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ABSTRACT
Effective monitoring of seismic explosions and hazard assessment relies heavily on the accurate 
discrimination of underground seismic sources. This study investigates the application of novel 
nonlinear alignment techniques, specifically Dynamic Time Warping (DTW), for event-type 
discrimination at regional and local distances. Building on prior research that used DTW and Elastic 
Shape Analysis (ESA) in discrimination at regional distances, we evaluate the performance of 
recently developed variants of DTW, including a method that employs Pearson cross-correlation as 
a measure of warping distance and a time distortion coefficient that quantifies the type and degree of 
time distortion between signals. 

By analyzing observational datasets that include different source types, we assess the performance of 
these approaches for realistic monitoring scenarios. Specifically, we consider a dataset recorded at 
regional distances in the Korean Peninsula and a local-distance subset from the Unconstrained Utah 
Event Bulletin catalog to evaluate DTW-based discrimination across multiple distance scales. 
Additionally, we introduce the maximum cross-correlations of warped waveforms as a similarity 
metric for event classification. Through hierarchical cluster analysis and dendrogram interpretation, 
we present our findings, highlighting the strengths and limitations of these techniques in seismic 
event classification.
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ACRONYMS AND TERMS

Acronym/Term Definition
CC Normalized, maximum cross-correlation coefficient

DTW Dynamic Time Warping

ESA Elastic Shape Analysis

UUEB Unconstrained Utah Event Bulletin
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1. INTRODUCTION
Accurately discriminating between different underground seismic sources at variable observational 
distances (local, regional, and teleseismic) is crucial for both seismic explosion monitoring and 
hazard assessment. Traditional discriminant approaches are based on the theoretical differences in 
wave excitation between earthquake and explosion-like sources. These methods include moment 
tensor inversion [1] [2], amplitude ratios of body waves to surface waves [3] [4] [5], and their 
combinations with other physics-based metrics [6] [7]. In addition, machine learning techniques have 
also been applied to local and near-regional datasets [8] [9] [10] [11] [12]. However, the success of 
these methods is influenced by various factors. In amplitude-based discrimination approaches, 
challenges include isolating the source terms from propagation path effects and site effects [10], as 
well as the absence of certain phases in some regions and difficulties in phase separation particularly 
at local distances [9] [13]. For machine learning methods, a significant limitation is the lack of 
existing labeled datasets for specific regions.

As an alternative, Dynamic Time Warping (DTW) and Elastic Shape Analysis (ESA), both 
recognized as nonlinear alignment algorithms, have been considered for informing event 
discrimination through their amplitude and phase warping distances. A previous study demonstrated 
the potential of these algorithms for discrimination by applying them to recorded regional-distance 
waveforms from different types of seismic sources in the Korean Peninsula [14]. Building on this 
foundation for regional source-type discrimination, we evaluate the performance of these 
techniques, along with their recently-developed variants, in the context of event-type discrimination 
at both regional and local scales in this report.

Research on DTW is rapidly advancing (e.g., fastDTW [15], subsequence DTW [16], shapeDTW 
[17]). In our work, we consider two advanced approaches that were not investigated in the previous 
study: a DTW method that utilizes Pearson cross-correlation as a warping distance [18] and a time 
distortion coefficient that serves as a metric for the type and degree of time distortion between time 
series [19]. First, we evaluate the performance of both approaches using the observational dataset of 
earthquake, explosion, and collapse events from the Korean Peninsula that was used in the previous 
study. Additionally, we propose using the maximum cross-correlations (CCs) of the warped 
waveforms as similarity metric in event classification, instead of DTW and ESA distances. Next, we 
apply our methods to a subset of waveform data from the Unconstrained Utah Event Bulletin 
(UUEB) [20], which consists of explosion-like and earthquake sources, to assess the performance of 
DTW-based discrimination at local distances. We present the performance of event discrimination 
by applying hierarchical cluster analysis and interpret the findings through dendrograms.

