE hA2018
Phys.Rev.D 104 (2021) 5, 053006

Argon Spectral Function
Phys.Rev.D 105 (2022) 11, 112002

Minerva data + LQCD results
Nature 614 (2023) 7946, 48-53
Ann.Rev.Nucl.Part.Sci. 72 (2022) 205-232

Reweights from Ar23/LFG to CRPA
Phys.Rev.D 106 (2022) 7, 073001

Improving 2p2h uncertainty to model spreads
SuSAv2(default), Valencia and Martini

1p1h — 2p2h interference
Reweight to Phys.Rev.C 112 (2025) 4, 045501

Improving uncertainties to model spreads
INCL, Geant4 Bertini, and GENIE hA
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Overlap with DUNE? T tastan il DUNE

0.12fr  Normal Ordering

DUNE Collab.

[] Bcp = 1/2 Eur.Phys.J.C 80 (2020) 10, 978

Neutrino energy
Good coverage to the 2nd P(yﬂ — V,) maximum

Interaction phase space

SBND 306 covers 95% of DUNE's events
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SBND:
Detector Status and the First Physics Run




Jt. :
ae SBND in a Nutshell

Liquid argon time projection chamber
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Jt. -
ae SBND in a Nutshell

Liquid argon time projection chamber
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Jt. .
= SBND in a Nutshell

time projection chamber
- —

Liquid argon

Y
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Cryostat

Side CRT
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JE :
aF SBND: TPC

Two electron drifting volumes share a central HV cathode plane
- Afield cage for uniform 500 V/cm E-field

Be"sflw";s U & V : induction planes
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JE :
aF SBND: TPC

Two electron drifting volumes share a central HV cathode plane
- Afield cage for uniform 500 V/cm E-field

Imaging with low noise 3-layer charge readout wires with 3 mm pitch

Normalized Entries/Bin

SBND TPC Raw Data: Signal-to-Noise Ratio

'MPV: {MPV: IMPV:  SBND Preliminary

1145 1235 1325

1
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=1 2™ Induction
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Normalized Entries/Bin

JE :
aF SBND: TPC

Two electron drifting volumes share a central HV cathode plane
- Afield cage for uniform 500 V/cm E-field

Imaging with low noise 3-layer charge readout wires with 3 mm pitch
- Excellent charge calorimetry
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SBND TPC Raw Data: Signal-to-Noise Ratio Muon and Proton Candidates
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Normalized Entries/Bin

JE :
aF SBND: TPC

Two electron drifting volumes share a central HV cathode plane

RUN 18255, EVENT 506886
February 18, 2025

- Afield cage for uniform 500 V/cm E-field

Imaging with low noise 3-layer charge readout wires with 3 mm pitch
- Excellent charge calorimetry
- Sensitivity to low energy activities
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JE :
aF SBND: TPC

Two electron drifting volumes share a central HV cathode plane

RUN 18255, EVENT 506886
February 18, 2025

- Afield cage for uniform 500 V/cm E-field

Imaging with low noise 3-layer charge readout wires with 3 mm pitch

- Excellent charge calorimetry } Essential for precise
- Sensitivity to low energy activities / cross section studies
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# SBND: Photon Detection System (PDS)

Light detection is critical to the event trigger system and cosmic rejection
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# SBND: Photon Detection System (PDS)

Light detection is critical to the event trigger system and cosmic rejection

Sensitive both to VUV from scintillations and lights from wavelength shifting coatings
- Reflective foil panels coated with wavelength shifter embedded into the cathode plane

- Better light detection uniformity across the detector coordinates

*Coated: for wavelength shifting of scintillating photons (41 ~ 127 nm)
to photocathode sensible regions (1 ~ 440 nm)
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# SBND: Photon Detection System (PDS)
Light detection is critical to the event trigger system and cosmic rejection

Sensitive both to VUV from scintillations and lights from wavelength shifting coatings
- Reflective foil panels coated with wavelength shifter embedded into the cathode plane

- Better light detection uniformity across the detector coordinates, and more for reconstruction!

