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Abstract

We use bounding models to estimate the power delivered to interior ordnance as well as the pin level
voltages along a cable at interior electronic components. The procedures underlying these estimates are
described in some detail. Conservation of steady-state power in a linear passive system underpins the
power estimate, whereas, losses and quality factor limits underpin the limits on voltage transformations.
The final levels are compared to no-fire threshold power and to minimum upset voltage levels in an
example using a canonical slot aperture and cavity to estimate interior fields.
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1 INTRODUCTION
This report discusses bounding estimates of cable coupling and resulting pin-level power and voltage. The
next section considers the electronic upset problem and gives formulas for estimating maximum pin-level volt-
ages on a cable subjected to an incident field level. This section begins with an unshielded cable and touches
on the effect of a cable shield (the second appendix has more discussion on a shielded cable) along with a brief
discussion of cable effective height measurements. The section that follows discusses the personnel safety
problem and estimates for worst case power to ordnance using the V-curve matched load argument. Using
results from the first appendix the next section considers a simple example of electromagnetic penetration
of a canonical exterior shield through a slot to establish the interior field levels in a canonical overmoded
cavity, focusing on the higher frequency region of the Electromagnetic Radiation (EMR) Environment, to
estimate induced cable voltage levels and coupled device power (in addition to transmitted power through
the shield). The next section briefly discusses screening levels of the electronics upset voltage threshold
and typical ordnance power thresholds. The final conclusion section summarizes the results. The formulas
provided in this report can be readily applied to actual geometries following the procedures given for the
example here.
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2 CABLE COUPLING AND UPSET
To assess the possibility of voltage upset of electronics, we will examine the coupling to a model of the cable
leading to the vulnerable device. Realistic losses will be inserted on the cable, which limit the wiring quality
factor, and subsequently limit voltage transformations along the cable up to the vulnerable device. We will
also consider drives of cables from collections of plane waves and show that the result is slightly reduced
from the preceding maximum case.
The cable coupling will actually be addressed in two ways. First, we will estimate the differential/common

mode coupling to an unshielded cable as a limiting case of poor shielding. The second appendix will discuss
a shielded cable. We will also briefly discuss effective height and impedance measurements of typical cables
below.

2.1 Unshielded Cable

Let us first consider coupling to the differential mode of a balanced twin conductor cable. We use the
transverse drive equations (this approach includes the effect of the transverse field at the ends of the cable)
[1], [2]. The voltage equation is (harmonic time dependence e−iωt is suppressed throughout)

dV

dz
= −ZI − iωLiHext

⊥ (1)

with impedance per unit length

Z = R− iX = 2Zfi − iωLe (2)

For two equal radius cylindrical conductors of radius a and separation D [3] the inductance per unit length
is

Le =
µ0
π
Arccosh

µ
D

2a

¶
∼ µ0

π
ln (D/a) , D >> 2a (3)

and the finitely conducting internal impedance per unit length due to skin-effect (δ << a) is

Zfi =
Zs
2πa

 D/ (2a)q
D2/ (2a)2 − 1

 ∼ Zs
2πa

, D >> 2a (4)

where

Zs = (1− i)Rs (5)

Rs = 1/ (δσ) (6)

δ =
p
2/ (ωµσ) (7)

with [1]

Li/µ0 = 2he (8)

Note that for the limit δ >> a the resistance per unit length per conductor Re
¡
Zfi

¢
is Rfi ∼ 1/ ¡πa2σ¢.

The current equation is

9



dI

dz
= −Y V + iωCiEext

⊥ (9)

with admittance per unit length

Y = G− iωC (10)

The propagation constant is

Γ =
√−ZY = Γ0 + iΓ00 (11)

and the characteristic impedance is

Z0 =
p
Z/Y ≈

p
L/C (12)

where p
L/C =

η

π
Arccosh

µ
D

2a

¶
∼ η

π
ln (D/a) , D >> 2a (13)

with the intrinsic impedance

η =
p
µ0/ε (14)

The capacitance per unit length [3] is

C = πε/Arccosh
µ
D

2a

¶
∼ πε/ ln (D/a) , D >> 2a (15)

where we can estimate the conductance per unit length from the dielectric loss tangent (assuming the
dielectric fills the space between conductors)

G/ (ωC) = tan δ (16)

and for a homogeneous dielectric [1]

Ci/ε = 2heC/ε = 2heη/
p
L/C (17)

with charge and current centroid position he

2he/D =

q
1− (2a/D)2 ∼ 1 , D >> 2a (18)

Let us first take the incident electric field to be parallel to the plane containing the wire axes [1]

Hext
⊥ = H0e

ik0z cos θ0 (19)

Eext
⊥ = E0 cos θ0e

ik0z cos θ0 (20)

where the wavenumber of the transmission line is

k = ω
√
µ0ε = ω

√
LC (21)

and the free space wavenumber is

k0 = ω
√
µ0ε0 (22)

10



with

E0 = η0H0 (23)

The transmission line equations then become

dV

dz
+ ZI = −iωLiHext

⊥ = −ik2heηH0e
ik0z cos θ0 (24)

dI

dz
+ Y V = iωCiEext

⊥ = ik2he
E0 cos θ0p

L/C
eik0z cos θ0 (25)

and we are approximating for small losses along the line ωL >> R, ωC >> G. Eliminating the current gives

d2V

dz2
− ZY V =

µ
d2V

dz2
+ Γ2

¶
V = −iωCiZEext

⊥ − iωLi
d

dz
Hext
⊥

= ω
¡
Lik0H0 − iCiZE0

¢
cos θ0e

ik0z cos θ0 (26)

or for small losses Z = R− iωL ≈ −iωL approximatelyµ
d2V

dz2
+ Γ2

¶
V ≈

µ
ωLik0H0 − Ci

C
ω2LCE0

¶
cos θ0e

ik0z cos θ0

≈
µ
Li

µ0
k20η0H0/E0 − Ci

C
k2
¶
E0 cos θ0e

ik0z cos θ0

≈
µ
2hek

2
0η0H0/E0 − Ci

C
k2
¶
E0 cos θ0e

ik0z cos θ0 (27)

The solution is then

V (z) = c0 cos (Γz) + c1 sin (Γz)

+
³ε0
ε
η0H0/E0 − 1

´µ
2he

k20
k2

η0H0/E0 − Ci

C

¶
E0 cos θ0e

ik0z cos θ0k2/
¡
Γ2 − k20 cos

2 θ0
¢

(28)

In the homogeneous case k0 → k and Ci/C → 2he, in which case 2he
¡
k20η0H0/E0 − k2

¢
vanishes, and then

the solution is

V (z) = c0 cos (Γz) + c1 sin (Γz) (29)

Below we investigate general incidence and polarization angles, as well as a random collection of plane
waves as would be found in a high frequency cavity. The results are very similar to this simple case where the
wave vector and electric field vector are in the plane containing the twin wire line. If we take as boundary
conditions a short circuit on the left end and an open circuit on the right end (note that we are at high
frequencies here with half-wave oscillations along the cable, so that this precise choice is not critical)

V (0) = I (c) = 0 (30)

then c0 = 0 as well as
dV

dz
(c) + ZI (c) = c1Γ cos (Γc) = −ik2heη0H0e

ikc cos θ0 (31)
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and therefore

V (z) = −i (k/Γ) 2heη0H0e
ikc cos θ0

sin (Γz)

cos (Γc)
(32)

and if we take Γ→ k in the amplitude factor

V (c) ≈ −i2heη0H0e
ikc cos θ0 tan (Γc) (33)

If we examine the resonant limit Γ0c→ (n− 1/2)π where the dominant real part is (Γ00 << Γ0)

Γ0 ≈ ω
√
LC = k (34)

the small imaginary part can be written in terms of the losses as

Γ00 ≈ Γ
0

2

µ
R

ωL
+

G

ωC

¶
=
Γ0

2
(1/QR + tan δ) = Γ

0/ (2Q) (35)

where the quality factor Q is a combination of losses from the conductors QR, the dielectric QD, radiation
Qrad, etc.

1/Q = 1/QR + 1/QD + 1/Qrad + · · · = 1/QR + tan δ + 1/Qrad + · · · (36)

Then we find

cos (Γc) ≈ cos (Γ0c)− iΓ00c sin (Γ0c) ≈ −iΓ00c (−1)n−1 = −i (−1)n−1 Γ0c/ (2Q) (37)

Taking the real part to approach Γ0 → k

V (c) kc/ (2Q) ≈ 2heη0H0e
ikc cos θ0 (38)

or (unity if sufficiently lossy) ¯̄̄̄
V (c)

2heη0H0

¯̄̄̄
≈ 1

Γ00c
≈ 2Q

kc
(39)

The maximum as a function of incident angles is then the normal incidence result

|V (c) kc/ (2Q)|max ≈ 2heη0H0 (40)

2.2 Cable Common Mode Generalizations And Resonances

The maximum voltage is thus magnified by the resonant quality factor Q, but the electrical length kc can
also be large (tending to reduce the voltage). What we are really saying here is that the losses lead to a
bounding quality factor, which limits the voltage transformations. The wire spacing D is relatively small so
the balanced differential mode voltage is relatively small.
If there is efficient common-to-differential mode conversion then the common mode coupling is also of

interest. If we are talking about a wire with respect to a cable braid shield, then the spacing D is replaced
by the wire spacing from the cable braid to the image in the cable braid, but the impedance per unit length,
the distributed voltage source, and the voltage, are cut in half. If we are instead talking about the coupling
to the cable braid with respect to the chassis wall, then the radius a is replaced by the equivalent radius
of the cable ac, and the spacing D is replaced by the distance to the image in the chassis wall Dc, but
the impedance per unit length, the distributed voltage source, and the voltage, are again cut in half. If
such common-to-differential mode conversion were present (so that common mode signals were delivered to

12



differential circuits), the most important feature of the coupling in (38) is the effective separation he (related
to D), which could be increased in the common mode coupling geometry. In both these cases, the tangential
magnetic field drive near the wall H0 can in principle be increased due to the conductive boundary condition
there, however, if a braided shield is present these modes require penetration of the braid to provide such a
drive, and consequently bring in the cable shielding and resulting reduction of H0 into the calculation (these
coupling levels may be down by an order of magnitude or more). The second appendix briefly discusses the
braided cable coupling.
We have assumed here that the cable is single-moded even when we are operating at high frequencies; for

a one-dimensional resonator, the relative modal spacing ∆k/k = π/ (kc) = 1/ (n− 1/2) can be larger than
the 3 dB width ∆k3/k = 1/Q, if the quality factor Q is very large. The voltage magnification factor here
(38)

πQ/ (kc) = ∆k/∆k3 (41)

is the ratio of the modal spacing to the 3 dB width; this value shrinks with increasing frequency even in the
case of this one-dimensional resonant system. If coupling to additional TEM modes in the multiconductor
cable are taken into account, introducing additional resonant modes, we expect it to shrink further.

