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Abstract

We use bounding models to estimate the power delivered to interior ordnance as well as the pin level
voltages along a cable at interior electronic components. The procedures underlying these estimates are
described in some detail. Conservation of steady-state power in a linear passive system underpins the
power estimate, whereas, losses and quality factor limits underpin the limits on voltage transformations.
The final levels are compared to no-fire threshold power and to minimum upset voltage levels in an
example using a canonical slot aperture and cavity to estimate interior fields.
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1 INTRODUCTION

This report discusses bounding estimates of cable coupling and resulting pin-level power and voltage. The
next section considers the electronic upset problem and gives formulas for estimating maximum pin-level volt-
ages on a cable subjected to an incident field level. This section begins with an unshielded cable and touches
on the effect of a cable shield (the second appendix has more discussion on a shielded cable) along with a brief
discussion of cable effective height measurements. The section that follows discusses the personnel safety
problem and estimates for worst case power to ordnance using the V-curve matched load argument. Using
results from the first appendix the next section considers a simple example of electromagnetic penetration
of a canonical exterior shield through a slot to establish the interior field levels in a canonical overmoded
cavity, focusing on the higher frequency region of the Electromagnetic Radiation (EMR) Environment, to
estimate induced cable voltage levels and coupled device power (in addition to transmitted power through
the shield). The next section briefly discusses screening levels of the electronics upset voltage threshold
and typical ordnance power thresholds. The final conclusion section summarizes the results. The formulas
provided in this report can be readily applied to actual geometries following the procedures given for the
example here.
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2 CABLE COUPLING AND UPSET

To assess the possibility of voltage upset of electronics, we will examine the coupling to a model of the cable
leading to the vulnerable device. Realistic losses will be inserted on the cable, which limit the wiring quality
factor, and subsequently limit voltage transformations along the cable up to the vulnerable device. We will
also consider drives of cables from collections of plane waves and show that the result is slightly reduced
from the preceding maximum case.

The cable coupling will actually be addressed in two ways. First, we will estimate the differential /common
mode coupling to an unshielded cable as a limiting case of poor shielding. The second appendix will discuss
a shielded cable. We will also briefly discuss effective height and impedance measurements of typical cables
below.

2.1 Unshielded Cable

Let us first consider coupling to the differential mode of a balanced twin conductor cable. We use the
transverse drive equations (this approach includes the effect of the transverse field at the ends of the cable)
[1], [2]. The voltage equation is (harmonic time dependence e~ is suppressed throughout)

av

- = 41— iwL'H$" (1)
with impedance per unit length
Z=R—iX =22 —iwL, (2)

For two equal radius cylindrical conductors of radius a and separation D [3] the inductance per unit length
is

= 0 pvecosh (2] ~ Ho
L.= - Arccosh <2a> - In(D/a) , D >>2a (3)

and the finitely conducting internal impedance per unit length due to skin-effect (§ << a) is

Zfizé ﬂ ~ Zs , D>>2a (4)
2ma D2/ (2a)2 1 2ma
where

Zy=(1—14)R, (5)
R, =1/ (50) (6)
0 =12/ (wuo) (7)

with [1]
L'/uo = 2he (8)

Note that for the limit § >> a the resistance per unit length per conductor Re (Z/%)is R/* ~ 1/ (wa?0).
The current equation is



dl

=YV iwC' Bt (9)

with admittance per unit length

Y =G — iwC (10)

The propagation constant is

[=vV—ZY =T’ " (11)

and the characteristic impedance is

Zo =+\/Z]Y ~ \/L/C (12)

where
VITC = Darccosh (2) ~ T (Dja) , D >> 2 (13)
T 2a T ’
with the intrinsic impedance
n=Ho/e (14)
The capacitance per unit length [3] is
D
C = we/Arccosh <%> ~me/In(D/a) , D >>2a (15)

where we can estimate the conductance per unit length from the dielectric loss tangent (assuming the
dielectric fills the space between conductors)

G/ (wC) =tand (16)

and for a homogencous dielectric [1]

C'/e = 2h.C/e = 2hen/\/L/C (17)

with charge and current centroid position h,

2he/D =1\/1—(2a/D)* ~1, D >> 2a (18)

Let us first take the incident electric field to be parallel to the plane containing the wire axes [1]

Hizt — Hoeikoz cos fg (19)
Ee:ct — B 0 i1kgz cos Oy
9t = Eycosboe (20)

where the wavenumber of the transmission line is

k= w\/poe =wVvLC (21)

and the free space wavenumber is
ko = wy/1o€o (22)
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with

EO = T]OHO (23)
The transmission line equations then become
av . i rrext . ikoz cos Oy
= +ZI = —iwLl'H"" = —ik2h.nHpe (24)
dl , E 0y -
L LYV = iwC B = ik2h, —Le 20 gikoz cos fo (25)

dz

VL/C

and we are approximating for small losses along the line wL >> R, wC >> (. Eliminating the current gives

d2v d2V 2 . 7 ext . 7 d ext

=w (leoH() — zC“ZEO) cos eoeikoz cos g (26)
or for small losses Z = R — iwL ~ —iwL approximately

§ i
(Z—‘; + F2> V= <wLikoH0 — %W2LCEO> oS aoeikozcos%
z

L Ci ‘
~ (_k(%TIOHO/EO — —k’2> EO cos goe’bkoz cos Og
Ho C

C' ;
~ <2hek§n0H0 /Eo — ?M) Eq cos fgetFo cosfo (27)
The solution is then
V (2) = ¢gcos (I'z) + c1 sin (T'z)

k? ok ;
+ (E?OUOHO/EO — 1) (2hek—gn0H0/E0 — 6) Ep cos feFoz cos 9014:2/ (F2 — k2 cos? (90) (28)
In the homogeneous case ko — k and C*/C — 2h,, in which case 2h, (k§noHo/Eo — k?) vanishes, and then
the solution is

V(2) = cocos (T'z) + ¢y sin (I'z) (29)

Below we investigate general incidence and polarization angles, as well as a random collection of plane
waves as would be found in a high frequency cavity. The results are very similar to this simple case where the
wave vector and electric field vector are in the plane containing the twin wire line. If we take as boundary
conditions a short circuit on the left end and an open circuit on the right end (note that we are at high
frequencies here with half-wave oscillations along the cable, so that this precise choice is not critical)

V(0)=1I(6)=0 (30)

then ¢y = 0 as well as p
VvV .
— (O + ZI(0) = eaDcos (TY) = —ik2hen Hoe'tt cos 0o (31)
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and therefore

ikt cos 0, S (I'2)
— —i(k/T 2he H i1kt cos Oy SlIl( 2
V(Z) Z( / ) ToL1p€ coS (FZ) (3 )
and if we take I' — k in the amplitude factor
V (0) = —i2henyHoe™ <% tan (I'0) (33)

If we examine the resonant limit I'V¢ — (n — 1/2) 7 where the dominant real part is (I << I")

I'~wVLC =k (34)
the small imaginary part can be written in terms of the losses as
I (R G I’
IM>s=|—+—)=—=—1(1 =1"/(2
5 (oF + o5 ) = 5 (1/Qr+ tn) =1/ 20) (35)

where the quality factor @) is a combination of losses from the conductors @, the dielectric Q) p, radiation
Qrada etc.

1/Q:1/QR+1/QD+1/Qrad+"':1/QR+tan6+l/Qrad+"' (36)
Then we find

cos (T0) ~ cos (I"¢) — il 0sin (I"¢) ~ —iT"0 (—=1)" "' = —i (=1)""' ¢/ (2Q) (37)
Taking the real part to approach IV — k

V (0) kt/ (2Q) = 2heny Hoe*tcos (38)
or (unity if sufficiently lossy)
1 2
ACE ~ ~ 2Q (39)
ShongHo |~ T70 " ke

The maximum as a function of incident angles is then the normal incidence result

V() K/ (2Q) | max & ZhenoHo (40)

2.2 Cable Common Mode Generalizations And Resonances

The maximum voltage is thus magnified by the resonant quality factor @), but the electrical length k¢ can
also be large (tending to reduce the voltage). What we are really saying here is that the losses lead to a
bounding quality factor, which limits the voltage transformations. The wire spacing D is relatively small so
the balanced differential mode voltage is relatively small.

If there is efficient common-to-differential mode conversion then the common mode coupling is also of
interest. If we are talking about a wire with respect to a cable braid shield, then the spacing D is replaced
by the wire spacing from the cable braid to the image in the cable braid, but the impedance per unit length,
the distributed voltage source, and the voltage, are cut in half. If we are instead talking about the coupling
to the cable braid with respect to the chassis wall, then the radius a is replaced by the equivalent radius
of the cable a., and the spacing D is replaced by the distance to the image in the chassis wall D., but
the impedance per unit length, the distributed voltage source, and the voltage, are again cut in half. If
such common-to-differential mode conversion were present (so that common mode signals were delivered to
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differential circuits), the most important feature of the coupling in (38) is the effective separation h, (related
to D), which could be increased in the common mode coupling geometry. In both these cases, the tangential
magnetic field drive near the wall Hy can in principle be increased due to the conductive boundary condition
there, however, if a braided shield is present these modes require penetration of the braid to provide such a
drive, and consequently bring in the cable shielding and resulting reduction of Hy into the calculation (these
coupling levels may be down by an order of magnitude or more). The second appendix briefly discusses the
braided cable coupling.
We have assumed here that the cable is single-moded even when we are operating at high frequencies; for
a one-dimensional resonator, the relative modal spacing Ak/k = 7/ (k) = 1/ (n —1/2) can be larger than
the 3 dB width Aks/k = 1/Q), if the quality factor @Q is very large. The voltage magnification factor here
(38)
7Q/ (kl) = Ak/Aks (41)

is the ratio of the modal spacing to the 3 dB width; this value shrinks with increasing frequency even in the
case of this one-dimensional resonant system. If coupling to additional TEM modes in the multiconductor
cable are taken into account, introducing additional resonant modes, we expect it to shrink further.

2.3 Damping Mechanisms And Q

The cable system quality factor @) is now estimated, where it is defined as the radian frequency times the
peak energy stored W, divided by the average power lost P [3]

wW
Q=7 (12)

The prior values of the quality factor for dielectric losses is determined from the loss tangent of the material

Qp =1/tand (43)
Some values are known for fairly high frequencies such as 25 GHz [4]. For example, Teflon has tan§ ~ 6x10~4
and Qp ~ 1667; at 10 GHz tand ~ 3.7 x 10~ and Qp =~ 2703; at 3 GHz tané ~ 1.5 x 10~* and Qp ~ 6667.