*Coated: for wavelength shifting of scintillating photons (41 ~ 127 nm)
to photocathode sensible regions (1 ~ 440 nm)
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# SBND: Photon Detection System (PDS)
Light detection is critical to the event trigger system and cosmic rejection

Sensitive both to VUV from scintillations and lights from wavelength shifting coatings
- Reflective foil panels coated with wavelength shifter embedded into the cathode plane

- Better light detection uniformity across the detector coordinates, and more for reconstruction!

.. ) *Coated: for wavelength shifting of scintillating photons (41 ~ 127 nm)
O(nS) tlmlng reSOIUtK)n to photocathode sensible regions (1 ~ 440 nm)

- 0 ~ 1.7 ns: excellent tool for cosmic rejection + extending physics scope

FERMINATIONAL ACCELERATORLABORATORY

Charge + Light Reconstruction

_ pata SBND Preliminary
o0 S SBND Data
ATgng = 18.932 + 0.001 [ns]
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# SBND: Cosmic Ray Tagger

Cosmic

Cosmic ray tagger (CRT)
- Surrounds the SBND cryostat on all 6 sides

Top CRT planes
(160 m2 active area)

Cryostat

FERMINATIONAL ACCELERATORLABORATORY

* Side CRT planes
(225 m2 active area)



# SBND: Cosmic Ray Tagger

Cosmic

Cosmic ray tagger (CRT)
- Surrounds the SBND cryostat on all 6 sides

« Built from 11.2 cm wide scintillator strips
« Wavelength shift (WLS) fibers
» Silicon photomultipliers (SiPMs) for light collection

Top CRT planes
(160 m2 active area)

Cryostat

FERMINATIONAL ACCELERATORLABORATORY

ol Side CRT planes
(225 m2 active area)




# SBND: Cosmic Ray Tagger

Cosmic

Cosmic ray tagger (CRT)
- Surrounds the SBND cryostat on all 6 sides

« Built from 11.2 cm wide scintillator strips
« Wavelength shift (WLS) fibers
» Silicon photomultipliers (SiPMs) for light collection

Top CRT planes
(160 m2 active area)

Cryostat
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SBND: Cosmic Ray Tagger

Cosmic ray tagger (CRT)
- Surrounds the SBND cryostat on all 6 sides
« Built from 11.2 cm wide scintillator strips
« Wavelength shift (WLS) fibers
- Silicon photomultipliers (SiPMs) for light collection

FERMINATIONAL ACCELERATORLABORATORY

SBND Preliminary - CRT Downstream Wall - Light Triggered Beam Data (1.58x10%° POT)
0 = 3.510+0.046 ns | | | | | | |
Of AT = 18.932+0.001 ns
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# SBND: Cryostat and Cryogenics

Heart of the LArTPC experiments: literally pumps the experiment
« Under 1 atm, argon boiling point is 87.3 K and freezing point is 83.8 K
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# SBND: Cryostat and Cryogenics

Heart of the LArTPC experiments: literally pumps the experiment
« Under 1 atm, argon boiling point is 87.3 K and freezing point is 83.8 K
- Liquid argon purity is critical

- i.e. H20, Oq: charge yield reduction, N2: light yield reduction
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Electron Lifetime [ms]

# SBND: Cryostat and Cryogenics

Heart of the LArTPC experiments: literally pumps the experiment
« Under 1 atm, argon boiling point is 87.3 K and freezing point is 83.8 K
- Liquid argon purity is critical
- i.e. H2O, Oo: charge yield reduction, N2: light yield reduction
- Exceeding the design goals
- Avery successful collaboration between CERN and Fermilab engineers and physicists

Charge Yield Light Yield
SBND Run 1 Data Preliminary
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2% First Physics Run

SBND's first physics data taking period was very successful
. Amazing amount of delivered POT: 3.53 x 10?"