2.3 Damping Mechanisms And Q

The cable system quality factor Q is now estimated, where it is defined as the radian frequency times the
peak energy stored W , divided by the average power lost P [3]

Q =
ωW

P
(42)

The prior values of the quality factor for dielectric losses is determined from the loss tangent of the material

QD = 1/ tan δ (43)

Some values are known for fairly high frequencies such as 25 GHz [4]. For example, Teflon has tan δ ≈ 6×10−4
and QD ≈ 1667; at 10 GHz tan δ ≈ 3.7×10−4 and QD ≈ 2703; at 3 GHz tan δ ≈ 1.5×10−4 and QD ≈ 6667.
The conductor ohmic losses for the example of 20 AWG copper wire with [5] 2a = 0.032 inches (the

stranded case has 2a ≈ 0.040 inches), σ = 5.8× 107 S/m give

QR ≈ ωL

R
≈ ωµ0a

Rs
Arccosh

µ
D

2a

¶
q
D2/ (2a)

2 − 1
D/ (2a)

 ∼ ωµ0a ln (D/a)

Rs
=
2a ln (D/a)

δ
, D >> 2a , µ = µ0

(44)
For a wire-to-wire spacing D = 0.06 inches we find at 25 GHz that QR ≈ 2042; at 10 GHz QR ≈ 1292; at 3
GHz QR ≈ 707.5. Combining these two loss effects we find the quality factor due to absorption at 25 GHz

1/Qabs = 1/QR + 1/QD ≈ 917.7 (45)

at 10 GHz Qabs ≈ 874.2; at 3 GHz Qabs ≈ 639.6. Generalizations of the ohmic losses to rectangular conductor
geometries are summarized in the subsection below.
For the radiation damping, which has the form of lumped loads at the ends of the line, we estimate the

stored electric energy along the cable (where the factor of one half accounts for the sinusoidal variation along
the cable length and the subsection below briefly discusses alternate end conditions)

We =

Z c

0

C |V (z)|2 dz = 1

2
cC |V (c)|2 (46)
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and use [6]

P =
1

2
Grad |V (c)|2 + 1

2
Rrad |I (0)|2 = Grad |V (c)|2 (47)

For an extended exterior

GradZ
2
0 = η0 (khe)

2 / (2π) = Rrad (48)

to obtain

Qrad ≈ cωC

2Grad
=

cωL

2Z20Grad
=

kcArccosh
¡
D
2a

¢
(khe)

2 ∼ 4kc ln (D/a)

(kD)
2 , D >> 2a (49)

Note that, this radiation damping inside a closed three-dimensional cavity volume still holds if the cavity is
overmoded at very high frequencies. The lengths of the cables (or branches) are taken to be greater than one
foot (and we note that there will exist some coupling at higher frequencies to remaining cable branches if
they exist). For the same frequency and dimensions, with c = 12 inches, at 25 GHz, this gives Qrad ≈ 1738.
The total is then

1/Q = 1/Qabs + 1/Qrad (50)

Table 1 shows values for this example

f (GHz) QR QD Qabs Qrad Q πQ/ (kc) |V (c) /E0| (m)
0.1 129.2 5000 125.9 4.289× 106 125.9 619 0.51
0.3 223.7 6667 216.5 1.449× 105 216.1 354 0.29
3.0 707.5 6667 639.6 1.449× 104 612.6 100 0.082
10.0 1292 2703 874.0 4346 727.7 35.8 0.029
25.0 2042 1667 917.8 1738 600.6 11.8 0.0097

Table 1. Example quality factors and voltages for two wire line.

Note that this radiation damping is usually eliminated for the differential mode in a shielded cable.
However, for a multi-pin cable (with N TEM modes) at high frequencies, perturbations of the invariant
axial geometry lead to coupling between the various TEM modes, which introduce a level of damping having
similar characteristics to the radiation damping.
Nevertheless, we plan to stick with only the absorption damping here. If we extrapolate from lower

frequencies to 25 GHz and above we might take a bounding total quality factor

Q ≈ Qabs ≤ 1000 (51)

If we take a typical minimum cable length of c = 12 inches, a wire-to-wire spacing D ≈ 0.06 inches with
2a ≈ 0.032 inches, 25 GHz frequency,and a quality factor Q ≈ 1000 due to a combination of absorptive
losses, we see that a differential mode will have a port voltage

|V (c)| ≈ 2Q
kc
2heE0 ≈ 0.016 m E0 , 25 GHz (52)

with modal spacing-to-modal width

∆k/∆k3 = πQ/ (kc) ≈ 20 (53)

14
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Figure 1: Ratio of voltage to electric field component (effective height) from bounding formula.

and at 40 GHz

|V (c)| ≈ 2Q
kc
2heE0 ≈ 0.010 m E0 , 40 GHz (54)

The plot of the ratio of the voltage to electric field component (effective height) in (52), using the fixed
quality factor (51), is shown in Figure (1)

2.4 Random Plane Wave Drive

In an enclosed cavity environment at very high frequencies, the mean response should be estimated by
averaging over the angle of incidence and the polarization angle. This would tend to reduce the coupling
somewhat from the preceding maximum. If we take the transmission line to be oriented along the z unit
vector ez, with the angle between the incident plane wavevector and the z axis again as θ0, so again

k · r = kx sin θ0 cosϕ0 + ky sin θ0 sinϕ0 + kz cos θ0 ≈ kz cos θ0 (55)

and having the unit vector ex point between the wires from the negative to positive wire, with the voltage
defined as

V = −
Z
C

Eext · dc (56)
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with the contour extending from the negative to the positive wire. In this section we now take the homoge-
neous case with wavenumber k.
Taking the field driving the line as the summation

Eext (r) = E0 lim
N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpjej + sinϕpje

0
j

¢
eiαj+ikj ·r

 (57)

where the random amplitudes are normalized as

hajaj0iaj = δjj0 (58)

which gives (with random phases αj)

­
Eext ·Eext

®
aj ,αj

= E20 lim
N→∞

2

N

NX
j=1

­
cos2

¡
αj + kj · r

¢®
αj
= E2

0 (59)

The polarization angle ϕpj is a random function with orthogonal unit vector

e0j =
¡
kj × ej

¢
/k (60)

where

ej · e0j = 0 (61)

and the wavevectors are

kj = k
¡
ex sin θj cosϕj + ey sin θj sinϕj + ez cos θj

¢
(62)

where

ej · kj = 0 = sin θj cosϕj sin θ0j cosϕ0j + sin θj sinϕj sin θ0j sinϕ0j + cos θj cos θ0j

= sin θj sin θ0j
¡
cosϕj cosϕ0j + sinϕj sinϕ0j

¢
+ cos θj cos θ0j

= sin θj sin θ0j cos
¡
ϕj − ϕ0j

¢
+ cos θj cos θ0j = sin θj sin θ0j

©
cos
¡
ϕj − ϕ0j

¢− 1ª+ cos (θj − θ0j) (63)

If we have ϕj − ϕ0j = 0 and θj − θ0j = ±π/2 this will vanish. This corresponds to taking the polarization
vector ej along a theta direction relative to the spherical radial direction for the wavevector. Taking θ0j =
θj + π/2 we can write

ej = ex sin θ0j cosϕ0j + ey sin θ0j sinϕ0j + ez cos θ0j

= ex cos θj cosϕj + ey cos θj sinϕj − ez sin θj (64)

and

e0j =
¡
kj × ej

¢
/k
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=
¡
ex sin θj cosϕj + ey sin θj sinϕj + ez cos θj

¢× ¡ex sin θ0j cosϕ0j + ey sin θ0j sinϕ0j + ez cos θ0j
¢

= −ez sin
¡
ϕj − ϕ0j

¢
sin θj sin θ0j

+ey
¡
cos θj sin θ0j cosϕ0j − sin θj cosϕj cos θ0j

¢
+ ex

¡
cos θ0j sin θj sinϕj − cos θj sin θ0j sinϕ0j

¢
= ey

¡
cos2 θj + sin

2 θj
¢
cosϕj + ex

¡− sin2 θj − cos2 θj¢ sinϕj = ey cosϕj − ex sinϕj (65)

The magnetic field can be found from Faraday’s law

∇×E = iωµ0H (66)

using

kj × e0j = kj ×
¡
kj × ej

¢
/k = −kej (67)

Noting that we can write

Eext (r) = E0 lim
N→∞

p
2/N

1

2

 NX
j=1

aj
¡
cosϕpjej + sinϕpje

0
j

¢ ¡
eiαj+ikj ·r + e−iαj−ikj ·r

¢ (68)

we find

Hext (r) =
kE0
iωµ0

lim
N→∞

p
2/N

1

2

 NX
j=1

aj
¡
cosϕpje

0
j − sinϕpjej

¢
i
¡
eiαj+ikj ·r − e−iαj−ikj ·r

¢
=

kE0
ωµ0

lim
N→∞

p
2/N

1

2

 NX
j=1

aj
¡
cosϕpje

0
j − sinϕpjej

¢ ¡
eiαj+ikj ·r − e−iαj−ikj ·r

¢
= − kE0

iωµ0
lim

N→∞

p
2/N Im

 NX
j=1

aj
¡
cosϕpje

0
j − sinϕpjej

¢
eiαj+ikj ·r


=

kE0
iωµ0

lim
N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpje

0
j − sinϕpjej

¢ ¡
ieiαj+ikj ·r

¢ (69)

where

kE0
ωµ0

= E0/η0 = H0 (70)

so that

Hext (r) = −iH0 lim
N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpje

0
j − sinϕpjej

¢
ieiαj+ikj ·r

 (71)
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and

Hext
⊥ = Hext · ey = −iH0 lim

N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpje

0
j · ey − sinϕpjej · ey

¢
ieiαj+izkj ·ez



= −iH0 lim
N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpj cosϕj − sinϕpj cos θj sinϕj

¢
ieiαj+ikz cos θj

 (72)

This y component of the magnetic field (the component through the wires) must vanish when ϕj = π/2 with
ϕpj = 0, because H

ext should then be x directed. Also we can write

Eext
⊥ = Eext · ex = E0 lim

N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpjej · ex + sinϕpje0j · ex

¢
eiαj+izkj ·ez


= E0 lim

N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpj cos θj cosϕj − sinϕpj sinϕj

¢
eiαj+ikz cos θj

 (73)

The x component of the electric field (directed from wire to wire) must vanish when ϕj = π/2 with ϕpj = 0,
because Eext should then be in the y − z plane.
Then the transmission line equations along the line are

dV

dz
= −ZI − iωLiHext

⊥ (74)

dI

dz
+ Y V = iωCiEext

⊥ (75)

or

d2V

dz2
− ZY V =

µ
d2

dz2
+ Γ2

¶
V = −iωLi d

dz
Hext
⊥ − iωCiZEext

⊥

= kωLiH0 lim
N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpj cosϕj − sinϕpj cos θj sinϕj

¢
eiαj+ikz cos θj


= kωLiH0 lim

N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpj cosϕj − sinϕpj cos θj sinϕj

¢
cos θje

iαj+ikz cos θj


−iωCiZE0 lim

N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpj cos θj cosϕj − sinϕpj sinϕj

¢
eiαj+ikz cos θj

 (76)

Approximating Z ≈ −iωL

µ
d2

dz2
+ Γ2

¶
V ≈ lim

N→∞

p
2/N Re

 NX
j=1

aj
©
kωLiH0

¡
cosϕpj cosϕj − sinϕpj cos θj sinϕj

¢
cos θj

18



−ω2CiLE0
¡
cosϕpj cos θj cosϕj − sinϕpj sinϕj

¢ª
eiαj+ikz cos θj

¤

≈ kωµ0H0 lim
N→∞

p
2/N Re

 NX
j=1

aj
©¡
Li/µ0

¢ ¡
cosϕpj cosϕj − sinϕpj cos θj sinϕj

¢
cos θj

− ¡Ci/C
¢ ¡
cosϕpj cos θj cosϕj − sinϕpj sinϕj

¢ª
eiαj+ikz cos θj

¤
(77)

Using

k2 = ω2LC (78)

Ci/C = 2he (79)

Li/µ0 = 2he (80)

we find

µ
d2

dz2
+ Γ2

¶
V ≈ k2heωµ0H0 lim

N→∞

p
2/N Re

 NX
j=1

aj sin
2 θj sinϕpj sinϕje

iαj+ikz cos θj

 (81)

with solution

V = c0 cos (Γz) + c1 sin (Γz)

+k2heωµ0H0 lim
N→∞

p
2/N Re

 NX
j=1

aj sin
2 θj sinϕpj sinϕje

i(αj+kz cos θj)/
¡
Γ2 − k2 cos2 θj

¢ (82)

as well as derivative

dV

dz
= −ZI − iωLiHext

⊥

−Γc0 sin (Γz) + Γc1 cos (Γz)

= −ZI − iωLiH0 lim
N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpj cosϕj − sinϕpj cos θj sinϕj

¢
eiαj+ikz cos θj



+k2heωµ0H0 lim
N→∞

p
2/N Im

k NX
j=1

aj sin
2 θj sinϕpj sinϕj cos θje

i(αj+kz cos θj)/
¡
Γ2 − k2 cos2 θj

¢ (83)

