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SYNOPSIS
Sparse observations and coarse-resolution climate models limit ef-
fective regional decision-making, underscoring the need for robust
downscaling. However, existing AI methods struggle with general-
ization across variables and geographies and are constrained by the
quadratic complexity of Vision Transformer (ViT) self-attention.
We introduce ORBIT-2, a scalable foundation model for global,
hyper-resolution climate downscaling. ORBIT-2 incorporates two
key innovations: (1) Residual Slim ViT (Reslim), a lightweight ar-
chitecture with residual learning and Bayesian regularization for
efficient, robust prediction; and (2) TILES, a tile-wise sequence
scaling algorithm that reduces self-attention complexity from qua-
dratic to linear, enabling long-sequence processing and massive
parallelism. ORBIT-2 scales to 10 billion parameters across 65,536
GPUs, achieving up to 4.1 ExaFLOPS sustained throughput and
74–98% strong scaling efficiency. It supports downscaling to 0.9 km
global resolution and processes sequences up to 4.2 billion tokens.
On 7 km resolution benchmarks, ORBIT-2 achieves high accuracy
with 𝑅2 scores in range of 0.98–0.99 against observation data.
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1 JUSTIFICATION FOR ACM GORDON BELL
PRIZE

ORBIT-2 sets new benchmarks in scalability and scientific impact,
training ViT-based models with up to 10 billion parameters on
65,536 GPUs with 74–98% scaling efficiency and 4.1 ExaFLOPS
sustained throughput in BF16 precision. It enables global climate
downscaling at 0.9 km resolution and processes sequences up to 4.2
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billion tokens—vastly surpassing prior limits. This breakthrough ad-
vances understanding of fine-scale extremes and improves climate
modeling critical for risk mitigation and decision making.

Attributes Contents
Category Time-to-solution, Scalability, Throughput

Type of method Dense Vision Transformer Model
Results reported on Whole application including I/O
Precision reported BF16 mixed precision

System scale Measured on Full-Scale System

Measurement mechanism Timer, Static analysis tool,
FLOP counts

2 PROBLEM OVERVIEW
Many regions lack dense ground-based observational networks, hin-
dering early warning systems, disaster risk mitigation, and climate
adaptation planning. In such cases, global climate models provide a
crucial alternative, simulating atmospheric processes at planetary
scale. However, their coarse resolution limits the representation of
fine-scale phenomena, constraining accuracy at regional levels.

Downscaling bridges this gap by translating coarse resolution
global climate model into fine-scale outputs [8]. This process is
critical across many sectors, including agriculture [21], water re-
sources [12], infrastructure planning [10], energy systems [11], and
extreme event forecasting [16]. Despite its importance, downscal-
ing remains both scientifically and computationally challenging.
It requires physically consistent predictions from massive, high-
dimensional spatiotemporal data while maintaining accuracy across
diverse regions. These challenges highlight the urgent need for
scalable, high-fidelity downscaling approaches to enable effective
climate services, disaster preparedness, and policy planning.

Traditional downscalingmethods are either dynamical [9], which
uses nested physical models to simulate fine-scale processes but
is computationally intensive, requiring days or weeks on super-
computers and limited to regional domains; or statistical [48, 49],
which is less computationally demanding but often lacks physical fi-
delity and generalizability. More recently, artificial intelligence (AI)
has emerged as a powerful alternative, providing high-resolution
predictions at a fraction of the computational cost-even on edge
devices [23, 24, 42]. Most existing AI approaches, however, are task-
specific deep learning models [1, 2, 6, 27] that map coarse to fine
resolution, requiring retraining for each variable, resolution, or
region, and often struggling to generalize across diverse, physically
distinct climate variables [46].

To overcome the limitations of task-specific models, recent ef-
forts have introduced foundation models such as Prithvi [36] and
ClimateLearn [34], which employ multi-task Vision Transformer
(ViT)-based architectures to support downscaling across variables
and geographic regions. While these models represent an impor-
tant step forward, they remain constrained by resolution limits,
computational cost, and model scalability.

A primary bottleneck is the computational complexity of down-
scaling at high resolution. For instance, Prithvi achieves 12 km
resolution over Europe but is restricted to 50–60 km globally due to
the quadratic scaling of ViT self-attention [13]. ViTs divide spatial
data into patches, treating each patch as a token, and self-attention

computes pairwise interactions among all tokens. As resolution
increases, the number of token pairs grows quadratically, result-
ing in quadratic growth in memory and compute demands. Un-
like Natural Language Processing (NLP) models, which operate
on one-dimensional text sequences and scale to over one million
tokens [20], ViTs handle high-dimensional spatial inputs with com-
plex dependencies across multiple axes, making long-sequence scal-
ing significantly more computationally intensive. As a result, the
longest ViT sequence reported to date is limited to 188k tokens [40],
directly constraining the maximum resolution, as sequence length
scales proportionally with spatial resolution.

Another major challenge in downscaling is the inherent uncer-
tainty, as mapping coarse-resolution data to fine scales is a highly
ill-posed inverse problem: a single coarse input can correspond
to many plausible fine-scale solutions, making the mapping non-
unique and sensitive to small perturbations. This challenge is fur-
ther amplified when downscaling multiple climate variables simul-
taneously. Unlike super-resolution tasks in computer vision [25, 30],
where Red-Green-Blue channels represent the same physical quan-
tity, climate variables such as temperature, humidity, and wind are
governed by distinct yet interrelated physical processes. This het-
erogeneity increases the difficulty of learning consistent mappings
and exacerbates uncertainty in predictions. A common mitigation
strategy is to upsample coarse inputs prior to training [34, 36],
which can help reduce uncertainty but significantly increases se-
quence length and, in turn, computational cost due to ViT’s qua-
dratic complexity. Moreover, upsampling introduces artifacts that
can propagate through the model, limiting its effectiveness.

Existing foundation models also face restricted model scale. For
example, Prithvi [36] is constrained to 1.4 billion parameters, pri-
marily due to the computational difficulty of scaling ViTs for high-
dimensional spatiotemporal data. A major advancement is the Oak
Ridge Base AI foundation model for Earth System Predictability
(ORBIT) [46], which leverages hybrid sharding and orthogonal par-
allelisms to scale ViTs to 113 billion parameters—five times larger
than previous ViTs and more than 100× larger than typical climate
models. However, ORBIT is specifically designed for temporal fore-
casting and does not address spatial downscaling. In particular, it
does not resolve the ViT long-sequence bottleneck nor mitigate the
uncertainty associated with inverse downscaling problems.