The conductor ohmic losses for the example of 20 AWG copper wire with [5] 2a = 0.032 inches (the
stranded case has 2a ~ 0.040 inches), o = 5.8 x 107 S/m give

wL

Qr~

MArccosh

D DQ/(2CL)2*1 wupaln (D/a 2aln(D/a
et (2) et D)) _20DJ0)

2a D/ (2a) R;

(44)
For a wire-to-wire spacing D = 0.06 inches we find at 25 GHz that Qr ~ 2042; at 10 GHz Qi ~ 1292; at 3
GHz Qpr =~ 707.5. Combining these two loss effects we find the quality factor due to absorption at 25 GHz

1/Qabs = 1/Qr +1/Qp ~ 917.7 (45)

at 10 GHz Qgps =~ 874.2; at 3 GHz Qups =~ 639.6. Generalizations of the ohmic losses to rectangular conductor
geometries are summarized in the subsection below.

For the radiation damping, which has the form of lumped loads at the ends of the line, we estimate the
stored electric energy along the cable (where the factor of one half accounts for the sinusoidal variation along
the cable length and the subsection below briefly discusses alternate end conditions)

¢ 2 1 2
L%:ACWQNW:#QV@\ (46)
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and use [6]

1 1

P = 5Graa|V (0 + 5 raa |l 0 = Graa [V (O (47)

For an extended exterior
GdeQQ =To (khe)2 / (277) = Rrad (48)

to obtain
kCA sh (£
Oras lwC _ EQwL _ rccos 2(2a) N 4kf1In (DQ/a) D >> 2 (49)
2Grad 2Z0 Grad (khg) (kD)

Note that, this radiation damping inside a closed three-dimensional cavity volume still holds if the cavity is
overmoded at very high frequencies. The lengths of the cables (or branches) are taken to be greater than one
foot (and we note that there will exist some coupling at higher frequencies to remaining cable branches if
they exist). For the same frequency and dimensions, with £ = 12 inches, at 25 GHz, this gives Qqq ~ 1738.
The total is then

1/Q = 1/Qabs =+ 1/Qrad (50)

Table 1 shows values for this example

F(GHZ) Qi Qb Qus Qua  Q  7Q/(k0) |V (0)/Eo| (m)

0.1 129.2 5000 125.9 4.289 x 106 1259 619 0.51

0.3 223.7 6667 216.5 1.449 x 10° 216.1 354 0.29

3.0 707.5 6667 639.6 1.449 x 10* 612.6 100 0.082

10.0 1292 2703 874.0 4346 727.7 35.8 0.029

25.0 2042 1667 917.8 1738 600.6 11.8 0.0097

Table 1. Example quality factors and voltages for two wire line.

Note that this radiation damping is usually eliminated for the differential mode in a shielded cable.
However, for a multi-pin cable (with N TEM modes) at high frequencies, perturbations of the invariant
axial geometry lead to coupling between the various TEM modes, which introduce a level of damping having
similar characteristics to the radiation damping.

Nevertheless, we plan to stick with only the absorption damping here. If we extrapolate from lower
frequencies to 25 GHz and above we might take a bounding total quality factor

Q ~ Qups < 1000 (51)

If we take a typical minimum cable length of £ = 12 inches, a wire-to-wire spacing D & 0.06 inches with
2a = 0.032 inches, 25 GHz frequency,and a quality factor @ =~ 1000 due to a combination of absorptive
losses, we see that a differential mode will have a port voltage

2
|V (£)] = k—C§2h6E0 ~ 0.016 m Ey , 25 GHz (52)
with modal spacing-to-modal width
Ak/Aks =7Q/ (kl) =~ 20 (53)

14
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Figure 1: Ratio of voltage to electric field component (effective height) from bounding formula.

and at 40 GHz

V(0)| ~ EW%EO ~ 0.010 m FEy, 40 GHz 54
k¢

The plot of the ratio of the voltage to electric field component (effective height) in (52), using the fixed
quality factor (51), is shown in Figure (1)

2.4 Random Plane Wave Drive

In an enclosed cavity environment at very high frequencies, the mean response should be estimated by
averaging over the angle of incidence and the polarization angle. This would tend to reduce the coupling
somewhat from the preceding maximum. If we take the transmission line to be oriented along the z unit
vector e,, with the angle between the incident plane wavevector and the z axis again as g, so again

k-1 =kxsinfgcosp, + kysinbysin g, + kzcos by ~ kzcos b (55)

and having the unit vector e, point between the wires from the negative to positive wire, with the voltage
defined as

V:*/Eeit'd_e (56)
C
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with the contour extending from the negative to the positive wire. In this section we now take the homoge-
neous case with wavenumber k.
Taking the field driving the line as the summation

N
ext _ : } . tojtik T
E“ (r) = Fy 1\}51100 2/N Re Zlaj (cos ®pii + slncppjg;) etk (57)
J:
where the random amplitudes are normalized as
{ajaji),, = djj (58)
which gives (with random phases ;)
9 N
(B 'Eext>a]-,aj = E? J\;gnoo = Z (cos? (a; +k; .£)>aj =FE; (59)
j=1

The polarization angle ¢,,; is a random function with orthogonal unit vector

;= (k; < ¢;) /k (60)
where
g€ =0 (61)
and the wavevectors are
kj =k (e,sin0;cosp; + e, sinf;sinp; + e, cosb;) (62)

where

€;-k;=0=sin 6, cos p; sin 0o; cos pg; + sin 0, sin ; sin 0o; sin g, + cos 0 cos fo;

= sin 6 sin f; (cos p; cos @, + sin @ sin g ;) + cos 0; cos Oo;

=sin @ sinfg; cos (p; — @g;) + cos b cosbo; = sin b sin by {cos (¢; — @y;) — 1} +cos (0; — 0g;)  (63)

If we have ¢; — ¢py; = 0 and 0; — 0p; = +7/2 this will vanish. This corresponds to taking the polarization
vector ¢; along a theta direction relative to the spherical radial direction for the wavevector. Taking 6; =
; + m/2 we can write

€; = e, sinfy; cos pg; + e, sinby; sin py; + €, cos b

=g, cosbjcosp; +¢,cosl;sing; —e, sinb; (64)
and
e = (k; x¢;) /k

J

16



= (gx sin 6 cos ¥; +e,sn 0, sin v; + e, cos Hj) X (gz sin 0y, cos ¥oj + €, sin fo; sin o + €, cos on)

= —e_ sin (@; — py;) sin0; sin Oy,

+e

€, (cos 0 sin fy; cos ¥p; — sin 0 cos p; cos 90j) +e, (cos 0o; sin 0; sin p; — cos 0, sin fp; sin <p0j)

=¢€, (0032 0; + sin? Hj) cosp; t+e, (— sin? 0; — cos? Oj) sing; =g, cosp; — e, sinp; (65)

The magnetic field can be found from Faraday’s law

V X E=iwpoH (66)
using
ki xef =k; x (k; x ¢;) [k = —ke; (67)
Noting that we can write
1l
E™ (1) = Eo lim v2/N3 > aj (cosp, e +singp, ) (e TEIT 4 et ik T (68)
j=1
we find
ext kEO . 1 N ‘ ’ o . iaj+ik.-r 77204]_72»]0_7‘
H" (r) = o I\}Enoo\/Q/N§ ;aj (Cosgppjgj —blncppjgj)z(e 5L _ e k; _)
kE, 1| &
= WMZ ]\;gnoo V 2/N§ j;aj (COS (pij; — sin ijﬁj) (ew‘j'ﬂﬁj‘z _ e—zaj—zﬁj'z)
kE N
0 . ] ik
- iwpg z\}gnoo 2/NIm ; a; (cos g€ —sing,je;) e T
kE N
_ 0 . . . ia;'+iﬁ,-'£
A e[S | o
where
kEy
—— = Fo/ny = H, 70
o 0/no = Ho (70)
so that
N . .
H" (r) = —iHy A}gnoo 2/N Re Zaj (cos Lppjgg» — sin Lppjgj) jelaitik;r (71)
j=1
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and

N
ext __ ext _ : . . /. o . - iaj+izk e,
H{" =H e, = 1Hy ]\}ngo 2/N Re Za] (cosgomgj e, —sing,;e; gy) ie j
=1
N
_ s : . oo o - ioj+ikzcos 6
= —iH, ]\}I—Igo v/2/N Re g a; (COS(,Dpj cosp; —sing,; cos ) sin g, ) ie'™ i (72)
j=1

This y component of the magnetic field (the component through the wires) must vanish when p;=m /2 with
¢p; = 0, because H ¢t should then be x directed. Also we can write

N
ext __ rrext _ . . . . /. taj+izk e,
ES*' = B e, = Ey ]\}I—Igo V/2/N Re E aj (cosppe; - e, +sing, e - e,) e’

j=1

N

=Ey J\;Enoo v/2/N Re Z a; (cos ¢ cosfjcos p; —sing,;sin <pj) i Tikzcosb; (73)
j=1

The x component of the electric field (directed from wire to wire) must vanish when ¢, = 7/2 with ¢,,; = 0,

because E°** should then be in the y — z plane.
Then the transmission line equations along the line are

av

- = 4l —iwl'H" (74)
dl .
— +YV =iwC'ET (75)
dz
or
d2V d2 2 . i d ext . % ext
E—ZYV: (@—&-F )V:—zwL £HJ_ —wC"ZEY
= kwL'Ho lim /2/NRe |} a; (cosp,; cosp; —sinp,; cos 0 sin ;) e'@ ke costs
j=1

N
= kwL'H, A}gnoo v/2/N Re Z a; (cos (7 COS p; — sinp,,; cos B sin goj) cos QjeijkZ cos 0
j=1

N

—iwC' ZEy J\}gnoo v/2/N Re Z a; (cos ©pj COs 0 cos p; —singp,;sin ;) gloitikzcost; (76)
j=1

Approximating Z ~ —iwL

d? . S , . .
(@ + F2> V= 1\}51100 2/N Re Zaj {kaHo (cos (pj COS p; — sin p,,; cos B sin goj) cos 0;

Jj=1
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2 3 0. ) o N i +ikz cos 0
w“C"LEy (COb pj cosbjcosp; —sinp,; sin <pj)} e’ J]

