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Key Points

Cascadia Margin is an active margin with present
day gas seeps and a history of slope failure.
Geospatial machine learning (k-nearest neighbors)
was used to predict seafloor properties in this region.
1-D sedimentation burial model was used to
estimate gas and hydrate development over time.
Outputs of model were used to calculate factor of
safety of the area.

Slope failure was not expected due solely to hydrate
dissociation and gas formation.
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* Yellow dots: gas seeps have been identified near the
feather edge of hydrate stability (Merle et al., 2021)

* White triangles: historic slope failures in this region
(McAdoo et al., 2000)

« Pink X: ODP and DSDP sites in our area of focus

« Contours at 200 and 1500 mbsl are noted as well as
the approximate location of the deformation front
(White Line) noted by Phrampus et al., 2017.

KNN Prediction

Seafloor TOC and porosity predictions were made using k-nearest
neighbor algorithms.

We used grids of seafloor variables compiled by Phrampus et al., 2020 for
these predictions. These contained known values of geological,
geographic, biological attributes.

Within the region: 30 known values of seafloor TOC (Seiter et al., 2004)
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Within the region: 22 known values of seafloor porosity (Martin et al., 2015)
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« FS was calculated from outputs from this model (Stigall and Dugan, 2010): FS =
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Saturations and Factor of Safety

« Between 200 and 1500 mbsl gas and hydrate formation was modeled with a hydrological model (PFLOTRAN).
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FS, S,, and S, trends over time Looking at different timesteps
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Conclusion

Lowest factor of safety calculations correspond with areas of highest seafloor slope.

Even in these areas, hydrate dissociation and gas generation alone were not enough to cause slope failure.
Thus, some other force would be needed to initiate slope failure and landslides in the area.

As this is an active margin, earthquakes could likely be this instigating factor.

At the base of hydrate stability, FS decreases, but values along the sediment column are relatively consistent.
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