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s 1 Background m

The electric power grid plays a vital and growing role in society, and ensuring its reliable
operation is essential from a national security standpoint

Unfortunately, high-altitude EMPs (HEMPs) and geomagnetic disturbances (GMDs) both
present a potential high-impact risk to the grid
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= increased losses, voltage degradation
= thermal damage, cascading failures, blackouts

Power plant

No panacea currently available
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= grid dispatch for small-medium scale events e
= passive blocking devices for medium-large scale events image credit: GAO-19-98 I
= no clear solution for extreme events (Carrington-level solar storm, high yield nuclear EMP)

New approach/technologies needed to secure critical infrastructure



‘ Conventional Transformer During HEMP/GMD

Vac
phi=0

|

"]

Simulated
CM insult

Vcm

Vac/3
Rn :
Transformer pushed into
=\ half-cycle saturation...
...leading to distorted current
-
3) distorted current due
2) flux offset to half-cycle saturation
due to GIC
B
BH-curve
=
i
>
1) nominal fluxand ¥
current wavevforms
de—

Current (A) Voltage (V)

Current (A)

(851
o
<

<

<

-20- é ! ; i j :
79 R S W [T R1 R ATATRRIRYIAIATR AT

-60

Prlmary 5|de Grld Voltages

0 i ; ; g
0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58
Time (s)




I
s | Solid-State Transformer for HEMP/GMD Mitigation m

Approach is to design a solid state transformer (SST) which can replace/protect
susceptible magnetic transformers

SST can absorb CM currents caused by a HEMP/GMD, without effecting power delivery
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s | CM Solid State Transformer Design

absorb CM insult from HEMP/GMD and prevent disturbance on secondary

4-leg inverter topology selected for input/output converters
enables control of d, g, and zero-sequence components
Dual-active bridge (DAB) selected for dc/dc converter

provides galvanic isolation and large step-up/down ratios

Dual Active Bridge

E

Type-1V architecture selected to support dc energy storage and increased control flexibility [1]
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Franquelo, “Three-dimensional space vector modulation in abc Ubus
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Four Leg Inverter

Specifications: 480Vac/120Vac, 10kW, respond to 0.5pu CM insult
3-D space-vector modulation (SVM) scheme required to control DQO [2,3]

Hardware designed for 800Vdc, 40kHz switching

3-leg SVM (2D)
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DC parameters:  AC parameters:
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Wolfspeed XM3
s | Four Leg Inverter (Continued) power module

Inverter design based around 1.2kV Silicon carbide (SiC)
half-bridge power modules [4]

3D SVM implemented on Speedgoat FPGA module [5]
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Standalone testing to ensure design meets specifications
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o 1 Dual Active Bridge

Primary-side

Dual active bridge (DAB) based around high frequency . 4+:

planar transformer [6] Cp5

Designed to operated at 800Vdc (input), 100kHz
Rc

Phase-shift controller [7] regulates output voltage
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[6] “Payton planar,” www.paytongroup.com
[7] B. Zhao, Q. Song, W. Liu, and Y. Sun, “Overview of Dual-Active-Bridge Isolated Bidirectional DC-DC Converter for High-
Frequency-Link Power-Conversion System,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4091-4106, 2014
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Controls are designed to transfer ac power from primary to secondary while absorbing CM insults
Primary-side AC/DC responsible for controlling CM current and drawing enough power to supply
downstream load

DAB responsible for maintaining constant DC voltage for secondary inverter

I
0 I'SST Controls m

Secondary inverter can be configured to be grid forming (GFM) or grid following (GFL)
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Back-to-back testing conducted to verify four-leg inverter can respond to CM insult

Left inverter acts as source (grid) and outputs AC waveforms and simulated CM insult

I
CM Mitigation Test Setup m

Right inverter acts as SST front-end and responds to CM insult (returns CM current to zero)

Four-leg Inverter (Grid Emulator) Four-leg Inverter (SST Front-end)
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2 I CM Mitigation Results
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i3 | Full SST Assembly and Testing

Full SST assembled in rack with cooling, measurement ports, wiring, etc.
Nominal ac/ac capabilities of SST tested against grid simulator

Further testing expected to evaluate performance of SST (efficiency,
improved controls response, GFM/GFL output behavior, etc.)
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Work presented on the design and testing of an SST for HEMP/GMD CM mitigation

SST is shown to function as an effective ac/ac converter during normal operations, and
respond successfully to mitigate CM current during a simulated CM insult

Future work will explore:

«  Dynamic response of full SST to simulated CM insult (including energy storage
requirements)

« How the SST compares to a conventional magnetic transformer during HEMP/GMD

I
12 | Conclusions and Future Work m
I

« How the SST can be deployed in the grid to maximize overall system resilience



15 Backup




‘ Secure Scalable Microgrid Testbed at Sandia [10]

Microgrid testbed facility at Sandia
National Laboratories

AC, DC, and hybrid microgrid
conflguratlons

Multiple Microgrid Testbed

Networked control and measurement
capabilities for repeatable experiments

Equment
Real-time control computers
= Data acquisition system
= Custom built power converters
= Energy storage emulators
= Programmable loads
= High power supplies
= Grid simulators

[10]S. Glover, J. Neely, A. Lentine, J. Finn, F. White, P. Foster, O. Wasynczuk,
S. Pekarek, and B. Loop, “Secure Scalable Microgrid Test Bed at Sandia
National Laboratories,” in 2012 IEEE International Conference on Cyber
Technology in Automation, Control, and Intelligent Systems (CYBER)
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