N
~ kwpgHo J\;Enoo v/2/N Re Z a; {(Li/uo) (cos (p,j COS p; — sinp,,; cos B sin goj) cos f;
j=1

—(C/C) (cos g, cos b cosp; —sinp, ;sing;)} it Tikzcost;
Pj J J Pj J

Using
k? = Ww?LC
C'/C = 2h,
Li/PJO = 2he
we find

d2 N . .
(@ + 1"2) V =~ kE2hewpgHy J\}gnoo v/2/N Re Z aj sin? 0;sin g, ; sin gpjelaj—mkz cos 6
j=1

with solution

V =c¢pcos(T'z) + ¢y sin (T'z)

N
+k2hewpoHo ngnoo V2/N Re Z ajsin® 0 sin g, ; sin @ e'(*3HF=0305) /(T2 _ 2 cos? 0
j=1
as well as derivative
dV . irrex
gz—ZI—ZwLHLt

—Tegsin (T'z) 4+ ey cos (T'z)

N
= 71 —iwL'Hy ]\}gnw v/2/N Re Z a; (cos )7 COS p; — sinp,,; cos B sin goj) elovitikzcos;

Jj=1

N
+k2hewpgHy ]\}E»noo v2/NIm |k Z a; sin® 0 sin oy Sin ; cos 0;eiloithzcost;) (I — k* cos® 0)

=1

If we take boundary conditions
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(81)

(82)

(83)



V0)=I(()=0 (84)
we find

N
co + k2hewpg Hy I\}gnoo v/2/N Re Z a; sin® 0 sin ®p; Sin gpjemf/ (T? = k*cos®6;) | =0 (85)

j=1

and
—Tcgsin (T'¢) 4 ey cos (T'Y)

N

= —iwL"H ]\}LH;O V/2/N Re E aj (cos p,; cos p; — singp,,; cosf; sin ;) e/ Tk osb;
Jj=1

N
+k2hewpyHy ]\}gnoo 2/N1Im |k Z a;sin? 0 sin 7 Sinp; cos Ojei(o‘ﬁkl cos0;) / (F2 — k? cos? 0;)
j=1

N
= T'¢cy cos (I'0) + I'sin (I'0) k2hewpg Ho A}Enoo v2/N Re Z a; sin® 0 sin ¥, Sin ¢jeiaj/ (12 — k2 cos? 0;)
j=1

N
= —iwL'Hy lim +/2/N Re g aj (cos p,; cos p; — singp,,; cosf; sin ;) e/ TikEosb;
N—oo —
=

N
+k2hewpoHo ]\}gnoo 2/NIm |k Z a; sin? 0; sin ®p; Sinp; cos gl ithtcosts) (I'? — k* cos® 0) (86)
j=1

Then the voltage is

V (€) = ¢g cos (T'¢) + c; sin (T'Y)

N
+k2hewpgHy A}gnoo v2/N Re Z a; sin® 0 sin ¢y Sin gpjei(aj—s-kz cos0;) / (I‘2 — 2 cos? 0;)
j=1

with
IT'=v-2Y =T' 4" (87)

R G

v (Sr+ oe) = g Qe+ and) =1/ (20 (88)
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I? —k?cos?0; ~ I +i2I'T" — k* cos? 0; ~ I (1 +i/Q) — k? cos® 0; (89)
If there are no dielectric materials present (or a homogeneous region) IV & k
I'? — k? cos® 0; ~ k? (sin® 0, +i/Q) (90)

and

V (£) = co cos (I'C) + ¢y sin (T'0)

N .2
Who : Sin ej : : i(aj+kz 0
+2heTHO J\/]'.I—I}’éo \V4 2/N Re J:E 1 ajm sin Sopj sin (lpje (aj cos6;) (91)

N .

sin? 0;
a;—— .

— “sin®0; +i/Q

j=

w . . : ioj
co ~ —QhQ%HO ]\}Enw V2/N Re sin ,,; sin ;€' (92)

N
~ T - 4 ; g v +ikt cos 0
Ty cos (TY) ~ —iwL'H ]\}E»rzlx: v/2/N Re E a; (cos ¢ COS ; —sin g, ; cos 0 sin ;) graitHhecosts

j=1

N )
w . sin” 0, . . ious ikteosos L.
*2}1‘@%1?0 ]\}LI};O \/Q/NRG I{IJ:E 1&jm SngOpj smgoje 7 {COSHJ"LG ke %5 + ESIH (Fﬁ)} (93)
Using the approximation
sin? 0;

Ty gin?0; >> 1 94
511126?3-—1-1'/62H S0 /@ (94)

V (£) = co cos (I'f) + ¢y sin (T'0)

N
+2he—wll:0 Hy 1\}E>noo 2/N Re Z a;sinp,,; sin gpjei(aj"'ke cos6;) (95)
j=1
" N
co ~ —2h6%H0 J\}gnoo v/2/N Re Z aj sin p,,; sin g " (96)
j=1
" N
¢y cos (TY) =~ —iQhE%HO J\;Enoo 2/N Re Z a; (cos ¢ COS p; —sin, ; cos 0 sin ‘Pj) i +iklcos
j=1
" N
—2he$Ho 1\}£noo v2/N Re Z ajsing,; sin g, {cos 0 ieistiktcosti 4 eio gin ()} (97)
j=1
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or

V (£) = cg cos (I'f) + ¢y sin (T'¢)

N
W g . . .
420 201 o TN (3 o+ fm] (99
=
" N
o ~ _Qhe%j{o J\}i_r)nm\&/N Zaj sin p,,; sin ¢, cos (a;) (99)
j=1

N
c1 cos (T'0) =~ —i2h€%Ho A}im V2/N {Z a; (cos @,; cosp; —sing,; cos 0 sin ;) cos (o + kl cos 0j):|

j=1

—2h6%H0 lim \/2/N

N
Z ajsin p,,; sin g, {— cos 0; sin (a; + k€ cos ;) + cos (a;) sin (ké)}] (100)
j=1

Resonance occurs when k¢ — (n — 1/2) 7 and involves the ¢; sin (I'¢) voltage term through the cos (I'¢) factor
cos (T0) ~ cos (I'¢) — il 0sin (I"¢) ~ —iT"0 (—1)" "' = —i (=1)""' ¢/ (2Q)

~—i(—1)"" k] (2Q) (101)

sin (I'¢) ~ sin (I"¢) ~ sin (k¢) ~ (—1)""" (102)
Taking the ¢; sin (I'?) to be dominant

V (€) = ¢y sin (T'4)

N
~ —itan (I'0) 2he%Ho I\}Enoo V2/N [Z a; (cos ®p; COS p; —sing, ; cos 0 sin cpj) cos (aj + kl cos Hj)]

Jj=1

— tan (I'0) zhe%ﬂo lim /2/N

N
Z ajsing,;sin p; {—cos0; sin (a; + kl cos 0;) + cos (o) sin (kzﬁ)}]
j=1

(103)
or

V(0 ke/ (2Q)z2he%ﬂoNnm 2/N
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N
Z aj {COS ®p; oS p; cos (o + klcos ;) — sinp,,; sinp; cos g e i(esthbeosts) _jgin ©p; Sin @ cos () (—1)"71}
j=1

(104)
If we average over incidence and polarization angles
5 1 ™ 2m 1 2m 9
(von Py =4 [ snoa, [ oz [ (Vs eoP) e,
I 2 27
Wit 1 . 1

~ (Zh Zro |H0\) E/o 51n9jd9j/0 dwj%/o dp,; (2/N)
N N 4
Z (aja;r) <{cos ©p; €Os p; cos (o + klcos ;) — singp,,; sin g, cos Hje_z(o‘ﬁkecos 935) _ jsin ®p; Sinp; cos () (—1)"_1}
j=1j=1

. . i s , .. . -1
{cos ®pjr €08 P cos (ar + klcos ) — sinp,,; sin g, cos ereZ(O‘J +kteosb;1) 4 jgin ©pj Sin ;s cos (aj) (—=1)" }>

~ (20,2 1) L [ im0, [ L/Q’r
N(Zhe - |H0\) 47r/0 81n9]d9j/0 d<pj27r ; dp,; (2/N)

@

N
Z <{COS ¢ oS p; cos (o + klcos ;) — singp,,; sinp; cos 0 et (cutkbeost) _jgin Pp; Sin @ cos () (-t }
j=1

{cos ®pj cosp; cos (aj + klcos ;) —sinp,,; sinp; cos 0jeileithbeosti) 4 jgin ®p; Sinp; cos () (-t }>

Wit 1 ™ ) 2 1 27
z(Zh 0|H0\) E/o smajdoj/o d%%/o dip,; (2/N)
N

Z <cos2 Ppj cos? ®; cos? (aj + klcos ;) + sin® Dpi sin? ®; cos® 6 + sin® Dpi sin? ®; cos? (a;)
j=1

j

—cos (p,,; cos p; cos (aj + klcos b)) sinp,,; sin g, cos Qjei(afr“ c0s0;)

+cos p,,; cos @ cos (o + klcosB;) isinp,; sinp; cos (a;) (-1t

—i(oj+klcosby)

—singp,,; sinp, cosbje €08 (p,,; cos g, cos (a; + kl cos 0;)

—sin,; sinp; cos e —ilaytktcosb;);

isinp,;sin @, cos (a;) (— "t

—ising,,; sinp; cos (a;) (=1)" " cos ¢y cos @, cos (aj + klcosB;)

23



+isinp,; sing; cos (a;) (—1)"_1 sin p,,; sin ¢, cos 0e

Wit 2 1 /7r ) /27r 1 /271'
~ (20,280 1 g, |) — .o — (2/N
(h 0| o\) 1 ), smldss | deyso | di, (2/N)

N
1
Z{ cos? Opj cos? Lp]+sm Opj sin? p; cos 0 +

z'(oej+k€c059j)>

A

.2 .2
2sm Pp; SIN”
j=1

Cos ,,; cos p; cos (klcos 0;) sinp,,; sin p; (— nt

COS p,,; COS p; sin p,,; sin @ ; cos 0 +2 5

2

i _
-3 sin g, sin p; cos 05 cos ,,; cos p; — B sin? P sin? @, cos B cos (klcos ;) (—1)" !

