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DOMAIN DECOMPOSITION FOR INTEGER OPTIMAL CONTROL WITH
TOTAL VARIATION REGULARIZATION*

ROBERT BARALDI' AND PAUL MANNS#

Abstract. Total variation integer optimal control problems admit solutions and necessary optimality conditions
via geometric variational analysis. In spite of the existence of said solutions, algorithms which solve the discretized
objective suffer from high numerical cost associated with the combinatorial nature of integer programming. Hence,
such methods are often limited to small- and medium-sized problems.

We propose a globally convergent, coordinate descent-inspired algorithm that allows tractable subproblem so-
lutions restricted to a partition of the domain. Our decomposition method solves relatively small trust-region
subproblems that modify the control variable on a subdomain only. Given nontrivial subdomain overlap, we prove
that a global first-order necessary optimality condition is equivalent to a first-order necessary optimality condition
per subdomain. We additionally show that sufficient decrease is achieved on a single subdomain by way of a trust-
region subproblem solver using geometric measure theoretic arguments, which we integrate with a greedy patch
selection to prove convergence of our algorithm. We demonstrate the practicality of our algorithm on a bench-
mark large-scale, PDE-constrained integer optimal control problem, and find that our method is faster than the
state-of-the-art.
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1. Introduction. Let Q C R? be a bounded Lipschitz domain, d € N, o > 0, and M € N.
We consider integer optimal control problems [14] of the form

®) wergilr(lﬂ) J(w) = F(w) + aTV(w)

st. w(x) € W= {wi,...,wpm} C Z for almost every (a.e.) x € Q,

where I : L'(Q) — R is lower semicontinuous with respect to convergence in LP(£2) for some p > 1
and bounded below and TV : L}(Q) — [0,00] denotes the total variation seminorm. Typically,
F = jolS for j some tracking-type functional and S a solution operator of a PDE, ODE, or
another integral operator. Such situations arise in control of switched systems [11, 19, 37], topology
optimization [8, 9, 15, 29, 40], or optimal experimental design [36, 43].

Specifically, we consider the setting present in [32], where the authors proposed to solve a
sequence of subproblems

min_ (g, w — w)r2(0) + aTV(w) —aTV(@)
(TR)  TR(m,g,A) = { vEL®
st. Jlw =101 <A and w(z) € W for ae. z €,

within a trust-region algorithm for globalization. Therein, the function g is (an approximation of)
the Riesz representative VF(w) € L>(Q) if F is Fréchet differentiable wrt. the L'-norm so that the
trust-region subproblem (TR) arises from (P) by solving a partially linearized model in an L'(Q)-
ball around a given point w, that is, the current iterate of the algorithm. While we will assume
said Fréchet differentiability of F' to derive our results, we note that the presented algorithm and
its iterations may still be well defined and meaningful if, e.g., subgradients are used if F' is not
differentiable. After discretization of the domain € and the introduction of a piecewise constant
ansatz for w, the trust-region subproblems become integer linear programs [28]; these are often
computationally expensive to solve in practice (see, e.g., [28, ?]). This difficulty stems from the
large number of variables present in the integer linear programs, causing long running times or even
subproblem computational infeasibility when particularly fine discretizations are chosen. While
dynamic programming-based algorithms [33, 39] allow for efficient subproblem solvers on one-
dimensional domains, no such approach is known for multi-dimensional domains. Instead, recent
results [?] indicate that the problems are likely NP-hard, thereby requiring integer programming
solver-based methods. These may moderately improve run times, but such structure-exploitation
techniques are unlikely to decrease wallclock time by an appreciable amount. Moreover, when
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considering a piecewise control function ansatz, as in [32, 7], the ezact total variation is the sum
of interface lengths between the level sets weighted by the jump heights across the sets; see, for
example, [16]. Such settings are inevitable if the discretized controls are discrete-valued. Using
uniform meshes and driving the mesh size to zero yields a gap between the discrete problem and the
intended infinite-dimensional limit problem, because the restricted geometry of the discretization is
reflected in the infinite-dimensional limit [10]. The difficulty is compounded in finite difference and
finite element-based approximations, where the underlying meshes for the control and finite-element
ansatz coincide [5], cannot be applied directly because interpolation and projection operators can
violate integer feasibility. The authors of [?] overcome this problem via a two-level discretization
combined with a cutting plane generation strategy, the latter of which successively enriches the
integer subproblems, e.g. (TR), with linear inequalities. These allow isotropic approximations
of the total variation seminorm despite the aforementioned geometric restriction. However, this
process generates even larger problem formulations that are even less tractable; see the compute
times reported in §6.4 of [38], in particular Table 6.11, where these problem formulations are used
within the algorithm from [32]. Consequently, reducing the size of subproblems is a sensible starting
point to scale the algorithm from [28, 32] to practical problem sizes, even given the potential cost
incurred by computing more subproblem solutions.

Many large-scale problems, particularly in PDE numerics, are solved using domain decomposi-
tion approaches; see the monographs [6, 12, 21, 34]. In finite-dimensional optimization, coordinate-
descent algorithms [41, 42] can be interpreted as decomposition-based methods and are particularly
popular for settings with separable or block-separable objective functions. Coordinate-descent al-
gorithms update only on a subset of the coordinates at a time, either cyclically or via random
selection; in extreme cases, this may be only one coordinate. Hence, cost per iteration is reduced
to an acceptable level although the number of iterations may be very large. Such methods have
been explored for convex optimization with TV terms, primarily in the context of image denois-
ing with an L2-fidelity term. Common splitting methods, such as the Chambolle-Pock algorithm
[4], perform well for small- and medium-scale problems and typically do not employ any domain
decomposition. For larger TV-regularized problems, domain decomposition, or similarly utilized
coordinate-descent methods, have been developed for both primal and (pre-)dual formulations; see
the overview articles [27, 22]. While the setting therein concerns real-valued inputs and is in partic-
ular convex, these domain decomposition techniques also make concessions in of terms convergence
guarantees or quality of the result. Specifically, naive coordinate-descent methods generally require
a separability condition on the convex, nonsmooth term [41] to converge to global minimizers. This
is, however, violated by the TV-term. Alternatively, one can consider the Euler—Lagrange equation
for perturbed TV [7, 22], which, however, fails to preserve discontinuities and edges [22]. For pre-
dual TV formulations [17], convergence guarantees to a (global) minimizer have been proven for
semismooth-Newton-type or accelerated splitting methods with overlapping and non-overlapping
domain decomposition methods [22, 23]; additionally, patch subproblems can be solved in parallel
[18, 24, 25, 26]. Discretizations considered include finite-differences [18] and finite elements [25].
The former can be solved with a variety of algorithms, e.g., Chambolle—Pock [4] or semismooth
Newton [18], yielding convergence to a solution of the dual problem. The finite-element splitting
approach [25] uses accelerated iterative soft-thresholding to achieve convergence to a solution of
the dual problem for non-overlapping domains, allowing for direct parallelization. For primal de-
composition methods to achieve such a result, a communication mechanism is required between or
after solving the decomposed problems; see [23].

Our setting is inherently non-convex, hence we do not have strong duality and therefore follow
a primal decomposition approach while striving for convergence to stationary points as in the case
sans decomposition [28, ?].

1.1. Contribution. We transfer the idea of coordinate descent to (P) and the trust-region
algorithm proposed in [32]. We decompose the domain 2 into smaller patches and solve the in-
stances of (TR) on these patches. By prescribing a covering property and thus nontrivial overlap
for the patches, we can localize the first-order necessary optimality condition on (P) from [32]
to a first-order necessary optimality on all patch problems. This in turn permits construction
of competitor sequences that allow us to prove sufficient decrease properties and determine stop-
ping criteria for patch problem solution tabulation; the latter of which is based on the predicted
reductions and trust-region radii. In turn, we are able to show convergence for a superordinate
trust-region algorithm that tabulates solutions to patch subproblems and makes a greedy update
of the iterate. Hence, there is no theoretical gap when compared to the asymptotics of the trust-
region algorithm shown in [32]. We additionally note that this does not contradict the missing
convergence guarantees of primal decomposition methods for the convex problems mentioned in
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the introduction; our optimality condition is localized on the interfaces of the level sets of w, and
thus weaker than stationarity in a real-valued and differentiable setting.