If we take boundary conditions
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V (0) = I (c) = 0 (84)

we find

c0 + k2heωµ0H0 lim
N→∞

p
2/N Re

 NX
j=1

aj sin
2 θj sinϕpj sinϕje

iαj/
¡
Γ2 − k2 cos2 θj

¢ = 0 (85)

and

−Γc0 sin (Γc) + Γc1 cos (Γc)

= −iωLiH0 lim
N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpj cosϕj − sinϕpj cos θj sinϕj

¢
eiαj+ikc cos θj



+k2heωµ0H0 lim
N→∞

p
2/N Im

k NX
j=1

aj sin
2 θj sinϕpj sinϕj cos θje

i(αj+kc cos θj)/
¡
Γ2 − k2 cos2 θj

¢

= Γc1 cos (Γc) + Γ sin (Γc) k2heωµ0H0 lim
N→∞

p
2/N Re

 NX
j=1

aj sin
2 θj sinϕpj sinϕje

iαj/
¡
Γ2 − k2 cos2 θj

¢

= −iωLiH0 lim
N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpj cosϕj − sinϕpj cos θj sinϕj

¢
eiαj+ikc cos θj



+k2heωµ0H0 lim
N→∞

p
2/N Im

k NX
j=1

aj sin
2 θj sinϕpj sinϕj cos θje

i(αj+kc cos θj)/
¡
Γ2 − k2 cos2 θj

¢ (86)

Then the voltage is

V (c) = c0 cos (Γc) + c1 sin (Γc)

+k2heωµ0H0 lim
N→∞

p
2/N Re

 NX
j=1

aj sin
2 θj sinϕpj sinϕje

i(αj+kz cos θj)/
¡
Γ2 − k2 cos2 θj

¢
with

Γ =
√−ZY = Γ0 + iΓ00 (87)

Γ00 ≈ Γ
0

2

µ
R

ωL
+

G

ωC

¶
=
Γ0

2
(1/QR + tan δ) = Γ

0/ (2Q) (88)
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Γ2 − k2 cos2 θj ≈ Γ02 + i2Γ0Γ00 − k2 cos2 θj ≈ Γ02 (1 + i/Q)− k2 cos2 θj (89)

If there are no dielectric materials present (or a homogeneous region) Γ0 ≈ k

Γ2 − k2 cos2 θj ≈ k2
¡
sin2 θj + i/Q

¢
(90)

and

V (c) ≈ c0 cos (Γc) + c1 sin (Γc)

+2he
ωµ0
k

H0 lim
N→∞

p
2/N Re

 NX
j=1

aj
sin2 θj

sin2 θj + i/Q
sinϕpj sinϕje

i(αj+kz cos θj)

 (91)

c0 ≈ −2heωµ0
k

H0 lim
N→∞

p
2/N Re

 NX
j=1

aj
sin2 θj

sin2 θj + i/Q
sinϕpj sinϕje

iαj

 (92)

Γc1 cos (Γc) ≈ −iωLiH0 lim
N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpj cosϕj − sinϕpj cos θj sinϕj

¢
eiαj+ikc cos θj



−2heωµ0
k

H0 lim
N→∞

p
2/N Re

k NX
j=1

aj
sin2 θj

sin2 θj + i/Q
sinϕpj sinϕje

iαj

½
cos θjie

ikc cos θj +
Γ

k
sin (Γc)

¾ (93)

Using the approximation

sin2 θj

sin2 θj + i/Q
→ 1 , sin2 θj >> 1/Q (94)

V (c) ≈ c0 cos (Γc) + c1 sin (Γc)

+2he
ωµ0
k

H0 lim
N→∞

p
2/N Re

 NX
j=1

aj sinϕpj sinϕje
i(αj+kc cos θj)

 (95)

c0 ≈ −2heωµ0
k

H0 lim
N→∞

p
2/N Re

 NX
j=1

aj sinϕpj sinϕje
iαj

 (96)

c1 cos (Γc) ≈ −i2heωµ0
k

H0 lim
N→∞

p
2/N Re

 NX
j=1

aj
¡
cosϕpj cosϕj − sinϕpj cos θj sinϕj

¢
eiαj+ikc cos θj



−2heωµ0
k

H0 lim
N→∞

p
2/N Re

 NX
j=1

aj sinϕpj sinϕj
©
cos θjie

iαj+ikc cos θj + eiαj sin (kc)
ª (97)
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or

V (c) ≈ c0 cos (Γc) + c1 sin (Γc)

+2he
ωµ0
k

H0 lim
N→∞

p
2/N

 NX
j=1

aj sinϕpj sinϕj cos (αj + kc cos θj)

 (98)

c0 ≈ −2heωµ0
k

H0 lim
N→∞

p
2/N

 NX
j=1

aj sinϕpj sinϕj cos (αj)

 (99)

c1 cos (Γc) ≈ −i2heωµ0
k

H0 lim
N→∞

p
2/N

 NX
j=1

aj
¡
cosϕpj cosϕj − sinϕpj cos θj sinϕj

¢
cos (αj + kc cos θj)



−2heωµ0
k

H0 lim
N→∞

p
2/N

 NX
j=1

aj sinϕpj sinϕj {− cos θj sin (αj + kc cos θj) + cos (αj) sin (kc)}
 (100)

Resonance occurs when kc→ (n− 1/2)π and involves the c1 sin (Γc) voltage term through the cos (Γc) factor

cos (Γc) ≈ cos (Γ0c)− iΓ00c sin (Γ0c) ≈ −iΓ00c (−1)n−1 = −i (−1)n−1 Γ0c/ (2Q)

≈ −i (−1)n−1 kc/ (2Q) (101)

sin (Γc) ≈ sin (Γ0c) ≈ sin (kc) ≈ (−1)n−1 (102)

Taking the c1 sin (Γc) to be dominant

V (c) ≈ c1 sin (Γc)

≈ −i tan (Γc) 2heωµ0
k

H0 lim
N→∞

p
2/N

 NX
j=1

aj
¡
cosϕpj cosϕj − sinϕpj cos θj sinϕj

¢
cos (αj + kc cos θj)



− tan (Γc) 2heωµ0
k

H0 lim
N→∞

p
2/N

 NX
j=1

aj sinϕpj sinϕj {− cos θj sin (αj + kc cos θj) + cos (αj) sin (kc)}

(103)

or

V (c) kc/ (2Q) ≈ 2heωµ0
k

H0 lim
N→∞

p
2/N
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NX
j=1

aj

n
cosϕpj cosϕj cos (αj + kc cos θj)− sinϕpj sinϕj cos θje−i(αj+kc cos θj) − i sinϕpj sinϕj cos (αj) (−1)n−1

o
(104)

If we average over incidence and polarization anglesD
|V (c) kc/ (2Q)|2

E
=
1

4π

Z π

0

sin θjdθj

Z 2π

0

dϕj
1

2π

Z 2π

0

D
|V (c) kc/ (2Q)|2

E
aj ,αj

dϕpj

≈
³
2he

ωµ0
k
|H0|

´2 1
4π

Z π

0

sin θjdθj

Z 2π

0

dϕj
1

2π

Z 2π

0

dϕpj (2/N)

NX
j=1

NX
j0=1

hajaj0iaj
Dn
cosϕpj cosϕj cos (αj + kc cos θj)− sinϕpj sinϕj cos θje−i(αj+kc cos θj) − i sinϕpj sinϕj cos (αj) (−1)n−1

o
n
cosϕpj0 cosϕj0 cos (αj0 + kc cos θj0)− sinϕpj0 sinϕj0 cos θj0ei(αj0+kc cos θj0) + i sinϕpj0 sinϕj0 cos (αj0) (−1)n−1

oE
αj

≈
³
2he

ωµ0
k
|H0|

´2 1
4π

Z π

0

sin θjdθj

Z 2π

0

dϕj
1

2π

Z 2π

0

dϕpj (2/N)

NX
j=1

Dn
cosϕpj cosϕj cos (αj + kc cos θj)− sinϕpj sinϕj cos θje−i(αj+kc cos θj) − i sinϕpj sinϕj cos (αj) (−1)n−1

o
n
cosϕpj cosϕj cos (αj + kc cos θj)− sinϕpj sinϕj cos θjei(αj+kc cos θj) + i sinϕpj sinϕj cos (αj) (−1)n−1

oE
αj

≈
³
2he

ωµ0
k
|H0|

´2 1
4π

Z π

0

sin θjdθj

Z 2π

0

dϕj
1

2π

Z 2π

0

dϕpj (2/N)

NX
j=1

­
cos2 ϕpj cos

2 ϕj cos
2 (αj + kc cos θj) + sin

2 ϕpj sin
2 ϕj cos

2 θj + sin
2 ϕpj sin

2 ϕj cos
2 (αj)

− cosϕpj cosϕj cos (αj + kc cos θj) sinϕpj sinϕj cos θje
i(αj+kc cos θj)

+cosϕpj cosϕj cos (αj + kc cos θj) i sinϕpj sinϕj cos (αj) (−1)n−1

− sinϕpj sinϕj cos θje−i(αj+kc cos θj) cosϕpj cosϕj cos (αj + kc cos θj)

− sinϕpj sinϕj cos θje−i(αj+kc cos θj)i sinϕpj sinϕj cos (αj) (−1)n−1

−i sinϕpj sinϕj cos (αj) (−1)n−1 cosϕpj cosϕj cos (αj + kc cos θj)
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+i sinϕpj sinϕj cos (αj) (−1)n−1 sinϕpj sinϕj cos θjei(αj+kc cos θj)
E
αj

≈
³
2he

ωµ0
k
|H0|

´2 1
4π

Z π

0

sin θjdθj

Z 2π

0

dϕj
1

2π

Z 2π

0

dϕpj (2/N)

NX
j=1

·
1

2
cos2 ϕpj cos

2 ϕj + sin
2 ϕpj sin

2 ϕj cos
2 θj +

1

2
sin2 ϕpj sin

2 ϕj

−1
2
cosϕpj cosϕj sinϕpj sinϕj cos θj +

i

2
cosϕpj cosϕj cos (kc cos θj) sinϕpj sinϕj (−1)n−1

−1
2
sinϕpj sinϕj cos θj cosϕpj cosϕj −

i

2
sin2 ϕpj sin

2 ϕj cos θj cos (kc cos θj) (−1)n−1

−1
2
sin2 ϕpj sin

2 ϕj cos θj sin (kc cos θj) (−1)n−1 −
i

2
sinϕpj sinϕj (−1)n−1 cosϕpj cosϕj cos (kc cos θj)

+
i

2
sin2 ϕpj sin

2 ϕj (−1)n−1 cos θj cos (kc cos θj)−
i

2
sin2 ϕpj sin

2 ϕj (−1)n−1 cos θj sin (kc cos θj)
¸

≈
³
2he

ωµ0
k
|H0|

´2 1
2

Z π

0

sin θjdθj (2/N)
1

8

NX
j=1

£
2 + 2 cos2 θj

−i cos θj cos (kc cos θj) (−1)n−1 − cos θj sin (kc cos θj) (−1)n−1

+i (−1)n−1 cos θj cos (kc cos θj)− i (−1)n−1 cos θj sin (kc cos θj)
i

≈
³
2he

ωµ0
k
|H0|

´2 1
2

Z 1

−1
duj (2/N)

1

8

NX
j=1

£
2 + 2u2j

− (1 + i)uj sin (kcuj) (−1)n−1
i

(105)

Using Z
u sin (kcu) du = − u

kc
cos (kcu) +

1

(kc)2
sin (kcu) (106)

we obtain

D
|V (c) kc/ (2Q)|2

E
≈
³
2he

ωµ0
k
|H0|

´2
(2/N)

1

8

NX
j=1

Z 1

0

duj

h
2 + 2u2j − (1 + i)uj sin (kcuj) (−1)n−1

i

≈
³
2he

ωµ0
k
|H0|

´2 2
3

"
1 + (1 + i)