1 n b . ne
~3 sin? Dpi sin? @;jcos;sin (klcosf;) (—1) - % sin g, sin p; (—1) ' cos ®pj cos g cos (klcos ;)

—l—% sin? Pp; sin? ®; (=1)" " cos 6; cos (klcosb;) — % sin? Ppi sin? ®; (=1)"" " cos 6; sin (k{ cos 0;)

N

1 ™
R~ (2h LHo \H0|) 5/0 sin®;df; (2/N) gz 2+2cos29j
j=1

—_

—icosB;cos (klcos ;) (—1)" " — cos @ sin (k€ cos 0;) (—1)" "

+i (—=1)""" cos B, cos (kfcos ;) —i (—1)" " cos B, sin (kL cos 9j)}
N

~ Whto 21 2
~ (2heT|HQ|> 5/_1du] 2/N gjz: 2+2u]

=1

—_

— (1 +14) u sin (klu;) (4)"*1] (105)
Using
i ——Ecos u L sin (kfu
/ i () du = 008 (k) + iy () (106)
we obtain
2 Who 1 AN 2 . . n—1
(v Okt Q) = (20222 1)) 2/M) £ 3 / du; |2+ 22 = (1+3) uj sin (k) (~1)" |

3(=1)"

z(2h6%|H0\)2 1+(1+i){cos(ké)—(k—lasm(ké)}W] L kl=(n—1/2)r (107

Wl o
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We note that at lower frequencies the second term is proportional to the first order spherical Bessel function
sin (kf)  cos (k()
(k6)? (k)

and is therefore small in this limit. The leading term for high frequencies is

\/<|V(z)u/(2Q)|2>z(2he%|ﬂo|)\/g L kt>>1 (109)

which is similar to the normal incidence maximum of the preceding section (except for the 1/2/3 ~ 0.8165
factor); we note in this case that the squares of the electric and magnetic field amplitudes are the sum of
the squares of the individual components

1 (k6) = (k) /3, kt<<1 (108)

Ej = E3, + E§, + Ej, (110)
Hi = Hg, + Hg, + H;. (111)

2.5 Rectangular Conductor Impedance/Loss Parameters

If the transmission line conductors are rectangular in cross section we can calculate the impedance per
unit length using formulas for the equivalent radii of the rectangles and for the internal finitely conducting
impedance per unit length (conductor losses).

The impedance per unit length is then written as

Z=R—iX =27"" —iuL, (112)

where for two equal width rectangular conductors of width w = 2b and thickness t = 2¢, separated by a
sizable distance D compared to the equivalent radius a [7]

a/ (w/4) ~ 1+%{01 In(w/t) —m+T?(1/4) /V/7} (113)

for t < w where ¢; = 3/4 and the gamma function I'(1/4) = 3.6256099. Conveniently, ¢ and w are
interchanged for the case of ¢ > w. The external inductance per unit length is again [3]

s

D
Le — @ATCCOSh (2—> ~ @ ln (D/a) 5 D >> QCL (114)
a o

The finitely conducting internal impedance per unit length is [8], [9]
Zs

271—04055

) () roo((G) () )] e

(w/2) /aross = 1 + % (1 — t/w)In (4mw/t)

VARRN

+4(Ag/1)*Cg

+ Zs
2ma

where [7]
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t
5 [n (47w/t) + m/2]In (w/t)
with corner corrections [9], [§]

o ] i 4/3 25/3D ( ) 7 i 1/3 25/3D ( )
= —jw — —FD.: (V) =4s | — = eV
e (7) V3 (7) V3

with corner strength [9]

K 1

Ao/I = -
/ 27 (3/{’012)1/3 27 (12K’ ka?)

1/3

where [7]

(t/w) | (') = = [1 . {m (wt) — 7+ %H (1 i

and in the next term [7]

1 t
A7 4Arn2w

(t/w) F (x)

2
|
_|_

r*(1/4
{1n(16w/t)ln(w/t)—7r+ (1/4)
T
In addition, the parameters D, (v), A., Dy, Do, and D; are given by [9]

_ ADg + Dov'5/1?

D, (1/) ~ Ac ¥+ y11/12
Dy — Da
Ay =2t
" Dy—Dy
with
r(1 :
Dy = D, (0) = 2(1//33) {1 —3{0(2/3)/T (1/3)}‘1 ~ 1.30247
3r221/3
= 1 1/3 = - —.
Doo = lim [DC () /v } gy 2%l
and

Dy = D, (1) ~ —0.360

The leading term in (115) can often be used as an approximation.
The low frequency limit (w,t << §) is [7]

75~ R — LT
where
RT = 1/(202¢c0)
and with p = pg

LI~ 5—7(; In(a)

26

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)



o | In (\/E) +1n(2) — 22 + 2 {2 Arctan($) + £Arctan(2)}

Mo (127)
| {0 )+ (- ) (1 + )
2.5.1 Thin Strips
Electrically thin strips each of thickness A << w (6 >> A/2) have equivalent radius
a=0b/2=w/4 (128)
and finitely conducting internal impedance per unit length Z/% where [10], [11], [12]
2 e ;.
7Zfl/R0 ~ 1+ 1n(80b) + ' —im/2
b {In(8y0b) ++ —im/2} , 200b>> 1 (129)
27755()[)
with
lso = wp oA/2 (130)
and zero frequency resistance per unit length
Ro =1/ (2boA) = 1/ (woA) (131)
with [10]
71~ Ry — z% 3/2—2In(2)] , 260b<<1 (132)

2.5.2 Closely Spaced Strips

Two closely spaced strips of dimensions w, A a distance g apart, using planar approximations g << w, has
impedance per unit length

Z=R—iX =27"" —iwL, (133)

with external inductance per unit length

Le ~ pog/ (2b) = pog/w (134)
and internal impedance per unit length per strip with 6 << A/2

71~ 7,/ (2b) = Z,Jw (135)
or with § >> A/2

Z7 ~ (i - iw,uA/Z) Jw (136)
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2.5.3 Coplanar Thin Strips

From Smythe [13] the capacitance and external inductance per unit length between coplanar strips (A/2 >>
0) each of width w = f — b and gap g = 2b is

C/zo = f(((]j;)) — o/ L (137)
where
k=1b/f (138)

K =+1-k (139)

and the complete elliptic integral is defined by [14]

w/2
K (k) = / df/\/1 — k2 sin? 0 (140)
0
There is a surprisingly accurate approximation for the ratio [15]
K() 1 1+ VE
~—In|2
1—VE

If the strips are electrically thin (A/2 >> §) and the gap is large g > w we can take the internal impedance
per unit length to be (129). Alternatively if the strips are electrically thick and the gap is large we can take
the internal impedance per unit length to be (115).

(141)

2.6 Radiation Damping

We now briefly review the preceding radiation damping level for a resonant line with typical end conditions.
For a line with two open circuited ends (open-open) we can write

1 1
P =5Graa|V 0)]* + 5Graa |V o) (142)
where
ar . ™z
pri wCV = kyljcos (knz) = kplo cos (T) (143)
and thus
V(0) = ua Iy = —iZ.1| (144)
T iwC 0
V() = g (<) = —iZuT (—1)" (145)
~iwC ™’ N 0
or
P = ZCQGrad |IO|2 (146)

Then we find [6]
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2
Groa = 210 2 = ZEh S [0y (147)
222 2102 (2h, fa)

where the characteristic impedance is

Ze=L1n(2hefa) | n= Vol (148)

Alternatively, for two short circuited ends (short-short)

1 1
P = 5 Reaa |1 ) + 5 Rraa [T (O = Rraa |1 (0)° (149)
we find [6]
Ryaq = L (khe)? , Kt — nr (150)
27 ’
For an open-short combination (similar to the preceding section)
1 2 1 2
P= §Gmd IV (0)]" + §Rmd [T (0)| (151)
ar .
P wCV = kI (¢) cos (knz) (152)
V(0) = o I(6)=—iZ.I(0) (153)
~iwC - ¢
where [6]
GraaZ + Rraa = = (khe)* (154)

We could alternatively place this perturbing radiation term exclusively at the shorted end, or exclusively at
the open end, by setting the other term to zero. Note from the open-open and the short-short cases above
we had

GraaZ? =1 (khe)? ] (27) = Ryag (155)

2.7 Cascaded Transmission Systems

Electric field and voltage are not conserved quantities so an estimated level at each layer of the shield, as
we often use with average power bounds in HERO analysis, does not apply to upset voltage levels. Instead,
we have attempted to estimate maximum voltage levels coupled to cabling, and coupled to the input port of
a component from measured effective height and impedance data, below. However, we really should verify
that the transmission system from the component port to the sensitive device does not further boost such
levels. (The third appendix also discusses the solution for a nonuniform line which could also be considered.)

In the analysis of the unshielded line we really would like to bound the response of two connected
transmission lines, the first representing the driven cable section, and the second the interior component
connection to the load of interest. What can we say about the voltage at the load end of the second line?
Note that the second network may not have field coupling but be simply a connection between the ultimate
load and the source cable.
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Suppose we take two sections of transmission line hooked together to form the wire resonator. The right
hand section has no drive field. We want to estimate a bound on the right-hand side voltage. We then require
not only the open circuit voltage on the right hand side of the driven section, but also the impedance looking
back into this driven section from this component port. This impedance is simply the input impedance of a
section of line shorted at the opposite end. The new component section of line is taken to have impedance
per unit length Z; and admittance per unit length Y; with a load Z, at the right end. The ultimate load is
transformed to the input impedance at the port between sections

ZL COS (Flgl) — iZ(n sin (Flfl)

Zin =27, - - 156
! o1 Z()1 COS (Flfl) - ZZL Sin (Flgl) ( )
The impedance on the left side of our assumed driven short-circuited line is
Z; = —iZp tan (T'0) (157)
The right section of line has transmission line equations
av
— =71 158
dz ! (158)
dI
—=-Nnv 159
dz ! (159)
or eliminating the current
d? 5
) +TI7 V=0 (160)
with propagation constant
I =-Z17; (161)

and characteristic impedance

Z()1 = \/Zl/Yl (162)

We can write the voltage as

V(z) =co1cosTy (z—£) + cyy8inTy (2 — £) (163)

At the new right load (the position of the vulnerable device) end of the second line the voltage is

14 (f + fl) = Cp1 COS (F1£1) + c11 sin (Flfl) =751 (f + 61) (164)
with current
I .
I (6 + 61) = 7 [001 sin (Flgl) — C11 COS (Flgl)] (165)
1
so that
ZL . . ZL
Co1 4 COS (Flgl) — 7F1 sin (Flél) + c11 4§ Sin (Flél) + 7F1 coS (Flfl) =0 (166)
1 1

