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The US Drought  Mon itor  provides  week ly  drought 
est imates

Source: U.S. Drought Monitor

Last week’s report

Monthly Outlook

Seasonal Outlook

https://droughtmonitor.unl.edu/
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est imates as  we l l  a s  month ly  fo recas ts
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The US Drought  Mon itor  provides  week ly  drought 
est imates as  we l l  a s  month ly  and seasona l  forecasts

Source: U.S. Drought Monitor

Last week’s report

Monthly Outlook

Seasonal Outlook
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The US Drought  Mon itor  provides  week ly  drought 
est imates as  we l l  a s  month ly  and seasona l  forecasts

Source: U.S. Drought Monitor

Last week’s report

Monthly Outlook

Seasonal Outlook

What if we could use machine learning and 
chaotic system modeling to accurately forecast 
drought much farther (e.g., 1-2 years) into the 

future?  

https://droughtmonitor.unl.edu/
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Mu lt i p l e  mach ine  l e arn in g—based  a l go r i thms  h ave  been used  t o  
forec as t  meteoro lo g ic a l  d rough t

1. Introduction
Drought is one of the severe natural hazards that imposes destructive effects on a wide range of sectors 
including economy and ecosystems (Li et al., 2021; Williams et al., 2020). Drought control and disaster 
mitigation require timely and reliable drought predictions that provide essential information to develop 
and implement feasible drought mitigation measures (Li, Wang, Wu, Xu, et al., 2020; Ma et al., 2019; Su-
tanto et al., 2020). In general, drought prediction methods include dynamical and statistical predictions. 
Although dynamical models provide useful information for drought situations based on the short-term 
climatic forecasting, it is usually difficult to implement in applications at local agencies due to complex 
procedures, especially for undeveloped regions (Chen & Georgakakos, 2014). In addition, it contains uncer-
tainty and limited skill with respect to long lead times (Liu et al., 2018). Alternatively, statistical models that 
utilize macro-scale interconnections between oceanic and atmospheric variables are relatively simple but 
perform as well as or even better than the dynamical ones (Deo et al., 2017). Therefore, some scientists and 
managers still rely on statistical models for pr actical applications (Chen & Georgakakos, 2014).

To date, much effort has made to develop reliable and effective statistical drought prediction models by 
developing new or improved methods and selecting most related predictors. Both linear and nonlinear 
models have been widely used to construct the interconnections between predictor and predictand (Agha-
Kouchak, 2014). For example, autoregressive integrated moving average models have been the most widely 
used stochastic models for hydrological drought prediction (Tian et al., 2016). Nevertheless, the relation-
ships between predictor and predictand are somewhat nonlinear (Mishra & Singh, 2012). Machine learn-
ing algorithms, such as Support Vector Regression (SVR), Random forest (RF), and extreme learning ma-
chine (ELM), are thus introduced to address the limitation of linear models (Belayneh & Adamowski, 2012; 

Abstract  While reliable drought prediction is fundamental for dr ought mitigation and water 
resources management, it is still a challenge to develop robust drought prediction models due to complex 
local hydro-climatic conditions and various predictors. Sea surface temperature (SST) is considered as the 
fundamental predictor to develop drought prediction models. However, traditional models usually extract 
SST signals from one or several specific sea zones within a given time span, which limits full use of  SST 
signals for drought prediction. Here, we introduce a new meteorological drought prediction approach 
by using the antecedent SST fluctuation pattern (ASFP) and machine learning t echniques (e.g., support 
vector regression (SVR), random forest (RF), and extreme learning machine (ELM)). Three models 
(i.e., ASFP-SVR, ASFP-ELM, and ASFP-RF) are developed for ensemble, pr obability, and deterministic 
drought predictions. The Colorado, Danube, Orange, and Pearl River basins with frequent droughts over 
different continents are selected, as the cases, where standardized precipitation evapotranspiration index 
(SPEI) are predicted at the 1° × 1° resolution with 1- and 3-month lead times. Results show that the 
ASFP-ELM model can effectively predict space-time evolutions of  drought events with satisfactory skills, 
outperforming the ASFP-SVR and ASFP-RF models. Our study has potential to provide a reliable tool for 
drought prediction, which further supports the dev elopment of  drought early warning systems.
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•   The new approach allows for 
ensemble, probability, and 
deterministic drought predictions
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Mode l ing  suppor ted by the  high  spat ia l  resol ut ion (4 km) 
NC AR/USGS CONUS404 dataset  fo r  per iod 1979 -2021