To overcome these limitations, we introduce ORBIT-2, a scalable
and efficient foundation model for climate downscaling. Unlike
ORBIT, which focuses on temporal weather forecasting, ORBIT-2
addresses a fundamentally different challenge: high-resolution spa-
tial downscaling. At its core, ORBIT-2 features a novel ViT architec-
ture, Residual Slim ViT (Reslim), specifically designed to bypass the
high computational cost associated with traditional upsampling-
based approaches. Unlike existing models that upsample inputs
to mitigate uncertainty—resulting in quadratic increases in mem-
ory and computation—Reslim operates directly on adaptively com-
pressed spatial inputs, significantly reducing sequence length while
preserving critical information. It preserves accuracy and reduces
uncertainty through a lightweight residual learning architecture,
enabling efficient, low-overhead predictions. Additionally, both
training and inference are framed as a Bayesian Estimation prob-
lem, incorporating a Markov Random Field Total Variation prior to
further constrain uncertainty and improve spatial consistency.
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Figure 1: A generalized AI architecture diagram for state-of-the-art downscaling foundation models. Note that upsampling is used for each
channel prior to training blocks to reduce downscaling uncertainty.

Complementing this architecture is the Tile-Wise Sequence Scal-
ing Algorithm (TILES) that reduces ViT’s self-attention complexity
from quadratic to linear. It works by dividing images into overlap-
ping tiles, each processed in parallel on separate Graphical Process
Units (GPUs) using localized self-attention. Each tile’s downscaled
outputs are then seamlessly merged to the full image. This strategy
enables efficient and scalable ViT-based downscaling, making ultra-
high-resolution, global-scale applications computationally feasible.

Leveraging the above innovations, ORBIT-2 sets a new bench-
mark through four key breakthroughs:
• Efficient Reslim Architecture by operating directly on com-
pressed inputs, achieving over 660× speedup compared to stan-
dard ViTs—without compromising accuracy.
• Longest ViT Sequence Length by scaling ViT sequence lengths
to unprecedented levels—up to 4.2 billion tokens for a 9.5M param-
eter model and 671 million tokens for a 10B model—surpassing
the prior state-of-the-art of 188K tokens by several orders of
magnitude [40]. This eliminates the long-standing sequence bot-
tleneck, enabling global downscaling at resolutions as fine as 0.9
Kilometer (km).
• Scalable Large Model Training by training models with up
to 10 billion parameters across 65,536 GPUs, achieving 74–98%
strong scaling efficiency and sustained throughput of up to 4.1
ExaFLOPS in BF16 precision.
• State-of-the-Art Accuracy achieving 𝑅2 scores of 0.98 for pre-
cipitation and 0.99 for temperature at 7 km resolution over both
the continental United States and global modeling, setting a new
standard in high-fidelity downscaling.

3 BACKGROUND & STATE OF THE ART
Fig. 1 illustrates the generalized architecture of leading downscaling
foundation models, including Prithvi [36] and ClimateLearn [34].
The inputs consist of low-resolution data with multiple atmospheric
physical variables, normalized and bias corrected, and each chan-
nel of the architecture reads data for a distinct variable. To address
downscaling inverse problem uncertainty, current models upsample
coarse-resolution inputs, either via interpolation [34] or convolu-
tion [36], before training. This upsampling process is crucial, as
it provides a higher-resolution baseline for ViT training, mitigat-
ing uncertainty from the inherently ill-posed nature of the multi-
variable downscaling problem, thereby improving accuracy and
uncertainty. Once upsampled, multi-channel inputs are aggregated

into a single-channel representation in feature space, a step that
can be performed using either cross-attention mechanisms [33]
or shallow convolutional layers [34, 36]. This aggregated repre-
sentation is then trained by the ViT training blocks, consisting of
self-attention and feedforward sub-layers. Finally, the trained out-
put is projected back from feature to image space for each individual
physical variable.

This approach, however, introduces major challenges. Upsam-
pling coarse-resolution input data before training increases the
sequence length, which increases in proportion to the resolution
increase, causing a quadratic increase in memory and computa-
tions due to ViT’s self-attention mechanism. This severely limits
scalability and resolution, leaving the long-sequence bottleneck un-
resolved. Prithvi, for example, is limited to relatively coarse 50-60
km resolution for global downscaling. To address this, prior work
proposed both AI architecture and scaling algorithm solutions.

Architecture solutions. To mitigate this, architectures like Swin
Transformer alleviate some of the computational burden by in-
troducing a hierarchical architecture with shifted window atten-
tion [28, 29]. Instead of processing the entire image at once, Swin
Transformer partitions the image into smaller, non-overlapping
local windows, where self-attention is computed independently
within each window. To capture global spatial dependencies, fea-
tures learned from local windows are aggregated into global fea-
tures through an architecture hierarchy. While this reduces com-
puting complexity, Swin Transformer has fundamental limitations
and its layers of architecture hierarchy must scale proportionally
with higher resolution, making it unsuitable for foundation mod-
els that needs a single model to generalize across diverse datasets
with varying resolutions. Additionally, Swin Transformer’s model
size grows with the architecture hierarchy, shifting the computa-
tional bottleneck from long-sequence processing to large-model
scaling. Consequently, Swin Transformer can only scale up to 147K
sequence length on standard 3-channel images [28], far below what
is needed for high-resolution, multi-variable downscaling.

Other sparse attention architectures, such as MaxViT [41], at-
tempt to mitigate computational cost by sampling self-attention
computations. While this reduces complexity, it comes at the ex-
pense of accuracy degradation when the sampling ratio is too high,
and it does not address the fundamental quadratic complexity long-
sequence problem.
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Figure 2: Reslim architecture is split into main and residual paths. No upsampling is used for the main path for ViT training, leading to reduced
computations. Residual path is used to condition prediction for reduced uncertainty.

Scaling algorithm solutions. Besides architecture innovations,
scaling algorithms, such as sequence parallelism [31, 40, 47], has
been proposed as an alternative strategy for scaling ViT sequence
length. It distributes image patch tokens across GPUs for parallel
computing, alleviating memory constraints. However, because self-
attention requires each token to interact with all other tokens from
every other GPU, sequence parallelism incurs substantial inter-GPU
communication overhead and limits its scalability. More critically,
it does not resolve the fundamental quadratic complexity, which
causes computational costs to grow rapidly with increased down-
scaling resolution. As a result, current ViT sequence parallelisms are
limited to a maximum of 188K token sequence lengths [40], which
remain insufficient for high-resolution multi-variable downscaling.

It is also important to note that other commonly used paral-
lelisms—such as Fully Sharded Data Parallelism (FSDP) [51], Ten-
sor [37], pipeline [14, 18, 22] and hybrid sharded parallelisms [46]
are all designed to scale model sizes, rather than long sequences of
high-resolution and high-dimensional spatial data. Consequently,
none of the existingmodel parallelisms overcome the long-sequence
bottleneck in ViTs required for high-resolution global downscaling
and there is an urgent need to develop computing efficient and
massively parallel architecture and scaling algorithm.