« Huge thanks to our colleagues in the accelerator division for enabling us the world's largest -Ar data set
» Very high collection efficiency: 98.6%

- Excellent operation team and highly reliable shifters - current run will deliver even bigger data set

SBND Run 1 Cumulative POT

SBND Preliminary Dec. 20, 2024 - Jul. 8, 2025
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Ongoing SBND Cross Section Efforts and Plans




2% 1,CC 1p07

An ideal channel for studying nuclear effects with high quasi-elastic scattering purity

RUN 14445, EVENT 120
July 04, 2024 - 20:40:22 UTC
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2% 1,CC 1p07

An ideal channel for studying nuclear effects with high quasi-elastic scattering purity

RUN 14445, EVENT 120
July 04, 2024 - 20:40:22 UTC
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2% 1,CC 1p07

An ideal channel for studying nuclear effects with high quasi-elastic scattering purity
* Kinematic imbalance in the plane perpendicular to the incident neutrino's momentum

X. -G. Lu et al. Phys.Rev.C 94 (2016) 1, 015503
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MicroBooNE Collab. Phys.Rev.D 108 (2023) 5, 053002




2% 1,CC 1p07

An ideal channel for studying nuclear effects with high quasi-elastic scattering purity
* Kinematic imbalance in the plane perpendicular to the incident neutrino's momentum

X. -G. Lu et al. Phys.Rev.C 94 (2016) 1, 015503

» Sensitive to

* Nuclear ground state modeling
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An ideal channel for studying nuclear effects with high quasi-elastic scattering purity
* Kinematic imbalance in the plane perpendicular to the incident neutrino's momentum
X. -G. Lu et al. Phys.Rev.C 94 (2016) 1, 015503

 Sensitive to
* Nuclear ground state modeling
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An ideal channel for studying nuclear effects with high quasi-elastic scattering purity
* Kinematic imbalance in the plane perpendicular to the incident neutrino's momentum

X. -G. Lu et al. Phys.Rev.C 94 (2016) 1, 015503

» Sensitive to
* Nuclear ground state modeling
* Final state interactions
_ 1e—38 Preliminary ICARUS Data
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Signal event definition
* Final state kinematics
« Exactly one muon with PM in [220, 1000] MeV/c RUN 14445, EVENT 120

July 04, 2024 - 20:40:22 UTC
Exactly one proton with P, in [300, 1000] MeV/c

No charged pions with P_.. >70 MeV/c

No neutral pion

Other particles not listed are allowed
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 Events are fully contained within the detector volume
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Signal event definition
* Final state kinematics
« Exactly one muon with PM in [220, 1000] MeV/c

Exactly one proton with Pp in [300, 1000] MeV/c

No charged pions with P_.. >70 MeV/c

No neutral pion

Other particles not listed are allowed
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 Events are fully contained within the detector volume

Event selection in data
* Cosmic rejection: neutrino-like events (eff.: 79%, purity: 21%, CCQE purity: 33%)

* Two-track topology: with only two trajectories emerging from a common vertex
(eff.: 50%, purity: 59%, CCQE purity: 63%)

« Particle identification: 14 + 1p (eff.: 39%, purity: 92%, CCQE purity: 82%)
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Signal event definition S ©
= ]
* Final state kinematics U S
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. Exactly one muon with PM in [220, 1000] MeV/c . : i i
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350 + Muon 8
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» No neutral pion g 300 | Cendieaies <
. . Pl 0y e
* Other particles not listed are allowed < 200 | - =
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« Events are fully contained within the detector volume L R

* 50 | proton candidates
e Ll 190
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Event selection in data Muon-like Score

* Cosmic rejection: neutrino-like events (eff.: 79%, purity: 21%, CCQE purity: 33%) | Muon| proton)
94.7% 84.0%

A 97.0% 99.1%

* Two-track topology: with only two trajectories emerging from a common vertex
(eff.: 50%, purity: 59%, CCQE purity: 63%)

« Particle identification: 14 + 1p (eff.: 39%, purity: 92%, CCQE purity: 82%)
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First data and MC comparison!!!
. POT=5.98 x 10'® — ~3days

200 ¢ Data mm v, NC (1.4%) B Cosmic (0.5%)

¢
B v, CC 1p0m (92.1%) mmm Otherv (0.1%) In-time
175 | mmm v, CCNpOm(2.9%)  mmm OUt-FV v (0.1%) Cosmic (0.1%)
XXX Syst. Unc.
s v, CC Other (2.8%) yst-=ne

150 | GENIE v3.4.0 AR23_20i_00_000
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First data and MC comparison!!!
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vMCC 1p0r

First data and MC comparison!!!
. POT=5.98 x 10'® — ~3days
« Additional protons are not identified
* Not long enough to be reco.ed as tracks

 Events with particles outside the kinematic
region of the signal definition
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First data and MC comparison!!!