• Climate Data 
(CONUS404)

• Drought Metrics
Precipitation

Temperature

Transpiration

Wind speed

>100 including…

Calculated meteorological 
drought metrics:
• Standardized 

Precipitation Index (SPI)
• Standardized 

Precipitation 
Evapotranspiration Index 
(SPEI)

Source: Rasmussen et al.  (2023)

https://doi.org/10.1175/BAMS-D-21-0326.1
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Data  i s  st a t i s t ic a l ly  reduced to the  week ly  t imesca le  a t  t he  
HUC4 and HUC8 spat ia l  sca les

• Climate Data 
(CONUS404)

• Drought Metrics

Watershed-scale Spatial 
Aggregation 

Sample HUC8 aggregation for precipitation

Connections across 
watersheds

Watershed centroid

Precipitation
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Reservo ir networks  use  spect ra l  norma l i za t ion  and 
random connec t iv i ty  to autonomous ly  m im ic chaot ic  sys tem

• Climate Data 
(CONUS404)

• Drought Metrics

Watershed-scale Spatial 
Aggregation 

Reservoir Computing-based 
Predictive Drought Model

Dense
Trained

Low Spectral 
Connectivity. 

Random

Unstructured Unstructured

Dense
Trained



12

Graph-based reser voi rs  reduce  norma l i zed root  mean  square  
error  dur ing  pred ic t ion  peri od versus a  s ing le  reser vo ir  

• Climate Data 
(CONUS404)

• Drought Metrics

Watershed-scale Spatial 
Aggregation 

Reservoir Computing-based 
Predictive Drought Model

Single Reservoir

Graph Reservoir

Source: Chapman et al. (in prep)
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Graph reser vo ir  nodes are  generated for  each  watershed 
whi le  ma in ta in ing  the  input layer’s  s pat ia l  s tructure

• Climate Data 
(CONUS404)

• Drought Metrics

Watershed-scale Spatial 
Aggregation 

Reservoir Computing-based 
Predictive Drought Model

Dense
Trained

Low Spectral 
Connectivity. 

Random

Unstructured Unstructured
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Connection to spatially 
close watershed

Local observable variable

Connections across 
watersheds

Watershed centroid
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The EP IC  PLANN projec t i s  u s ing  a  st andard framework to  
deve lop i ts  ML-based pred ict ive mode l  fo r  drought

Model 
Explainability

Performance 
Assessment

• Climate Data 
(CONUS404)

• Drought Metrics

Watershed-scale Spatial 
Aggregation 

Reservoir Computing-based 
Predictive Drought Model
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Reservo ir  model  deve lopment  in sp ired by chaot ic  s ystems 
model ing  and game theor y

Reservoir Computing-based 
Predictive Drought Model

Game-theory 
based 
Explainability

Vano-inspired 
Chaotic System 
Modeling

Reservoir Computing 
Development
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A graph -based reser voi r network  i s  t ra ined to  pred ict  two 
set s  o f  Vano model s  s ide  by s ide