4 INNOVATION REALIZED
4.1 Reslim Architecture
Unlike existing foundation models that rely on input upsampling to
establish downscaling baselines, which leads to increased sequence
length and high computational cost, ORBIT-2 introduces Residual
Slim ViT (Reslim), a highly efficient architecture that significantly
reduces training time and memory usage without compromising ac-
curacy. The key innovation of Reslim is its ability to operate directly
on low-resolution and adaptively compressed inputs, drastically
reducing sequence length and computational burden. To counter-
act the uncertainty typically introduced by bypassing upsampling
prior to ViT training, Reslim incorporates Bayesian estimation
and a residual convolutional learning path, enabling high accuracy
while maintaining efficiency. Its non-hierarchical design further

promotes generalization across datasets with varying spatial reso-
lutions, making it well-suited for scalable, foundation-level Earth
system modeling.

Main ViT Path. Fig. 2 illustrates the Reslim architecture. After
tokenizing each low-resolution physical variable into feature em-
beddings, the model proceeds along two architectural paths: the
main ViT and residual paths. Crucially, the main path eliminates
input upsampling, avoiding the sequence length inflation and the
quadratically increased computing cost typical of ViT architectures.

First, the main path uses a cross-attention module to aggregate
multi-variable embeddings into a unified representation, effectively
collapsing the variable dimension. A learnable resolution embed-
ding encodes the desired output resolution and is added to the
feature embedding, enabling resolution-aware predictions—an es-
sential capability for modeling resolution-dependent Earth system
behaviors. Next, an optional adaptive spatial compression module,
which will be explained further in the next paragraph, reduces
the sizes of the embeddings before they are passed through ViT
training blocks. When enabled, this module compresses spatial fea-
tures; otherwise, it acts as an identity function. After processing,
a decoder comprising convolutional layers and linear projections
reconstructs the high-resolution output.

Adaptive Spatial Compression. Our objective is not only to train
directly on low-resolution inputs, but also to further reduce to-
ken count and computational cost through compression. Reslim
achieves this via an adaptive spatial compression technique, in-
spired by adaptive image patching and mesh refinement meth-
ods [50]. After aggregating multi-variable features (purple block in
Fig. 2), the model projects the embedding back into image space and
recursively partitions it into spatial quadrants using a quad-tree
structure. Partitioning continues for any quadrant where the esti-
mated feature density—computed via Canny edge detection—exceeds
a predefined threshold, terminating when a minimum patch size is
reached or below predefined threshold.

This approach enables finer-grained learning in feature-rich
regions through smaller patches, and coarse-grained learning to
smoother regions through larger patches, where less detail is needed.
Fig. 3 illustrates an example image after variable-aggregated fea-
tures are mapped back to image space. Compared to conventional
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Figure 3: Comparisonwith andwithout adaptive spatial compression.
Each yellow grid is an image patch.

uniform patching (Fig.3(a)), where each grid represents an image
patch token, the adaptive spatial compression method (Fig.3(b))
reduces the number of patch tokens by 7x in this figure example,
significantly decreasing sequence length and computing cost. After
ViT training blocks, the decompression module reconstructs the
high-resolution output from the compressed embeddings.

Residual Learning. Reslim improves computational efficiency by
removing the upsampling step from the main ViT path and train-
ing directly on low-resolution, spatially compressed inputs. This
design dramatically shortens sequence lengths and reduces the qua-
dratic computational cost typically associated with ViT training.
However, bypassing input upsampling introduces uncertainty, as
conventional foundation models rely on upsampled inputs to pro-
vide a coarse downscaling baseline. Reslim addresses this challenge
through two complementary innovations: residual convolutional
learning and a Bayesian estimation objective.

The residual convolutional path reintroduces upsampling out-
side the main ViT path, using lightweight convolutional layers with
linear complexity. This path generates a high-resolution approxima-
tion that is added to the ViT output before loss computation. Such
design yields two major benefits: (1) it avoids the expensive qua-
dratic cost of increasing the ViT sequence length due to upsampling.
The upsampling is moved to the residual path, where convolutional
layers have linear complexity to input size and thereby upsampling
in the residual path incurs minimal computing cost. (2) it simpli-
fies the learning task by letting the ViT focus on predicting the
residual difference between the convolutional approximation and
the ground truth, rather than the full downscaling transformation.
This soft constraint stabilizes training, enhances physical plausibil-
ity, and significantly reduces downscaling uncertainty. As a result,
Reslim achieves high downscaling accuracy with significantly re-
duced computations compared to conventional ViT.

Bayesian Training Loss. To further reduce uncertainty and im-
prove accuracy, Reslim reformulates its training as the following
Bayesian optimization problemwith a GeneralizedMarkov Random
Field Total Variation prior:

𝑥 ← argmin
𝑥
∥𝑦 − 𝑥 ∥2𝐷 +

𝐾∑︁
𝑘=1

𝑁∑︁
𝑖=1

∑︁
𝑗∈𝐶 ( ˆ𝑥𝑘,𝑖 )

𝑏𝑖, 𝑗 ∥𝑥𝑘,𝑖 − 𝑥𝑘,𝑗 ∥ ,

where 𝑦 is the high-resolution ground-truth, 𝑥 is the Reslim pre-
diction, and 𝐷 is a latitude weighting matrix to account for the
decrease in longitudinal spacing toward the poles. 𝐾 is the number
of output variables, and 𝑁 is the total number of pixels per variable.
The neighborhood 𝐶 ( ˆ𝑥𝑘,𝑖 ) contains all spatial neighbors of pixel
ˆ𝑥𝑘,𝑖 , which is the 𝑖th pixel for the 𝑘 th variable.𝑏𝑖, 𝑗 is a spatial weight-

ing factor inversely proportional to the euclidean distance between
each pixel pair in the same neighborhood. In the above formulation,
the first term, ∥𝑦 − 𝑥 ∥2

𝐷
, is the Bayesian forward data likelihood

Figure 4: (a) TILES algorithm partitions inputs and outputs into tiles,
each processed independently on a GPU. Yellow/green pixels denote
strong local correlations, while green/blue indicate weaker long-
range correlations. (b) Gray halos are added around tiles to avoid
border artifacts. Boundary regions (example in red) are duplicated,
appearing once in a tile’s halo and once in its neighbor’s interior.

term using a latitude-weighted mean squared error. The second
term is a total variation spatial prior, promoting spatial smoothness
by penalizing irregularities within local neighborhoods, but also
preserving edges and discontinuities. This makes it well suited for
downscaling tasks for spatial coherence and structure preservation.