200 ¢ Data mm v, NC (1.4%) B Cosmic (0.5%)
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175 | mmm v, CCNpOm(2.9%)  mmm Out-FV v (0.1%) osmic (0.1%
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. o S
Not long enough to be reco.ed as tracks D s SBND Preliminary
 Events with particles outside the kinematic
region of the signal definition 100

» Charged pions mis-identified as muons
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First data and MC comparison!!! 2
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vMCC 1p0r

First data and MC comparison!!!

POT=5.98 x 10'® — ~3days
Additional protons are not identified
* Not long enough to be reco.ed as tracks

Events with particles outside the kinematic
region of the signal definition

Charged pions mis-identified as muons
Cosmic muons with Michel electrons

MC uncertainty on event rate with
* Neutrino flux
* Cross section model
* Detector effects (SCE + recombination)
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W. Tang et al. JINST 12 (2017) 10, P10002

Cross section extraction strategy: Wiener-SVD unfolding used in the first analysis round
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2% 1,CC 1p07
W. Tang et al. JINST 12 (2017) 10, P10002
Cross section extraction strategy: Wiener-SVD unfolding used in the first analysis round
* Two types of matrices for the unfolding
* Response matrix
« Event selection efficiency X truth-reco. response matrix
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2% 1,CC 1p07
W. Tang et al. JINST 12 (2017) 10, P10002

Cross section extraction strategy: Wiener-SVD unfolding used in the first analysis round
* Two types of matrices for the unfolding

* Response matrix

« Event selection efficiency X truth-reco. response matrix

 Covariance matrices for uncertainties

* Unfolding with regularization
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2% 1,CC 1p07
W. Tang et al. JINST 12 (2017) 10, P10002
Cross section extraction strategy: Wiener-SVD unfolding used in the first analysis round
* Two types of matrices for the unfolding
* Response matrix
« Event selection efficiency X truth-reco. response matrix
 Covariance matrices for uncertainties

* Unfolding with regularization
* Cross section results in regularized space: together with the smearing matrix for model comparisons
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Systematic uncertainty in cross section
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Systematic uncertainty in cross section
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Neutrino flux SBND Simulation
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Systematic uncertainty in cross section
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[ Total Syst. (SCE & Recomb.)

1 Flux

GENIE
= (v3.4.0 AR23_20i_00_000)

1 MC Statistics

N
©
o

* Using Asimov data

Number of Targets
Beam Exposure

=
N
ul

15.0 1= =1 Data Statistics (Projected to 1x102° POT)
Neutrino flux SBND Simulation
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Detector simulation
» For now, considering |El distortion and electron-argon recombination (largest effect in MicroBooNE)
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For the first result, we aim to produce 1D differential cross section measurements in

« Particle kinematics
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In plane perpendicular to

T DMCC 1p0717 incident neutrino's momentum

v X. -G. Lu et al. Phys.Rev.C 94 (2016) 1, 015503
MicroBooNE Collab. Phys.Rev.D 108 (2023) 5, 053002
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aE Inclusive vﬂCC

The channel with the largest statistics
- Lepton kinematics is less affected by final state interactions: good for studying multiple topologies at once
- Multi-differential cross section measurements for precision studies

. For the first result, we aim 2D differential cross section measurements in (Pﬂ, cosﬁﬂ)
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The channel with the largest statistics
- Lepton kinematics is less affected by final state interactions: good for studying multiple topologies at once
- Multi-differential cross section measurements for precision studies

. For the first result, we aim 2D differential cross section measurements in (Pﬂ, cosﬁﬂ)

Event selection is mature
* Entering systematic uncertainty study stage
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aE Inclusive vﬂCC

The channel with the largest statistics
- Lepton kinematics is less affected by final state interactions: good for studying multiple topologies at once
- Multi-differential cross section measurements for precision studies

. For the first result, we aim 2D differential cross section measurements in (Pﬂ, COS@ﬂ)

Event selection is mature
* Entering systematic uncertainty study stage
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# Inclusive v,CC

Important for DUNE for its v -appearance studies!