1.1. Dynamic Time Warping (DTW)
The DTW is used to estimate time shifts necessary for an optimal alignment of the time series with 
different lengths [21].  Given two time series 𝑓1(𝑡) and 𝑓2(𝑡) of length 𝑚 and 𝑛 respectively, the 
first step of DTW is to construct the cumulative distance matrix 𝑫 that contains distances between 
two time series at different time delays which are calculated by the following recurrence formula:
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𝑫(𝑖,𝑗) =

𝑑(𝑖,𝑗)                                                𝑖 = 1,𝑗 = 1
𝑑(𝑖,𝑗) + 𝐷(𝑖,𝑗 ― 1)                        𝑖 = 1, 𝑗 > 1
𝑑(𝑖,𝑗) + 𝐷(𝑖 ― 1,𝑗)                         𝑖 > 1, 𝑗 = 1

𝑑(𝑖,𝑗) + 𝑚𝑖𝑛
𝐷(𝑖 ― 1,𝑗 ― 1)

𝐷(𝑖 ― 1,𝑗)
𝐷(𝑖,𝑗 ― 1)

     𝑖 > 1, 𝑗 > 1
                 (1)

where  1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛. The local distance 𝑑(𝑖,𝑗) is traditionally calculated as the squared 

Euclidean distance (𝑓𝑖
1 ― 𝑓𝑗

2)
2
.  After computing the cumulative distance matrix, the DTW warping 

path with the smallest accumulated distance can be easily obtained [22].

DTW warping distances are commonly used as a similarity metric. For seismic data recorded by a 
given deployed sensor, smaller DTW distances are expected while warping the signals generated by 
the same seismic source type compared to those from different source types. Therefore, those DTW 
distances can be used as a proxy for source discrimination, assuming that the seismic sources are 
closely located and the differences in the signal phase and amplitude are mainly due to the source 
type [14]. Traditional DTW imposes challenges in capturing amplitude changes (e.g., body and 
surface waves) while performing more efficiently for phase variability [22]. On the other hand, ESA 
is more robust for both phase and amplitude variability within a time series by separating the phase 
and amplitude distances [23]. Cluster analyses from the previous study indicate that DTW and ESA 
demonstrated modest classification accuracy for observed seismic signals from earthquakes and 
explosions recorded at regional distances [14], motivating our additional research described in this 
report.
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2. EVALUATING DTW-BASED DISCRIMINATION AT REGIONAL 
SCALES

2.1. DTW with Pearson cross-correlation and time distortion coefficient
We implemented two recently developed DTW approaches and evaluate their efficiency in source 
discrimination. The first approach utilizes the Pearson correlation coefficient (CC) as the warping 
distance metric. This approach has been successfully applied to seismic waveforms recorded at 
regional distances, enhancing the imaging resolution of the back-projection of seismic events and 
improving the accuracy of their locations [18]. The conventional use of Euclidean distance in DTW 
may not adequately capture variations in both amplitude and phase of seismic signals, particularly 
given the differing epicentral distances and seismic source radiation patterns. To better align signals 
from different stations, the authors propose employing the Pearson CC as the local distance 𝑑(𝑖,𝑗) 
in Eq.1 as

𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝐶𝐶 =  1 ―
∑𝐿

𝑖=―𝐿[𝑥1(𝑡) ― 𝑥1][𝑥2(𝑡 + 𝑠) ― 𝑥2]
∑𝐿

𝑖=―𝐿 [𝑥1(𝑡) ― 𝑥1]2 ∑𝐿
𝑖=―𝐿 [𝑥2(𝑡) ― 𝑥2]2 .                      (2)

Here, 𝐿 is half the size of a time window used for calculating the Pearson CC at different time delays 
in Eq.1 and should be smaller than the signal period. We will refer this time window as the 
correlation time window.

Instead of utilizing DTW with Pearson CC distance for more coherent stacking of signals from 
different stations during earthquake back-projection [18], we assess its performance in clustering 
different types of seismic sources using signals from a single station. We consider a previously 
analyzed real seismic dataset from a small region in the Korean Peninsula that includes explosions, 
naturally occurring earthquakes, and collapse events, with all events located within a 10 km 
epicentral distance of one another [24]. This is the same dataset that was used in the previous 
DTW/ESA source discrimination study [14], and to ensure a fair performance comparison with that 
previous study, we use the same subset of waveforms for our tests, which consists of signals from 
closely spaced events recorded at a single station.