4.2 TILES: Tilewise Efficient Sequence Scaling
Algorithm

While Reslim significantly reduces computation by operating on
low-resolution and compressed inputs, it does not resolve the inher-
ent quadratic complexity of self-attention. As resolution increases,
this limitation becomes a bottleneck. To address this, we introduce
the Tilewise Efficient Sequence Scaling Algorithm (TILES), a scal-
able sequence processing strategy that reduces attention complexity
from quadratic to linear and enables efficient parallelization.

TILES is motivated by the spatial locality property of down-
scaling, where the downscaling for each high-resolution pixel is
primarily influenced by spatially nearby coarse-resolution inputs.
This “point spread" effect, well studied in the remote sensing liter-
ature [17, 43, 44], shows that the correlation between pixel pairs
decay rapidly when the spatial distance. Consequently, long-range
pixel interactions that have weak point spread effect can be safely ig-
nored without affecting downscaling accuracy. For example, neigh-
boring green and yellow pixels in Fig. 4(a) have high mutual influ-
ence, while distant pairs (e.g., green and blue) contribute minimally
or no influence to each other’s predictions.

Leveraging this property, TILES partitions both inputs and down-
scaled outputs into spatial tiles, assigning each tile to a separate
GPU. Each GPU then performs downscaling separately for its as-
signed tile, and self-attention is restricted within each tile, preserv-
ing local context while ignoring long-range dependencies across
tiles. This tilewise downscaling reduces self-attention complexity
from quadratic to linear. More specifically, the computation com-
plexity is 𝑂 ( 𝑁 2

𝑇
), where 𝑁 is the number of image patch tokens

and𝑇 is the number of tiles. For fixed-size tiles,𝑇 increases propor-
tionally with 𝑁 , making the overall complexity linear.
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Figure 5: Orthogonal levels of parallelismsmapped to supercomputer
at cluster, node, and device levels.

However, strict tiling introduces border artifacts, as pixels near
the border of each tile lack context from neighboring tiles. To mit-
igate this, TILES introduces halo padding, where each tile is ex-
tended with a fixed-width halo (shown in gray in Fig.4(b)) that
overlaps adjacent tiles. For instance, the red boundary region in
Fig.4(a) between Tiles 1 and 2 is duplicated, with one copy in Tile
1’s halo and another copy in Tile 2’s non-halo interior, both shaded
in red in Fig.4(b). This duplication restores spatial continuity across
tile boundaries, ensuring that border pixels—such as the yellow
pixel—receive complete local context. Note that the halo width
is tuned empirically. While in principle it can be derived directly
from the data sensor’s point spread function, in practice we begin
with minimal halos and increase their size iteratively until both
boundary artifacts and training loss are minimized.

After each GPU independently downsamples its tile, the halo
regions are discarded, and the non-padded tile outputs are stitched
together to form the final high-resolution output. Since each GPU
processes a different tile, leading to different gradient and model
parameter update, gradients from all GPUs are averaged to main-
tain the model consistency across GPUs and global optimization.
This inter-GPU communications, however, have minimal commu-
nication overhead as it takes place only once per data batch.

4.3 Orthogonal Parallelisms
TILES efficiently scales sequence length, enabling high-resolution
downscaling. However, it does not address model size scaling. To
support both large foundation models and high-resolution down-
scaling, TILES must be integrated with complementary model-
parallel strategies. Since TILES and model parallelism target orthog-
onal goals, with TILES for sequence length and model parallelisms
for model size, they can be combined seamlessly. This results in a
unified framework with four distinct parallelism strategies:
• TILES sequence parallelism: Distributes long sequence lengths
for ViTs for tilewise approximation as discussed before. Requires
least communication overhead.
• Fully Sharded Data Parallelism (FSDP) [51]: shards both data
and model parameters across GPUs, but requires temporarily
gathering the full model during forward and backward passes.
Requires moderate communication overhead.

• Tensor Model Parallelism [37]: Only shards model parameters
and keep parameters sharded throughout training. Requires most
communication overhead.
• Distributed Data Parallelism (DDP) [26]: distributes only the
training data without sharding model parameters. Requires least
communication overhead.
Fig. 5 shows how these orthogonal parallelisms map to a super-

computer hardware. Two adjacent nodes form a TILES sequence
parallel group (green dashed boxes), responsible for scaling se-
quence lengths. Multiple sequence parallel groups form a DDP
group, distributing data batches across the system.

Within each sequence parallel group, GPUs participate in both
tensormodel and FSDP parallelisms formodel scaling. Tensormodel
parallelism operates within a node, leveraging its low-latency inter-
connect to mitigate communication overhead for hidden dimension
partitioning. FSDP (red dashed boxes) spans GPUs across neighbor-
ing nodes within the same TILES group, enabling parameter and
data sharding.

Once all parallelisms are established, each GPU receives a subset
of the model and data that can be optimized with Flash Atten-
tion [5] to reduce memory use and cache misses, as detailed in
the next subsection. Within each GPU, streaming multiprocessors
(SMs) are mapped to Flash Attention cache blocks, executing vector
operations in parallel within each block. Meanwhile, CPUs asyn-
chronously load data and construct quad-trees to track the spatial
layout of adaptively compressed patches described in Fig. 3.

Note that this multi-level strategy aligns the parallelism hier-
archy with the hardware architecture to optimize performance.
Neither DDP nor TILES sequence parallelisms requires frequent
communication, and are therefore mapped to cluster nodes with
slower network communication. Tensor and FSDP model paral-
lelisms requires more frequent communication, and are therefore
mapped to GPUs within the same node and across neighboring
nodes to utilize their faster in-node and neighboring-node network
communications. The Flash Attention require the most frequent
communication and are therefore mapped to SMs within the same
GPU, which has the fastest network through shared L2 cache.

4.4 Optimizations
To further boost performance, we applied these optimizations:

Hybrid-OP Parallelism. We adopt the Hybrid-OP optimization
technique from ORBIT [46], which leverages the mathematical
structure of matrix chain multiplication to shard model parame-
ters in alternating row and column dimensions. This optimization
combines tensor model parallelism with FSDP, achieving superior
scalability with reduced communication overhead and frequency
compared to without Hybrid-OP.

Flash Attention. To accelerate self-attention computation, we
use Flash Attention [5], which applies a cache-blocking technique
to minimize memory access to GPU global memory. By maximizing
data reuse from high-bandwidth on-chip cache, Flash Attention
significantly improves compute throughput through higher cache
hit rates and faster memory access.