For the first result, we aim 1D differential cross section measurements in

- E,and cos0,

« Photon and electron separation is being developed: critical for the SBN oscillation physics!

Event selection is mature

FERMINATIONAL ACCELERATORLABORATORY

» Performing studies for systematic uncertainties
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Inclusive v,CC

Important for DUNE for its v -appearance studies!

For the first result, we aim 1D differential cross section measurements in
- E,and cos0,

« Photon and electron separation is being developed: critical for the SBN oscillation physics!

Both larger statistics and improved neutrino flux uncertainties are important
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# Inclusive v,CC

do/dcos 6, [10°%° cm?/nucleon]

Important for DUNE for its v -appearance studies!
For the first result, we aim 1D differential cross section measurements in
- E,and cos0,

« Photon and electron separation is being developed: critical for the SBN oscillation physics!

SBND's will provide more opportunities to study in exclusive channels
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Jt. : :
aE More Exclusive Channels in vMCC

_|_
lulx=Np
o e _ B> RUN 14584, EVENT 1842
- Contribution is mostly from resonant production Qg July 07, 2024

« Important channel for Or RES and DUNE
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aE More Exclusive Channels in vMCC

+
lulx=Np
o ] Fe®>.  RUN 14584, EVENT 1842
« Contribution is mostly from resonant production Qg July 07, 2024

« Important channel for Or RES and DUNE
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_|_
lula=Np
o e ] &2 RUN 14584, EVENT 1842
- Contribution is mostly from resonant production Qg Juy 07, 2024

« Important channel for Or RES and DUNE

« Exploring if re-interacting 7™ could have reasonable
energy reconstruction

. Extending phase space for 7™ to higher energy region

GENIE 2.12.10, DUNE FD TDR CV Tune
—— CC Inclusive CC 1p1h+2p2h
—— CCRes 1n —— CCDIS
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« Important channel for Or RES and DUNE
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aE More Exclusive Channels in vMCC

b RUN 14775, EVENT 421
& July 12, 2024

1u2p0n
« Sensitive to various nuclear effects

* The 4-momentum transfer is shared between two
nucleons by a meson exchange current (MEC)

- Short range correlations between nucleons
- Final state interactions
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® RUN 14775, EVENT 421
& July 12, 2024

1u2p0n

« Sensitive to various nuclear effects Leading p (L) candidate
» The 4-momentum transfer is shared between two y |
nucleons by a meson exchange current (MEC) 1 e ek
- Short range correlations between nucleons L
, . _ Secondary p (R)
* Final state interactions candidate

« Could constrain models for them
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Neutral Pion Production

Studies are going on for both NC and CC interactions

 Dominant background for BSM searches with showers

Excellent JZ'O mass reconstruction

« Double-sided Crystal Ball fits to reconstructed 7 show

better than 10% resolution in both CC and NC channels

« Thanks to good shower energy and angle resolution
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5§ July 12, 2024

# Neutral Pion Production @R, run 14775, EVENT 20

Studies are going on for both NC and CC interactions
 Dominant background for BSM searches with showers
Excellent ¥ mass reconstruction

« Double-sided Crystal Ball fits to reconstructed 7 show
better than 10% resolution in both CC and NC channels

« Thanks to good shower energy and angle resolution

Could provide constraints to final state interaction (FSI) and resonance (especially 72'0) modeling
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€ NC 1
3¢ NC1p |
UN 18271, EVENT 120046
arch 02, 2025 '

Isolated proton track
» Could provide NC elastic-enriched event selection
- Cross section at low Q2 is sensitive to s-quark spin fraction

MICROBOONE-NOTE-1053-PUB
1 1
GYO(@?) = 5G5°(@%) + 5G4(Q?),

1
G (Q*=0) = 5 (Au — Ad) - %As,
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UN 18271, EVENT 120046
arch 02, 2025 '

