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The US Drought Monitor provides weekly drought
estimates

U.S. Drought Monitor

Last week's report

Map released: December 5, 2024
Data valid: December 3, 2024
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(~ - Delineates dominant impact:

Source: U.S. Drought Monitor 3


https://droughtmonitor.unl.edu/

The US Drought Monitor provides weekly drought
estimates as well as monthly forecasts

U.S. Drought Monitor

Last week's report

Map released: December 5, 2024

—— Monthly Outlook

Monthly U.S. Drought Outlook

U.S. Monthly Drought Outlook Valid for December 2024

Drought Tendency During the Valid Period Released November 30, 2024
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(~ - Delineates dominant impact:
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The US Drought Monitor provides weekly drought
estimates as well as monthly and seasonal forecasts

U.S. Drought Monitor

Last week's report

Map released: December 5, 2024

—— Monthly Outlook

A Seasonal Outlook

Monthly U.S. Drought Outlook
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The latest seasonal drought outlook from the Climate Pre
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U' S' seasona’ Drought OUtIOOk Valid for December 1, 2024 - February 28, 2025
leased November 30, 2024

““““““““““

Drought Tendency During the Valid Period Re
5 Cor

IO TS EES

Intensity and Impacts

v
1 Orought development ikety
No drought
ey . 3
$ ®$
Ihttps:ligo.usa.govideZGd
p. ’ < No drought
( e g . o
/& : ; @,
14 ‘% | R " (&) \ '
https:/igo.usa.govi3eZ73

Source: U.S. Drought Monitor 5


https://droughtmonitor.unl.edu/

The US Drought Monitor provides weekly drought
estimates as well as monthly and seasonal forecasts

U.S. Drought Monitor

Last week's report

Map released: December 5, 2024
Data valid: December 3, 2
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Monthly U.S. Drought Outlook

Seasonal Outlook

What if we could use machine learning and
chaotic system modeling to accurately forecast
drought much farther (e.g., 1-2 years) into the

future?
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Source: U.S. Drought Monitor
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Multiple machine learning—based algorithms have been used to
forecast meteorological drought

high hazardous impacts on the society. s effects are mostly
manifested as hydrological drought. Identifying past droughts

A Deep Learning Based Approach for Long-Term
Drought Prediction

Norbert A Agana Abdollah Homaifar
Department of Electrical and Department of Electrical and
Computer Engineering Computer Engineering

North Carolina A&T State University North Carolina AKT State University
Greensboro, NC Greensboro, NC
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Abstract—Drought is o natural disaster that comes with [6]. OF the total 58 weather-related disasters recorded within
the period. 10 were as a result of droughts and other related
heat waves [6]. The ability to design models that can make
reliable future predictions constitutes a significant progress in
the drought management process. However, the random and

vital in limiting their effects.
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Estimation of SPEI Meteorological Drought
Using Machine Learning Algorithms
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ABSTRACT Accurate estimation of drought events is vital for the mitigation of their adverse consequences
on water resources, agriculture and ecosystems. Machine leaming algorithms are promising methods for
drought prediction as they require less time, minimal inputs, and are relatively less complex than dynami
or physical models. In this study, a combination of machine learning with the Standardized Precipitation
Evapotranspiration Index (SPEI) is proposed for analysis of drought within a representative case study in
the Tibetan Plateau, China, for the period of 1980-2019. Two timescales of 3 months (SPEI-3) and 6 months
(SPEI-6) aggregation were considered. Four machine learning models of Random Forest (RF), the Extreme
Gradient Boost (XGB), the Convolutional neural network (CNN) and the Long-term short memory (LSTM)
were developed for the estimation of the SPEIs. Seven scenarios of various combinations of climate variables
as input were adopted 1o build the models. The best models were XGB with scenario 5 (precipitation,
average temperature, minimum lemperature, maximum temperature, wind speed and relative humidity) and
RF with scenario 6 (precipitation, average temperature, minimum temperature, maximum temperature, wind
speed, relative humidity and sunshine) for estimating SPEI-3. LSTM with scenario 4 (precipitat
temperature, minimum temperature, maximum temperature, wind speed) was relatively better for SPEL-6
estimation. The best model for SPEI-6 was XGB with scenario 5 and RF with scenario 7 (all input climate
variables, i.e.. scenatio 6 + solar radiation). Based on the NSE index, the performances of XGB and RF
models are classified as good fits for scenarios 4 to 7 for both timescales. The developed models produced
satisfactory results and they could be used as a rapid tool for decision making by water-managers
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forecasting: Current research trends, challenges, and future
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Machine leaing Drought s a complex, devastating natural disaster for which it is challenging to develop effective prediction
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have achieved significant advances in the robustness, effectiveness, and aceuracy of the algorithms for drought
modeling in recent years. The performance comparison of MLMs with other models provides a comprehensive
conception of different model evaluation metrics. Further challenges of MLMs, such s inadequate training data
sets, noise, outlers, bias for . are expl
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Multiple machine learning—based algorithms have been used to

forecast meteorological drought
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Modeling supported by the high spatial resolution (4 km)

NCAR/USGS CONUS404 dataset for period 1979-202 1|

.|| T Climate Data >100 including...
u- . f)CrCc))LljlgUhStAr&i)trics l C,,; Precipitation Calculated meteorological
drought metrics:
=  Standardized
ﬂ: Temperature Precipitation Index (SPI)
~ .« Standardized
»(¢ Transpiration Precipitation
/%\ Evapotranspiration Index
o (SPEI)