Mixed Precision and Layer Wrapping.We further utilize BFLOAT16
mixed-precision to speed up training while reducing memory usage.
To address numerical instability—where gradients with extreme

https://doi.org/10.1145/3712285.3771989


ORBIT-2: Scaling Exascale Vision Foundation Models for Weather and Climate Downscaling EngageCSEdu. https://doi.org/10.1145/3712285.3771989

Dataset Type Interval Region Res. (km) In/Out Vars Sample Dim. (in→out) # Pairs Size (GB)
Pretraining

ERA5→ ERA5 Reanalysis Hourly Global 622→156 23 / 3 [32,64,23]→[128,256,3] 367,920 200
ERA5→ ERA5 Reanalysis Hourly Global 112→28 23 / 3 [180,360,23]→[720,1440,3] 367,920 6,328
PRISM→ PRISM Observation Daily U.S. 16→4 7 / 3 [180,360,7]→[720,1440,3] 14,235 189
DAYMET→ DAYMET Observation Daily U.S. 16→4 7 / 3 [180,360,7]→[720,1440,3] 14,946 200

U.S. Regional Fine-Tuning for Tmin, Tmax and Precipitation
[ERA5, DAYMET]
→ DAYMET

Reanalysis
& Observation Daily U.S. 28→7 23 / 3 [180,360,23]→[720,1440,3] 14,946 254

Global Precipitation Fine-Tuning
[ERA5, IMERG]
→ IMERG

Reanalysis
& Observation Daily Global 28→7 23 / 1 [720,1440,23]→[2880,5760,3] 8,401 745

Table 1: Datasets used for pretraining, fine-tuning, and inference. Each entry specifies the downscaling resolution, input/output variable counts,
sample dimensions, number of training samples, and total storage size.

magnitudes may underflow or overflow in BFLOAT16—we apply
PyTorch’s dynamic gradient scaling [35]. This technique automati-
cally rescales gradients into a representable range and reverses the
scaling during parameter updates, ensuring numerical stability.

To further reduce communication cost, we apply FSDP in a layer-
wise fashion [46]. Instead of sharding all model layers in a single
instance, parameters are sharded one layer at a time. This reduces
synchronization overhead and memory use.

5 HOW PERFORMANCEWAS MEASURED
Model Configuration. All experiments in Secs. 6 and 7 use four
model configurations: 9.5M (256-dim embedding, 6 layers, 4 heads),
126M (1024-dim, 8 layers, 16 heads), 1B (3072-dim, 8 layers, 24
heads), and 10B (8192-dim, 11 layers, 32 heads) parameters.
System Details. All experiments were conducted on the Frontier
supercomputer from Oak Ridge National Lab. Each node consists
of one 64-core AMD EPYC CPU and 8 GPUs (64 GB memory each),
organized into 4MI250X cards with twoGPUs per card. GPUs on the
same card communicate via Infinity Fabric CPU-GPU, while all four
MI250X cards are connected via 50 GB/s GPU-GPU Infinity Fabric.
Nodes are interconnected using 100 GB/s Slingshot-11. Software
stack includes PyTorch v2.7, ROCm v6.3.1, and libfabric v1.22.

The only exception is Table 4, which compares sustained through-
put on Frontier and Alps supercomputer. Alps is built on NVIDIA
GH200 Grace Hopper Superchips. Each node features 4 Hopper
GPUs (96 GB memory each), with every GPU paired to a 72-core
Grace CPU via a 900 GB/s NVLink-C2C interface, enabling uni-
fied CPU–GPU memory. Nodes are interconnected using NVIDIA
Quantum-2 InfiniBand.
Datasets. Table 1 summarizes the datasets used for pretraining
and fine-tuning. ORBIT-2 can perform downscaling at arbitrary
resolution but as a use case demonstration, our model is trained on
paired input→ output datasets for 4x spatial refinement.

For global pretraining, we use the ERA5 reanalysis dataset (1980-
2020) [15], which integrates historical observations with numerical
simulations. Two ERA5 resolution pairs are used: 622 km→ 156 km
and 112 km→ 28 km. The data are split into 38 years for training,
2 years for validation, and 1 year for testing. 23 input variables
are used, including 5 static fields, 12 atmospheric variables (humid-
ity, wind speed, and temperature at 200, 500, and 850 hPa), and 6
surface variables. For United States (US)-focused pretraining, we
utilize the PRISM and DAYMET observation datasets (from 1980 to

2022) [4, 39], which derived from ground-based weather stations.
We perform 4x downscaling from 16 km to 4 km.

For continental U.S. fine-tuning, inputs include both ERA5 and
DAYMET at 28 km, with 7 km DAYMET as output ground truth.
The fine-tuning dataset is split into training, validation, and testing
in the same way as pretraining. The prediction output variables are
daily minimal temperature (Tmin), maximal temperature (Tmax),
and total precipitation. For global fine-tuning, we target precipita-
tion only and inputs include both ERA5 and IMERG precipitation
data at 28 km, downscaled to 7 km resolution. IMERG [19] is a
satellite-based global precipitation observations from NASA. Model
predictions are daily aggregated and compared to IMERG.
Performance Metrics. The total number of floating point op-
erations (FLOPs) of the systems was collected via the Microsoft
Deepspeed Profiler [32] and we only gathered the FLOPs on GPUs.
Only the mixed-precision BFLOAT16 results were reported. We
measured following performance:
• Time-to-solutions. Defined as the average wall time to downscale
each sample during training. Equivalent to epoch runtime divided
by the total sample count. We reported numbers for both 622→
156 and 112→ 28 km resolutions.
• Strong scaling efficiency. Measured speedup per epoch relative to
GPU count, with the runtime at 512 GPUs (64 nodes) as the 100%
baseline.
• Sustained throughput. It is defined as the total FLOPs to down-
scale each data point, divided by the average wall clock time in
seconds. The performance includes the whole application with
IO. Reported in ExaFLOPS.
• Accuracy. We use both scientific and image-based metrics for
downscaling accuracy against observations: Coefficient of de-
termination (𝑅2), Root-Mean-Square-Error (RMSE), RMSE for
Quantiles, Structural Similarity Index (SSIM), and Peak-Signal-
Noise-Ratio (PSNR). Higher 𝑅2, SSIM, and PSNR scores represent
higher fidelity downscaling, while lower RMSE represents higher
fidelity downscaling.

Dataset, Code andModel Checkpoint Release. Datasets, source
code, and model checkpoints from this work are made publicly
available through GitHub repository [45].