Four vertical-component broadband waveforms recorded at station MDJ (Network IC) were 
selected: two from naturally occurring earthquakes (EQ1 and EQ2), one from the 2006 declared 
nuclear test (NK1), and one from a collapse event following the largest declared nuclear test in 2017 
(Figure 2-1a). The waveforms were obtained from the Incorporated Research Institutions for 
Seismology (IRIS) and filtered between 0.5 and 3 Hz. The DTW and ESA methods optimally align 
the signal pairs with varying rates of compression and stretch (Figure 2-1b and c). As demonstrated 
in [14], both DTW and ESA yield the smallest distances for the earthquake pair (Figure 2-1d and e), 
while DTW significantly increases the similarity (CC) between each signal pair, regardless of the 
source types (Figure 2-1f).
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Figure 2-1. a) Vertical-component waveforms recorded at station MDJ filtered between 0.5 and 3 
Hz. EQ1 and EQ2 are the earthquake pairs, 𝒎𝒃 2.5 and 3.6, respectively. NK1 is the 2006 declared 

nuclear explosion test and CO is the collapse event that followed the 2017 declared nuclear 
explosion test. Waveforms aligned according to EQ1 are plotted by using b) DTW and c) ESA. The 
warping paths between each signal pair for d) DTW and e) ESA alignment, respectively. The DTW 
distance and the phase (𝑫𝒙) and amplitude (𝑫𝒚) of ESA are indicated in the lower right corners. f) 

The CC before (squares) and after DTW (diamond) and ESA (cross) alignment.

Figure 2-2 illustrates the results obtained when applying DTW with Pearson CC distance (DTW-
pcc) to the same waveforms. The DTW-pcc distances are smallest for the earthquake signal pair, 
consistent with the results from DTW and ESA. Additionally, we consider Pearson CC distances 
obtained from different correlation time windows ranging from 1 to 4 s, selected to be 
approximately shorter than the signal period. A larger correlation time window (2𝐿) for the Pearson 
CC results in higher warping distances for all signal pairs. Moreover, the CCs of the signal pairs 
aligned by DTW-pcc are comparable to those obtained from ESA but lower than those from DTW. 
The CC values of the warped signal pairs increase with a larger correlation window. The DTW-pcc 
approach tends to yield higher CC values for the earthquake pair compared to ESA, but it does not 
increase CC for dissimilar source pairs as much as DTW, which is a desirable outcome.

To assist the discrimination of different underground source types, we introduce an additional 
distance metric known as the ‘time distortion coefficient’ (TDC). This novel metric is designed to 
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improve time series classification by measuring the type and degree of time distortion—such as 
compression, matching, and stretch alignments—between time series at each point [19]. TDC can be 
directly calculated from the previously determined DTW warping path and can be easily applied to 
other DTW variations. The optimal outcome is to obtain a very low TDC for similar event pairs and 
a very high TDC for different event types. Here, we test whether the time distortion information 
between signals can aid in evaluating the similarity of source types.
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Figure 2-2. The warping paths and aligned waveforms, the CC (before (squares) and after 
alignments) between each signal pair by using DTW-pcc with a correlation time windows of a) 1 s, 

b) 2 s and c) 4 s. DTW distances are listed as inset.

Figure 2-3  shows the normalized warping distances and TDCs for the four waveform pairs. The 
TDCs are calculated using the warping paths from both DTW and DTW-pcc. While the TDC 
values closely resemble the DTW distances, they are significantly lower for the earthquake pair, as 
desired, when the DTW-pcc warping path is used (2𝐿 = 2 s, Figure 2-3c). This initial test 
encourages further investigations to determine whether TDC can serve as a robust additional metric 
in DTW-based source discrimination.

Figure 2-3. DTW and TDC distances for each event pair in Figure 2-1 obtained from a) traditional 
DTW, and DTW-pcc using correlation time windows of b) 1 s and c) 2 s.

We next consider a larger set of waveforms recorded at station MDJ, including 20 waveforms from 
earthquakes, explosions, and collapses (Figure 2-4). All events are located in the same small source 
region, which allows for the assumption that path effects are nearly identical from their hypocenters 
to station MDJ. The waveforms, filtered between 0.8 and 5 Hz, are used to obtain DTW and ESA 
distances between each signal pair. Note that the minor differences between our results and the 
reference study [14] are due to the fact that we use traditional DTW in our analysis rather than 
fastDTW. The matrix representation of the DTW distance and the ESA’s amplitude distance (𝐷𝑦) 
show smaller warping distances for the group of the explosion events (Figure 2-5a and c). This 
forms a strong structure in the matrix while it is less prominent for the earthquake pairs. 
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Figure 2-4. Vertical-component waveforms recorded at station MDJ filtered between 0.8 and 5 Hz, 
including earthquakes (0 ― 12), explosions (13 ― 18) and collapse (19). The explosions are the 

declared 2006 (NK1), 2009 (NK2), 2013 (NK3), 2016 (NK4, NK5), and 2017 (NK6) nuclear tests in the 
Korean Peninsula. 