=—==9  Wind speed
=0 P

Source: Rasmussen etal. (2023)


https://doi.org/10.1175/BAMS-D-21-0326.1

Data is statistically reduced to the weekly timescale at the

HUC4 and HUCS8 spatial scales

Sample HUC8 aggregation for precipitation
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Reservoir networks use spectral normalization and

random connectivity to autonomously mimic chaotic system
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Graph-based reservoirs reduce normalized root mean square

error during prediction period versus a single reservoir
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Graph reservoir nodes are generated for each watershed

while maintaining the input layer’s spatial structure
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The EPIC PLANN project is using a standard framework to

develop its ML-based predictive model for drought
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Reservoir model development inspired by chaotic systems

modeling and game theory

Reservoir Computing-based
Predictive Drought Model
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A graph-based reservoir network is trained to predict two

sets of Vano models side by side

Input layer
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Source: Smith et al. (in prep) 16



A graph-based reservoir network is trained to predict two

sets of Vano models side by side

Input layer
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A graph-based reservoir network is trained to predict two

sets of Vano models side by side

Input layer Output layer
ilgog f{l E’;N % Trained Reservoirs Xy (tuysn)s X (tn,)
2\%0 2 \'N
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A new time series using perturbed initial conditions is

generated to support prediction with trained reservoirs

Ground Truth

100 Previously

trained _ .
reServoirs Predicted time

series

®
Vb
®
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Source: Smith et al. (in prep) 19



Predicted time series using perturbed data and trained

reservoirs with rollout

Testing Predictions

10 -

Q
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Source: Smith et al. (in prep) Rollout using only trained reservoirs 20



Shapley Additive Explanation Values (SHAP) are used to

determine influence of inputs on changes to outputs

Output layer
X1(twge1)s 0 X (th)

Input layer Xz(tNk“) , X2 (th) ( -'O_?)I-lZAlzll\-l_;IE;%l-_'\
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Introduction and Objectives
Motivation: Drought has led to $200 billion of cumulative losses in the U.S.
(1580-2019) (1] Drougtprecion efoe these events can omelae thée osses.

is study investigated the use of multiple methods for predicting time
Sonesdsta n system that ot chaic behavr
asks Which ar tought o exi chaotc behavior
with multiple Variables. The<e tash are chosen to be autoregressive, with
periods.
rm up: Permd when models are provided ground-truth data but parameters
are not update
0 Forcng: Hodete nmm ground-truth data and predict one time-step ahead.
Optimization is perform

e
Vs
y 7 Rollout: Models are provided with predictions from previous timestep Iteratively.
Many future timesteps predicted with decreased accuracy.
L] L] 3 Research Questions:
— / 0 For chaotic-autoregressive systems, which model structures perform best?
A . 0D lels perform better when they have multiple-univariate or

oster Halls B-C

remaining 500 tim

Lorenz

Multivariate

single-multivariate inputs?

Workflow

Univariate

S ————
Exemplar: the chaotic Lorenz System

0 Asetofordinary A
differential equations
with chaotic
behavior
0 Initially small
differences in initial
conditions will result
in large differences
in trajectories. Figure 2

T O M T

hsne o oyt shoun g s )
Climate data: CONUS404 D e oo 33 s i o ¢
0 High resolution (~4km spatial resolution) for the conterminous United States an
(CONUS)[3]
0 Over 100 variables available for 1979-2022 but study focuses on 9 (Table 1)
0 Study area: Central Valley region in California (Figure 2).
0 Selected for its winter-dominated precipitation regime and high
interannual variability.

( T
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r*r*k,,m,ﬁm«\ R
B Ly -

Auko-Regressive Integrated Moving Average (ARIMA) models use agged
observations forecast errors to make statistical prediction:
Data inexpensive: Tramed ona Single point for rt 500 timesteps, tested on

Computationally mexpensive: 10-200 parameters per model.

Long-Short Term Memory (LSTM)
recurrent neural networks capture
both long- and short-term
dependencies in sequential data.
Data intensive: Trained on data
from 98 timeseries in the study

rea
Computationally intensive: ~50,000
parameters per model
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Figure 7. The structure o the reservor neturk
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Model Evaluation

0 Multi- vs. Univariate: Tn most
cases, multivariate models
outperformed univariate models
in both error metrics (Table 2)

0 Model types: Reservoirs and
LSTMs outperformed ARIMA in
the first 26 timesteps. LSTMs
outperformed both models for
the full rollout period. (Table 2)

Takeaways

0 Adding more predictors
improves predictions of
synthetic chaotic and weather

Each model type should be
considered in future
applications.

Reservoirs performed similarly
to LSTMs, despite requiring
~100x less data and ~200x
fewer parameters.

AN

Reservoir networks are designed to
predict dynamical systems. Their hidden
layer weights are a dynamical system.
Data inexpensive: Trained on single grid
cell

Computationally inexpensive: 150
parameters per model
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A) NRMSE Full Rollout Period

Next Steps

Increase available information with
convolutional layers in the LSTMs,

spatial interactions, like including

Normalize weather data to climatologies for more useful predictions.
Incorporate upper atmospheric variables from reanalysis data products.




In conclusion, we have developed reservoir computing-based

predictive time series models for chaotic, dynamic systems

Graph reservoirs reduce error
compared to single reservoirs

Reservoir-based predictive model
developed using the Vano system
with chaotic behavior

SHAP identified 3 key variables
driving Vano model performance

Future Work

Increase variables and
explainability techniques for the
Vano model

Consideration of multiple drought
metrics (SPEI, SPI, etc.)

Increase spatial extent of modeled
watersheds

Compartment Value

Testing Predictions

Nicole D. Jackson <njacks@sandia.gov>
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