6 COMPUTING PERFORMANCE RESULTS
Speedup Ablation Studies. Table 2(a) presents an ablation study
comparing the training performance of vanilla conventional ViT
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Arch Model Size Resolution (km) Seq. Length Compression Tiles Time/sample (s) Speedup PSNR SSIM
(a) Reslim Architecture Speedup Comparison with ViT

ViT 9.5M 622→156 24,576 1× 1 7.3e-4 1 35.0 0.94
Reslim 9.5M 622→156 24,576 1× 1 1.1e-6 660 36.7 0.96
ViT 9.5M 112→28 777,660 1x 1 OOM NA NA NA
Reslim 9.5M 112→28 777,660 1× 1 1.2e-3 NA 37.6 0.96

(b) Adaptive Compression & Tiling Speedup Comparison with Reslim Baseline
Reslim 9.5M 112→28 777,660 8× 1 3.6e-4 3.3 37.7 0.96
Reslim 9.5M 112→28 777,660 16× 1 1.8e-4 6.6 37.8 0.96
Reslim 9.5M 112→28 777,660 32× 1 1.7e-4 7.1 37.9 0.96
Reslim 9.5M 112→28 777,660 1× 4 8.0e-4 1.5 37.7 0.96
Reslim 9.5M 112→28 777,660 1× 16 6.3e-4 1.9 37.7 0.96
Reslim 9.5M 112→28 777,660 1× 36 7.4e-4 1.6 37.7 0.96

Table 2: (a) Computing performance comparison between vanilla conventional ViT and Reslim at 128 GPUs. For 622→156 km downscaling,
Reslim achieves a 660× speedup over conventional ViT while maintaining accuracy. (b) Illustrates Reslim’s performance gains at varying
adaptive compression rates and tile counts, relative to a Reslim baseline without compression or tiling.

Figure 6: Illustration of ERA5 surface temperature downscaling: (a) input at 622 km resolution, (b) ORBIT-2’s downscaled prediction at 156 km,
and (c) ground-truth at 156 km.

and the proposed Reslim architectures, using models with 9.5M
parameters and at 128 GPUs. Two ERA5→ERA5 downscaling tasks
were used: 622→156 km and 112→28 km (details in Table 1). Each
hourly output sample is tokenized into image patches. For the
622→156 km task, outputs of shape [128, 256, 3] and 2×2 patch size
yield sequence length of 24,576; for 112→28 km, output size [720,
1440, 3] produces 777,660 tokens. No adaptive spatial compression
or tiling was applied in this comparison. For visualization, Fig. 6
illustrates an example ERA5 hourly sample for surface temperature:
(a) ERA5 input at 622 km, (b) downscaled prediction at 156 km
using Reslim architecture, and (c) ERA5 ground truth at 156 km.

The seventh column of Table 2(a) reports the average time to
downscale each hourly sample. The eighth column shows the speedup
from Reslim relative to the ViT baseline. Notably, the Reslim ar-
chitecture avoids expensive upsampling operations by operating
directly on low-resolution inputs, resulting in significant computa-
tional savings. For the smaller 622→156 km task, Reslim achieves
a 660× speedup over ViT at the same number of GPUs while main-
taining comparable accuracy, as measured by PSNR and SSIM. This
demonstrates the effectiveness of Reslim’s residual learning design
and Bayesian training loss in maintaining predictive accuracy while
reducing computational cost. For the larger 112→28 km resolution
task, the ViT model fails due to out-of-memory (OOM) errors. Con-
sequently, a direct speedup comparison is not available, although
Reslim completes the task efficiently and maintains high accuracy.

Table 2(b) explores further speedup gains from adaptive spatial
compression and sequence tiling, compared to the Reslim baseline
(Table 2(a), row 4), all using 128 GPUs. Adaptive compression with
a 32× sequence length reduction yields up to a 7.1× speedup with
no loss in PSNR or SSIM. Further compression yields diminishing

returns due to quad-tree overhead. Tiling provides up to 1.9× with
16 tiles per sample. Further tiling introduces excessive halo padding
overhead and degrades computing performance. Accuracy remains
the same across all settings.
Maximal Sequence Length Scaling. Table 3 presents sequence
length and resolution scaling performance of various model ar-
chitectures and strategies, demonstrating how the combination
of spatial compression, tiling, and the Reslim architecture enables
extreme sequence lengths. We achieve sequence lengths of up to 4.2
billion tokens (global downscaling resolution of 0.9 km) for a 9.5M
parameter model and up to 671 million tokens (global resolution
2.3 km) for a 10B parameter model. These results surpass the state-
of-the-art in sequence scaling by more than 22,000×, compared to
state-of-the-art sequence parallelism of 188K tokens [40], and the
Swin Transformer at 147K tokens [28].

All experiments utilize 23 input variables (12 atmospheric, 6
surface, and 5 static) and produce 18 output variables (excluding
static inputs). Using a conventional ViT with 9.5M parameters, the
maximum sequence length is limited to 25K tokens (coarse 156 km
global resolution) when using 8 GPUs. Scaling this ViT model to
10B parameters results in an out-of-memory (OOM) error, making
global downscaling infeasible.

In contrast, Reslim demonstrates significantly better scaling.
With just 8 GPUs, a 9.5M parameter Reslim model scales to 298M
tokens at a 3.5 km global resolution. This corresponds to an output
tensor of shape [5760, 4520, 18], assuming a 2×2 image patch size.
Increasing the number of GPUs to 32, we achieve 466M tokens at
2.7 km resolution.
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Architecture Model Size Compression Tiles GPUs Max Seq. Length Output Size Global Resolution (km)
ViT 9.5M 1× 1 8 25K [128, 256, 18] 156
ViT 10B 1× 1 8 OOM — —
Reslim 9.5M 1× 1 8 298M [5760, 11520, 18] 3.5
Reslim 9.5M 1× 1 32 466M [7200, 14400, 18] 2.7
Reslim 9.5M 4× 16 8 1.1B [11520, 23040, 18] 1.7
Reslim 9.5M 4× 16 128 4.2B [21600, 43200, 18] 0.9
Reslim 10B 1× 1 8 18M [1440, 2880, 18] 14
Reslim 10B 4× 16 8 74M [2880, 5760, 18] 6.9
Reslim 10B 4× 16 512 671M [8640, 17280, 18] 2.3

Table 3: Maximum sequence length scaling across architectures, model sizes, compression, tiles and GPU count.

Figure 7: (a) TILES sequence scaling algorithm speedup across GPUs, compared to an 8-GPU baseline that does not utilize tiling. (b) Strong
scaling efficiencies up to 8192 nodes (65,536 GPUs) for various model sizes, maintaining a strong scaling efficiencies of 74-98% at 8192 nodes.

Model Size 9.6M 126M 1B 10B
Frontier (MI250x) 23 76 122 166
Alps (GH200) 72 212 251 368

Table 4: Sustained computing throughput (PFLOPs) comparison of
Frontier and Alps on 2048 GPUs.

Model Size 9.5M 126M 1B 10B
Inference Time (s) 4.5e-3 2.6e-2 7.2e-2 5.5e-1

Table 5: Model inference speed on a single node (8 GPUs).