We have executed the algorithm for a test problem on a one-dimensional domain and a test
problem on a two-dimensional domain. On the one-dimensional domain, where we can use an
efficient subproblem solver from [39], the SLIP algorithm scales very well and the subproblem
solves are faster than the solution to state and adjoint equation. Consequently, the coordinate-
based approach does not give a performance benefit in this case (except for extreme situations).
This is in contrast to the two-dimensional problem, where a sufficiently large number of patches
does not impair the quality of the resulting objective function values but gives high speedups for
expensive instances. For the most expensive instance in our benchmark, our new algorithm returns
a point of very similar objective value with a speedup of approximately 125 times the approach
described [32]. Consequently, the proposed algorithm is an important step towards solving large-
scale problems, as it can be computationally much cheaper without impairing the quality of the
computed points.

While the proposed greedy update is clearly expensive, our current analysis deems it necessary
to avoid situations like the one demonstrated in the famous example in [35], in which a coordinate
descent-algorithm circumscribes the local optimum by traversing the surrounding level-sets. In such
cases, coordinate descent fails to converge in R™ when using a fixed coordinate-selection scheme.
Since, to our knowledge no other algorithmic approaches exist thus far and integer programming
problems become otherwise quickly completely intractable, we believe that a greedy approach is
justified. Additionally, we integrate a heuristic acceleration step into the algorithm that combines
block updates sequentially (largest predicted decrease to smallest) until an a posteriori decrease
condition fails. We also believe that the algorithm has a high potential for further improvements
in terms of scalability, in particular by means of randomized patch selection. Such randomization
is usually key to obtain good convergence properties for coordinate-descent algorithms without
tabulation and greedy selection [42].

1.2. Structure of the remainder. We first introduce important notation in Section 2, and
then the domain decomposition and localized/patch first-order necessary optimality (stationarity)
in Section 3. Section 4 introduces the trust-region algorithm that includes the aforementioned
tabulation and greedy update selection. In Section 5, we prove that instationary points lead
to finite tabulation and acceptable patch updates and in turn convergence of the trust-region
algorithm by means of the aforementioned competitor constructions. Section 6 provides preliminary
computational results.

2. Notation. Let [n] := {1,...,n} for n € N. The symmetric difference of sets A, B C R?
is A A B. We denote the Lebesgue measure A, and the Lebesgue space LP(Q2) on @ as |||, q,
by ||| .» with inner product (-,-);.. The restriction of a measure p to set A is u_A. For a set A,
the function x4 is the {0, 1}-valued characteristic function of A. We call a partition of a set into
sets of finite perimeter a Caccioppoli partition. For a set A C 2, we denote its points of density 1
and 0 with respect to the Lebesgue measure by A1) and A(®)| see also [30, §5.3]. For measureable
E C Q, the perimeter is defined as in [30, 32]:

P(E,Q) :==sup {/E div p(z) dz

o € CURRY, sup lo(o)] < 1}.

If P(E,Q) < oo, it is a Caccioppoli set. A partition {F;};cr of Q is a Caccioppoli partition if
> icr P(Ei,Q) < oo. The topological boundary is defined as OF and the reduced boundary is 0*E.
The essential boundary 0°A is the set of points with density of neither 1 nor 0 with respect to
A. Note that unless noted otherwise, we consider 9*E, 9°E, E© EW JE with respect to Q so
that P(E,Q) = #?~1(0*E), where #¢~1 denotes the d — 1-dimensional Hausdorff measure. For
a given Caccioppoli set E, we denote its unit outer normal vector on the reduced boundary by
ng. Moreover, if, in addition, a vector field ¢ € C°(Q, R?) is given, we recall that its boundary
divergence divg, ¢ : 0*E — R is defined by divg, =dive — ng - Vong [30, §17.3].

A function u € L'(Q) is of bounded variation (u € BV()) if its distributional derivative Du
is a finite Radon measure over €, i.e., TV(u) = |Du|(Q2) < oo where |u| is the total variation of
measure p. For a Borel set E C Q, TV(xg) = P(E,Q). The fact that a sequence of functions
{w"},, € BV(Q) converges weakly-* to w € BV(Q) is denoted by w™ - w when w” — w in L' ()
and limsup,,_, ., TV(w™) < co. A sequence {w"},, converges strictly to w € BV(w) if w™ — w in
LY(Q) and TV(w™) — TV (w) < oo.

Feasible points of (P) are functions in BV(Q) that attain values only in the finite set W;
additionally, their distributional derivatives are absolutely continuous with respect to #?~!. The
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feasible set of (P) is BV (£2) defined by
BVw(Q) = {w € BV(Q) |w(z) € Wfor a.e. x € Q} C BV(Q),

which is weak-* sequentially closed in BV(€2) [32]. Note that due to the discreteness restriction,
BVw(€) is a bounded subset of L>(§2). This also implies that the assumed lower semicontinuity
of F for some p > 1 gives lower semicontinuity of F for all p € [1, 00) when restricting to BVyw ().
In order to avoid cumbersome notation, we define for open sets B C € the restricted total variation
to B as

TVg(w Z Z lwi — w;|#HILB(8* E; N §* E;)

=1 j=i+1

for w € BVw(Q) with corresponding Caccioppoli partition {E1,...,Ey} of Q such that w =
M wixg,. Clearly, TV(w) = TVq(w).

DEFINITION 2.1 (Definition 3.1 in [32]).
1. A one parameter family of diffeomorphisms is the f € C*® : (—e€,€) x Q — §Q for some
€ > 0 such that for allt € (—e, €), the function f(-) = f(t,-) : Q@ = Q is a diffeomorphism.
2. For open A C Q, the family (ft)ie(—c,e) is a local variation in A if, in addition to 1.,
fo(z) = a for all z € Q and there is a compact set K C A such that {x € R|f,(x) # x} C
K for allt € (—e,e).
3. For a local variation, its initial velocity is defined as ¢(x) == g{ (0,z) for xz € Q.

3. Relation of Stationarity for (P) to Patch Problems. We propose to solve subproblems
on patches that only update the iterate in some part of the domain D C €. We briefly recall
stationarity for (P) from [32] and subsequently define a restricted patch-stationarity concept to
patches D that decompose the domain 2. Then we prove equivalence of stationarity and patch-
stationarity. This section references several results from [32], which is written under the general
assumption d > 2. Inspecting the arguments of [32], we observe that d > 2 is not required for the
proofs of the referenced results (it is required in [32] for proving Theorem 5.2 therein and results
building on it) so that the referenced results can all safely be used here in our unified setting d > 1.

Stationarity for (P). We provide the stationarity concept from Definition 4.4 in [32], which
leans on stationarity for the prescribed mean curvature problem below.
DEFINITION 3.1 (Stationarity, Definition 4.4 in [32]). Let F : LY(Q) — R be continuously

Fréchet differentiable. Let w € BVw(§2), that is w = Zf\il w;xg, for some Caccioppoli partition
{E1,...,En} of Q. Let VF(w) € C(Q). Then, w is stationary if

3.1
TR
. w)\x x) ne () —alw, —w;|divg. T dilx:
P J; /8*Ema* wj —w;) VE(w)(2)p(x) - np, (z) |w; il dive, ¢(z) dat* " (z) =0

holds for all ¢ € C(Q,R?).

Stationarity as defined above is a first-order necessary optimality condition for (P) that arises
from a first-order variation of the objective functional at a locally optimal point with respect to
perturbations of a feasible point’s level sets; see Proposition 3.2 below, which is shown in Theorem
4.6 in [32]. It is an extension of the variational first-order optimality for the prescribed mean
curvature problem from geometric measure theory; see, e.g., [30, Equation 12.32 and Remark 17.11].
Moreover, [28, 32] prove the limit points of a trust-region algorithm in BVw(Q2) are stationary
under regularity assumptions, the latter of which may be interpreted as constraint qualifications in
analogy to classical nonlinear programming theory. Due to the non-convexity, (3.1) is a necessary
and not a sufficient optimality condition.