By current division at the left end of the new section of line
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Z;

= = _ 1
V{+4+0)=cp=V(¥) 7+ 7. (167)
and therefore at the right load end voltage is
o Zz ZLF1 sin (Flgl) — Zl COS (1"161) .
ViErh)=vio Zi + Zin {COS i) + Zysin (1y) + ZpT'q cos (I'14y) sin (T14)
Z; Z
L (168)

=V () Zi+ Zi (Z1)T1)sin (T141) + Zg, cos (D14)

Using the new line characteristic impedance

Z Ty =271/ (\/lel) = —1Zp1 (169)

we can write this as

Zi ZZL
L+0)=V{U ¢ 1
V(E+6) =V (E)cos(T) (Z; + Zi1) cos (T) Zyy sin (T'141) +iZp, cos (T'141) (170)
where
Z; cos (I'0) = —iZy sin (T'Y) (171)
: Li ik ikl cos 0
V (£) cos (T'f) = —sin (T'0) —FnoHoe svo (172)
Ho

We see from these that the resonance I"¢ = (n — 1/2) w, where cos (I"¢) — 0, has been eliminated (as one
would expect for the connected two-line system), and simply

_1 L'ik ; _y ik .
V (g) coS (Fg) L, (_1)n 1 ’u_o%nOHOe’LkZCOSQO ~ — (_1)7l 1 %2hen0HOelkZCOSGO (173)
Furthermore, noting that
Zi
(Zl + Zﬂ) COS (Fg)

Z()1 {ZL COS (1"161) — ’éZ()l Sil’l (F1£1>}

= 174
—’iZO {Z(n COS (Flgl) — iZL sin (F1£1)} sin (Ff) + Z01 {ZL COS (Flgl) - iZ()l sin (Flgl)} COS (Ff) ( 7 )
the end voltage at the vulnerable component becomes
V{4 £41) =V (¢ cos (T
ZnZ
0141 (175)

—1Z0{Zp1 cos (T'141) —iZp sin (T'141) } sin (T') + Zo1 {Z1, cos (T'141) — i Zp1 sin (T'141)} cos (T'¢)

Obviously, if Zy, is of the same order as Z; any resonant enhancements are largely eliminated due to the
damping of the load on the line. To introduce resonant behavior we need to take Z large (or small for
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larger currents), or largely reactive (if we were to take it purely reactive, without losses, we would violate
the spirit of having a load with a finite quality factor).
If we take a near open circuit at the terminals of interest Z; — oo

Zo1

VUl+06)=V (¢ re 176
(+4) (€) cos (') —Zg sin (T'147) sin (T'0) 4+ Zp1 cos (T'147) cos (T'0) (176)
Using some trigonometric identities
27
V (£ +0y) =V (£) cos (IF) o (177)

(Zo1 — Zp) cos (T4 —T'141) + (Zo1 + Zp) cos (T + Ty 47)

Introducing real and imaginary parts of the propagation constant (where the imaginary part is again taken
as a small perturbation)

T£T6 = 0T +i (T £ T70) (178)

we see that resonance is produced when

(Zo1 — Zy) cos (T4 — T l1) + (Zor + Zo) cos (T'C+T41) =0 (179)

in which case

V{+41) =V (L) cos(T)

12701
1
(Z()l — Z()) ((1“//6 — F/llfl)) sin (].—Vg — F/lél) —+ (Z()1 + Z()) ((FH€ —+ ].—‘/1/61)) sin (F/€ —+ ].—‘/161) ( 80)
For equal characteristic impedances Zy; = Zy this becomes
V (£€) cos (I'Y)

b+0)= ————7—7—+ 181
ViE+t) cos (T0+T'141) (181)

and at resonance I"'0 +T10; = (n—1/2) 7
cos (T +T%41) =0 (182)

we obtain
. n—1 . n—1

V(+4) N i(—1) V(£+4y) N i(=1) (183)

vV (E) cos (FE) - (k;/F') QhenOHoeiké cosOy T + Flllél

Thus in this matched case (equal characteristic impedances) we simply replace T''¢ by '€ + T'}¢; and the
resonant enhancement of the voltage is decreased relative to the single driven cable. Because we do not
expect significant changes in characteristic impedance along the line, we do not see the change from the
single line to this cascaded system as introducing any increases in the maximum voltage.

As a second example, if we take a factor of two change in characteristic impedance Zy; = 27y or
Zy = 2Zp1, then the resonance condition (179) becomes

:I:% cos (I"¢ — T 41) + cos (T + T 41) =0 (184)

where the upper sign corresponds to Zp; = 27 and the lower sign corresponds to Zy = 2Zj;. Thus bounding
the magnitude of the first trigonometric function by unity gives
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|cos (T4 + T 41)| < 1/3 (185)
and through [sinz| = v/1 — cos? x we can write

lsin (I + T, 61)| > /1 — 1/3% > 0.943 (186)
Then from (180) we obtain

1

(7€ — T} 4y) sin (T — Th6y) + 3 (D7 + DY 4y) sin (1€ + T 4y)

V (+ 1) = V (£) cos (T'0) (187)

and

1

V(04 6) =V (£)cos (T¢
(4 6) = V(D) cos )f%(F”ﬁff’l’ﬁl)sin(F’f—F’lﬁl)+%(F”€+I"1’£1)sin(F’€+F’1€1)

(188)

Using these prior bounding results, and further bounding the first trigonometric functions in the denom-
inator by unity, these can be re-written as

VIl+b) | 1 1 1
’ V () cos (T'¢) ’ - ’ (I"0 —T9y) £ 3 ("0 +T71)0.943 ' = ' 0.414517¢ + 2.4145T7 41 | ' 2.41451¢ 4 0.4145T 44
(189)
and
V(+t) | 1 - 1 1
V (0)cos(TE) |~ | =3 (D70 —T701) + 3 (T70 +T701)0.943| ~ |0.9145T0 + 1.9145T ¢y | " | 1.91450"7¢ + 0.9145T ¢,
(190)

Suppose, as another example Zy = 3Zy; (note that for Zy = 100 ohms, Zy = 3Zy; corresponds to
Zo1 = 33.3 ohms, and Zy = 2Z, corresponds to Zp; = 200 ohms), then the resonance condition becomes

1
—5cos (T"¢ — T 41) + cos (T + T 41) =0 (191)
Bounding
|cos (T"¢ +T141)| < 1/2 (192)
|sin (T"¢ + T141)| > /1 —1/22 > 0.866 (193)
and applying these gives
V(€+ 1) =V (£)cos (T'Y) ! (194)

— (70— T7y) sin (D€ — T761) + 2 (D€ + T 41) sin (170 + D 1)

and
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V{l+4b) | 1 < 1 1
V (0)cos (TE) |~ | —(T"0 — I'ey) £2 ("¢ +1¢1)0.866 0.7321¢ + 2.732T ¢, | 7| 2.7321"¢ + 0.73?1“’1’6)1
195
Our prior result with the driven cable
1 2
V—(ﬁ) ~ ~ 2Q (196)
2henyHy e ke

compared with these cascaded results, indicates that for the matched case Zy; = Zy, because I'¢ + T4 >
I, we obtain a smaller voltage result. Furthermore, if we have Zy, = Zy/2 with 0.91457"¢ +1.9145T¢; >
"¢ and for Zyy = Zy/3 with 0.732T"0+2.732T/¢; > T"'¢ then we also obtain smaller voltage results. Finally,
for Zoy = 27y, if 0.41451""¢ 4 2.4145T¢; > T we also obtain a smaller voltage result. This indicates, that
we will usually obtain smaller voltages for the lossy cascaded system (at least for a restricted range of
characteristic impedances).

Characteristic impedances from 33.3 ohms to 200 ohms cover a wide range of practical transmission
lines. For example, a microstrip line (single trace) on FR4 dielectric (g, = 4.4), 1 oz. copper traces (t = 1.4
mils), and a typical substrate thickness of 0.125 inches would require a trace width of 0.44 inches to have a
characteristic impedance of 33.3 ohms. The same structure would achieve a characteristic impedance of 198
ohms with a trace width of 0.0025 inches.

2.8 Experimental Effective Height Approach

Measurements of the effective height of the pins in a cable are sometimes made up to 40 GHz; measurements
of the effective height of the pins in a canonical Belden 8240 cable have also been made up to 20 GHz. The
source at the end of the cable has open circuit voltage V. (extrapolated by using the voltage into the 50
ohm measurement system and the corresponding measured source impedance Zg.. = Rgpe — 1 X converted
to time dependence e~*?). This measured source feeds the component port (the second transmission line,
above). If we take the component port impedance to be Z,, then the voltage at this port is

Zp
=——V, 197
Zsrc + Zp ( )
We often do not really know the port impedance Z,. If we adjust it to maximize the port voltage V,, we can
take

Vi

Z, =1Im(Z,,) (198)

src
(this purely reactive choice is extreme in that we have ignored losses in the component line and load, but
often the measured data from the driven cable allows us to get away with this extreme bounding choice) in
which case
Im (Z% Xere

)
e Voe = Voe 199
Re (Zsrc) Rgre ( )

If we define a source quality factor as the limiting value

‘/p:

- < erc (200)

we see that such port loads can magnify the port voltage over the open circuit level
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Vol < Qsre [Voe (201)

We should note here that the adaptors used in the effective height measurements introduce major per-
turbations into the results relative to what would be found if measurements could be made without them.
We hope that extremes in wideband spectral responses are somewhat insensitive to the large reactances
introduced, but the bulk measurements obviously affect the real impedance levels as well (for example, the
characteristic impedance becomes the bulk level versus an individual wire level). Experimental results may
end up being lower than our analytical result (52), which could be due to cable shielding (adaptor & bulk
effects may also play some role) and could also be due to nearly overlapping TEM cable modes in the
experimental measurements.
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3 POWER COUPLING AND HERO

We have flexibility for what we choose as a worst case model for Hazard of Electromagnetic Radiation to
Ordnance (HERO) assessment. Since hot-wire electro-explosive initiators have substantial thermal time
constants, which would average over the pulse repetition period of a modulated incident pulse train, one
approach would be to begin by using the exterior “average” field level exposure (where average fields are
defined to deliver the same time average power density as the modulated pulse train). Armed with the fact
that steady-state power is conserved in a passive system, we first make use of power bounds for apertures
[16], [17], [18] in the exterior conducting barrier to bound the received level at electro-explosive devices
within. For example the transmitted power through the aperture can be estimated as

Pirans = oDCP gine (202)

with incident power density

Sinc _ ’EinC’Q /770 (203)

and the slot cross section will be discussed in the next section.