𝑋1 𝑡0 , … , 𝑋1 𝑡𝑁𝑘

𝑋2 𝑡0 , … , 𝑋2 𝑡𝑁𝑘

𝑋3 𝑡0 , … , 𝑋3 𝑡𝑁𝑘

𝑋4 𝑡0 , …𝑋4 𝑡𝑁𝑘

𝑌1 𝑡0 , … , 𝑌1 𝑡𝑁𝑘

𝑌2 𝑡0 , … , 𝑌2 𝑡𝑁𝑘

𝑌3 𝑡0 , … , 𝑌3 𝑡𝑁𝑘

𝑌4 𝑡0 , … , 𝑌4 𝑡𝑁𝑘

𝑋1 𝑡𝑁𝑘+1 ,… , 𝑋1 𝑡𝑁𝑝
𝑋2 𝑡𝑁𝑘+1 ,… , 𝑋2 𝑡𝑁𝑝
𝑋3 𝑡𝑁𝑘+1 ,… , 𝑋3 𝑡𝑁𝑝
𝑋4 𝑡𝑁𝑘+1 ,… , 𝑋4 𝑡𝑁𝑝
𝑌1 𝑡𝑁𝑘+1 ,… , 𝑌1 𝑡𝑁𝑝
𝑌2 𝑡𝑁𝑘+1 ,… , 𝑌2 𝑡𝑁𝑝
𝑌3 𝑡𝑁𝑘+1 ,… , 𝑌3 𝑡𝑁𝑝
𝑌4 𝑡𝑁𝑘+1 ,… , 𝑌4 𝑡𝑁𝑝
𝑔 𝑡𝑁𝑘+1 ,… , 𝑔 𝑡𝑁𝑝

Input layer Output layer

Source: Smith et al. (in prep)

Trained Reservoirs

Mystery function
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A new t ime ser ies  us ing  per turbed in i t ia l  cond i t ions i s  
generated to  suppor t pred i ct i on  w ith tra ined reser voir s  

Previously 
trained 

reservoirs Predicted time 
series

Source: Smith et al. (in prep)
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Pred icted t ime ser ies  us i ng  per turbed data  and t ra ined 
reser voir s  w ith  ro l lou t 

Rollout using only trained reservoirsSource: Smith et al. (in prep)
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Shap ley Add it ive  Exp lanat ion Va l ues (SHAP) are  used to  
determine  in f luence  o f  input s  on  changes to  output s

Input layer SHAP Values

0.02147524
0.02505524
0.02095524
0.01256381
0.00879333
0.00837357
0.00999976
0.00241643

Output layer

Source: Smith et al. (in prep)
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❖ Motivation: Drought has led to $200 billion of cumulative losses in the U.S.  
(1980-2019) [1]. Drought prediction before these events can ameliorate these losses.

❖ Purpose: This study investigated the use of multiple methods for predicting time 
series data in system that exhibit chaotic behavior.

❖ Task Domain: We consider two tasks which are thought to exhibit chaotic behavior 
with multiple variables. These tasks are chosen to be autoregressive, with three 
periods. 

❖ Warm up: Period when models are provided ground-truth data but parameters 
are not updated. 

❖ Forcing: Models provided ground-truth data and predict one time-step ahead. 
Optimization is performed.

❖ Rollout: Models are provided with predictions from previous timestep iteratively. 
Many future timesteps predicted with decreased accuracy.

Research Questions: 
❖ For chaotic-autoregressive systems, which model structures perform best?
❖ Do these models perform better when they have multiple-univariate or 

single-multivariate inputs?

Introduction and Objectives Reservoir Network

Model Evaluation and Next Steps

ARIMA

LSTM Neural Network

Figure 5. The structure of the LSTM cell, with multiple 
pathways for current input (x) and previous information (c 
and h).
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Methods and Datasets

Climate data: CONUS404
❖ High resolution (~4km spatial resolution) for the conterminous United States 

(CONUS)[3]
❖ Over 100 variables available for 1979-2022 but study focuses on 9 (Table 1)
❖ Study area: Central Valley region in California (Figure 2). 

❖ Selected for its winter-dominated precipitation regime and high 
interannual variability.

❖ A set of ordinary 
differential equations 
with chaotic 
behavior

❖ Initially small 
differences in initial 
conditions will result 
in large differences 
in trajectories.

❖ Auto-Regressive Integrated Moving Average (ARIMA) models use lagged 
observations forecast errors to make statistical predictions.

❖ Data inexpensive: Trained on a single point for first 500 timesteps, tested on 
remaining 500 timesteps.

❖ Computationally inexpensive: 10-200 parameters per model.

Figure 2. Visuals of the chaotic Lorenz system showing a sample timeseries (A) 
and the phase space trajectory for the x and y components (B). 

❖ Reservoir networks are designed to 
predict dynamical systems. Their hidden 
layer weights are a dynamical system. 