When combining Reslim with both spatial tiling (16 tiles per
sample) and adaptive spatial compression (4×) techniques, substan-
tial improvements are obtained. With these methods, the model
achieves 1.1B tokens on only 8 GPUs, corresponding to down-
scaled output of size [11520, 23040, 18]. This result is made possible
through several key compression techniques:
• Channel aggregation in Reslim (see Fig. 2) reduces the sequence
length by 18× by aggregating channels.
• Spatial tiling divides the sample into 16 tiles, reducing the se-
quence length per GPU by 16×.
• Adaptive spatial compression reduces sequence by 4×.
• Reslim processes directly on low-resolution input, reducing the
effective sequence length by 60×.

Combining all four, the effective per-GPU sequence length becomes
only 17,280 tokens, despite the global output representing 1.1 billion
tokens. Finally, by scaling to 128 GPUs, we achieve our largest
configuration: 4.2 billion tokens at 0.9 km resolution.

For the 10B parameter model, Reslim still scales efficiently. With-
out compression or tiling, it reaches 18 million tokens. With 4×
compression, 16 tiles, and 512 GPUs, the model handles 671 million
tokens at 2.3 km resolution.
TILES Sequence Scaling Speedup. Fig. 7(a) demonstrates the
scalability of the TILES algorithm. With 16 tiles per sample, TILES

achieves a 1.9× speedup over the non-tiling baseline, both at 8 GPUs,
using a 9.5M parameter model on the ERA5→ERA5 112→28 km
downscaling task. As GPU count increases, speedup scales nearly
linearly, reaching 515× at 2048 GPUs relative to the 8-GPU baseline
without tiling. This highlights the scalability and minimal overhead
of the TILES approach for distributed training.
Strong Scaling Efficiencies & Sustained Throughput. Fig. 7(b)
presents strong scaling performance across model sizes (9.5M to
10B parameters) using the same dataset as in Fig. 7(a). Experiments
were conducted at scales of 64, 256, 1024, 4096 and 8192 nodes with
8 GPUs for each node at Frontier supercomputer, employing all four
forms of orthogonal parallelism (see Sec. 4). Each point in the figure
reports the average runtime in second per hourly sample with a
data label for corresponding strong scaling efficiency, relative to
each model’s baseline performance at 64 nodes (512 GPUs).

All model sizes maintain high strong scaling efficiencies between
74–98%. The smallest model (9.5M) underutilizes hardware at large
scales due to insufficient computing with small model, with 1.3e-6
seconds per sample and a sustained computing throughput at 670
PetaFLOPS at 8192 nodes (65,536 GPUs). In contrast, larger models
saturate compute resources: the 126M, 1B, and 10B models reach
sustained throughputs of 2.4, 3.5, and 4.1 ExaFLOPS, respectively,
at 8192 nodes. These results demonstrate the strong scalability of
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Fine-Tuning Task Model Size R2 RMSE RMSE 𝜎1 > 68% RMSE 𝜎2 > 95% RMSE 𝜎3 > 99.7% SSIM PSNR

U.S. Tmin (Kelvin) 9.5M 0.991 3.812 4.652 9.704 15.497 0.958 29.02
126M 0.999 0.505 0.630 1.025 1.491 0.987 45.96

U.S. Precipitation (mm/day) 9.5M 0.975 0.146 0.166 0.344 0.449 0.931 29.03
126M 0.979 0.135 0.154 0.296 0.365 0.932 30.20

Global Precipitation (mm/day) 9.5M 0.986 0.098 0.120 0.136 0.133 0.923 35.09
126M 0.986 0.099 0.122 0.137 0.138 0.913 35.04

Table 6: Comparison of downscaling accuracy for fine-tuning tasks for U.S. temperature (Tmin), U.S. precipitation, and global precipitation
using models with 9.5M and 126M parameters. The table includes 𝑅2, RMSE, RMSE at different percentiles (𝜎1, 𝜎2, 𝜎3), SSIM, and PSNR.

Figure 8: Power spectra of downscaled minimum temperature us-
ing 9.5M and 126M parameter models, showing improved high-
frequency fidelity with increased model capacity.

Reslim and the effectiveness of orthogonal parallelism for exascale
climate downscaling.
Cross Platform Throughput Comparison. Table 4 compares
sustained computing throughput on Frontier (AMD MI250x) and
Alps (NVIDIA GH200) supercomputers, using 2,048 GPUs across
varying model sizes. The training dataset is the same as Fig. 7,
downscaling ERA5 from 112 km to 28 km resolution. On Frontier,
throughput scales from 23 PFLOPs for a 9.6M-parameter model to
166 PFLOPs for a 10B-parameter model. On Alps, throughput is
higher, reaching 72 PFLOPs for the 9.6M-parameter model and 368
PFLOPs for the 10B-parameter model.
Inference Speed. All the results above focus on computing perfor-
mance for training, but a key advantage of AI foundation models
is their efficiency at inference. Once trained, they can be deployed
on edge devices with limited resources and deliver near real-time
predictions. We evaluate inference performance on a single Fron-
tier node with 8 GPUs (Table 5), using the same ERA5→ERA5
dataset as in Fig. 7 and Table 4. For the 9.5M-parameter model,
downscaling each global sample requires only 4 millisecond. For
the 10B-parameter model, it takes 0.55 second. In contrast, the non-
AI numerical approaches require days or weeks of computation
on a large supercomputer [7, 38]. This highlights the unmatched
prediction speed of AI, enabling deployment in resource-limited
environments with near real-time performance.

7 SCIENCE PERFORMANCE RESULTS
U.S. Regional Fine-Tuning. Following pretraining on the datasets
in Table 1, we fine-tune ORBIT-2 models with 9.5M and 126M
parameters on two tasks for science demonstration: (1) US-specific
downscaling of ERA5 and DAYMET data (1980 to 2022) from 28
km to 7 km, evaluated against 7 km DAYMET observations for
both daily total precipitation and Tmin; and (2) global precipitation
downscaling of ERA5 and IMERG (1998 to 2022) from 28 km to 7 km,

evaluated against 7 km IMERG observations. These tasks evaluate
model capability in downscaling at both regional and global scale.

Table 6’s second row summarizes U.S. regional downscaling
results for Tmin at the unseen testing years. Both 9.5M and 126M
models accurately reconstruct high-resolution temperature at 7 km
resolution and are capable of capturing extremes, with the larger
126M model consistently outperforming the smaller 9.5M model
across all metrics with lower RMSE, and higher 𝑅2, SSIM and PSNR.
Notably, the 126M model achieves an 𝑅2 of 0.999 and SSIM of 0.987,
establishing a new benchmark for temperature downscaling at 7
km resolution.