½
cos (kc)− 1

(kc)
sin (kc)

¾
3 (−1)n−1
8kc

#
, kc = (n− 1/2)π (107)
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We note that at lower frequencies the second term is proportional to the first order spherical Bessel function

j1 (kc) =
sin (kc)

(kc)
2 −

cos (kc)

(kc)
∼ (kc) /3 , kc << 1 (108)

and is therefore small in this limit. The leading term for high frequencies isrD
|V (c) kc/ (2Q)|2

E
≈
³
2he

ωµ0
k
|H0|

´r2
3

, kc >> 1 (109)

which is similar to the normal incidence maximum of the preceding section (except for the
p
2/3 ≈ 0.8165

factor); we note in this case that the squares of the electric and magnetic field amplitudes are the sum of
the squares of the individual components

E20 = E20x +E20y +E20z (110)

H2
0 = H2

0x +H2
0y +H2

0z (111)

2.5 Rectangular Conductor Impedance/Loss Parameters

If the transmission line conductors are rectangular in cross section we can calculate the impedance per
unit length using formulas for the equivalent radii of the rectangles and for the internal finitely conducting
impedance per unit length (conductor losses).
The impedance per unit length is then written as

Z = R− iX = 2Zfi − iωLe (112)

where for two equal width rectangular conductors of width w = 2b and thickness t = 2c, separated by a
sizable distance D compared to the equivalent radius a [7]

a/ (w/4) ≈ 1 + t

πw

©
c1 ln (w/t)− π + Γ2 (1/4) /

√
π
ª

(113)

for t ≤ w where c1 = 3/4 and the gamma function Γ (1/4) = 3.6256099. Conveniently, t and w are
interchanged for the case of t > w. The external inductance per unit length is again [3]

Le =
µ0
π
Arccosh

µ
D

2a

¶
∼ µ0

π
ln (D/a) , D >> 2a (114)

The finitely conducting internal impedance per unit length is [8], [9]

Zfi ∼ Zs
2πaloss

+ 4 (A0/I)
2CE

+

µ
Zs
2πa

¶"µ
1

2a

¶µ
Zs
−iωµ0

¶
F (κ) +O

Ãµ
1

γa

¶4/3
,

µ
Zs

−iωµ0a
¶4/3!#

, w, t >> δ (115)

where [7]

(w/2) /aloss ≈ 1 + 1

π
(1− t/w) ln (4πw/t)
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− t

π2w
[ln (4πw/t) + π/2] ln (w/t) (116)

with corner corrections [9], [8]

CE = −iωµ
µ
i

γ

¶4/3
25/3√
3
Dc (ν) = Zs

µ
i

γ

¶1/3
25/3√
3
Dc (ν) (117)

with corner strength [9]

A0/I =
κ

2π (3κ0C21)
1/3

=
1

2π (12κ0κa2)1/3
(118)

where [7]

(t/w) / (κκ0)2 ≈ π

4

·
1 +

t

πw

½
ln (w/t)− π +

16

1 + 4/π

¾¸µ
1 +

4t

πw

¶
(119)

and in the next term [7]

(t/w)F (κ) ≈ 1

4π
+

t

4π2w

½
ln (16w/t) ln (w/t)− π +

Γ4 (1/4)

π

¾
(120)

In addition, the parameters Dc (ν), Ac, D0, D∞, and D1 are given by [9]

Dc (ν) ≈ AcD0 +D∞ν15/12

Ac + ν11/12
(121)

Ac =
D1 −D∞
D0 −D1

(122)

with

D0 = Dc (0) =
Γ (1/3)

21/3

h
1− 3 {Γ (2/3) /Γ (1/3)}3

i
≈ 1.30247 (123)

D∞ = lim
ν→∞

h
Dc (ν) /ν

1/3
i
= − 3π221/3

4Γ2 (1/3)
≈ −1.29951 (124)

and

D1 = Dc (1) ≈ −0.360 (125)

The leading term in (115) can often be used as an approximation.
The low frequency limit (w, t << δ) is [7]

Zfi ∼ Rfi − iωLfi

where

Rfi = 1/(2b2cσ) (126)

and with µ = µ0

Lfi ∼ µ0
2π
ln(a)
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−µ0
2π

 ln
³√

bc
´
+ ln(2)− 25

12 +
2
3

©
b
cArctan(

c
b ) +

c
bArctan(

b
c)
ª

+1
4

n
(1− b2

3c2 ) ln(1 +
c2

b2 ) + (1− c2

3b2 ) ln(1 +
b2

c2 )
o  (127)

2.5.1 Thin Strips

Electrically thin strips each of thickness ∆ << w (δ >> ∆/2) have equivalent radius

a = b/2 = w/4 (128)

and finitely conducting internal impedance per unit length Zfi where [10], [11], [12]

π2

2
Zfi/R0 ∼ 1 + ln (8cs0b) + γ0 − iπ/2

+
i

2πcs0b
{ln (8cs0b) + γ0 − iπ/2}2 , 2cs0b >> 1 (129)

with

cs0 = ωµeσ∆/2 (130)

and zero frequency resistance per unit length

R0 = 1/ (2bσ∆) = 1/ (wσ∆) (131)

with [10]

Zfi ∼ R0 − i
ωµ0
2π

[3/2− 2 ln (2)] , 2cs0b << 1 (132)

2.5.2 Closely Spaced Strips

Two closely spaced strips of dimensions w,∆ a distance g apart, using planar approximations g << w, has
impedance per unit length

Z = R− iX = 2Zfi − iωLe (133)

with external inductance per unit length

Le ∼ µ0g/ (2b) = µ0g/w (134)

and internal impedance per unit length per strip with δ << ∆/2

Zfi ∼ Zs/ (2b) = Zs/w (135)

or with δ >> ∆/2

Zfi ∼
µ
1

σ∆
− iωµ∆/2

¶
/w (136)
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2.5.3 Coplanar Thin Strips

From Smythe [13] the capacitance and external inductance per unit length between coplanar strips (∆/2 >>
δ) each of width w = f − b and gap g = 2b is

C/ε0 =
K (k0)
K (k)

= µ0/Le (137)

where

k = b/f (138)

k0 =
p
1− k2 (139)

and the complete elliptic integral is defined by [14]

K (k) =

Z π/2

0

dθ/
p
1− k2 sin2 θ (140)

There is a surprisingly accurate approximation for the ratio [15]

K (k0)
K (k)

≈ 1

π
ln

Ã
2
1 +
√
k0

1−√k0

!
(141)

If the strips are electrically thin (∆/2 >> δ) and the gap is large g > w we can take the internal impedance
per unit length to be (129). Alternatively if the strips are electrically thick and the gap is large we can take
the internal impedance per unit length to be (115).

2.6 Radiation Damping

We now briefly review the preceding radiation damping level for a resonant line with typical end conditions.
For a line with two open circuited ends (open-open) we can write

P =
1

2
Grad |V (0)|2 + 1

2
Grad |V (c)|2 (142)

where

dI

dz
= iωCV ≈ knI0 cos (knz) = knI0 cos

³πnz
c

´
(143)

and thus

V (0) =
kn
iωC

I0 = −iZcI0 (144)

V (c) =
kn
iωC

I0 (−1)n = −iZcI0 (−1)n (145)

or

P = Z2cGrad |I0|2 (146)

Then we find [6]
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Grad =
ωµ0
2πZ2c

kh2e =
π (khe)

2 /η

2 ln2 (2he/a)
, kc→ nπ (147)

where the characteristic impedance is

Zc =
η

π
ln (2he/a) , η =

p
µ0/ε

0 (148)

Alternatively, for two short circuited ends (short-short)

P =
1

2
Rrad |I (0)|2 + 1

2
Rrad |I (c)|2 = Rrad |I (0)|2 (149)

we find [6]

Rrad =
η

2π
(khe)

2
, kc→ nπ (150)

For an open-short combination (similar to the preceding section)

P =
1

2
Grad |V (0)|2 + 1

2
Rrad |I (c)|2 (151)

dI

dz
= iωCV = knI (c) cos (knz) (152)

V (0) =
kn
iωC

I (c) = −iZcI (c) (153)

where [6]

GradZ
2
c +Rrad =

η

π
(khe)

2 (154)

We could alternatively place this perturbing radiation term exclusively at the shorted end, or exclusively at
the open end, by setting the other term to zero. Note from the open-open and the short-short cases above
we had

GradZ
2
c = η (khe)

2 / (2π) = Rrad (155)

2.7 Cascaded Transmission Systems

Electric field and voltage are not conserved quantities so an estimated level at each layer of the shield, as
we often use with average power bounds in HERO analysis, does not apply to upset voltage levels. Instead,
we have attempted to estimate maximum voltage levels coupled to cabling, and coupled to the input port of
a component from measured effective height and impedance data, below. However, we really should verify
that the transmission system from the component port to the sensitive device does not further boost such
levels. (The third appendix also discusses the solution for a nonuniform line which could also be considered.)
In the analysis of the unshielded line we really would like to bound the response of two connected

transmission lines, the first representing the driven cable section, and the second the interior component
connection to the load of interest. What can we say about the voltage at the load end of the second line?
Note that the second network may not have field coupling but be simply a connection between the ultimate
load and the source cable.
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Suppose we take two sections of transmission line hooked together to form the wire resonator. The right
hand section has no drive field. We want to estimate a bound on the right-hand side voltage. We then require
not only the open circuit voltage on the right hand side of the driven section, but also the impedance looking
back into this driven section from this component port. This impedance is simply the input impedance of a
section of line shorted at the opposite end. The new component section of line is taken to have impedance
per unit length Z1 and admittance per unit length Y1 with a load ZL at the right end. The ultimate load is
transformed to the input impedance at the port between sections

Zi1 = Z01
ZL cos (Γ1c1)− iZ01 sin (Γ1c1)

Z01 cos (Γ1c1)− iZL sin (Γ1c1)
(156)

The impedance on the left side of our assumed driven short-circuited line is

Zi = −iZ0 tan (Γc) (157)

The right section of line has transmission line equations

dV

dz
= −Z1I (158)

dI

dz
= −Y1V (159)

or eliminating the current µ
d2

dz2
+ Γ21

¶
V = 0 (160)

with propagation constant

Γ21 = −Z1Y1 (161)

and characteristic impedance

Z01 =
p
Z1/Y1 (162)

We can write the voltage as

V (z) = c01 cosΓ1 (z − c) + c11 sinΓ1 (z − c) (163)

At the new right load (the position of the vulnerable device) end of the second line the voltage is

V (c+ c1) = c01 cos (Γ1c1) + c11 sin (Γ1c1) = ZLI (c+ c1) (164)

with current

I (c+ c1) =
Γ1
Z1
[c01 sin (Γ1c1)− c11 cos (Γ1c1)] (165)

so that

c01

½
cos (Γ1c1)− ZL

Z1
Γ1 sin (Γ1c1)

¾
+ c11

½
sin (Γ1c1) +

ZL
Z1
Γ1 cos (Γ1c1)

¾
= 0 (166)

By current division at the left end of the new section of line
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V (c+ 0) = c01 = V (c)
Zi1

Zi + Zi1
(167)

and therefore at the right load end voltage is

V (c+ c1) = V (c)
Zi1

Zi + Zi1

·
cos (Γ1c1) +

ZLΓ1 sin (Γ1c1)− Z1 cos (Γ1c1)

Z1 sin (Γ1c1) + ZLΓ1 cos (Γ1c1)
sin (Γ1c1)

¸
= V (c)

Zi1
Zi + Zi1

ZL
(Z1/Γ1) sin (Γ1c1) + ZL cos (Γ1c1)

(168)

Using the new line characteristic impedance

Z1/Γ1 = Z1/
³p
−Z1Y1

´
= −iZ01 (169)

we can write this as

V (c+ c1) = V (c) cos (Γc)
Zi1

(Zi + Zi1) cos (Γc)

iZL
Z01 sin (Γ1c1) + iZL cos (Γ1c1)

(170)

where

Zi cos (Γc) = −iZ0 sin (Γc) (171)