❖ Data inexpensive: Trained on single grid 
cell

❖ Computationally inexpensive: 150 
parameters per model

Climate Variable Units

Precipitation mm

Temperature K

Specific humidity g/kg

Zonal Wind m/s

Meridional Wind m/s

Geopotential height at lowest level m

Evaporation mm

Transpiration mm

Downwelling Shortwave Radiation Flux J/m2

Figure 7. The structure of the reservoir network

❖ Long-Short Term Memory (LSTM) 
recurrent neural networks capture 
both long- and short-term 
dependencies in sequential data. 

❖ Data intensive: Trained on data 
from 98 timeseries in the study 
area. 

❖ Computationally intensive: ~50,000 
parameters per model

Figure 3. Map of the western United States with 
the study area highlighted by the yellow box. 

Table 1. Variables selected for modeling from the CONUS404 
dataset [3].
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Model Evaluation
❖ Multi- vs. Univariate: In most 

cases, multivariate models 
outperformed univariate models 
in both error metrics (Table 2)

❖ Model types: Reservoirs and 
LSTMs outperformed ARIMA in 
the first 26 timesteps. LSTMs 
outperformed both models for 
the full rollout period. (Table 2)

Takeaways
❖ Adding more predictors 

improves predictions of 
synthetic chaotic and weather 
data.

❖ Each model type should be 
considered in future 
applications.

❖ Reservoirs performed similarly 
to LSTMs, despite requiring 
~100x less data and ~200x 
fewer parameters. 
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Lorenz CONUS404

Figure 4. Time series comparison of ground truth (black line) and predicted (red line) using a ARIMA statistical model 
based on the Lorenz model (left) and the CONUS404 dataset (right) for the multivariate (top) and univariate (bottom) 
cases. The blue dashed line indicates the start of the test dataset forecast.

Figure 6. Time series comparison of ground truth (black line) and predicted (red line) using a reservoir network based 
on the Lorenz model (left) and the CONUS404 dataset (right) for the multivariate (top) and univariate (bottom) cases. The 
blue dashed line indicates the start of the rollout period forecast.
  

Model Lorenz 
Uni

Lorenz 
Multi

CONUS 
Uni

CONUS 
Multi

ARIMA 0.191 0.185 0.108 0.096

LSTM 0.256 0.074 0.129 0.087

Reservoir 1.216 0.081 0.089 0.079

Figure 8. Time series comparison of ground truth (black line) and predicted (red line) using a reservoir network based on 
the Lorenz model (left) and the CONUS404 dataset (right) for the multivariate (top) and univariate (bottom) cases. The 
blue dashed line indicates the start of the rollout period forecast.

Model Lorenz 
Uni

Lorenz 
Multi

CONUS 
Uni

CONUS 
Multi

ARIMA 0.215 0.213 0.846 0.154

LSTM 0.250 0.152 0.124 0.126

Reservoir 25.213 0.596 0.596 0.245

Table 2. Normalized root-mean-square-errors (NRMSE) for A) full 
rollout period and B) the first 26 timesteps of the rollout period 
(intended to represent the first six months). Underlined values 
were the model with the best performance (lowest NRMSE) for 
each dataset in a given error metric. 

A)  NRMSE Full Rollout Period

B)  NRMSE First 26 Timesteps

Next Steps
❖ Increase available information with spatial interactions, like including 

convolutional layers in the LSTMs.
❖ Normalize weather data to climatologies for more useful predictions.
❖ Incorporate upper atmospheric variables from reanalysis data products. 

Exemplar: the chaotic Lorenz System
A B

Workflow

Figure 1. Overall computational workflow used in this study.
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• Graph reservoirs reduce error 
compared to single reservoirs

• Reservoir-based predictive model 
developed using the Vano system 
with chaotic behavior 

• SHAP identified 3 key variables 
driving Vano model performance

In  concl us ion , we have  deve loped reser vo ir  comput ing -based 
pred ict ive  t ime ser ies  mode ls  for chaot ic , dynamic sys tems

Future Work

• Increase variables and 
explainability techniques for the 
Vano model 

• Consideration of multiple drought 
metrics (SPEI, SPI, etc.)

• Increase spatial extent of modeled 
watersheds Nicole D. Jackson <njacks@sandia.gov>
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