The variational formulation (3.1) can be interpreted as follows: On 0*E; N0*E;, the partition
E; has distributional mean curvature —VF (w)(;‘”w;_u:jj| We refer to [31, 32] for more details and
present the following proposition:

PROPOSITION 3.2 (Theorem 4.6 in [32], Proposition 2.4 in [31]). Let F : L'(2) — R and
W € BVw(Q) satisfy the assumptions of Definition 3.1. If there is r > 0 such that

F(w)+aTV(w) < F(w) +aTV(w)

holds for all w € BV () such that ||w — ©||p1 < r, then w is stationary.
4



From the stationarity equality (3.1) and its derivation by means of local variations, it is clear that
the above-defined stationarity concept is based on purely local information that is concentrated on
the interfaces between the level sets of the feasible point w € BV (2) under consideration, see the
analysis of stationarity and corresponding remarks in [28, 31, 32]. In particular, the variational for
all character of the condition in Definition 3.1 implies that constant functions, which do not have
level set boundaries inside {2, are always stationary. We stress that this does not mean that the
algorithm proposed in [32] and the algorithm analyzed in this work necessarily stop at constant
functions. On the contrary, we initialize our algorithm with a constant function in our experiments
in Section 6 and can observe that it produces a very different point. However, by choosing a very
large value of o > 0, it is possible to construct results where the algorithm cannot leave the
stationary initial point; see also Example 3 in [22].

Patch-stationarity for (P). We now assume a family of patches @ that cover our compu-
tational domain ). We want to relate the concept of stationarity from the patches to the whole
domain and vice versa. Therefore, we introduce and analyze a patch-based stationarity concept
below.

ASSUMPTION 3.3. Let @ C 2% be a finite, open cover of €.

DEFINITION 3.4 (Patch-stationarity with respect to @). Let @ C 29, F : L}(Q) — R, and
w € BVw(Q) satisfy the assumptions of Definition 3.1 and Assumption 3.3. Then, @ is patch-
stationary with respect to @ if for all D € D the identity (3.1) holds for all ¢ € C°(D,R?).

We are ready to prove our main result for the localization of stationarity to the patch problems,
namely that stationarity and local stationarity with respect to @ are equivalent.

THEOREM 3.5. Let © C 29, F : L}(Q) — R, and w € BVw(Q) satisfy the assumptions of
Definition 3.4. Then w € BVw(Q) is stationary if and only if it is patch-stationary with respect
to D.

While the proof of the forward implication is straightforward, the reverse implication requires
some preparatory work. Namely, for an arbitrary but fixed Caccioppoli partition of 2 and ¢ €
C(Q,R?), we assert the existence of a countable set of disjoint, closed balls { B}, | k € N} so that
each By, is contained in at least one of the patches. Moreover, the Bj, exhaust supp ¢ except for a
set of #?~'-measure zero and their boundaries intersect the interfaces of the Caccioppoli partition
only in a set of #?~!'-measure zero. This auxiliary result is proven below in Lemma 3.6 as a direct
consequence of the Vitali-Besicovitch covering theorem.

LEMMA 3.6. Let @ satisfy Assumption 3.3, {E1,..., En} be a Caccioppoli partition of 2, and
¢ € C(Q,RY). Then there is a countable set ¥ = {By |k € N} of pairwise disjoint and closed
balls such that

(3.2) By, cC D for some D € D for all k € N,
M o)

(3.3) FHAL (U 8*Ei> (supp(b\ U Bk> =0, and
i=1 k=1

(3.4) (Ua* ) (0Bx)

Proof. The claim follows from the Vitali-Besicovitch covering theorem, see Theorem 2.19 in
[1], if the (uncountable) set of closed balls

(3.5) F = {B @)

x €supp¢,0 < s,Bs(x) C D,D € D, and #~ 1(33 mU@* ) }

is a fine cover of supp ¢. Specifically, we need to show (A) that for all € supp ¢ there is a ball
B,_(x), ry, > 0, which is (compactly) contained in at least one patch D € @ and (B) that each
of these balls contains infinitely many balls Bs, (z) of radii 0 < s < r, with s; N\, 0 that satisfy
e~ 1(33 @NUY, o°E ) —0.

Claim (A) follows directly from Assumption 3.3. Claim (B) follows from the fact that for balls
By(z) we have #91(9B,(z) )OUZ LO%E;) =0 for Ma.e. s € (0,r;), which we briefly argue by way
of contradiction. Assume that this assertion is false, then there exists a subset A C (0,7,) with
positive Lebesgue measure, where %d_l((?E N Uf\il O0*E;) > gp for some g9 > 0 and a.e. s € A.
This implies #9~1(Bs N Uf\il 0*E;) = oo for some 5 < r,, by virtue of the Fubini—Tonelli theorem,
which contradicts that the F; are sets of finite perimeter in 2. ]
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Next, we briefly argue that when (3.1) is violated for some ¢ € C(Q,R?), then there exists a
closed ball in the countable set F from Lemma 3.6 so that the restriction of the integrand in (3.1)
to this closed ball also implies a violation.

LEMMA 3.7. Let F: L}(Q) — R and w € BVw(Q) satisfy the assumptions of Definition 3.4.
Let @ C 2% satisfy Assumption 3.3. Let {E1, ..., Ex} be the Caccioppoli partition of ) associated
with w. Let (3.1) be violated, that is

(3.6)

M-1 M
S [ = w)VPw)@)e(w)  ne o) — ofus = w|dive, 9(e) 43 (@) >

i=1 j=i+1
/ =ij(x)

holds for some ¢ € C°(,RY) and n > 0. Let F be as in Lemma 3.6.

Then, there exist B, € F with By, C D for some D € @ and a positive scalar np > 0 such
that

M-1 M
(3.7) S>> / ij(x)xg-(x) A (z) > np.

i=1 j=i+1 6*Ei08*Ej

Proof. We first note that if the equality (3.1) is violated, then there is > 0 such that the
absolute value of the left hand side of (3.6) is greater than 1. Thus by replacing ¢ with —¢
if necessary, (3.6) holds. By virtue of the properties asserted in Lemma 3.6 and the countable

additivity of the measure gfd’lL(Uf\il B*Ei), we obtain

> i > / g () xp(x) dH T (z) >0 >0

keN i=1 j=i+1 8*E;NO*E;

from the instationarity inequality (3.6). Consequently, there has to exist a strictly positive sum-
mand on the left hand side. We use (one of the) patches D asserted by (3.5). ad

We now continue with the proof of Theorem 3.5.

Proof of Theorem 3.5. If w € BVw(Q) is stationary and D € @D, then (3.1) holds for all
¢ € C(D,R?) because Assumption 3.3 ensures that D is an open subset of Q.

Thus it remains to show that if w € BVw () is patch-stationary with respect to @, then it is
also stationary. We prove the claim by means of a contrapositive argument and assume that w is
not stationary. Let {Ey, ..., Ep} be the Caccioppoli partition of Q associated with @w. Because @
is not stationary, there are ¢ € C°(2,R9), 0 # ¢, and i > 0 such that the inequality (3.6) holds.
Let F be as in Lemma 3.6. By virtue of Lemma 3.7 there exist By € F and D € @ such that
By, C D for some D € D and a positive scalar np > 0 such that (3.7) holds. We close the proof
by constructing a C2°(D, R?)-function that violates (3.1).