V (c) cos (Γc) = − sin (Γc) L
i

µ0

ik

Γ
η0H0e

ikc cos θ0 (172)

We see from these that the resonance Γ0c = (n− 1/2)π, where cos (Γ0c) → 0, has been eliminated (as one
would expect for the connected two-line system), and simply

V (c) cos (Γc)→ − (−1)n−1 L
i

µ0

ik

Γ
η0H0e

ikc cos θ0 ≈ − (−1)n−1 ik
Γ0
2heη0H0e

ikc cos θ0 (173)

Furthermore, noting that

Zi1
(Zi + Zi1) cos (Γc)

=
Z01 {ZL cos (Γ1c1)− iZ01 sin (Γ1c1)}

−iZ0 {Z01 cos (Γ1c1)− iZL sin (Γ1c1)} sin (Γc) + Z01 {ZL cos (Γ1c1)− iZ01 sin (Γ1c1)} cos (Γc) (174)

the end voltage at the vulnerable component becomes

V (c+ c1) = V (c) cos (Γc)

Z01ZL
−iZ0 {Z01 cos (Γ1c1)− iZL sin (Γ1c1)} sin (Γc) + Z01 {ZL cos (Γ1c1)− iZ01 sin (Γ1c1)} cos (Γc) (175)

Obviously, if ZL is of the same order as Z0 any resonant enhancements are largely eliminated due to the
damping of the load on the line. To introduce resonant behavior we need to take ZL large (or small for

31



larger currents), or largely reactive (if we were to take it purely reactive, without losses, we would violate
the spirit of having a load with a finite quality factor).
If we take a near open circuit at the terminals of interest ZL →∞

V (c+ c1) = V (c) cos (Γc)
Z01

−Z0 sin (Γ1c1) sin (Γc) + Z01 cos (Γ1c1) cos (Γc)
(176)

Using some trigonometric identities

V (c+ c1) = V (c) cos (Γc)
2Z01

(Z01 − Z0) cos (Γc− Γ1c1) + (Z01 + Z0) cos (Γc+ Γ1c1)
(177)

Introducing real and imaginary parts of the propagation constant (where the imaginary part is again taken
as a small perturbation)

Γc± Γ1c1 = (Γ0c± Γ01c1) + i (Γ00c± Γ001c1) (178)

we see that resonance is produced when

(Z01 − Z0) cos (Γ
0c− Γ01c1) + (Z01 + Z0) cos (Γ

0c+ Γ01c1) = 0 (179)

in which case

V (c+ c1) = V (c) cos (Γc)

i2Z01
(Z01 − Z0) ((Γ00c− Γ001c1)) sin (Γ0c− Γ01c1) + (Z01 + Z0) ((Γ00c+ Γ001c1)) sin (Γ0c+ Γ

0
1c1)

(180)

For equal characteristic impedances Z01 = Z0 this becomes

V (c+ c1) =
V (c) cos (Γc)

cos (Γc+ Γ1c1)
(181)

and at resonance Γ0c+ Γ01c1 = (n− 1/2)π

cos (Γ0c+ Γ01c1) = 0 (182)

we obtain

V (c+ c1)

V (c) cos (Γc)
≈ i (−1)n−1 V (c+ c1)

(k/Γ0) 2heη0H0eikc cos θ0
≈ i (−1)n−1
Γ00c+ Γ001c1

(183)

Thus in this matched case (equal characteristic impedances) we simply replace Γ00c by Γ00c + Γ001c1 and the
resonant enhancement of the voltage is decreased relative to the single driven cable. Because we do not
expect significant changes in characteristic impedance along the line, we do not see the change from the
single line to this cascaded system as introducing any increases in the maximum voltage.
As a second example, if we take a factor of two change in characteristic impedance Z01 = 2Z0 or

Z0 = 2Z01, then the resonance condition (179) becomes

±1
3
cos (Γ0c− Γ01c1) + cos (Γ0c+ Γ01c1) = 0 (184)

where the upper sign corresponds to Z01 = 2Z0 and the lower sign corresponds to Z0 = 2Z01. Thus bounding
the magnitude of the first trigonometric function by unity gives
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|cos (Γ0c+ Γ01c1)| < 1/3 (185)

and through |sinx| = √1− cos2 x we can write

|sin (Γ0c+ Γ01c1)| >
p
1− 1/32 > 0.943 (186)

Then from (180) we obtain

V (c+ c1) = V (c) cos (Γc)
i

(Γ00c− Γ001c1) sin (Γ0c− Γ01c1) + 3
2 (Γ

00c+ Γ001c1) sin (Γ0c+ Γ
0
1c1)

(187)

and

V (c+ c1) = V (c) cos (Γc)
i

−12 (Γ00c− Γ001c1) sin (Γ0c− Γ01c1) + 3
2 (Γ

00c+ Γ001c1) sin (Γ0c+ Γ
0
1c1)

(188)

Using these prior bounding results, and further bounding the first trigonometric functions in the denom-
inator by unity, these can be re-written as

¯̄̄̄
V (c+ c1)

V (c) cos (Γc)

¯̄̄̄
≈
¯̄̄̄

1

(Γ00c− Γ001c1)± 3
2 (Γ

00c+ Γ001c1) 0.943

¯̄̄̄
<

¯̄̄̄
1

0.4145Γ00c+ 2.4145Γ001c1

¯̄̄̄
,

¯̄̄̄
1

2.4145Γ00c+ 0.4145Γ001c1

¯̄̄̄
(189)

and

¯̄̄̄
V (c+ c1)

V (c) cos (Γc)

¯̄̄̄
≈
¯̄̄̄

1

−12 (Γ00c− Γ001c1)± 3
2 (Γ

00c+ Γ001c1) 0.943

¯̄̄̄
<

¯̄̄̄
1

0.9145Γ00c+ 1.9145Γ001c1

¯̄̄̄
,

¯̄̄̄
1

1.9145Γ00c+ 0.9145Γ001c1

¯̄̄̄
(190)

Suppose, as another example Z0 = 3Z01 (note that for Z0 = 100 ohms, Z0 = 3Z01 corresponds to
Z01 = 33.3 ohms, and Z01 = 2Z0 corresponds to Z01 = 200 ohms), then the resonance condition becomes

−1
2
cos (Γ0c− Γ01c1) + cos (Γ0c+ Γ01c1) = 0 (191)

Bounding

|cos (Γ0c+ Γ01c1)| < 1/2 (192)

|sin (Γ0c+ Γ01c1)| >
p
1− 1/22 > 0.866 (193)

and applying these gives

V (c+ c1) = V (c) cos (Γc)
i

− (Γ00c− Γ001c1) sin (Γ0c− Γ01c1) + 2 (Γ00c+ Γ001c1) sin (Γ0c+ Γ01c1)
(194)

and
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¯̄̄̄
V (c+ c1)

V (c) cos (Γc)

¯̄̄̄
≈
¯̄̄̄

1

− (Γ00c− Γ001c1)± 2 (Γ00c+ Γ001c1) 0.866
¯̄̄̄
<

¯̄̄̄
1

0.732Γ00c+ 2.732Γ001c1

¯̄̄̄
,

¯̄̄̄
1

2.732Γ00c+ 0.732Γ001c1

¯̄̄̄
(195)

Our prior result with the driven cable ¯̄̄̄
V (c)

2heη0H0

¯̄̄̄
≈ 1

Γ00c
≈ 2Q

kc
(196)

compared with these cascaded results, indicates that for the matched case Z01 = Z0, because Γ00c+ Γ001c1 >
Γ00c, we obtain a smaller voltage result. Furthermore, if we have Z01 = Z0/2 with 0.9145Γ00c+1.9145Γ001c1 >
Γ00c and for Z01 = Z0/3 with 0.732Γ00c+2.732Γ001c1 > Γ00c then we also obtain smaller voltage results. Finally,
for Z01 = 2Z0, if 0.4145Γ00c+ 2.4145Γ001c1 > Γ00c we also obtain a smaller voltage result. This indicates, that
we will usually obtain smaller voltages for the lossy cascaded system (at least for a restricted range of
characteristic impedances).
Characteristic impedances from 33.3 ohms to 200 ohms cover a wide range of practical transmission

lines. For example, a microstrip line (single trace) on FR4 dielectric (εr = 4.4), 1 oz. copper traces (t = 1.4
mils), and a typical substrate thickness of 0.125 inches would require a trace width of 0.44 inches to have a
characteristic impedance of 33.3 ohms. The same structure would achieve a characteristic impedance of 198
ohms with a trace width of 0.0025 inches.

2.8 Experimental Effective Height Approach

Measurements of the effective height of the pins in a cable are sometimes made up to 40 GHz; measurements
of the effective height of the pins in a canonical Belden 8240 cable have also been made up to 20 GHz. The
source at the end of the cable has open circuit voltage Voc (extrapolated by using the voltage into the 50
ohm measurement system and the corresponding measured source impedance Zsrc = Rsrc− iXsrc converted
to time dependence e−iωt). This measured source feeds the component port (the second transmission line,
above). If we take the component port impedance to be Zp then the voltage at this port is

Vp =
Zp

Zsrc + Zp
Voc (197)

We often do not really know the port impedance Zp. If we adjust it to maximize the port voltage Vp we can
take

Zp = Im(Z
∗
src) (198)

(this purely reactive choice is extreme in that we have ignored losses in the component line and load, but
often the measured data from the driven cable allows us to get away with this extreme bounding choice) in
which case

Vp =
Im(Z∗src)
Re (Zsrc)

Voc =
Xsrc

Rsrc
Voc (199)

If we define a source quality factor as the limiting value

|Xsrc|
Rsrc

≤ Qsrc (200)

we see that such port loads can magnify the port voltage over the open circuit level
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|Vp| ≤ Qsrc |Voc| (201)

We should note here that the adaptors used in the effective height measurements introduce major per-
turbations into the results relative to what would be found if measurements could be made without them.
We hope that extremes in wideband spectral responses are somewhat insensitive to the large reactances
introduced, but the bulk measurements obviously affect the real impedance levels as well (for example, the
characteristic impedance becomes the bulk level versus an individual wire level). Experimental results may
end up being lower than our analytical result (52), which could be due to cable shielding (adaptor & bulk
effects may also play some role) and could also be due to nearly overlapping TEM cable modes in the
experimental measurements.

35



 

36 

 

This page left blank 
  



3 POWER COUPLING AND HERO
We have flexibility for what we choose as a worst case model for Hazard of Electromagnetic Radiation to
Ordnance (HERO) assessment. Since hot-wire electro-explosive initiators have substantial thermal time
constants, which would average over the pulse repetition period of a modulated incident pulse train, one
approach would be to begin by using the exterior “average” field level exposure (where average fields are
defined to deliver the same time average power density as the modulated pulse train). Armed with the fact
that steady-state power is conserved in a passive system, we first make use of power bounds for apertures
[16], [17], [18] in the exterior conducting barrier to bound the received level at electro-explosive devices
within. For example the transmitted power through the aperture can be estimated as

Ptrans = σDeep
transS

inc (202)

with incident power density

Sinc =
¯̄
Einc

¯̄2
/η0 (203)

and the slot cross section will be discussed in the next section.
If it is necessary to reduce these power estimates further, we next proceed inward to the cables and finally

to the pins. In the remainder of this section we will use estimates of the interior cavity field levels in the
next section to estimate bounds on antenna/cable pickup on the interior.