If it is necessary to reduce these power estimates further, we next proceed inward to the cables and finally
to the pins. In the remainder of this section we will use estimates of the interior cavity field levels in the
next section to estimate bounds on antenna/cable pickup on the interior.

3.1 Matched Dipole Antenna

It has become traditional to use a simple matched antenna model to bound cable pickup in assembly areas
[19]. This antenna is usually taken as a simple dipole. It is assumed that the intervening cabling from a low
impedance electro-explosive device load is able to transform the impedance into a matching impedance at
the antenna interface. Hence, through conservation of power, the power received at the matched antenna is
taken as a bound on that delivered to the electro-explosive device. We can write this as

P = A.S5™M (204)

where for root mean square (rms) units we can take the incident power density to be

Sinc — Einc % Hinc (205)
The effective area is [20]

)\2
A, = — 2
e =1-Gpra (206)

where G is the directivity gain, 0 < p < 1 is the polarization mismatch factor, which for a wire antenna
aligned with the z axis

inc) 2 inc|?
p= (e -E™) /|E™| (207)
and 0 < ¢ <1 is the circuit mismatch factor (for the matched case this is set to unity)
_ 4Re(Zr)Re (ZQant) (208)
|ZL + Zant|

The average over the polarization gives
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(p) =1/2 (209)
and the average over the incident angles gives
(Gy=1 (210)

The received power when averaged over all incident angles and polarization (as in an overmoded cavity) is
then

AQ
Prec) = —8 211
(Prech = - (211)
where the average power density in the cavity volume V' can be written as
$=(1EP) /no=3(El")fno=mno(|HI*) = 3m (|HI*) (212)
— /v 1% - /v 1%

with free space impedance

Mo = V/ lo/€0 =~ 1207 ohms (213)

and where the electric field is £ with components FE; , i = 1,2, 3 and the magnetic field is H with components
H,; , i =1,2,3. Note that on the conducting boundary A of the cavity there is a 3 dB field enhancement

for the nonzero components 2 <|H2|2>V = <|Hj|2>A , j=1,2and 2 <|EZ|2>V = <|En|2>A, where j denotes
the two tangential components and n denotes the normal component. Then

22 22 5 A3 5
Pre=—8S=2\(|E =22 214
55 = 57 (1P, 10 = 225 (1BF), /16 (214)

There are fluctuations about these average responses [19]. However, we note that because there is a
high degree of modal overlap in the three-dimensional cavity at the higher end of the frequency range [21]
(typically, say 10 — 50 GHz), in this range we can write

K3V
o =
27TQCG.’U

>>1 (215)

where

ko = wy/fioEo (216)
and the antenna will respond approximately as if it is in free space; we use the zero subscript to denote the
free space value and k for propagation in the dielectric materials (otherwise we simply use k for free space
when materials are not present). Consequently, the fluctuations of a resonant dipole would result from the
field variations within the cavity, which are taken to be bounded by the extreme field F; selected in the
subsection below.

The directivity gain of a small electric dipole in free space is

Gsmaip = 3/2 (217)
so that for an incident plane wave field in free space with aligned polarization p = 1 and matched load
(¢=1)

2 24

A A
Prec = _Gsmdippq |El|2 /770 = -

2
8 1B /o (218)
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For a small resonant dipole (first resonance) in free space this gain increases only slightly from the short
limit to

Gresdip = 1.64 (219)
and the traditional formula used in the “V-curve” is
2 2

A A
Prec = EGresdip ‘EZ‘Q /7]0 = 51'64 |E‘z|2 /770 (220)

These traditional values, which are only slightly larger than what is expected for the cavity response (214),
are given in the next subsection.
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4 EXAMPLE VOLTAGE AND POWER RESULTS

The exterior field drives from the Military Standards are used to drive the preceding results.

4.1 Exterior And Interior Field Example

Electromagnetic radiation (EMR) field descriptions can be found in the Military Standards [22]. The worst
case is typically the table for shipboard emissions. In this case we use some simple rounded levels in the
high frequency region, say above 5 GHz, [22] and take the peak level as

Epear, ~ 3 kV/m-rms (221)

and the corresponding average level as

Eupe ~ 0.6 kV/m-rms (222)

In the first appendix we take an example with a slot length ¢ = 2h ~ 2 in, slot depth d ~ 0.5 in, slot
width w = 0.002 in, aluminum slot and cavity walls with 1 = pg, 0 &~ 2.6 x 107 S/m, and cavity area A ~ 0.5
m?. Evaluation at f = 25 — 50 GHz gives (using the preceding Deep slot formulas) gives the mean interior
field single component fields

<\Hi|2>/ |Hire|* ~ 0.0864 — 0.0475 (—10.6 to — 13.2 dB) ~ <|Ez~|2> / |Eire|? (223)

and using the overmoded distribution in the first appendix

E* ) |Ege)? <3 <|Ei|2> /|Ege|? ~ 0.2593 — 0.1425 (—5.9 to — 8.5 dB) , 95% confidence (224)

If we assume the modulated pulse is long compared to the cavity quality factor times the carrier period, at
the 95% level the interior single component peak field is

peak
=

~ 1.5 — 1.1 kV/m-rms (225)

and the average interior single component field at the 95% level is

|E2| ~ 0.31 — 0.23 kV /m-rms (226)

4.2 Unshielded Cable Voltages

If we take a typical minimum cable length of £ = 12 inches, a wire-to-wire spacing D & 0.06 inches with
2a ~ 0.032 inches, 25 GHz frequency,and a quality factor @ < 1000 due to a combination of absorptive
losses, we see that a differential mode will have a port voltage over the range 25 — 50 GHz

[V (¢) /E;| = %Zhe ~ 0.016 — 0.008 m (227)
The coupled voltage to an unshielded cable using the 95% maximum peak interior field
‘Eg’eak ~ 1.5 — 1.1 kV/m-rms (228)
is then
|V ()] = 24 — 8.8 volts (229)
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4.3 Slot Transmitted Power

From the first appendix the Deep slot transmitted power is

Pirans = 0ok §ine (230)
with incident power density
inc inc|?
sme = |E™|" /ng (231)

The first appendix gives the Deep slot cross section for f = 25 — 50 GHz

Al
oHeP ?pslotqg;g; < 3.0148 — 2.2277 x 107° m? (232)

trans

Using the exterior average field

Egpe ~ 0.6 kV/m-rms (233)

this gives

Pirans = 29 — 21 mW (234)

4.4 Antenna Power Results

The V-curve matched dipole bound to the power that could be delivered to an electro-explosive device is

P, —lza | Eil?/ —A—21 64 |E;|% / (235)
rec — Ar resdip i Mo = A . 7 Mo
Using the 95% maximum average interior field
|E8¢| = 0.31 — 0.23 kV/m-rms (236)

then gives the received power over the f = 25 — 50 GHz range

Pree ~ 4.8 —0.66 mW (237)
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5 COMPONENT SCREENING LEVELS

The hot-wire ordnance thresholds are taken as a no-fire power level. For the most common hot-wire electro-
explosive devices the no-fire power threshold is one Watt

Pyy=1W (238)

Typically, the calculations for initiation of hot wire devices use the exterior average field, relying on the size
of the thermal time constant of such devices being longer than the pulse repetition time. The preceding
estimates for the coupled power at the ordnance were very small compared to this level. Frequently, a
significant margin is also required to arrive at a screening power level for ordnance; the preceding received
power levels were sufficiently small compared to this threshold they would afford more than enough margin.

The upset thresholds are taken as a voltage level for typical logic circuits. Because the high frequencies
being considered here for the electromagnetic radiation may be quite different from the operating frequency
spectrum of the electronic system, interference with the system operation may require rectification of the
electromagnetic radiation induced voltages in order to effectively disrupt operation. Although this may result
in substantial increases in the required threshold voltages for upset, without detailed information on this
increase in level, we will assume a conservative screening level of

Vup = 1 V-rms (239)

Note that this choice of voltage screening level was assumed from five volt logic voltage thresholds at normal
operating frequencies. Because, this screening level should be smaller than the actual threshold (particularly
at much higher frequencies, which would likely require a nonlinear demodulation mechanism-rectification),
and required margins for upset reliability are typically smaller than those for ordnance safety, this bounding
analysis should also cover pulse train modulated drives (because we are using the peak drive field level).
However, the preceding voltage estimates for the unshielded cable are above this conservative screening
level. Nevertheless, an interior shielded cable will often provide an additional reduction of twenty to forty
dB or more, which would bring the preceding estimated levels to the range of or below this screening voltage.
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6 CONCLUSIONS

Bounding models are discussed for field coupling to an unshielded cable at resonances. Estimates for the
resonant quality factor which include both conductor and dielectric losses (as well as radiation) are made
and used in the response. Although maximum plane wave arrangements are used we also compare this to an
average over incident and polarization angles more representative of an interior cavity field. The appendices
also briefly discuss the case of a shielded cable.

The matched load approach used in the construction of the V-curve is discussed to bound received power
when ordnance is being considered.

An example is given of a slot in an enclosure, with power balance being used to estimate the interior
field levels given exterior field drives from the military standards (transmitted power through a slot in the
enclosure barrier is also given). The interior field level is estimated in the canonical shield and cavity for
the 25 — 50 GHz overmoded spectral region. We note that the shielding (ratio of maximum interior field
component to incident field) in this example, provided by the canonical enclosure, is not very significant
(—=5.9 to —8.5 dB). The interior field is then used to drive interior cables and the induced voltages are
estimated. The delivered power to an antenna with matched load is also estimated. The resulting estimated
drive levels already contain margins because of the use of bounding estimates for power reception and for
cable coupling and resonant voltage transformations along cables.

Screening levels for voltage upset and no-fire power for ordnance are reviewed and compared to these
bounding coupling levels. Although in our example there is considerable margin for the power coupling,
the induced voltages for the unshielded cable (using the limited enclosure shielding) are somewhat above
conservative digital logic voltage threshold screening levels. Nevertheless, shielded cables would be expected
to reduce these induced voltage levels to near or below the screening values.
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7 APPENDIX I: INTERIOR DRIVE FIELDS

The drive field of the cables on the interior of a typical barrier is first estimated using canonical sets of
parameters as an illustration.