To this end, we use a mollification of the restriction of ¢ onto By, that is we replace X, by
a smooth function in C2°(D,R%) in the integrand of (3.7). To this end, let ¢s = ns * (x5;¢) for
a family of positive standard mollifiers (1s)s>0. Then ¢5 € C°(Q, R?). We show that there exists
0o > 0 such that for all § € (0, dp) it holds that supp ¢5 C D and

M-1 M
(3.8) lim > Y / 2. () d#t " (z) > np,

N0 « *
O j=it1 Y O EiNO*E;

where wfj = w;(=VF(w))(¢s - ng,) — a|lw; —w;|divg, ¢s5 for all 4, j € {1,...,M}.

For all y € int By, we obtain div ¢s(y) — divé(y) and Vos(y) — Vo(y) as § N\, 0. Moreover,
BreF gives (3.4) that #9-1 (837;c N Ui\il 8*E¢) = 0. In combination with the properties of the
mollification, this implies

M
div ¢s(y) — divé(y) and Vos(y) — Vo(y) asd N\ 0 for # lae ye U 0*E; N By,

i=1

and
div ¢s(y) — 0 and Vos(y) — 0 as N\, 0 forall y € Q\ By.
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Because D is open, it holds that dist(By,dD) > 0 and we obtain that there exists 6y > 0 such that
for all 6 € (0,00) the inclusion supp ¢s CC D is satisfied. These considerations imply

M

fj(y) = Yi;(Y)xg(y) asd N0 for #HPlae ye By N U 0" E;.
i=1

Because of the L>-bounds on ¢ and x5, we can apply Lebesgue’s dominated convergence theorem
and obtain

b Z/ (@) A3 (@)

=1 j=i+1 0" E:NO*E

M-—1
> Z i (@)X (x) A () > np > 0,
i=1 ] i+l o* E nNo* E

implying that the left hand side is eventually strictly greater than zero so that ¢4 eventually violates
(3.1) and satisfies supp ¢5 C D. O

4. Trust-region Patch Algorithm. We now introduce Algorithm 4.1, which is a modifica-
tion of Algorithm 5.1 in [32], where we optimize subproblems over each patch in the collection D
of patches determined a priori. Before stating it, we require a regularity assumption on the main
part of the objective F'.

ASSUMPTION 4.1 (see also Assumption 2.2 in [31], Assumption 4.3 in [32]).
1. Let F: L'(Q) — R be continuously Fréchet differentiable.
2. Let VF : LY(Q) — L>(Q) be Lipschitz continuous on the feasible set, that is

[VE(w1) — VF(wa)|| =
le - w2||L1

00 > Lyp = sup{ wy(x), we(x) € conv W for a.e. er}.

We note that Assumption 4.1 1 already implies the boundedness
(4.1) c(b) == sup {||[VF (w)| = |w(z) € W a.e. and TV(w) < b} < 0.

for every b > 0 because we can identify L!(2)* with L°°(Q2) and the bound TV (w) < b implies that
the supremum is taken over a relatively compact subset of L!(Q) due to the compact embedding
BV(Q) < LY(Q) [1, Corollary 3.49].

Specifically, for a given patch D, an iterate w, a gradient (approximation) g of VF(w), and a
trust-region radius A > 0, the subproblem reads:

wenll;izI(lQ) (9w — W) 20 +aTV(w) — aTV(w)
(TRP) TRP(w, g, D,A) = st. Jlw =010 <A and w(z) € W for ae. z € D,
w(z) = w(z) for a.e. z € N\ D.

We briefly recall that TRP(w, g, D, A) is well-defined, that is, it admits a solution.

PROPOSITION 4.2. Let D € D, w € BVw(Q), g € L*(Q2), and A > 0. Then TRP(w,g, D, A)
has a minimizer.

Proof. A proof can be found in [28, Proposition 3.2]. 0

The regularity condition Assumption 4.1 as well as Proposition 4.2 allow for Algorithm 4.1
to converge to a stationarity point defined in (3.1). The method itself consists of an outer loop
indexed by n, and an inner/block-update loop indexed by k.

At the beginning of each outer loop, we initialize two sets: the set of acceptable step candidates,
A = 0; and the working set of patches, ¥ = (0,D) for D € @. The inner/block-update loop
starting at Line 3 solves a subproblem (TRP) every iteration k over all patches in the set @ for
which the pair (k, D) is contalned in ). These Subproblem solves yield trial iterates @™* P with
corresponding predicted, pred" D , and actual, ared™ kD , reductions. Based on their Values, W
is updated by means of the following case distinction. If pred™" P is zero, this means that w" is
stationary in the patch D and (k, D) is just removed from #/. If this is not the case and the block
update ™" moreover sufficiently decreases the cost function by some fraction of the predicted
reduction greater than zero, it is added to A as an “acceptable step” and (k, D) is also removed
from ). If pred™*? is greater than zero but the sufficient decrease is not satisfied, it is checked
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Algorithm 4.1 Sequential linear integer programming method with greedy patch updates

Input: F satisfying Assumption 4.1 with smoothness constant Lyr, A% > 0, w® € BVw(Q),
o € (0,1), set of patches D.

1: forn=0,1,2,... do

2: Set A < 0, W «+ {(0,D)|D € D}.

3: for k=0,1,...do

" while (k, D) € ' do

5: @"™*P « minimizer of TRP(w", VF(w™), D, AY27F).
6: pred™® P « (VF(w"),w" — 0"*P) 2 + a TV(w") — a TV (@F™P)
7: ared™™ P « F(w™) + a TV (w") — F(@™"P) — a TV(w™*P)
8: if ared™®? > g pred™®? and pred™*” > 0 then

9: A +— AU{(k,D)}.

10: else if pred™*? > 0 and max i pex ared™®P < pred™®? + Ly pA°2-F then
11: W—wWu{(k+1,D)}

12: end if

13: W+ W\ {(k,D)}.

14: end while

15: if ¥ =0 then

16: break

17: end if

18: end for

19: if A = () then

20: return (w" is stationary).

21: end if

22: w" — w™.

23§« F(w") +aTV(w").

24: while A # () do

25: k, D + arg max{ared™*® | (k,D) € A}

26: "~ @"xq\p + xpw™ P

27: j« F(w™) +aTV(a")

28: if j < j° then

29: w" < w", jO < j, A+ A\ {(k,D)}.

30: else

31: break

32: end if

33: end while

34: w"tl e @n

35: end for

if max . e q ared™® P the maximum of already found acceptable reductions, is dominated from

above by pred™*? + Lo AP, the predicted reduction plus the Lipschitz constant of the first part of
the objective times the trust-region radius. We highlight that we use the convention max @) = —oco
here. If this condition holds, a further reduction of the trust-region radius may give an acceptable
step that then maximizes the predicted reductions over all steps that have been deemed acceptable
so far. Thus (k, D) is replaced by (k+ 1, D) in ¥ so that the same patch but with reduced trust-
region radius is now contained in the working set /. If this condition does not hold, this implies
that even if there is an acceptable step for this patch with a smaller trust-region radius, the resulting
actual reduction cannot give the maximizer of Max i p)eq ared™®? and, consequently, (k, D) is
removed from Y/ without replacement. This condition is derived from Assumption 4.1 and allows
us to prove finite termination of the inner/block-update loop if w™ is not stationary because it
can happen w” is stationary on D but has positive predicted reduction for all positive trust-region
radii, which would lead to infinite reduction of the trust-region radius without this safeguarding.
Once W = (), that is, if there are no more working patches we terminate Algorithm 4.1. An
example run of this inner/block-update loop for four patches is given in Table 4.1. We note that a
straightforward parallel version of Algorithm 4.1 arises by optimizing in parallel over the elements
of #). However, our computational results in subsection 6.2 indicate that the runtimes between
the elements of ) may vary dramatically and we find it more advisable to use parallelization on
the subproblem solver level.