3.1 Matched Dipole Antenna

It has become traditional to use a simple matched antenna model to bound cable pickup in assembly areas
[19]. This antenna is usually taken as a simple dipole. It is assumed that the intervening cabling from a low
impedance electro-explosive device load is able to transform the impedance into a matching impedance at
the antenna interface. Hence, through conservation of power, the power received at the matched antenna is
taken as a bound on that delivered to the electro-explosive device. We can write this as

Prec = AeS
inc (204)

where for root mean square (rms) units we can take the incident power density to be

Sinc = Einc ×Hinc (205)

The effective area is [20]

Ae =
λ2

4π
Gpq (206)

where G is the directivity gain, 0 ≤ p ≤ 1 is the polarization mismatch factor, which for a wire antenna
aligned with the z axis

p =
¡
eθ ·Einc

¢2
/
¯̄
Einc

¯̄2
(207)

and 0 ≤ q ≤ 1 is the circuit mismatch factor (for the matched case this is set to unity)

q =
4Re (ZL)Re (Zant)

|ZL + Zant|2
(208)

The average over the polarization gives
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hpi = 1/2 (209)

and the average over the incident angles gives

hGi = 1 (210)

The received power when averaged over all incident angles and polarization (as in an overmoded cavity) is
then

hPreci = λ2

8π
S (211)

where the average power density in the cavity volume V can be written as

S =
D
|E|2

E
V
/η0 = 3

D
|Ei|2

E
V
/η0 = η0

D
|H|2

E
V
= 3η0

D
|Hi|2

E
V

(212)

with free space impedance

η0 =
p
µ0/ε0 ≈ 120π ohms (213)

and where the electric field is E with components Ei , i = 1, 2, 3 and the magnetic field is H with components
Hi , i = 1, 2, 3. Note that on the conducting boundary A of the cavity there is a 3 dB field enhancement

for the nonzero components 2
D
|Hi|2

E
V
=
D
|Hj |2

E
A

, j = 1, 2 and 2
D
|Ei|2

E
V
=
D
|En|2

E
A
, where j denotes

the two tangential components and n denotes the normal component. Then

Prec =
λ2

8π
S =

λ2

8π

D
|E|2

E
V
/η0 =

λ2

4π

3

2

D
|Ei|2

E
V
/η0 (214)

There are fluctuations about these average responses [19]. However, we note that because there is a
high degree of modal overlap in the three-dimensional cavity at the higher end of the frequency range [21]
(typically, say 10− 50 GHz), in this range we can write

α =
k30V

2πQcav
>> 1 (215)

where

k0 = ω
√
µ0ε0 (216)

and the antenna will respond approximately as if it is in free space; we use the zero subscript to denote the
free space value and k for propagation in the dielectric materials (otherwise we simply use k for free space
when materials are not present). Consequently, the fluctuations of a resonant dipole would result from the
field variations within the cavity, which are taken to be bounded by the extreme field Ei selected in the
subsection below.
The directivity gain of a small electric dipole in free space is

Gsmdip = 3/2 (217)

so that for an incident plane wave field in free space with aligned polarization p = 1 and matched load
(q = 1)

Prec =
λ2

4π
Gsmdippq |Ei|2 /η0 =

λ2

4π

3

2
|Ei|2 /η0 (218)
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For a small resonant dipole (first resonance) in free space this gain increases only slightly from the short
limit to

Gresdip = 1.64 (219)

and the traditional formula used in the “V-curve” is

Prec =
λ2

4π
Gresdip |Ei|2 /η0 =

λ2

4π
1.64 |Ei|2 /η0 (220)

These traditional values, which are only slightly larger than what is expected for the cavity response (214),
are given in the next subsection.
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4 EXAMPLE VOLTAGE AND POWER RESULTS
The exterior field drives from the Military Standards are used to drive the preceding results.

4.1 Exterior And Interior Field Example

Electromagnetic radiation (EMR) field descriptions can be found in the Military Standards [22]. The worst
case is typically the table for shipboard emissions. In this case we use some simple rounded levels in the
high frequency region, say above 5 GHz, [22] and take the peak level as

Epeak ≈ 3 kV/m-rms (221)

and the corresponding average level as

Eave ≈ 0.6 kV/m-rms (222)

In the first appendix we take an example with a slot length c = 2h ≈ 2 in, slot depth d ≈ 0.5 in, slot
width w = 0.002 in, aluminum slot and cavity walls with µ = µ0, σ ≈ 2.6×107 S/m, and cavity area A ≈ 0.5
m2. Evaluation at f = 25− 50 GHz gives (using the preceding Deep slot formulas) gives the mean interior
field single component fieldsD

|Hi|2
E
/
¯̄
Hinc
0

¯̄2 ≈ 0.0864− 0.0475 (−10.6 to − 13.2 dB) ≈ D|Ei|2
E
/
¯̄
Einc
0

¯̄2
(223)

and using the overmoded distribution in the first appendix

|Ei|2 /
¯̄
Einc
0

¯̄2 ≤ 3D|Ei|2
E
/
¯̄
Einc
0

¯̄2 ≈ 0.2593− 0.1425 (−5.9 to − 8.5 dB) , 95% confidence (224)

If we assume the modulated pulse is long compared to the cavity quality factor times the carrier period, at
the 95% level the interior single component peak field is¯̄̄

Epeak
i

¯̄̄
≈ 1.5− 1.1 kV/m-rms (225)

and the average interior single component field at the 95% level is

|Eave
i | ≈ 0.31− 0.23 kV/m-rms (226)

4.2 Unshielded Cable Voltages

If we take a typical minimum cable length of c = 12 inches, a wire-to-wire spacing D ≈ 0.06 inches with
2a ≈ 0.032 inches, 25 GHz frequency,and a quality factor Q ≤ 1000 due to a combination of absorptive
losses, we see that a differential mode will have a port voltage over the range 25− 50 GHz

|V (c) /Ei| ≈ 2Q
kc
2he ≈ 0.016− 0.008 m (227)

The coupled voltage to an unshielded cable using the 95% maximum peak interior field¯̄̄
Epeak
i

¯̄̄
≈ 1.5− 1.1 kV/m-rms (228)

is then

|V (c)| ≈ 24− 8.8 volts (229)

41



4.3 Slot Transmitted Power

From the first appendix the Deep slot transmitted power is

Ptrans = σDeep
transS

inc (230)

with incident power density

Sinc =
¯̄
Einc

¯̄2
/η0 (231)

The first appendix gives the Deep slot cross section for f = 25− 50 GHz

σDeep
trans ≈

λc

π
pslotq

Deep
trans ≤ 3.0148− 2.2277× 10−5 m2 (232)

Using the exterior average field

Eave ≈ 0.6 kV/m-rms (233)

this gives

Ptrans = 29− 21 mW (234)

4.4 Antenna Power Results

The V-curve matched dipole bound to the power that could be delivered to an electro-explosive device is

Prec =
λ2

4π
Gresdip |Ei|2 /η0 =

λ2

4π
1.64 |Ei|2 /η0 (235)

Using the 95% maximum average interior field

|Eave
i | ≈ 0.31− 0.23 kV/m-rms (236)

then gives the received power over the f = 25− 50 GHz range

Prec ≈ 4.8− 0.66 mW (237)
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5 COMPONENT SCREENING LEVELS
The hot-wire ordnance thresholds are taken as a no-fire power level. For the most common hot-wire electro-
explosive devices the no-fire power threshold is one Watt

Pnf = 1 W (238)

Typically, the calculations for initiation of hot wire devices use the exterior average field, relying on the size
of the thermal time constant of such devices being longer than the pulse repetition time. The preceding
estimates for the coupled power at the ordnance were very small compared to this level. Frequently, a
significant margin is also required to arrive at a screening power level for ordnance; the preceding received
power levels were sufficiently small compared to this threshold they would afford more than enough margin.
The upset thresholds are taken as a voltage level for typical logic circuits. Because the high frequencies

being considered here for the electromagnetic radiation may be quite different from the operating frequency
spectrum of the electronic system, interference with the system operation may require rectification of the
electromagnetic radiation induced voltages in order to effectively disrupt operation. Although this may result
in substantial increases in the required threshold voltages for upset, without detailed information on this
increase in level, we will assume a conservative screening level of

Vup = 1 V-rms (239)

Note that this choice of voltage screening level was assumed from five volt logic voltage thresholds at normal
operating frequencies. Because, this screening level should be smaller than the actual threshold (particularly
at much higher frequencies, which would likely require a nonlinear demodulation mechanism-rectification),
and required margins for upset reliability are typically smaller than those for ordnance safety, this bounding
analysis should also cover pulse train modulated drives (because we are using the peak drive field level).
However, the preceding voltage estimates for the unshielded cable are above this conservative screening
level. Nevertheless, an interior shielded cable will often provide an additional reduction of twenty to forty
dB or more, which would bring the preceding estimated levels to the range of or below this screening voltage.
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6 CONCLUSIONS
Bounding models are discussed for field coupling to an unshielded cable at resonances. Estimates for the
resonant quality factor which include both conductor and dielectric losses (as well as radiation) are made
and used in the response. Although maximum plane wave arrangements are used we also compare this to an
average over incident and polarization angles more representative of an interior cavity field. The appendices
also briefly discuss the case of a shielded cable.
The matched load approach used in the construction of the V-curve is discussed to bound received power

when ordnance is being considered.
An example is given of a slot in an enclosure, with power balance being used to estimate the interior

field levels given exterior field drives from the military standards (transmitted power through a slot in the
enclosure barrier is also given). The interior field level is estimated in the canonical shield and cavity for
the 25 − 50 GHz overmoded spectral region. We note that the shielding (ratio of maximum interior field
component to incident field) in this example, provided by the canonical enclosure, is not very significant
(−5.9 to −8.5 dB). The interior field is then used to drive interior cables and the induced voltages are
estimated. The delivered power to an antenna with matched load is also estimated. The resulting estimated
drive levels already contain margins because of the use of bounding estimates for power reception and for
cable coupling and resonant voltage transformations along cables.
Screening levels for voltage upset and no-fire power for ordnance are reviewed and compared to these

bounding coupling levels. Although in our example there is considerable margin for the power coupling,
the induced voltages for the unshielded cable (using the limited enclosure shielding) are somewhat above
conservative digital logic voltage threshold screening levels. Nevertheless, shielded cables would be expected
to reduce these induced voltage levels to near or below the screening values.

45



 

46 

 

This page left blank 
  



7 APPENDIX I: INTERIOR DRIVE FIELDS
The drive field of the cables on the interior of a typical barrier is first estimated using canonical sets of
parameters as an illustration.

7.1 Interior Field Environment*

Using conservation of steady state power in a linear system the received power through a port of entry (POE)
can be equated to the interior power lost [20], [16], which includes power lost to the conducting walls as well
as dielectric losses, etc.

Prec = Pwall + · · · (240)

At very high frequencies we can approximate this as the power transmitted through the port of entry, taken
as a narrow slot aperture, into an empty half space, but include power lost (which consists of power absorbed
and transmitted back out) on the right hand side

Ptrans = hPlossi+ Pwall + · · · = hPtransi+ hPabsi+ Pwall + · · · (241)

However, at very high frequencies we can approximate the right hand side neglecting the aperture loss terms
to overestimate the power lost on the interior

Ptrans ≈ Pwall + · · · (242)

In addition, because in a linear steady state operation average power is conserved, we can also make use
of these received or transmitted power estimates at various levels of the system topology to compare directly
with power thresholds of interior electroexplosive components.

7.1.1 Slot Aperture Penetration

The electromagnetic transmission through a narrow slot aperture, in general including electrically large
depth is taken as the input. We assume that the cavity is highly overmoded and we can use transmission
into an empty half space as an approximation (also because the slot will be electrically long distributed load
matching would be highly improbable). We can write the Deep slot transmission as

PDeep
trans = σDeep

transSinc (243)

with cross section [17], [18]

σDeep
trans ≈

λc

π
pslotq

Deep
trans (244)

and incident field Hinc = H0einc polarization mismatch factor (with z-directed slot length)

pslot =
¡
eθ ·Hinc

¢2
/
¯̄
Hinc

¯̄2
= (eθ · einc)2 (245)

as well as wall loss mismatch factor at the slot resonances (where the reactive terms vanish) [18]

qDeep
trans =

G2rad£
Rintr
int /

¡
2Zintr2

0

¢
+Grad

¤2 (246)

with incident Poynting vector magnitude
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Sinc = η0 |H0|2 (247)

slot interior characteristic impedance

Zintr
0 = η0w/d (248)

and wall loss

Rintr
int = 2Rs/d (249)

and radiation conductance fit [18]

πhη0Grad ≈ πkh

·
1−

³ π

2kh

´2
+
1

2

³ π

2kh

´4¸
, kh ≥ π/2 (250)

7.1.2 Wall Cross Section And Quality Factor

The wall loss power and cross section can be written as [16]

Pwall = σwallS (251)

where

σwall =
4

3
ARs/η0 (252)

and

S = η0

D
|H|2

E
= 3η0

D
|Hi|2

E
(253)

7.1.3 Average & Extreme Interior Field Environment

The interior field level is estimated for a canonical shield and cavity.