We also apply hierarchical clustering analysis to the DTW and ESA distances (Figure 2-5d and e). 
The common method for determining the optimal number of clusters in a dendrogram involves two 
main steps. First, identify the longest vertical line that does not intersect with any other cluster. 
Next, draw a horizontal line across the dendrogram at a chosen height, ideally half the length of this 
vertical line. The number of vertical lines intersected by this horizontal line can then be considered 
as the number of clusters. Both DTW and ESA suggest two clusters for the dataset. While DTW 
identifies the explosion events (13 ― 18) as a separate cluster, ESA categorizes them as a sub-cluster 
within our analysis (𝜏 =  0.8). Unfortunately, the dendrogram obtained from the DTW-pcc distances 
did not show robust clusters corresponding to the event source types for this dataset (Figure 2-5f). 
The DTW-pcc distance matrix reveals some structure only for parts of the explosion and earthquake 
groups. 
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Figure 2-5.  a) Phase (𝑫𝒙) and b) amplitude (𝑫𝒚) distance of ESA and c) DTW distance between 
every earthquake and explosion signal pair. Their corresponding dendrograms from hierarchical 
clustering analysis are shown in d) and e), respectively. f) Warping distances of each signal pair 

obtained using DTW-pcc (𝟐𝑳 = 𝟐 s) and g) its dendrogram. Threshold cutoffs are indicated as 
dashed lines on dendrograms, cutting through the half of the longest vertical line that does not 

intersect with any other cluster.
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Figure 2-6. Vertical-component waveforms recorded at station MDJ (in Figure 2-4) filtered within a 
lower frequency band of 0.5 and 3 Hz.

To investigate whether the frequency band affects the performance of DTW-pcc, we applied a lower 
frequency range 0.5 to 3 Hz bandpass filter to the dataset at (Figure 2-6) and repeated the analysis. 
The matrix of DTW-pcc distances exhibited more prominent structures for both explosions and 
earthquakes at this frequency band. While this resulted in more defined clusters, the accuracy of the 
clustering analysis did not improve compared to the performance of DTW and ESA at the higher 
frequency band (Figure 2-7).

Furthermore, for the lower frequency band, the dendrograms for both DTW and ESA reveal 
significantly different clusters (Figure 2-7d and e) compared to those at the higher frequency band, 
suggesting that DTW and ESA are highly sensitive to the passbands of the waveforms. Therefore, 
careful selection of the filtering band is essential to achieve reasonable source classification 
performance. Additionally, we consider the matrix representations of TDC obtained from DTW and 
DTW-pcc in Figure 2-5. Figure 2-8 shows that both matrices indicate a structure with smaller TDC 
values corresponding to the group of explosion event pairs; however, TDC does not provide any 
additional or enhanced insight regarding the source type for this dataset.
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Figure 2-7. a) Phase (𝑫𝒙) and b) amplitude (𝑫𝒚) distance of ESA and c) DTW distance between 
every earthquake and explosion signal pair filtered with a lower frequency band (Figure 2-6). Their 

corresponding dendrograms from hierarchical clustering analysis are shown in d) and e), 
respectively. f) Warping distances of each signal pair obtained using DTW-pcc (𝟐𝑳 = 𝟐 s) and g) its 

dendrogram.
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Figure 2-8. TDC distances between each signal pair in Figure 2-4 obtained using a) traditional 
DTW and b) DTW-pcc (𝟐𝑳 = 𝟐 s).

2.2. Clustering the cross-correlation of warped signals

We investigate using the CC of the warped waveforms instead of DTW and ESA distances in the 
cluster analysis to improve the source discrimination. Specifically, we evaluate whether the CC 
matrices exhibit more prominent structures that can aid in the cluster analysis of dendrograms. 
Using the same waveforms filtered between 0.8 and 5 Hz as in the previous section, we calculate the 
CC for each signal pair after warping. Here, we employ traditional DTW and ESA to warp and align 
the signals.