Isolated proton track

» Could provide NC elastic-enriched event selection

- Cross section at low Q2 is sensitive to s-quark spin fraction
\—\

MICROBOONE-NOTE-1053-PUB
1 1
GYO(@?) = 5G5°(@%) + 5G4(Q?),

1 1
GYC(Q? =0) = 5(Qu—Ad) - S As;
g4 = — 1.2756 (PDG 2024 avg.) from neutron decays
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# NC 1p

RUN 18271, EVENT 120046
March 02, 2025 '

Isolated proton track

» Could provide NC elastic-enriched event selection

- Cross section at low Q2 is sensitive to s-quark spin fraction
\—\

MICROBOONE-NOTE-1053-PUB

GYOQ) = ;65°@) + 1G4 (@),
G (Q*=0) = %(Au — Ad) — %As,

—
g4 = — 1.2756 (PDG 2024 avg.) from neutron decays

. Reconstruction for low energy proton is essential: EII; =50MeV — Q% = 0.1 GeV?
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# NC 1p

UN 18271, EVENT 120046
arch 02, 2025 '

Isolated proton track

» Could provide NC elastic-enriched event selection

- Cross section at low Q2 is sensitive to s-quark spin fraction
\—\

MICROBOONE-NOTE-1053-PUB

GI°(@) = GiC(Qz) + Gs 2(Q%),

NC 2
GNC(Q*=0) = 5(Au— Ad) — EAS,
g4 = — 1.2756 (PDG 2024 avg.) from neutron decays

. Reconstruction for low energy proton is essential: Ep 50 MeV — 0? = 0.1 GeV?
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Physics Letters B 313 (1993 ) 267-275

# Rare Interactions \/
¢\ Wt
Coherent v, CC v KA
11|93
L _
c lpu=+ 1a* s X

» First goal is 1D differential cross section measurement
in | | and muon kinematics

* Only one published result for argon is from ArgoNeuT*

+ With NuMI beam, flux averaged cross section for
each of neutrino and anti-neutrino mode
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17 meson production from v, CC interactions

- Focusingonn — yy decay channel (BF ~40%)
- M(yy) ~548 MeV
» Could provide an access to high order resonances

. )= RUN 18255, EVENT 2008 30 cm
(I.e. N1535 and N1 650) SBND. February 16, 2025

* ArgoNeuT Collab. Phys.Rev.Lett. 113 (2014) 26, 261801



# Quick Summary for the Ongoing Efforts

g
=
Neutrino Interactions in SBND TPC Active Volume E
Inclusive ~2.07M g
1 proton (Ek > 50 MeV), ~0.90M %
No & (EK > 30 MeV) and 1 <Z:
2 protons (Ex > 50 MeV), O
No (EK >( 30 MoV) ano? o0 = el <
Exactly 1 1= (Ex > 30 MeV) and no @ ~0.27 M E
Exactly 1 m0 and no m&(Ex > 30 MeV) ~0.16 M 7
Inclusive ~ 15Kk
Exactly 1 i (Ex > 30 MeV) and no m© ~2.6 K
Inclusive ~0.84 M
NC At least 1 proton (Ex > 50 MeV) ~0.42 M
Atleast 1 0 ~0.14 M
CC ~3.7K
Coherent NG 29k
NC ~ 175

Scatter to e-

CC ~9




# Quick Summary for the Ongoing Efforts

Cellsin are ongoing analyses: and many more!!
3.5 x 1020 POT
Inclusive ~2.07M |
1 proton (Ex > 50 MeV),
No e (EK > 30 MeV) and 1@ el 2
2 protons (Ek > 50 MeV), o
No T (EK > 30 MeV) and 1 ~ 092 M <
Exactly 1 1= (Ex > 30 MeV) and no m° ~0.27 M E
Exactly 1 m® and no m#(Ek > 30 MeV) ~0.16 M i
Inclusive ~ 15k
Exactly 1 = (Ex > 30 MeV) and no m© ~2.6K
Inclusive ~0.84 M
NC At least 1 proton (Ek > 50 MeV) ~0.42M
At least 1 10 ~0.14 M
CC ~3.7k
Coherent NG 29k
NC ~175