% Dy D, Ds Dy ‘ A ‘ W
0 7[/,7),,0,1 72/,”?0,2 7;’"”0'4 @ {(1’ 1)7 (1’ 2)7 (17 4)}
1 ﬁ)n"l’l 11}”"1’2 - ﬁ)n,l,él {(174)} {(271)7(232)}
I I () (3.1}
3 | wmdt - - - {(1,4)} {4, 1)}
4 | ot - - - {(4,1),(1,4)} 0
Table 4.1: Example inner-loop iteration for |D| = 4 at line 17. signifies that pred™*? =0

so that w™ is already stationary on D and therefore (k, D) can safely be removed from 4. Green
signifies that signifies Line 10 holds: @™*® is not yet acceptable and also not dominated by some
previous iterate that was found acceptable. Blue signifies Line 8 holds: @™ is acceptable and
(k, D) can be transferred from ¥ to A. Violet signifies that pred™** > 0 but neither Line 10 nor
Line 8 holds: the possible actual reduction for all further trust-region radii is dominated by some
element of A and (k, D) can safely be removed from ¥/ too.

In the outer loop, once A is the nullset, then by construction w” is stationary and we terminate
the algorithm. If A is nonempty, then we define trial variable w"™ = w™ and compute trial function
value j°. We then enter a “greedy” update loop; this loop inserts the patch updates to the overall
solution and measure decrease of the actual function. In effect, we iterate over stored maximum
block actual reductions (k, D) < arg max{ared™*"? |(k, D) € A}, insert the resulting solution w"
associated with (k, D) into @w™ and compute a new trial function value. If this function value is
less than j°, then we eliminate this (k, D) from the set of acceptable steps, keep the @™ with the
associated w", and repeat until A = 0.

By construction, the first (greedy) patch update will always satisfy the acceptance criterion;
further updates are heuristic improvements that are accepted until the cost function increases.

5. Convergence Analysis of Algorithm 4.1. We provide a convergence analysis for a
greedy patch selection approach under two assumptions on the set of patches.

AssUMPTION 5.1 (Sufficient overlap and regularity of patches). Let Q be a bounded Lipschitz
domain. Let the finite set of patches @ C 2% satisfy the following conditions.

(a) For all x € Q, there exist r > 0 and D € D such that B.(x) CC D. (Patch overlap)

(b) For all D € D, we assume that D € D is a bounded Lipschitz domain. (Patch regularity)

Because @ is finite, Assumption 5.1 (a) is equivalent to Assumption 3.3 and in particular, the
analysis in Section 3 may be applied. Consequently, Theorem 3.5 gives that the instationarity
condition (3.6) implies a localization to at least one patch, on which patch-instationarity (3.8)
holds. Assumption 5.1 (b) implies that the patches themselves are sets of finite perimeter and
the assumptions for the analysis of the inner loop of Algorithm 1 from [32] can be applied to
trust-region subproblems TRP(w" ™!, VF(w"~1), D", A%27F) for some A® > 0 as are generated by
Algorithm 4.1. While the analysis is not impaired by Assumption 5.1 (b), it facilitates the intuition
greatly when considering patches that are convex and have boundaries that are finite unions of
d — 1-dimensional convex polyhedra.

In order to analyze Algorithm 4.1 and the trust-region subproblems, we briefly recall what we
mean by ared and pred for a given sequence {w’}, C BV (£2) that converges strictly to some limit
w € BVw(Q). Let k € N, D € @, and @**P be a solution to TRP(w’, VF(w’), D, A°27%) which
exists by means of Proposition 4.2. Then we define

predg’k’D = (VF(we), wt — w€7k’D)L2(Q) + aTV(wZ) - aTV(uN)e’"’D) and
ared®®? = F(u’) + a TV (w’) — F(@"*P) — a TV (0" P).

We now aim to show that if the limit of such a sequence is instationary, then there is a patch such
that the sufficient decrease condition that is also in Line 8 is eventually satisfied. Our argument
uses so-called competitors that modify a weakly-* converging sequence w! = w in BVw(Q) so
that the resulting sequence coincides with {w®}, on D¢ but has properties of a different function
inside a patch D and does not affect the boundaries of the level sets close to dD. Their existence
is asserted below.

LEMMA 5.2. Let Assumption 5.1 hold. Let D € D and D, := {« € D| dist(xz, D) > r} for
r>0. Let w* = w in BVw(Q). Let w € BVw(Q) and K CC D with suppw — 1w CC K.
9



Then there exists s > 0 only depending on K such that w, w® for ¢ € N, and the functions
defined by

w'(z) if © ¢ Dy,
w(x) else

(5.1) Wt () = {

for € € N satisfy * = 0 in BVw(Q) as £ — oo and

TV(w) =TV g 5 (w) + TV p, (w)
TV (@) = TVq p-(w) + TVp, (@) + b

for some {b*}, C [0, 00) with liminf, ., b* = 0. Moreover, if w* — w also strictly in BVw(£2), we
have

TVQ\D—S(M) — TV p-(w) and
TVp, (w') = TVp, (w).

Proof. Let {E1,...,Ex}, {EL, ... ES Y, {E1, ..., By}, and {EY, ..., E%,} denote the Cac-
cioppoli partitions of 2 such that the identities w = Zf\il wixg,;, w = Zf\il wiX g, { €N,
W = Ef‘il w;X ., and W' = Z£1 wiX ges £ € N, hold [32, Lemma 2.1]. Then we observe that there
is a small enough 7y > 0 such that K cc D,, ccD.

Next, we argue similar to [30, Theorem 21.14] to identify 0 < s < rq such that modifying w*
on D, to obtain the competitor @’ implies the claimed properties. Specifically, we need that i)
0D, does not intersect with the reduced boundaries 0* E; and 9*Ef (for £ € N) on a set of strictly
positive #?~!'-measure, and ii) the #?~!-measure of the intersection of D, and the symmetric
difference of the points of density one of E; and Ef vanishes as £ — oo. This is used to ensure that
0Dy does not affect the boundary of the level sets of the competitor and thus the value of its total
variation.

To this end, let ryax be large enough such that D = (). We obtain for all » > 0 that

Tmax

M Tmax M
lw = w'|r > | Do (B & B)| = / > it (6DS N ((Ef)(l) A E§1)>) ds,
r =1

i=1

where the second identity holds due to the coarea formula, which can be applied using the Lipschitz
continuity of the function z — dist(z, D°).
From Proposition 2.16 in [30], we obtain for all ¢ € {1,..., M} and a.e. s > 0 that

(5.2) #H(OD, NO*E;) = 0 and
(5.3) #HHOD, NO*EL) =0 for all £ € N,

We apply Fatou’s lemma and obtain
M
(5.4) liminf Y g4~ (aps n ((Eg)u) A E;n)) _0
£— o0 P ]

for a.e. s > 0.

Let s € (0,70) satisfy (5.2), (5.3) for all £ € N, and (5.4). Then @* = 1 in BVw(Q) as £ — oo
as claimed.

Next, we use Lemma A.2 from the literature to characterize the distributional derivative of
Xge- To verify its assumptions, we first recall that #?~1(9Ds N 9*Ef) = 0 holds for all £ € N by
virtue of (5.3). Second, w(x) # w(x) can only hold for 2 € K CC Dy so that #?~1(dD,N9*E;) =
#HI=1(9*DyN&* E;) = 0 holds by virtue of (5.2). Finally, we observe that B! = (E;ND,)U(Ef\ D,
holds by definition in (5.1). We thus apply Lemma A.2 and obtain

Dxpe = DXEf\_(Q \ D) + DXEiLDS
+ Do, ((B)D 0 (EH) = Dxo, ((B)© 0 (EHD).
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We employ the o-additivity of #9~1 and the identity (E;)® NnaD, = (E;)® naD, for b € {0,1}
due to K CC D, to obtain

HOITVOE! = #H (9B N (Q\ Dy))
+ F1 (8*& N Ds)
+ (%’d—&(aps n(E) N (Ef)<0>)
+ gedflL(aDs N(E)© N (Ef)(l))

for the corresponding variation measures. We insert G*Eﬁ j # i, on both sides, use Ef NDg =

E;N D, and E‘N(Q\ Dy) = E! N (2\ Ds) due to (5.1), and the disjointness of the sets in the last
two terms to obtain