Figure 2-9 presents the CC matrices for the unwarped signal pairs in Figure 2-4, as well as for the 
signals aligned by ESA and DTW, respectively. While the initial CC matrix displays scattered 
structures, the CC matrices obtained after both DTW and ESA clearly reveal more robust structures 
that correspond to the three different groups of events. It is important to note that ESA does not 
yield a symmetric CC matrix, as the ESA distance varies depending on the reference waveform.

The dendrograms based on the CC after DTW and ESA indicate event clusters more distinctly than 
those obtained using DTW and ESA distances. Notably, the dendrogram from DTW successfully 
clusters all explosion and earthquake events into discrete groups, with the exception of a single 
collapse event. Our results demonstrate that employing the CC of the warped waveforms in 
dendrogram clustering (Figure 2-9b and c) outperforms clustering based on DTW and ESA 
distances (Figure 2-7d and e) used in the previous study for source discrimination in this regional 
seismic dataset.
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Figure 2-9. a) CC before alignment, b) after ESA and c) DTW alignments for each signal pair in 
Figure 2-4, along with their corresponding dendrograms from hierarchical clustering analysis.



21

3. EVALUATING DTW-BASED DISCRIMINATION AT LOCAL SCALES 
To evaluate whether the waveform warping discrimination results from the Korean Peninsula 
transfer to other regions and other source-receiver distances, we analyze a subset of the Utah 
Unconstrained Event Bulletin (UUEB) dataset [20]. This high-quality catalog spans a two-week 
period and includes both tectonic and anthropogenic events, making it particularly useful for testing 
event discrimination methods. By focusing on the events with more confidently labeled source 
types, we concentrate on one earthquake cluster and one explosion-like cluster (quarry blasts) 
located within a 1-degree radius area (Figure 3-1). The clusters comprise a total of 46 events, 
including 17 earthquake and 29 explosion-like sources.

Figure 3-1. UUEB catalog events. The map (right) provides a closer view of the events. Clusters 
highlighted by dashed squares are included in the analysis. Black triangles indicate some of the 

nearby stations.

We utilize waveforms from station SNUT (Network UU) to assess the performance of using CCs 
after warping in cluster analysis for event type discrimination. Due to the distance between the two 
clusters, there may be potential path effects in addition to source type effects. This station recorded 
high signal-to-noise ratio signals for the events (Figure 3-2a). The vertical-component waveforms are 
bandpass filtered between 2 and 10 Hz, and we consider 25-s time windows following the origin 
time of the events for DTW and ESA analysis. The distance matrices of ESA and DTW reveal a 
structure characterized by smaller warping distances corresponding to the group of earthquake event 
pairs (Figure 3-2b and d).

Next, we calculate the CC for each signal pair using the unwarped signals and the warped signals 
(Figure 3-3). While all CC matrices reveal a high-correlation structure for the earthquake group, the 
explosion event group is more distinctly defined in the CC matrices obtained after ESA and DTW. 
Nonetheless, the accuracy of event type clustering across all dendrograms is very good, and in fact 
the version based on correlation of the unwarped waveforms seems to produce the best separation 
of the two groups, suggesting that the use of DTW or ESA may not actually improve discrimination 
capability for this set of local-distance events.
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Figure 3-2. a) Vertical-component waveforms recorded at station SNUT filtered between 2 and 10 
Hz. b) Phase (𝑫𝒙) and c) amplitude (𝑫𝒚) distance of ESA and d) DTW distance between every 

earthquake and explosion-like event pairs.
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Figure 3-3. a) CC before alignment, b) after ESA and c) DTW alignments for each signal pair in 
Figure 3-2, along with their corresponding dendrograms from hierarchical clustering analysis. The 

black dots indicate the events that were misclassified in the dendrogram.

Additionally, we consider a dataset for cluster analysis that includes more significant amplitude 
changes due to source radiation patterns as well as noise spikes within the coda. The waveforms 
recorded at station EPU (UU) are filtered between 2 and 10 Hz (Figure 3-4a). The signal-to-noise 
ratios of the waveforms are relatively high, except for those with the noise spikes. The matrices of 
ESA and DTW distances reveal a smaller-distance structure for the earthquake group (Figure 3-4b 
and d). Furthermore, the matrices display large-distance bands corresponding to waveforms that are 
dissimilar to the rest of the events (e.g., signals 12, 18, and 41). The DTW distance and the 
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amplitude distance (𝐷𝑦) from ESA produce very similar patterns on the matrices (Figure 3-4c and 
d).