Scatter to e-

CC ~9
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# Summary

Neutrino interaction model is essential for all neutrino experiments

« For modern long baseline neutrino oscillation experiments, it is one of the leading sources of systematic
uncertainties

» Constraining the uncertainty is critical for the future experiments such as DUNE
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# Summary

SBND offers unique opportunities for neutrino-argon interaction studies
- Its proximity to BNB target provides unprecedented statistics and access to off-axis flux effect
+ All subsystems' performances are excellent
» First physics run from December 2024 to July 2025 is successful
. With 98.6% collection efficiency, total data of 3.48 x 10?° POT is collected
- World's largest neutino-argon dataset to-date is of excellent quality and is currently being analyzed

FERMINATIONAL ACCELERATORLABORATORY



# Summary

SBND has a very active neutrino-argon cross section program

-« ~10 analyses are at mature stages, many more to follow soon!
- Some of them are in the systematic uncertainty evaluation stage
- Most of them have well-defined event selections

+ We plan to publish cross section results in regularized space together with the smearing matrix for model
comparisons

- Please contact us if you have more ideas for interesting cross section measurements!!!
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SBND Collaboration Meeting June 2025 at University of Sheffield, UK

Thank you!
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# NOvVA and T2K X-sec Uncertainties to 0p

- NOvVA: dominant contribution is from uncertainties for difference between v, and v, cross-sections

* ~2% correlated and ~ 2% anti-correlated
- Studying v, interactions in ND is important
« Improving models for flux and Uy help for reducing uncertainty for this study

Table 19 Shifts of the 90% confidence interval boundaries of §¢p, in
radians, as a result of the simulated data studies. The values in the top
row correspond to the results of the data fit, assuming normal ordering.

° T2K The values for each simulated data set are added to (subtracted from)
the right (left) d.p interval edge from the data fit. Only the absolute size
of the shift is taken into account
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¢ Non-CCQE Simulated data set Change to 90% CL of 8cp
. . . —3.01 —0.52

* Ad-hoc reweight to Non-CCQE contribution p——— — —

in NEUT CCQE model for discrepancy between CCQE 3-comp high 0.05 0.03

ND data and simulation s o o

. . CCQE z-exp high 0.05 0.04

¢ Data'dnven plOn CCQE z-exg lofv 0.00 0.00

. . o . CCQE removal energy 0.00 0.02

* ND data-driven pion momentum modification Non-CCQE 0.06 0.09

2p2h Martini 0.04 0.04

MINERVA pion tune 0.05 0.04

Data-driven pion 0.07 0.04

Pion SI 0.00 0.01

The simulated data sets with the largest impact are typed in bold
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Relative Event Rate / 100 MeV

o
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o

0.081

0.061

0.04 1

For Discussion about the Table

Muon Neutrinos SBND Simulation

CC Exclusive Channels
vy CC Om, 4.4M Events

v, CC 1m*, 0.9M Events
vy CC 1n°, 0.5M Events

vy CC multi-pion, 0.4M Events

Event Rates for 10 x 102° POT
in Active Volume (80m?3)

GENIE v3.0.6 G18_10a 02 11la

0.0 0.5 1.0 1.5 2.0 2.5

Neutrino Energy [GeV]

* For10x 1020 POT

3.0

o
[
o

©
o
o

©
o
B

Relative Event Rate / 200 MeV
o o
o o
l\.) (@)

©
o
o

Electron Neutrinos SBND Simulation

CC Exclusive Channels

Ve CC Om, 27k Events

Ve CC 1%, 7k Events

Ve CC 1%, 4k Events

Ve CC multi-pion, 6k Events

Event Rates for 10 x 102° POT
in Active Volume (80m3)

GENIE v3.0.6 G18_10a_02_11a

o
=
N
w
S
w

Neutrino Energy [GeV]