HTH O ELNO*EY) = 3¢ (9" Ef n9"ES N (Q\ D))
+#1 (6"B:n 9" ;0 D)
+ it (a*E;f naD, N (((Ei)(l) N (EH ) U ((E)© N (Ef)<1>))) .
Using Lemma A.1 on the symmetric difference of sets of points of density 1, we obtain
HTHO'ELNOTEENQ) = #H (0" Ef N 9T EL N (Q\ Dy))
+#(0"E; N9 E; N D)
+ ged-t (a*Eé noD, N ((E)V a (Ef)<1>))

::bfj
Multiplying by |w; — w;| and summing over ¢ and j yields
TV (@) = TV p-(w) + TVp, (i) + b

with b = ZM ! ZJ i Wi — w]|bw, where (5.4) gives liminf,_,, b* = 0. Moreover, from (5.2)
and K CC D, we obtain
TV(U}) = TVQ\[TS(’[U) +TVp, (w)

In addition, (5.2), TV(w’) — TV (w), and the lower semicontinuity of the total variation yield

TVQ\DfS(wl)%TVQ\DfS(w) and  TVp (w') = TVp, (w). 0

LEMMA 5.3. Let Assumption 4.1 hold. Let w € BVw(Q2) not be stationary. Let {w*}, C
BVw(Q) converge strictly to w. Let VF(w) € C(Q). Then there exist D € D, kg € N, {y € N,
and £ > 0 such that there are infinitely many ¢ > £y that satisfy

ared” koD > apredé’kO’D and predz’kO’D > €.

Proof. Because w is not stationary, Theorem 3.5 gives that there exists a patch D € @ such
that (3.1) is violated on D, that is there exist n > 0 and ¢ € C°(2,R¢) with supp ¢ CC D such
that

(5.5)
M-1

> Z / — w;) VF(w)(2)$(2) - np, (z) — aw; — w;| dive, ¢(x) d#H ™ (x) > 7.

D1 o1/ o Eino*E

Let (ft)ie(—e,c) be defined by fi(z) = z 4 t¢(z) for x € Q and t € (—¢,¢) and ffw =
Ef\il WX f,(E:) 1f {E1,..., Ep} is the Caccioppoli partition of  such that w = Zf\il WiXE, -

Lemma 3.8 in [32] gives that we can choose a sequence t* N\, 0 and ky € N such that for all
k > ko we have fur € C°(D,R%) and

1
(5.6) 1w —wl g = (1 - k) AO2F,

11



Moreover, Lemmas 3.3 and 3.5 in [32] give that there exists some function g : (—¢,¢) — R that
satisfies

(5.7) g(t)€o(t) and — (VF(w), fjfw —w)r2 — (« TV(fsz) —aTV(w)) > thy + g(t*).

Unfortunately, this violation cannot be used directly to obtain a bound from below on prede’k’D
because fj,fw is infeasible for TRP(wé,VF(wé),D,A%_kO) since it does not agree with w’ on
Q\ D. Therefore, in order to relate this reduction of the linearized objective back to prede’k’D , We
construct competitors w®*, which eventually become feasible for TRP(w’, VF(w"), D, A°27%0) for
all £ > fy. The necessary interdependent choices for kg € N and ¢y € N will be determined after
providing the competitor construction.

Competitor construction. To this end, we use that the local variation (f;):e(—e,-) induced
by ¢ has supp ft — I CC D for all t € (—e,e) because of supp¢ CC D. Specifically, we apply
Lemma 5.2 with the choices W = fupw, k € N, and K = supp ¢ and obtain that there exists
D, cC D with supp¢ CC D, such that for all k& € N there are functions {w**}, such that
wh*(z) = w'(x) for x € O\ D, and w'*(z) = f:}’fw(x) for x € D, such that

kA fjfw in BVw(Q) for £ — oo,

( *) = TV pr(w’) + TVp, (ff{w) + b* with b > 0 and lim inf v =0,
g {— 00
TV(w) =TV p;(w) + TVp, (w),
TVQ\D (wé) TVQ\K(w),
TVp, (w') = TVp, (w).

Determination of ky € N and ¢y € N. Let ky € N be such that (5.6) and (5.7) hold for all
k > ko. Then w® — w strictly, the competitor properties above, and Assumption 4.1 1 imply that
we can find ¢p(ko) € N such that

1
0 _ < 7A02—k0
o e, < 1

1
IVE(w) = VF(w) | =(p,) < o’

[TVp, (we) —TVp, (w)| < %A%‘ko, and
0

1
4 < 7A027k0
= ko

hold for infinitely many ¢ > £o(ko). Then the triangle equality gives that these w®*o are feasible
for TRP(w?, VF(w*), D, A°27F0). For these £, we obtain from Assumption 4.1 1 that

ared® P = pred®ko-P 4 o(A%2 o)

Consequently, the feasibility of w®* and thus suboptimality for TRP(w?, VF(w’), D, A2 o)
gives for

phko = (VF(we), wt — we’kO)Lz + ozTV(wz) - aTV(we’kO)

that predé’ko’D > pt*o and in turn

ql-ko.D

are > opred”*oP 4 (1 — g)phFo 4 (A2 o)

hold.
We consider the first term in p®*0. After inserting suitable zeros, in particular using w* = w

12

2,ko



in Q\ D, and supp ¢ C D,, we obtain by means of (5.8) that

(VF(w'), 0" = w") 12(0) = (VF(w), w = w" ) 2 (p,y + (VF(w’) = VF(w),w = w"*) 2 (p,)
+ (VF(w*), w’ — w)Lz(Ds)
> (VF(w),w — ﬁo w)r2(Q)
= [[VF(w ) VF(w )||L°° D, )||w tkow”Ll D)
— [[VF(w )||L°° D.)
> (VF(w),w - ff, )L2<Q)

1
- k*OHff%ow —wLi(p,) — cllw’ = wl L,

1
B #
= (VF(w),w — ffi,w)20) — (1;% * ) T

=o(A02-k0)

with ¢ = supzs 4 4,)) ||VF(wZ) | Lo (D,), which is bounded because of the continuous differentiability
of F': L'(Q) — R and the set {w’|¢ € N} U {w} being a compact in L'(Q).
Next, we consider the difference TV (w’) — TV (w**0) and obtain with a similar procedure

TV(w') — TV(wh*) = TV (w) — TVp, (w**) — v*
+TVp, (w*) = TVp, (w)

2 _
> TV () = TV(ff,w) A%

=0(A027F0)

for all of the infinitely many suitable £ > £y (ko).
In combination, we can deduce

PR > (VE(w),w — ff,w)r2 + a TV(w') — a TV(ff w) + o(A%27 )

5.9
(5.9) > thoy 4 o(th0) + o(A%27F0),

where the second inequality follows from (5.7). Using (5.6), we obtain
A% = |l w = wll <

for some k > 0, where the last inequality follows from Lemma 3.8 in [32]. Consequently, we obtain
ared® P > gpred® P 1 (1 — g)ktho + o(t").

Therefore, we can choose ky € N large enough such that the sum of the second and third term
is positive. We now set ¢y = fy(ko) and obtain for infinitely many ¢ > ¢, due to (5.4) that
ared®* P > gpred®tol By potentially choosing kg € N larger and adjusting ¢, accordingly, we
also obtain pred“*-? > ptko > ¢ > 0 for some € > 0 from (5.9). d

THEOREM 5.4. Let Assumption 4.1 hold. Let VF(w") € C(Q). Then the loop starting in
Algorithm 4.1 Line 3 terminates after finitely many iterations and A is not empty if w™ is not
stationary.

Proof. We need to prove that eventually ) = (). We first observe that for every choice of k in
the loop starting in Line 3, the set ¥’ contains at most |?D| elements so that the loop starting in
Line 4 always terminates finitely. In addition, elements are never removed but only added to the
set A.