7.1 Interior Field Environment*

Using conservation of steady state power in a linear system the received power through a port of entry (POE)
can be equated to the interior power lost [20], [16], which includes power lost to the conducting walls as well
as dielectric losses, etc.

Prec = Pyall + - -+ (240)

At very high frequencies we can approximate this as the power transmitted through the port of entry, taken
as a narrow slot aperture, into an empty half space, but include power lost (which consists of power absorbed
and transmitted back out) on the right hand side

Ptrans = <13loss> + Pwall +-.-= <Ptrans> + <Pabs> + Pwall + e (241)

However, at very high frequencies we can approximate the right hand side neglecting the aperture loss terms
to overestimate the power lost on the interior

Ptrans ~ Pwall + - (242)

In addition, because in a linear steady state operation average power is conserved, we can also make use
of these received or transmitted power estimates at various levels of the system topology to compare directly
with power thresholds of interior electroexplosive components.

7.1.1 Slot Aperture Penetration

The electromagnetic transmission through a narrow slot aperture, in general including electrically large
depth is taken as the input. We assume that the cavity is highly overmoded and we can use transmission
into an empty half space as an approximation (also because the slot will be electrically long distributed load
matching would be highly improbable). We can write the Deep slot transmission as

Prrars = OtramsSinc (243)
with cross section [17], [18]
A
Deep Deep (244)

trans ™ ?pSlthtrans

and incident field H™™® = Hye,,,. polarization mismatch factor (with z-directed slot length)

” = (5 €ine)’ (245)

as well as wall loss mismatch factor at the slot resonances (where the reactive terms vanish) [18]

Dslot = (QE' . ﬂinc)Q / |ﬂinc

G2
peer 2 246
Qirans [Rzzir (QZé"tTQ) + Grad] ’ ( )

with incident Poynting vector magnitude
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Sinc =T |I—IO|2

slot interior characteristic impedance

25" = now/d

and wall loss

Ri™Mr = 2R, /d

int

and radiation conductance fit [18]

g Gra ~ whh {1 - (Q;;—h)Q + % (;;—h)j kh > /2

7.1.2 'Wall Cross Section And Quality Factor

The wall loss power and cross section can be written as [16]

P’wall = UwallS

where

4
Owall = gARs/no

and
S = no (| ) = 3no (|Hil*)

7.1.3 Average & Extreme Interior Field Environment

The interior field level is estimated for a canonical shield and cavity.

OrecSine = OwallS + - -

OtransSine = <Uloss> S+owanS+---= <Utrans> S+ <Uabs> S+ owar S+

One Complex Component Now for equal statistics on real and imaginary parts of the field [23]

Uj»,‘ = Ejr/E()

uj; = Eji/Eo

Eo=\/|Ef’ = \/E2, + E2,

ug = 1/V2

where the magnitude is

and thus
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Then the square of the magnitude is

wj = p}, + 15 (260)
with density
Pu, (1) = e (261)
mean value
(w;) = /0 Wjpw, (W) dw; = [fwjefwf - efwf]go =1 (262)
and distribution function
w;
Fo, (w;) = / P, (w;) dw; =1 — (263)
0
where values are
Fo, (3) ~ 0.95 (264)
Fy, (9/2) = 0.98889 ~ 0.99 (265)
Fy, (9) = 0.99987 ~ 0.9999 (266)
(w;) = 1 (267)

If we have an electric field component in the overmoded region which has normally distributed real and
imaginary parts then the normalized square of the magnitude of this component XM = \Em\Q, where M is
the mean of the distribution, has density

fx(@)=e",0<z< 00 (268)
where

/000 fx (z)dz = /000 e dr =1 (269)

with unit mean

(x) = / zfx (x)dr = / ze Tdr = — (ve " e ") =1 (270)
0 0
and distribution
Fy (2) = / fx(@)dp=1—c" (271)
0

If we take a 95% confidence level as an extreme we find a peak to average ratio x =~ 3. If we take a 99%
confidence as an extreme we find a peak to average ratio x ~ 9/2. This second level corresponds to a field
peak to average ratio of 3/v/2 = 2.1.
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7.1.4 Average & Extreme Interior Field Environment*

An example we take a slot length ¢ = 2h = 2 in, slot depth d = 0.5 in, slot width w = 0.002 in, aluminum
slot and cavity walls p = pg, 0 &~ 2.6 x 107 S/m, and cavity area A ~ 0.5 m%. Evaluation at f = 25 — 50

GHz gives (using the preceding Deep slot formulas) gives

Vi
obeer ~ ?pslotqggffg < 3.0148 — 2.2277 x 107° m?

trans —

G2
Deep _ rad 5 ~ 0.15548 — 0.22977

Rintr (zzéntﬂ) + G'rad]

int

it = 7
Sine =m0 |[Hy"|” = |E5"|" /g

§ = o (L") = 3no (|H:*) = (IE) /no = 3(|EL*) /o
Zintr = pow/d ~ 1.5069 ohms

R™M™ = 2R, /d ~ 9.7026 — 13.722 ohms/m

int

Graq ~ k/ny ~ 1.3908 — 2.7816 S/m

2
1
<at23;z;> = gPeero L 7799 065732 x 1075 m?

— HYtrans 47 2

A1
(00} = a2 5 ~ 5.466 — 1428 x 1070 m?

2GradR;:z?‘ (2Zgnt7‘2)

[Grad + Rintr (228’!%7‘2)} 2

int

Deep
abs

~ 0.47766 — 0.49915

4
Owall = 5ARS/% ~ 1.0903 — 1.5419 x 10~ m?

These result in the average shielding effectiveness

O_Deep
S/Sznc ~ — trags
(ofit) + (oa™) + owan
N 0.30148 _ 0.22277
7 1.0903 + 0.05466 + 0.017792  1.5419 + 0.01428 + 0.0065732

~ 0.2593 — 0.1425

with
<\Hi|2> J [Hi* ~ 0.0864 — 0.0475 (=10.6 to — 13.2 dB) ~ <|Ez~|2> / |Eiel?

and using the overmoded distribution
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B /B <3 (1B ) /| Bie|® ~ 02593 - 0.1425 (~5.9 to — 8.5 dB) , 95% confidence

. 9 .
B2/ B < = <|Ei|2> /|Eie® ~ 0389 — 0.214 , 99% confidence

If we take as an example V ~ 0.01 m? we find the quality factor from cavity wall losses

2
““O<\ﬂ| > Vo 3gpV 3V
Quatt = VoS0 = T 248,000 — 68,000 , if 1= p
R, <|E‘Q>SA 4R,A 20A

and the average with slot losses

kSV _ KV
S (atet) + S (o) + Sowan (oheh) + (Thi® ) + G

(@) = ~ 45,000 — 67,000

These result in the modal overlap parameter which is reasonably large compared to unity

BV k%A
0= —~

— &= 5-27
2mQ 3r

o1

(285)

(286)

(287)
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8 APPENDIX II - SHIELDED CABLE COUPLING & PENE-
TRATION

We now estimate coupling to pins within a shielded canonical cable [24], [25] again with the electric field
in the plane of the cable transmission line (cable and neighboring return chassis) axis. The transmission
line equations for the shield (neglecting the transfer terms to the cable interior assuming the cable shield is
effective in reducing the interior cable current [26]) are

dv;
dz

+ ZI, = —iwLl Hy = —ik2h3n, Hye'r= % (290)

dI o . Eqcosf
+ Y.V, =iwCiEycos by = zk?hzm
dz L/C,

Eliminating the voltage gives
E 0 ;
<—k2 0 COS U cos 90 + j’sikno Ho) ezkz cos O

d? 9
o),
<d22 ) v/ Ls/Cs

E, )
= 2h? <wC’sk2w\/TO_C cos? 0y + wcskn0H0> gtz cos o

eikz cos Og (291)

2h

€

= k2hiwC, (—Eq cos® 0 + 1o Hy) e s (292)
or
d? ;

<E + rg) I, = k2h3wC, Ey sin? et cos 0o (293)

where
2 =-2, (294)
EO = ’170H0 (295)
k=wy\/LsCs (296)
Ly /o = 2k = C{/C,s (297)

The shield current is then
I, (2) = cos cos (T'sz) + c15sin (Tsz) + k2R wC; (—Eo cos? Oy + noHo) gthzcosbo (Fg — k% cos? 0o)

= cgs €08 (T's2) + c148in (Dy2) + k2h3wC, By sin® 0yetk= cos 90/ (If — k2 cos? 00) (298)
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8.0.5 Shield With Shorted Ends

In many cases the shield is terminated in conductors attached to chassis at the ends so it seems reasonable
to apply boundary conditions on the shield terminated at both ends

Vi (0)=0=V,(0) (299)
The boundary condition V5 (0) = 0 using the preceding current transmission line equation gives
dl, . FEjqcos By
— (0) = ik2h —— 300
O = o S (300)
which means
E 0
15T + k2hiwC, Egik cos g sin® g/ (T2 — k* cos® ) = ik2h2w (301)
LS/CS
or
1‘\2 _ k‘2
- S S
clSFs = theEowCS COS eom (302)
The boundary condition 0 = V; (¢) also gives
I E 3 ) )
ds () = ik?hzme’k“os %0 = i2h3wC, By cos Okt cos fo (303)
dz LS/CS
where
dIS : -7.2 s 202 ikz cos 0 2 2 2
= —cosIs sin (Tsz) 4+ ¢150s cos (Ts2) + ik“2hwCsng Hy sin” 0 cos fpe sto/ (FS — k* cos 90)
2
1 )
= —¢pss sin (T's2) 4 12h3 EowCs cos Hom [(I‘f — kQ) cos (Tsz) + k2 sin? fye’h= cos 00] (304)
or
cosL's sin (T'sf) = i2h; EowCs cos Hom [cos (T'sl) — e*reeos 0] (305)

SO0 we can write

dl ) 2 — g2 ; sin (T's2)
=5 _i9hfEnwC 0 s Fqg _ tklcosbg s
dz bt fi0WTss €O OT2 Z k2 cos? 0, [cos (Ts) —e ] sin (T's¢)
1 ,
+i2h2E0wCS COS gom [(Fg — k2) COS (FSZ) + k2 Sin2 906”92 cos 00] (306)
The ¢ps (first) term exhibits a resonant enhancement when
Il =mm (307)

with functional behavior
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However, we note for I'y — k