Fig. 8 provides corresponding spectral analysis for Tmin down-
scaling results in Table 6’s row two, by comparing the spatial power
spectra of the two model sizes. The 126M model accurately cap-
tures high-frequency content, closely matching the high frequency
spectral characteristics of the DAYMET observation ground truth.
In contrast, the 9.5M model deviates from the ground truth at high
frequencies. This demonstrates the larger model’s ability to resolve
fine-scale spatial variability, emphasizing the value of increased
model capacity for high-fidelity climate downscaling.

Table 6’s third row presents downscaling results for daily total
precipitation—one of the most challenging variables due to its high
spatial variability and localized extremes. ORBIT-2 demonstrates
strong performance, closely matching observations when downscal-
ing to 7 km resolution. The 126M model consistently outperforms
the 9.5M model across all evaluation metrics, achieving an 𝑅2 of
0.979 and an overall RMSE of 0.135 mm/day. Notably, the large
model also accurately captures extreme precipitation events, with
RMSE values of 0.365 mm/day at the 99.7th percentile and 0.525
mm/day at the 99.99th percentile. All RMSE values for precipitation
are computed in log-transformed space using log(𝑥 + 1), where 𝑥
denotes daily precipitation in millimeters.
Global Precipitation Fine-Tuning. ORBIT-2’s fine-tuning per-
formance for global precipitation downscaling task is summarized
in Table 6 row 4. Both model sizes (9.5M and 126M parameters)
achieve similar accuracy, with 𝑅2 = 0.98, SSIM = 0.92, PSNR =
35.0, and RMSE = 0.09 mm/day (in log(𝑥 + 1) space). These results
underscore ORBIT-2’s robustness across both regional and global
downscaling tasks. For visualization, Fig. 9 shows a one-day snap-
shot of an example region, comparing ERA5 precipitation at 28
km with ORBIT-2 downscaling at 7 km. A full-year animation is
available online Click Here, illustrating the spatial resolution gains
and improve climate pattern for year 2020.

To evaluate long-term fidelity and climate pattern, Fig. 10 re-
ports performance of high-resolution downscaling in capturing key
precipitation characteristics for 1998–2021 across 58 climatically
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Figure 9: Example region for global precipitation downscaling during fine-tuning. (a) ERA5 input at 28 km resolution; (b) ORBIT-2 downscaled
output at 7 km. Click on the link here for an interactive visualization of global precipitation downscaling for the year 2020 Click Here.

Figure 10: (a) ERA5 skill scores for global precipitation at 28 km resolution, evaluated using averaged 𝑅2 and SSIM, over 24 years (1998-2021).
Analysis metrics include monsoon onset and withdrawal, seasonality, entropy, and Hovmöller diagnostics. (b) ORBIT-2 skill scores for global
precipitation at 7 km resolution, showing improved fidelity across the same metrics.

homogeneous land and ocean regions defined by the Intergovern-
mental Panel on Climate Change (IPCC). For each region, we report
a composite skill score, defined as the averaged 𝑅2 correlation
and SSIM (scaled between 0 to 100), with higher values indicating
stronger agreement with the IMERG 7 km observational reference.

Performance is further analyzed in nine monsoon regions, where
precipitation is governed by strong seasonality and land-ocean
atmosphere interactions, and significant hydrological and economic
impacts. Following [3], we evaluate monsoon onset and withdrawal
timing, precipitation seasonality and entropy, and the northward
progression of rainfall (via Hovmöller diagnostics). Results show
substantial improvements with ORBIT-2. As shown in Fig.10(a),
ERA5 at 28 km resolution exhibits moderate skill scores across
metrics and regions, whereas ORBIT-2 7 km downscaling (Fig.10(b))
consistently achieves much higher skill scores across all metrics
and monsoon regions. These results highlight the effectiveness of
ORBIT-2 in enhancing the spatiotemporal fidelity of precipitation,
especially in regions governed by complex climatic processes.

8 IMPLICATION
ORBIT-2 represents a significant leap forward in the convergence
of artificial intelligence, HPC, and Earth system science. By over-
coming fundamental challenges in scalability, resolution, and un-
certainty, ORBIT-2 sets a new standard for climate and earth system
foundation models.

Impact onHPC. ORBIT-2 pushes the frontiers of HPC by enabling
ViTs at unprecedented scale. Through its novel TILES algorithm,
ORBIT-2 reduces the self-attention complexity from quadratic to
linear, allowing for efficient processing of ultra-long sequences.
Complementing this, the Reslim architecture introduces a light-
weight, uncertainty-aware learning framework that leverages resid-
ual learning and Bayesian regularization to improve efficiency and
training robustness.

Crucially, ORBIT-2 achieves breakthrough scalability in ViT
training, scaling up to 10 billion parameters model size across
65,536 GPUs, and scale up to 4.2 billion token sequence length,
several magnitudes longer than the state-of-the-art long sequence
implementation that scales to 188K tokens. It sustains up to 4.1
ExaFLOPs of performance with 74–98% scaling efficiency at 65,536
GPUs, setting a new benchmark for exascale AI. ORBIT-2 serves as a
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blueprint for next-generation exascale foundation models, enabling
transformative applications across domains including genomics,
fluid dynamics, astrophysics, and Earth system modeling.

Impact on Climate Science. ORBIT-2 enables hyper-resolution,
global-scale downscaling with state-of-the-art accuracy and effi-
ciency. Against observations, it achieves an 𝑅2 of 0.999 for tem-
perature and 0.979/0.986 for precipitation at 7 km resolution over
the continental United States and globally, respectively. Unlike
traditional approaches, ORBIT-2 generalizes across variables and
regions using a single foundation model, improving climate projec-
tion fidelity, resolving fine-scale processes, and detecting localized
extremes. This unified capability makes ORBIT-2 a valuable tool for
supporting climate adaptation and mitigation strategies. Besides
the above capability, this paper also shows ORBIT-2 foundation
AI model’s capability to perform global downscaling in 4 millisec-
ond for 9.5M parameter model and 0.5 second for a 10B parameter
model with only 8 GPUs through model inferencing, showing the
AI model’s capability for near-real-time climate and weather pre-
diction on edge devices. This is transformative compared to the
conventional numerical simulation methods, which often takes
hours and days to compute on a large supercomputer.

Limitations and Practical Considerations. Like all AI-based meth-
ods, ORBIT-2 may inherit biases from training data source and
lacks strict enforcement of physical conservation laws, requiring
caution in applications sensitive to energy or mass balance. Practi-
cal deployment will require careful consideration on application-
based bias correction, physics-informed integration, and domain-
specific fine-tuning to ensure reliability across diverse climates
and regimes. Finally, while near-real-time inference on limited
hardware is promising, robust evaluation in operational settings
is needed before widespread deployment in climate services and
decision-making.
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