We briefly argue that by Lemma 5.2, Algorithm 4.1 Line 8 will be executed at least once over
the course of the inner loop of Line 3. Specifically, applying Lemma 5.3 with the choice w’ := w"
for all £ € N gives a tuple (k1, D1) such that the acceptance criterion in Line 8 holds. Consequently,
there is some patch D such that for increasing k Line 11 is executed and (k, D) € ¥ holds until the
acceptance criterion in Line 8 or Maxj, pyea ared™ kD > pred™ kD 4 LopA®27F holds. In both
cases, A is not empty after iteration k.

We also observe that the max in Line 10 is strictly greater than zero from this point on because
pairs (k, D) are only inserted into A if pred"’k’D and in turn also ared™™? are strictly positive.
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We proceed by contradiction and assume that the algorithm does not terminate finitely so that
there is a patch Dy such that for all k£ € N, the criterion in Line 10 is satisfied while the criterion
in Line 8 is not satisfied. In combination with A eventually being non-empty and the left hand
side of the max in Line 10 being strictly positive, this means that pred™"*?? is uniformly bounded
away from zero for all £ € N.

Clearly, for all feasible points of TRP(w", VF(w™), Dy, AY27%) and thus the minimizer @™ %P2
it holds

J(w™) — J(@™FP2) = (VF(w™),w™ — 0"™*P2) 2 + a TV(w") — a TV (™)
+ (VF(E™PP2) — VF(w™), w" — &™) 2

K, D2

for some £™*P2 in the line segment between w™ and ™ Moreover,

(VE(E"P2) = VF(w"), @™ —w™) 2| < LypA27F
holds by means of Assumption 4.1 2. In turn, we obtain

aredn,k,Dz B predn,k,Dz +(VF(£n’k’D2) _ VF(w"),w" _ ~n,k,D2)L2

pred"’k’D2 B pred”’k’D2 oize

so that eventually Line 8 holds for Dy and some large enough k too, thereby contradicting that
the criterion in Line 8 is never satisfied for Ds. 0

REMARK 5.5. A close inspection of the argument of Theorem 5.4 shows that it is possible to
avoid Assumption 4.1 2 in Theorem 5.4 and thus in our overall arguments by replacing Ly p in
Algorithm 4.1 by 2¢(b) with c¢(b) from (4.1) if a bound b > TV (w™*P) can be established uniformly
for all iterates w™*P . Such bounds exist due to the properties of F' and the descent properties of
the algorithm. If

c(00) = sup{||[VF(w)|| = |w(z) € W a.e.} < o

holds, this is of course sufficient too.

LEMMA 5.6. Let {w™},, be the sequence of iterates produced by Algorithm 4.1. Then the se-
quence of objective values {J(w™)},, is monotonously non-increasing and convergent. The sequence
{w"},, admits a feasible weak-* accumulation point in BVw ().

Proof. The sequence of objective values is monotonically nonincreasing by construction and,
because F' and TV are both bounded below, also convergent. Because {TV(w™)},, is uniformly
bounded above by J(w") < oo, {w"}, admits a weak-* accumulation point w, which is feasible,
that is in BVw (). ad

If w is also a strict accumulation point, that is TV(w™) — TV(w) in addition to w™ > @ in
BV(Q) holds for a subsequence {w™* }j, then J(w™) — J(w) under a continuity assumption on
F. Consequently, we desire that every weak-* accumulation point is a strict accumulation point.

LEMMA 5.7. Let Assumptions 4.1 and 5.1 hold and {w™},, be the sequence of iterates produced

by Algorithm 4.1. Every weak-* accumulation point @ of {w™}, is a strict accumulation point and
J(w™) = J(w).

Proof. Let w be a weak-* accumulation point in BV(Q) with approximating subsequence
{w™},. Then w™ — w in L*(Q) and in turn F(w™) — F(w).

Outline. By way of contradiction, we assume that w is not strict, that is, after a possible
restriction to a sub-subsequence,

(5.10) lim TV(w™) > TV(@) + &

{— 00

for some € > 0. We are going to localize this inequality, that is we show that there exists an open
ball B such that B C D for some D € @, and € > 0 such that

(5.11) lim TVB(w""') > TVB(ID) +ep

{— 00

and whose boundary does not interfere with the interfaces of the level sets of the w™ and w.
Specifically, we require

M M
(5.12)  F*! <aB nUJ a*E;W) =0forall(€N and ! (83 nU 8*EZ-> =0,
i=1 i=1
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where {E1, ..., Ey} is a Caccioppoli partition of Q such that w = Zﬁ1 w;x g, and similarly for

w™, see [32, Lemma 2.1]. With this localization, we will then be able to construct competitors
that are feasible for trust-region subproblems (TRP) on the patch D and guarantee a predicted
and actual reduction that are bounded away from zero. In turn, we will obtain J(w™) — —o0,
which gives the desired contradiction.

Localization of (5.10) to (5.11). In order to obtain the existence of B and D, we employ a
covering argument and consider the following set of closed balls:

(5.13) F = {Bs(x)

r€N0<s,DED, By(x)CD,
(5.12) holds for the choice B = By(z) | -

Clearly, (5.13) would be a fine cover if (5.12) is not required for its elements. Because there are only
countably many iterates w”, there are only countably many Caccioppoli partitions {E}“, ..., E}f }.
Consequently, we can always perturb s slightly (arbitrarily small if needed) to ensure both identities
n (5.12) hold for a closed ball B = B,.(z), see also [30, Proposition 2.16]. This means that for all
ro > 0, we find some r € (0,79) such that B,(x) C By, (z) and B,(z) C D.

The Vitali—Besicovitch coverln%vtheorem implies that there is a countable and pairwise disjoint
subset F C F such that |Dw| = Z; i1 [wi —wi | HTL (0% E;NO* E; NQ) satisfies | Dw| (€2
Uses B) =0 and [Dw™|(Q2\ UBEF; B) =0 forall £ € N.

In combination with the fact that (5.12) holds for all balls in F and thus also F, we obtain
(5.11) for some open ball B with B C  and 5 > 0.

Competitor construction. We seek competitors @™, which eventually become feasible for
the problem TRP(w™, VF(w™), D, A°27F) for large enough ¢ and suitable corresponding k. Let
r > 0 and Z € D satisfy B = B,(z) for the above-asserted B and D. Moreover, let r; > r be
small enough such that B, (Z) C D holds. It is possible to find such r; due to the strictly positive
distance of B to the boundary dD (note that D is open and B is closed). We apply Lemma 5.2
with the choices @ = w and K = B,, (Z). We obtain that there exist D, CC D with B, (Z) CC D,
and functions {w™}, with @™ (x) = w™(z) for x € @\ D, and W™ (x) = w(z) for x € Dy such
that

W™ 2w in BV (Q) for £ — oo,
TV(@™) = TV p-(w™) + TVp, (@) + b° with b > 0 and lim inf b =0,
s — 00

TV (@) = TV 5-(%) + TV p, ().

Using (5.11) and (5.12), we obtain

TV(@") = TV p-(w") + TVp, (@) + b*
=TV p (w™) +TVp\p(w) + TVp(w) + bt
< TVo\p, (") + lim TVp \p(w™) +TVp(w") + v — ep.
; im k

Taking the lim inf over ¢ on both sides and using (5.12) again, we obtain

(5.14) TV(w) < liminf TV(®™) < lim TV(w™) —ep.
£— 00 {— 00

Contradiction J(w") — —oco. We follow the arguments of the proof of Theorem 6.4 in [32]
(namely Outcome 3, part 2) in order to show that the competitors constructed above eventually
become feasible and enforce a reduction of the objective that is bounded strictly away from zero
infinitely often, which in turn contradicts that the objective is bounded below.