Vs (2) ~ c158in (T 2)

dI ,
—> = i2hiwC, Ey cos 0 ez costo

dz

8.0.6 Shield With Loaded End

Suppose there is an extra inductance at one end of the shield so that we can approximately apply

V, (0) = 0~ I (¢)

Eliminating the voltage again gives the shield current

I (2) = cps cos (T's2) + e sin (Ts2) + k2hEwCs Eg sin? ge'™= % / (T2 — k% cos? 0

The boundary condition V5 (0) = 0 using the preceding current transmission line equation gives

which means

or

dl,
dz

(0) = i2hiwCsEy cos by

c1s's + 2R wC Ey cos 0ok? sin® 6o/ (1"3 — k2 cos® 90) = i2h wC Ey cos O

c1sls = 12h] EqwC cos O

2 — g2
I'2 — k2 cos? 0y

The boundary condition 0 = I, (¢) also gives

cps cos (I'sl) = —i2h EqwCs

Then

dI
dz

or

dI
dz

. I2
+22h2 EowC’S COS 90 m

(2) = i2h° EqwC,

2 2

cos 0 (T2 — k?) sin (Ts¢) /T, — ik sin® Goe’*t ©0s 0o

I'2 — k2 cos? 0y

cos b (T2 — k?) sin (I'y¢) /T — ik sin® Gpe*t s T sin (T, 2)

(2) = —cosDs sin (Tsz) + 15T cos (T's2) + ik*2hiwC;s By cos g sin? §oe*= 3% / (T2 — % cos? )

I'2 — k2 cos? 0y

If we are near the resonance I';4 = (n — 1/2) 7

dI
dz

(2) ~ i2h% EqwC,

cos b (T2 — k?) sin (T's¢) /T — ik sin® Gpe*e <05 T sin (T, 2)

cos (T's¢)

cos (T's2) + ik*2hiwC, Fy cos 0 sin® 0yetk* cos 90/ (Fi — k2 cos? 6?0)

I'2 — k2 cos? 0y
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cos (T's¢)

(308)

(309)

(310)

(311)

(312)

(313)

(314)

(315)

(316)

(317)

(318)



We note that if I, — &k we can write this as

dI WCs ikrcos oo Lssin (T'sz)
s ~ 20°E S ikfcosfg =S s 1
dz (=) g cos (I's0) (319)
8.1 Coaxial Region
The interior coaxial equations
dve
ZcIc =7 Is 320
dz + r (320)
dl. . dl
+ Y Ve = Y7V, = iw (Cr/Cs) gsn = (C7/Cs) — (321)
dz dz
give
d? dI
— T2\ V.= (2 — Z. ) —— 22
(dz2+ C)V (Zr - 2.01/C) 5 (322)
where
2 =_-27.Y. (323)
where we can again take boundary conditions as
Vo (0)=0=1I.() (324)

The transfer immittances Z7 and Yr (and Cr) for standard cables can be estimated by using the semi-
empirical results [27].

8.1.1 Drive With Shorted Ends
The drive with both ends shorted gives

Ve (2) = coe cos (T'ez) + c1esin (T'ez)

2 —k?) /(2 -12)

—i2h} EqwCy cos B (% sin (Ts2)

[cos (Tsl) — eik“(’seo} (Zr — Z.Cr/Cs)

I'2 — k2 cos? 0y sin (T'sf)
s 1 2 — g2 E2sin® 0y 1. coss
+i2h? EgwCs cos by 7 W0 0y [(Fg — 1“3) cos (I'sz) + mel zco 0] (Zy — Z.Cp)C)
(325)
The left boundary condition V, (0) = 0 gives
1 2 — g2 k2 sin® 0,
¢ = —12h} EowC} cos 0 2 Zyp — Z.Cp/Cy 326
C0e = TR B0W s COSTOTT 12 052 0 [(FgFg)—i_ng?cosQGo}( T 7/Cs) (826)

and the right boundary condition 0 = I (¢) gives
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av, ave
(O +ZeLo (¢) = ZrL, () = =

dz z

(0) = ZrI, (0) (327)
where

(T3 — k?) /T
I'2 — k2 cos? 0y

1

I (£) = i2h EqwC5 cos Oy m

[1 — etkteosto og (Fsﬁ)]

eikl cos 0

+k2hiwC, Ey sin? =

- 328
2 — k2 cos? 0y (328)

8.1.2 Drive With Open-Short Ends
Ve (2) = coc cos (Tez) + c1esin (T'ez)
cos O (2 — k%) sin (0s€) /T — ik sin® Ope’™ 5% T sin (T, 2)
(T2 — k2 cos?6) (T2 —T2) cos (I's4)

(I3 —*%) /(2 - T%)
(T2 — k2 cos? 0y)

+i2hZE0wCS

(Zr — Z.Cr/Cs)

+i2h5 EqwCs cos By

cos (I'sz) (Zr — Z.Cr/C5)

k2 sin2 90
(T2 — k2 cos?0y) (T2 —T2)
The left boundary condition V, (0) = 0 gives

+i2h:wCsE0 [¢0)] 90 eikz cos o (ZT - ZCCT/CS) (329)

Coec = *’L'thEowCs COS 90 (ZT — ZCCT/CS) (330)

_
Tz —T%)
The boundary condition 0 = I.. (£) then gives

dv, B dv,
(0 + 2ol (0) = ZrI () — =

() =0 (331)
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8.2 APPENDIX III: ANTENNA DRIVING NONUNIFORM TRANSMISSION
LINE

Suppose we examine the case of a nonuniform transmission line

dv
— =—Z(2)I 2
= -2(2) (332)
dI
il v
P (2)V (333)
d*1 , dI
T2 Y')Y) e +YZI (334)
For simplicity we take
Y =Y{/z (335)
Z=7Ziz/t (336)
gives
d’I  1dI
PR (A (337)
The general solution is
1= CoJO (Flz) + 61Y0 (Flz) (338)
where
I7 =2, (339)
Let us impose
1 dI
=— — =Voe—1 Zs 4
or
Voe = [codo (Tily) 4+ e1Yo (D)) Zs = [coJ1 (Tily) + e Y1 (Tvly)] (€10 /0) T /Y, (341)
0Y,=-21,/ (—Z,)Y) =—-2Z,)T, = iZ (342)
Zio =21V, (343)
and
I(6)=0— coJo(T10) = —1Yy (T14) (344)
Then
Jo (T'y0) } { Jo (T1€)
Ve —co | Jo (Tily) — Yo(Tly)| Zs =co | J1 (Tf) — Y1 (T4 01/0)1,/Y,
o |0 (0i) = G Yo (Tulh)| 2= co |1 (Tuly) = S (0) | (/O T/
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Jo (T1€)
Yo (Ty0)

Jo (I'if)
Yo (T'10)

Voe = co HJO (Tily) — Yo (Flﬁl)} Zs+ {Jl (Tyly) — Y, (Flél)} (1/0) iZlo} (345)

The voltage at the open circuit end is

V()= %@% (6) = %CO [Jl (Iul) - Qgﬁ;n (w)] = %ﬁ [J1 (T10) Yo (D) — Jo (Dy) Yy (T10)]
2 C
T (310
Note also
V()= % (151) % (€1) = co {Jl (L) — ;25323/1 (Lilr)| (/0 T/ Y (347)
so that
V(0 JV (6r) = 2/m (348)
YT T [ (D) Yo (Tih) — Jo (Ti) Ya (Tif)]
Thus
Vi) 2/ (7Yil)
Voo {Jo (Tir) Yo (Dil) — Jo (T10) Yo (Ti61)} Zs + {J1 (Tily) Yo (Tif) — Jo (Del) Y (Duly)} (61/0) iZ(lg49)
If we take I'j¢; — 0
v 2/ (Yt (350)
Ve  {Zs + (Tul1/2) (01/0)iZ10} Yo (T40) + {iZ102] (7T1€) — (2/7) In (T1le¥/2) Zs} Jo (T10)
and
1
VO )~ S T2 ¥ (D) 50
If we set
ZYo (Do) — (2/7) In (Tyle? )2) ZgJo (T10) = 0 (352)
then
v 1
Voc (Flgl)Q (7‘1’/4) Yb (Flg) + J() (1—‘16) (353)
If we take
Jo (T10) = Jo (Jop) =0 (354)
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V (0) 1 1

Yy (pr) ~

~ 2 ) ’ w
Voo Giooa /O 0/ Yo Gi) (T2 7% (i)
1
\%4 (f) /V (gl) ~ (Flf1/2)2 Yo (jOp) -t
. 2 N
TJop sin (jop — 7/4) ~ TJop sin (pr —7/2) = TJop =

from which we infer that

or that Z; >> Z,.

Jop ~ (p—1/4)m

V() JT2(-1)P" .

~

Voc (Pl£1/2)2 7'(1/2

V() )V (1) ~ —W >>1

V (01) ~ Ve

What if we arrange the right termination to be “matched” in the sense that

I(2)= coHél) (Ty2)

The voltage at the left termination is

1 dI T,

(1)
H;” (I
(61)00 1 ( lzl)

V)=~

}..<

The voltage at the right termination is

The ratio is

Then if we take I'j/4; << 1

or

or

HY (T)0)
HY (Ty0)

(1)
VOV ) = T b = /e

V(0)/V (6r) ~ iz TueH (D)
V(g) /V (£1> ~ 71—]_—‘l€/267;(1—‘l577r/4)

V(O /V (&)| ~ /7lil/2 >> 1
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(356)

(357)

(358)

(359)

(360)

(361)

(362)

(363)

(364)

(365)

(366)

(367)

(368)



Also

r H{Y (D) _ Tty B (D) 7Y (1)
(41) Hél) (Tty) Yl H(gl) (T'yt1) H(gl) (Tut1)

Now for I'/¢; << 1 (this complex value does not in general match the antenna, although perhaps by selection
of appropriate values of ¥; and T'; we can get close with the real part?)

Zy =V () /I(t)= v =iZo (1/£) (369)

1 —i2/m
Zio
Yil1+i(2/m)n(Tt1e7/2) (370)
with
r, HYV @) T, HY T  HY (TW0)
Zp =V (0)/I(f) = it ST it ML R LY A B ) (371)
YO D e YHO e HD ()
or
21 ~ Zio (372)
Note that
Z1)Z; ~ mez'g [14i(2/7)In (Tyl1e”/2)]
~ gm [1+4i(2/7)In (Tylye7/2)] >> 1 (373)

and thus we have a growth of the impedance from the left end to the right end of the line.
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