σrecSinc = σwallS + · · · (254)

σtransSinc = hσlossiS + σwallS + · · · = hσtransiS + hσabsiS + σwallS + · · · (255)

One Complex Component Now for equal statistics on real and imaginary parts of the field [23]

ujr = Ejr/E0 (256)

uji = Eji/E0 (257)

where the magnitude is

E0 =

q
|E|2 =

q
E2jr +E2ji (258)

and thus

u0 = 1/
√
2 (259)
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Then the square of the magnitude is

wj = p2jr + p2ji (260)

with density

pwj (wj) = e−wj (261)

mean value

hwji =
Z ∞
0

wjpwj (wj) dwj =
£−wje

−wj − e−wj
¤∞
0
= 1 (262)

and distribution function

Fwj (wj) =

Z wj

0

pwj (wj) dwj = 1− e−wj (263)

where values are

Fwj (3) ≈ 0.95 (264)

Fwj (9/2) = 0.98889 ≈ 0.99 (265)

Fwj (9) = 0.99987 ≈ 0.9999 (266)

hwji = 1 (267)

If we have an electric field component in the overmoded region which has normally distributed real and
imaginary parts then the normalized square of the magnitude of this component XM = |Ex|2, where M is
the mean of the distribution, has density

fX (x) = e−x , 0 < x <∞ (268)

where Z ∞
0

fX (x) dx =

Z ∞
0

e−xdx = 1 (269)

with unit mean

hxi =
Z ∞
0

xfX (x) dx =

Z ∞
0

xe−xdx = − ¡xe−x + e−x
¢∞
0
= 1 (270)

and distribution

FX (x) =

Z x

0

fX (x) dx = 1− e−x (271)

If we take a 95% confidence level as an extreme we find a peak to average ratio x ≈ 3. If we take a 99%
confidence as an extreme we find a peak to average ratio x ≈ 9/2. This second level corresponds to a field
peak to average ratio of 3/

√
2 ≈ 2.1.
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7.1.4 Average & Extreme Interior Field Environment*

An example we take a slot length c = 2h ≈ 2 in, slot depth d ≈ 0.5 in, slot width w = 0.002 in, aluminum
slot and cavity walls µ = µ0, σ ≈ 2.6 × 107 S/m, and cavity area A ≈ 0.5 m2. Evaluation at f = 25 − 50
GHz gives (using the preceding Deep slot formulas) gives

σDeep
trans ≈

λc

π
pslotq

Deep
trans ≤ 3.0148− 2.2277× 10−5 m2 (272)

qDeep
trans =

G2rad£
Rintr
int /

¡
2Zintr2

0

¢
+Grad

¤2 ≈ 0.15548− 0.22977 (273)

Sinc = η0
¯̄
Hinc
0

¯̄2
=
¯̄
Einc
0

¯̄2
/η0 (274)

S = η0

D
|H|2

E
= 3η0

D
|Hi|2

E
=
D
|E|2

E
/η0 = 3

D
|Ei|2

E
/η0 (275)

Zintr
0 = η0w/d ≈ 1.5069 ohms (276)

Rintr
int = 2Rs/d ≈ 9.7026− 13.722 ohms/m (277)

Grad ∼ k/η0 ≈ 1.3908− 2.7816 S/m (278)

D
σDeep
trans

E
= qDeep

trans2
λ2

4π

1

2
≈ 1.7792− 0.65732× 10−6 m2 (279)

D
σDeep
abs

E
= qDeep

abs 2
λ2

4π

1

2
≈ 5.466− 1.428× 10−6 m2 (280)

qDeep
abs ≈ 2GradR

intr
int /

¡
2Zintr2

0

¢£
Grad +Rintr

int /
¡
2Zintr2

0

¢¤2 ≈ 0.47766− 0.49915 (281)

σwall =
4

3
ARs/η0 ≈ 1.0903− 1.5419× 10−4 m2 (282)

These result in the average shielding effectiveness

S/Sinc ≈ σDeep
transD

σDeep
trans

E
+
D
σDeep
abs

E
+ σwall

≈ 0.30148

1.0903 + 0.05466 + 0.017792
− 0.22277

1.5419 + 0.01428 + 0.0065732
≈ 0.2593− 0.1425 (283)

with D
|Hi|2

E
/
¯̄
Hinc
0

¯̄2 ≈ 0.0864− 0.0475 (−10.6 to − 13.2 dB) ≈ D|Ei|2
E
/
¯̄
Einc
0

¯̄2
(284)

and using the overmoded distribution
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|Ei|2 /
¯̄
Einc
0

¯̄2 ≤ 3D|Ei|2
E
/
¯̄
Einc
0

¯̄2 ≈ 0.2593− 0.1425 (−5.9 to − 8.5 dB) , 95% confidence (285)

|Ei|2 /
¯̄
Einc
0

¯̄2 ≤ 9
2

D
|Ei|2

E
/
¯̄
Einc
0

¯̄2 ≈ 0.389− 0.214 , 99% confidence (286)

If we take as an example V ≈ 0.01 m3 we find the quality factor from cavity wall losses

Qwall =
ωµ0

D
|H|2

E
V
V

Rs

D
|H|2

E
S
A
∼ 3kη0V
4RsA

=
3V

2δA
≈ 48, 000− 68, 000 , if µ = µ0 (287)

and the average with slot losses

hQi = kSV

S
D
σDeep
trans

E
+ S

D
σDeep
abs

E
+ Sσwall

=
kVD

σDeep
trans

E
+
D
σDeep
abs

E
+ σwall

≈ 45, 000− 67, 000 (288)

These result in the modal overlap parameter which is reasonably large compared to unity

α =
k3V

2πQ
≈ k3δA

3π
≈ 5− 27 (289)
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8 APPENDIX II - SHIELDED CABLE COUPLING & PENE-
TRATION

We now estimate coupling to pins within a shielded canonical cable [24], [25] again with the electric field
in the plane of the cable transmission line (cable and neighboring return chassis) axis. The transmission
line equations for the shield (neglecting the transfer terms to the cable interior assuming the cable shield is
effective in reducing the interior cable current [26]) are

dVs
dz

+ ZsIs = −iωLisH0 = −ik2hseη0H0e
ikz cos θ0 (290)

dIs
dz

+ YsVs = iωCi
sE0 cos θ0 = ik2hse

E0 cos θ0p
Ls/Cs

eikz cos θ0 (291)

Eliminating the voltage givesµ
d2

dz2
+ Γ2s

¶
Is = 2h

s
e

Ã
−k2E0 cos θ0p

Ls/Cs

cos θ0 + Ysikη0H0

!
eikz cos θ0

= 2hse

µ
−ωCsk

2 E0

ω
√
LsCs

cos2 θ0 + ωCskη0H0

¶
eikz cos θ0

= k2hseωCs

¡−E0 cos2 θ0 + η0H0

¢
eikz cos θ0 (292)

or µ
d2

dz2
+ Γ2s

¶
Is = k2hseωCsE0 sin

2 θ0e
ikz cos θ0 (293)

where

Γ2s = −ZsYs (294)

E0 = η0H0 (295)

k = ω
p
LsCs (296)

Lis/µ0 = 2h
s
e = Ci

s/Cs (297)

The shield current is then

Is (z) = c0s cos (Γsz) + c1s sin (Γsz) + k2hseωCs

¡−E0 cos2 θ0 + η0H0

¢
eikz cos θ0/

¡
Γ2s − k2 cos2 θ0

¢
= c0s cos (Γsz) + c1s sin (Γsz) + k2hseωCsE0 sin

2 θ0e
ikz cos θ0/

¡
Γ2s − k2 cos2 θ0

¢
(298)
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8.0.5 Shield With Shorted Ends

In many cases the shield is terminated in conductors attached to chassis at the ends so it seems reasonable
to apply boundary conditions on the shield terminated at both ends

Vs (0) = 0 = Vs (c) (299)

The boundary condition Vs (0) = 0 using the preceding current transmission line equation gives

dIs
dz
(0) = ik2hse

E0 cos θ0p
Ls/Cs

(300)

which means

c1sΓs + k2hseωCsE0ik cos θ0 sin
2 θ0/

¡
Γ2s − k2 cos2 θ0

¢
= ik2hse

E0 cos θ0p
Ls/Cs

(301)

or

c1sΓs = i2hseE0ωCs cos θ0
Γ2s − k2

Γ2s − k2 cos2 θ0
(302)

The boundary condition 0 = Vs (c) also gives

dIs
dz
(c) = ik2hse

E0 cos θ0p
Ls/Cs

eikc cos θ0 = i2hseωCsE0 cos θ0e
ikc cos θ0 (303)

where

dIs
dz

= −c0sΓs sin (Γsz) + c1sΓs cos (Γsz) + ik22hseωCsη0H0 sin
2 θ0 cos θ0e

ikz cos θ0/
¡
Γ2s − k2 cos2 θ0

¢

= −c0sΓs sin (Γsz) + i2hseE0ωCs cos θ0
1

Γ2s − k2 cos2 θ0

£¡
Γ2s − k2

¢
cos (Γsz) + k2 sin2 θ0e

ikz cos θ0
¤

(304)

or

c0sΓs sin (Γsc) = i2hseE0ωCs cos θ0
Γ2s − k2

Γ2s − k2 cos2 θ0

£
cos (Γsc)− eikc cos θ0

¤
(305)

so we can write

dIs
dz

= −i2hseE0ωCs cos θ0
Γ2s − k2

Γ2s − k2 cos2 θ0

£
cos (Γsc)− eikc cos θ0

¤ sin (Γsz)
sin (Γsc)

+i2hseE0ωCs cos θ0
1

Γ2s − k2 cos2 θ0

£¡
Γ2s − k2

¢
cos (Γsz) + k2 sin2 θ0e

ikz cos θ0
¤

(306)

The c0s (first) term exhibits a resonant enhancement when

Γ0sc = mπ (307)

with functional behavior
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Vs (z) ∼ c1s sin (Γ
0
sz) (308)

However, we note for Γs → k

dIs
dz

= i2hseωCsE0 cos θ0e
ikz cos θ0 (309)

8.0.6 Shield With Loaded End

Suppose there is an extra inductance at one end of the shield so that we can approximately apply

Vs (0) = 0 ≈ Is (c) (310)

Eliminating the voltage again gives the shield current

Is (z) = c0s cos (Γsz) + c1s sin (Γsz) + k2hseωCsE0 sin
2 θ0e

ikz cos θ0/
¡
Γ2s − k2 cos2 θ0

¢
(311)

The boundary condition Vs (0) = 0 using the preceding current transmission line equation gives

dIs
dz
(0) = i2hseωCsE0 cos θ0 (312)

which means

c1sΓs + i2hseωCsE0 cos θ0k
2 sin2 θ0/

¡
Γ2s − k2 cos2 θ0

¢
= i2hseωCsE0 cos θ0 (313)

or

c1sΓs = i2hseE0ωCs cos θ0
Γ2s − k2

Γ2s − k2 cos2 θ0
(314)

The boundary condition 0 = Is (c) also gives

c0s cos (Γsc) = −i2hseE0ωCs

cos θ0
¡
Γ2s − k2

¢
sin (Γsc) /Γs − ik sin2 θ0e

ikc cos θ0

Γ2s − k2 cos2 θ0
(315)