Figure 3-4. Vertical-component waveforms recorded at station EPU filtered between 2 and 10 Hz. 
b) Phase (𝑫𝒙) and c) amplitude (𝑫𝒚) distance of ESA and d) DTW distance between every 

earthquake and explosion-like event pairs.
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The dendrogram clustering of CC matrices obtained using the warped and unwarped signals indicate 
that both the original signals and the signals aligned by ESA yield satisfactory clustering accuracy for 
the two source types, with only a few misclassified events (Figure 3-5). In contrast, the DTW-based 
clustering does not perform well for this dataset. To attempt to improve performance, we exclude 
the waveforms with noise spikes and shorten the time window to 14 seconds to eliminate sections of 
noisy data before repeating the clustering analysis (Figure 3-6). However, DTW-based clustering still 
cannot distinguish between different event types. This suggests that DTW-based clustering analysis 
is highly sensitive to low signal-to-noise ratios, source radiation patterns, and noise spikes, and may 
not perform satisfactorily for event type discrimination at local distances.

Figure 3-5. a) CC before alignment, b) after ESA and c) DTW alignments for each signal pair in 
Figure 3-4, along with their corresponding dendrograms from hierarchical clustering analysis. The 

black dots indicate the events that were misclassified in the dendrogram (not shown for DTW). 
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Figure 3-6. Following the exclusion of waveforms with noise spikes, a) CC before alignment, b) 
after ESA and c) DTW alignments for each signal pair in Figure 3-4, along with their corresponding 

dendrograms from hierarchical clustering analysis. The black dots indicate the events that were 
misclassified in the dendrogram (not shown for DTW).

Lastly, we investigate whether the warped signals consistently result in higher CC values. Our tests 
on the UUEB events indicate that the increase in signal similarity is not linearly proportional to the 
similarity of the original signals; in other words, a signal pair with a moderate CC can achieve the 
highest similarity in the group after warping. We present a single pair of earthquakes after alignment 
using ESA and DTW (Figure 3-7a). We observe that ESA dramatically modifies the waveform EQ4, 
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introducing a long-period swing prior to the first arrival in an attempt to better align with the EQ5 
waveform. While DTW increases the similarity of the signals from 0.88 to 0.95, ESA actually 
decreases the similarity to 0.61 (Figure 3-7b), a troubling result for this high SNR pair of local-
distance signals.

Figure 3-7. a) A pair of earthquake waveforms recorded at station GZU, displayed without any 
warping, alongside the aligned pairs obtained using DTW and ESA. b) The warping paths of DTW 
and ESA between the signal pair and the CC before (squares) and after DTW (diamond) and ESA 

(cross) alignment.
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4. CONCLUSIONS
This study investigated the effectiveness of DTW and ESA as nonlinear alignment techniques for 
discriminating between different seismic event types from datasets in two different regions, one 
consisting of signals from regional source-receiver distances and the other consisting of signals from 
local distances. We evaluated the performance of two advanced DTW methods: one utilizing 
Pearson cross-correlation as a warping distance and the other employing a time distortion 
coefficient. Our analysis of the regional dataset from the Korean Peninsula, which included 
hierarchical cluster analysis and dendrogram interpretation, revealed that while the advanced DTW 
methods did not directly significantly enhance source discrimination, performing cluster analysis 
based on CCs of the warped waveforms did improve event classification accuracy. Notably, this 
enhancement was primarily observed at regional distances. In contrast, for our local distance dataset 
from Utah, the cross-correlation performance of warped waveforms did not produce any clear 
improvement over the cross-correlation of the original waveforms. Furthermore, we found that 
DTW-based clustering analysis is particularly sensitive to low signal-to-noise ratios, variations in 
source radiation patterns, and noise spikes, which may hinder its effectiveness in discriminating 
event types at local distances.

Our results suggest the importance of selecting appropriate warping techniques based on the 
observational distance. Future research should focus on refining these methods and exploring their 
applicability across diverse seismic environments to improve event discrimination capabilities.
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