« NumMuCC: ~6.2M — 2.17 M for 3.5x1020 POT which is ~ 5% more than my table

* Probably due to rounding

« NueCC: ~44k — 15.4k for 3.5x1020 POT, which is similar with my table
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# Neutral Pion Production G RUN 14775, EVENT 820

% N July 12, 2024

Studies are going on for both NC and CC interactions
 Dominant background for BSM searches with showers
Excellent ¥ mass reconstruction

- Double-sided crystal ball fits to reconstructed 7 show
better than 10% resolution in both CC and NC channels

+ Thanks to good shower energy and angle resolutions

Could provide constraints to final state interaction (FSI) modelings
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NC, Op NC, 1p
MicroBooNE 6.4 x 102° POT: NCn® Op (b) MicroBooNE 6.4 x 102° POT: NCn° Np
0.8 (a’) ,'\\ —— NuWro (7.8/6) ] —— NuWro (11.3/6)
i RN -== NuWro no FSI (27.3/6) N -== NuWro no FSI (44.5/6)

St GENIEvV3 (14.8/6)

e e e
3 - N

[1073° cm?2 / GeV/c / nucleon]
e
v

® e e
= N W

do
dPye

e
e

EN GENIEvV3 (6.7/6)
N\ GENIEvV3 no FSI (40.3/6)
% NEUT (7.3/6)
N NEUT no FSI (32.4/6)
5 —— GiBUU (12.9/6)
""" GiBUU no FSI (27.2/6)
S + Data
i

-
~
-~
S

[1073° cm? / GeV/c / nucleon]
Sl
= N W e U &

do
dPnn

e
e

GENIEvV3 no FSI (56.3/6)
NEUT (9.3/6)
NEUT no FSI (49.2/6)
S —— GiBUU (8.2/6)
-+ GiBUU no FSI (40.9/6)
4+ Data

Ve
S,
S,

e
=

0.2 0.4 0.6 0.8 1.0 1.2

reg

P [GeV/c]

e
)

0.4 0.6 0.8 1.0 1.2

Pro’ [GeVicl Phys.Rev.Lett. 134 (2025) 16, 161802
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0.08

0.06

0.04

0.02

Relative Event Rate / 100 MeV

Anti Neutrino Mode

. y_ﬂ fraction from 6.9% to 83.9%

SBND Simulation

CC Exclusive Channels
s v, RHC CC, 586k Events
mmm v, RHC CC, 650k Events

Event Rates for 10 x 102° POT
in Active Volume (80m?)
GENIE v3.0.6 G18_10a_02_11a

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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0.04

0.02

Relative Event Rate / 100 MeV
2

Neutrino Energy [GeV]

Muon Neutrinos SBND Simulation

CC Exclusive Channels

v, CC Om, 4.4M Events

v, CC 1r*, 0.9M Events

v, CC 1n°, 0.5M Events

vy CC multi-pion, 0.4M Events

Event Rates for 10 x 102° POT
in Active Volume (80m?3)

GENIE v3.0.6 G18_10a_02_11a

.0 0.5 1.0 1.5 2.0 2.5 3.0
Neutrino Energy [GeV]
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Relative Event Rate / 100 MeV
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S

Relative Event Rate / 200 MeV
o
()}

SBND Simulation

CC Exclusive Channels
mm ve RHC CC, 10.3k Events
V. RHC CC, 4.3k Events

Event Rates for 10 x 10%° POT
in Active Volume (80m?)
GENIE v3.0.6 G18_10a_02_11a |

05 1.0 15 20 25 3.0 35 40 45 5.0
Neutrino Energy [GeV]

Electron Neutrinos SBND Simulation

CC Exclusive Channels
B v, CCOm, 27k Events
mm ve CC 1%, 7k Events
== v, CC 1n°, 4k Events
B v, CC multi-pion, 6k Events

Event Rates for 10 x 102° POT
in Active Volume (80m?)

GENIE v3.0.6 G18_10a_02_11a

Neutrino Energy [GeV]

Rev.Mod.Phys. 84 (2012) 1307-1341
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Jt
= Comments

* https://docs.google.com/document/d/1 EygOwMo1u70ND_xgcOu4EbKg7IMhit3nOohTtmimshl/edit?
tab=t.0
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