Then

dIs
dz
(z) = −c0sΓs sin (Γsz) + c1sΓs cos (Γsz) + ik22hseωCsE0 cos θ0 sin

2 θ0e
ikz cos θ0/

¡
Γ2s − k2 cos2 θ0

¢
(316)

or

dIs
dz
(z) = i2hseE0ωCs

cos θ0
¡
Γ2s − k2

¢
sin (Γsc) /Γs − ik sin2 θ0e

ikc cos θ0

Γ2s − k2 cos2 θ0

Γs sin (Γsz)

cos (Γsc)

+i2hseE0ωCs cos θ0
Γ2s − k2

Γ2s − k2 cos2 θ0
cos (Γsz) + ik22hseωCsE0 cos θ0 sin

2 θ0e
ikz cos θ0/

¡
Γ2s − k2 cos2 θ0

¢
(317)

If we are near the resonance Γ0sc = (n− 1/2)π

dIs
dz
(z) ∼ i2hseE0ωCs

cos θ0
¡
Γ2s − k2

¢
sin (Γsc) /Γs − ik sin2 θ0e

ikc cos θ0

Γ2s − k2 cos2 θ0

Γs sin (Γsz)

cos (Γsc)
(318)
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We note that if Γ0s → k we can write this as

dIs
dz
(z) ∼ 2hseE0

ωCs

k
eikc cos θ0

Γs sin (Γsz)

cos (Γsc)
(319)

8.1 Coaxial Region

The interior coaxial equations

dVc
dz

+ ZcIc = ZT Is (320)

dIc
dz

+ YcVc = −YTVs = iω (CT /Cs) qsh = (CT /Cs)
dIs
dz

(321)

give µ
d2

dz2
+ Γ2c

¶
Vc = (ZT − ZcCT /Cs)

dIs
dz

(322)

where

Γ2c = −ZcYc (323)

where we can again take boundary conditions as

Vc (0) = 0 = Ic (c) (324)

The transfer immittances ZT and YT (and CT ) for standard cables can be estimated by using the semi-
empirical results [27].

8.1.1 Drive With Shorted Ends

The drive with both ends shorted gives

Vc (z) = c0c cos (Γcz) + c1c sin (Γcz)

−i2hseE0ωCs cos θ0

¡
Γ2s − k2

¢
/
¡
Γ2c − Γ2s

¢
Γ2s − k2 cos2 θ0

£
cos (Γsc)− eikc cos θ0

¤ sin (Γsz)
sin (Γsc)

(ZT − ZcCT /Cs)

+i2hseE0ωCs cos θ0
1

Γ2s − k2 cos2 θ0

·µ
Γ2s − k2

Γ2c − Γ2s

¶
cos (Γsz) +

k2 sin2 θ0
Γ2c − k2 cos2 θ0

eikz cos θ0
¸
(ZT − ZcCT /Cs)

(325)
The left boundary condition Vc (0) = 0 gives

c0c = −i2hseE0ωCs cos θ0
1

Γ2s − k2 cos2 θ0

·µ
Γ2s − k2

Γ2c − Γ2s

¶
+

k2 sin2 θ0
Γ2c − k2 cos2 θ0

¸
(ZT − ZcCT /Cs) (326)

and the right boundary condition 0 = Ic (c) gives
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dVc
dz

(c) + ZcIc (c) = ZT Is (c)→ dVc
dz

(c) = ZT Is (c) (327)

where

Is (c) = i2hseE0ωCs cos θ0

¡
Γ2s − k2

¢
/Γs

Γ2s − k2 cos2 θ0

£
1− eikc cos θ0 cos (Γsc)

¤ 1

sin (Γsc)

+k2hseωCsE0 sin
2 θ0

eikc cos θ0

Γ2s − k2 cos2 θ0
(328)

8.1.2 Drive With Open-Short Ends

Vc (z) = c0c cos (Γcz) + c1c sin (Γcz)

+i2hseE0ωCs

cos θ0
¡
Γ2s − k2

¢
sin (Γsc) /Γs − ik sin2 θ0e

ikc cos θ0

(Γ2s − k2 cos2 θ0) (Γ2c − Γ2s)
Γs sin (Γsz)

cos (Γsc)
(ZT − ZcCT /Cs)

+i2hseE0ωCs cos θ0

¡
Γ2s − k2

¢
/
¡
Γ2c − Γ2s

¢
(Γ2s − k2 cos2 θ0)

cos (Γsz) (ZT − ZcCT /Cs)

+i2hseωCsE0 cos θ0
k2 sin2 θ0

(Γ2s − k2 cos2 θ0) (Γ2c − Γ2s)
eikz cos θ0 (ZT − ZcCT /Cs) (329)

The left boundary condition Vc (0) = 0 gives

c0c = −i2hseE0ωCs cos θ0
1

(Γ2c − Γ2s)
(ZT − ZcCT /Cs) (330)

The boundary condition 0 = Ic (c) then gives

dVc
dz

(c) + ZcIc (c) = ZT Is (c)→ dVc
dz

(c) = 0 (331)
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8.2 APPENDIX III: ANTENNADRIVINGNONUNIFORMTRANSMISSION
LINE

Suppose we examine the case of a nonuniform transmission line

dV

dz
= −Z (z) I (332)

dI

dz
= −Y (z)V (333)

d2I

dz2
= (Y 0/Y )

dI

dz
+ Y ZI (334)

For simplicity we take

Y = Ylc/z (335)

Z = Zlz/c (336)

gives

d2I

dz2
+
1

z

dI

dz
− YlZlI = 0 (337)

The general solution is

I = c0J0 (Γlz) + c1Y0 (Γlz) (338)

where

Γ2l = −ZlYl (339)

Let us impose

V (c1) = − 1

Y (c1)

dI

dz
(c1) = Voc − I (c1)Zs (340)

or

Voc − [c0J0 (Γlc1) + c1Y0 (Γlc1)]Zs = [c0J1 (Γlc1) + c1Y1 (Γlc1)] (c1/c)Γl/Yl (341)

Γl/Yl = −ZlΓl/ (−ZlYl) = −Zl/Γl = iZl0 (342)

Zl0 =
p
Zl/Yl (343)

and

I (c) = 0→ c0J0 (Γlc) = −c1Y0 (Γlc) (344)

Then

Voc − c0

·
J0 (Γlc1)− J0 (Γlc)

Y0 (Γlc)
Y0 (Γlc1)

¸
Zs = c0

·
J1 (Γlc1)− J0 (Γlc)

Y0 (Γlc)
Y1 (Γlc1)

¸
(c1/c)Γl/Yl
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Voc = c0

·½
J0 (Γlc1)− J0 (Γlc)

Y0 (Γlc)
Y0 (Γlc1)

¾
Zs +

½
J1 (Γlc1)− J0 (Γlc)

Y0 (Γlc)
Y1 (Γlc1)

¾
(c1/c) iZl0

¸
(345)

The voltage at the open circuit end is

V (c) = − 1

Y (c)

dI

dz
(c) =

Γl
Yl
c0

·
J1 (Γlc)− J0 (Γlc)

Y0 (Γlc)
Y1 (Γlc)

¸
=
Γl
Yl

c0
Y0 (Γlc)

[J1 (Γlc)Y0 (Γlc)− J0 (Γlc)Y1 (Γlc)]

=
2

πYlc

c0
Y0 (Γlc)

(346)

Note also

V (c1) = − 1

Y (c1)

dI

dz
(c1) = c0

·
J1 (Γlc1)− J0 (Γlc)

Y0 (Γlc)
Y1 (Γlc1)

¸
(c1/c)Γl/Yl (347)

so that

V (c) /V (c1) =
2/π

Γlc1 [J1 (Γlc1)Y0 (Γlc)− J0 (Γlc)Y1 (Γlc1)]
(348)

Thus

V (c)

Voc
=

2/ (πYlc)

{J0 (Γlc1)Y0 (Γlc)− J0 (Γlc)Y0 (Γlc1)}Zs + {J1 (Γlc1)Y0 (Γlc)− J0 (Γlc)Y1 (Γlc1)} (c1/c) iZl0
(349)

If we take Γlc1 → 0

V (c)

Voc
∼ 2/ (πYlc)

{Zs + (Γlc1/2) (c1/c) iZl0}Y0 (Γlc) + {iZl02/ (πΓlc)− (2/π) ln (Γlceγ/2)Zs}J0 (Γlc) (350)

and

V (c) /V (c1) ∼ 1

J0 (Γlc) + (Γlc1/2)
2 πY0 (Γlc)

(351)

If we set

ZsY0 (Γlc)− (2/π) ln (Γlceγ/2)ZsJ0 (Γlc) = 0 (352)

then

V (c)

Voc
∼ 1

(Γlc1)
2
(π/4)Y0 (Γlc) + J0 (Γlc)

(353)

If we take

J0 (Γlc) = J0 (j0p) = 0 (354)
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V (c)

Voc
∼ 1

(j0pc1/c)
2
(π/4)Y0 (j0p)

=
1

(Γlc1/2)
2
πY0 (j0p)

>> 1 (355)

V (c) /V (c1) ∼ 1

(Γlc1/2)
2
πY0 (j0p)

>> 1 (356)

Y0 (j0p) ∼
s

2

πj0p
sin (j0p − π/4) ∼

s
2

πj0p
sin (pπ − π/2) =

s
2

πj0p
(−1)p−1 (357)

j0p ∼ (p− 1/4)π (358)

V (c)

Voc
∼
p
Γlc/2 (−1)p−1
(Γlc1/2)

2 π1/2
>> 1 (359)

V (c) /V (c1) ∼
p
Γlc/2 (−1)p−1
(Γlc1/2)

2
π1/2

>> 1 (360)

from which we infer that

V (c1) ∼ Voc (361)

or that Zi >> Zs.
What if we arrange the right termination to be “matched” in the sense that

I (z) = c0H
(1)
0 (Γlz) (362)

The voltage at the left termination is

V (c1) = − 1

Y (c1)

dI

dz
(c1) =

Γl
Y (c1)

c0H
(1)
1 (Γlc1) (363)

The voltage at the right termination is

V (c) = − 1

Y (c)

dI

dz
(c) =

Γl
Y (c)

c0H
(1)
1 (Γlc) (364)

The ratio is

V (c) /V (c1) =
Y (c1)

Y (c)

H
(1)
1 (Γlc)

H
(1)
1 (Γlc1)

= (c/c1)
H
(1)
1 (Γlc)

H
(1)
1 (Γlc1)

(365)

Then if we take Γlc1 << 1

V (c) /V (c1) ∼ i
π

2
ΓlcH

(1)
1 (Γlc) (366)

or

V (c) /V (c1) ∼
p
πΓlc/2e

i(Γlc−π/4) (367)

or

|V (c) /V (c1)| ∼
p
πΓlc/2 >> 1 (368)
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Also

Zi = V (c1) /I (c1) =
Γl

Y (c1)

H
(1)
1 (Γlc1)

H
(1)
0 (Γlc1)

=
Γlc1
Ylc

H
(1)
1 (Γlc1)

H
(1)
0 (Γlc1)

= iZl0 (c1/c)
H
(1)
1 (Γlc1)

H
(1)
0 (Γlc1)

(369)

Now for Γlc1 << 1 (this complex value does not in general match the antenna, although perhaps by selection
of appropriate values of Yl and Γl we can get close with the real part?)

Zi ∼ 1

Ylc

−i2/π
1 + i (2/π) ln (Γlc1eγ/2)

(370)

with

ZL = V (c) /I (c) =
Γl

Y (c)

H
(1)
1 (Γlc)

H
(1)
0 (Γlc)

=
Γl
Yl

H
(1)
1 (Γlc)

H
(1)
0 (Γlc)

= iZl0
H
(1)
1 (Γlc)

H
(1)
0 (Γlc)

(371)

or

ZL ∼ Zl0 (372)

Note that

ZL/Zi ∼ Zl0Ylci
π

2
[1 + i (2/π) ln (Γlc1e

γ/2)]

∼ π

2
Γlc [1 + i (2/π) ln (Γlc1e

γ/2)] >> 1 (373)

and thus we have a growth of the impedance from the left end to the right end of the line.
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