Let 6 := ££. Because of Assumption 4.1 and @™ — @ in L*(Q) as well as w™ — @ in L*(Q),
we obtain that there exist some large enough ko € N and ¢y € N and such that by virtue of (5.14)

for infinitely many ¢ > ¢y and all @ € BVw () with ||@ — w™| 1 < A%27%0 it holds that

1—0

1 Fw™) - F(w)| <

(5.15) ()~ F(@)] < +—Zas,
_ 1-0

(5.16) [(VF(w™),w™ — @) 2| < 5 Ua&

(5.17) W™ —w" ||, < AY27F0 and

(5.18) aTV(w™) —aTV(0™) > af,
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where (5.17) gives that @™ is feasible for TRP(w™, VF(w™), D, A02~ o),

Because pred %P is computed in Algorithm 4.1 Line 6 as the negation of the objective
value of a minimizer of TRP(w™, VF (w™), D, A%27%0) the feasibility (5.17) and the objective
term estimates (5.16) and (5.18) yield

1—
(5.19)  pred"mP > (VF(w™), w™ — ™) 2 + a TV(w™) — a TV(@™) > 7370(16 + ad.

-0
Moreover, (5.15) and (5.16) give

1—0
ared "¢:Fo.D > predm’ko’D _ 23

ad,

where the right-hand side is strictly positive because of (5.19) and 1 — ﬁ:—g > 2%. Consequently,
for suitable £ it holds that
ared koD prednekoD —21=2q5 1 - 31=2

neko, D — ng,ko,D = 1 l=c
pred pred 1—3=2

:()'7

where the second inequality follows from the monotonocity of the function p — p~!(p — 2:13:—(‘;)
Consequently, for infinitely many £ > /o, the loop starting at Algorithm 4.1 Line 3 terminates
after finitely many iterations with (k, D) € arg max{ared™"" | (k, D) € A} such that

o
oad

5D 1
ared™ P > ared™*oP > gpredetol > 23

Since the change induced by the maximizer (k, D) will definitely be applied in Line 28 and all
further reductions decrease the objective even more, we obtain

l—0oep

— > 0.
3—0 2 >

F(w™™) +aTV(w™t) — F(w™) —aTV(w™) > ared™"P > 520

Because the sequence {J(w")},, decreases monotonically, we obtain the contradiction J(w™) —
—00.

Objective value convergence. I is continuous and w™ — @ in BVw () implies w™ — w
in L'(Q) and in turn w™ — @ in L?(2) because BV (£2) is bounded in L°°(£2). In combination
with the convergence of J(w"), and the strict convergence of {TV(w™)},}, we obtain J(w™) —
J(w) = inf,en J(w™). O

THEOREM 5.8. Let Assumptions 3.3, 4.1 and 5.1 hold. Let {w"}, be the sequence of iterates
produced by Algorithm 4.1. Then one of the following mutually exclusive outcomes holds:

1. The sequence {w™},, is finite and the final element w™¥ for some N € N satisfies the follow-
ing. For all D € D there exists k € N such that w" solves TRP(w™, VF(w"), D, A°27F).
In particular, w" is stationary if VF(w™) € C(Q).

2. The sequence {w"}, is finite and the final element w™ for some N € N satisfies the
following. The loop over k that begins in Line 8 does not terminate finitely. In particular,
w™ is stationary if VF(w™) € C(Q).

3. The sequence {w™}, has a weak-* accumulation point in BV(Q). All weak-* accumulation
points are in BVw(Q). If a weak-* accumulation point w satisfies VF(w) € C(R), it is
stationary.

Proof. We follow the basic proof strategy of Theorem 4.23 in [28] and Theorem 6.4 in [32] and
extend it so that we can perform a localization to patches. We assume that Outcomes 1 and 2 do
not hold and prove that Outcome 3 must hold in this case.

Lemma 5.6 gives the existence of a weak-* accumulation point w with approximating subse-
quence of iterates {w™},. Because weak-* convergence implies pointwise a.e. convergence for a
subsequence, we have w € BV (Q). Now let VF (w) € C(£2). Lemma 5.7 gives TV (w™) — TV (w)
and F(w™) — F(w). We proceed by way of contradiction and assume that @ is not stationary.

We apply Lemma 5.3 and obtain that there are D € D, kg € N, {5 € N, and € > 0 such that

ared" "L > gpred™©*P and pred™©tol > ¢

Consequently, for infinitely many £ > £, the loop starting at Algorithm 4.1 Line 3 terminates after
finitely many iterations with (k, D) € arg max{ared™"” | (k, D) € A} such that

ared™ P > ared™ "L > gpred™*oP > ge.
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Since the change induced by the maximizer (k, D) will definitely be applied in Line 28 and all
further reductions decrease the objective even more, we obtain

F(w™ ™) + a TV(w™ ™) — F(w™) — a TV(w™) > ared™"? > g¢ > 0.

Note that the while loop stops at the first instance we encounter an increase after the guaranteed
first decrease or the set A becomes empty eventually so that we always get finite termination
of this loop. Because the sequence J(w™), decreases monotonically, we obtain the contradiction
J(w™) = —o0. O

6. Numerical Experiments. This section performs numerical tests to compare the block-
SLIP algorithm Algorithm 4.1 results to its primary competitor, SLIP [28, 32]. Note that block-
SLIP is equivalent to SLIP if the number of patches is equal to one.

The goal of our numerical study is to assess if and when the block-SLIP algorithm can out-
perform SLIP and help to scale the problem sizes. To this end, we consider two test cases. First,
we consider an integer control problem that is defined on a one-dimensional domain, where we can
use the efficient subproblem solver from [39]. Second, we consider an integer control problem on a
two-dimensional domain, where no efficient subproblem solver is known and we need to resort to
an off-the-shelf integer programming solver.

Throughout this section, results of block-SLIP instances are designated by the subscript bs and
results of SLIP instances are designated by the subscript s. We have carried out the experiments
on a node of the Linux HPC cluster LiDO3 with two AMD EPYC 7542 32-Core CPUs and 64 GB
RAM (computations were restricted to one CPU).

6.1. 1D Test Case. We solve the integer optimal control benchmark problem that is defined
in (5.1) in [28] on the one-dimensional domain ) = (—1, 1) with the discretization reported therein.
Specifically, the problem reads

1
(6.1) min i‘le - f||2L2(Q) +aTV(w) s.t. w(t) € W for ae. t € Q,

where we make the choices W = {—1,0,1} and f(t) = 0.2cos(2nt — 0.25) exp(t) for ¢ € (—1,1)
and have Kw = k * w with (k% w)(t) = fil k(t — T)w(r)dr with k as in §5 in [28]. It is a
deconvolution problem that stems from Filtered Approzimation in electronics. It was analyzed as
a finite-dimensional convex quadratic integer program in [3] and different variants have been used
as benchmark problems for integer optimal control algorithms in [20, 28, 33, 39].

Subproblem Solution. We use the topological sorting-based algorithm from [39] as subproblem
solver since (our latest implementation®) outperforms the A*-based and integer programming-based
solution approaches that are also discussed in [39] on our benchmark problems significantly.

Benchmark. For our experiments, we make the choices of N € {2'2, 214} for the number
of discretization intervals for the piecewise constant ansatz for the control input function and
a € {1.25-107%,5.0 - 1074,2.0 - 1073}. We cover a spectrum of values for o because the the
numbers of iterations that SLIP and block-SLIP require can differ substantially for different values
«. We highlight that, in contrast to an integer programming solver as is used for the second
test case, the performance of the topological sorting-based subproblem solver only depends on the
current value of the trust-region radius and not on the data (current iterate), see also [39]. As
initial value for the optimization, we choose the control w® = 0 for all instances.

For all of these instances, we run SLIP, block-SLIP with IV, = 4 patches, and block-SLIP with
N, = 9 patches. The patches are uniform intervals, uniformly distributed over the domain, and
always overlap by 0.2 with their left and right neighbors.

Algorithm Setup. Regarding the algorithm, we choose Ag = 0.125 and o = 107*. We can
determine contraction of the trust-region when A falls below the volume of one grid cell so that,
due its discreteness, the subproblem solution coincides with the previous iterate and no progress
is possible. Then we terminate the algorithm. We also prescribe a limit of 1000 outer iterations
but note that all SLIP and block-SLIP runs on our instances terminate due to a contraction of the
trust-region radius/no further progress being possible.

Results. SLIP and block-SLIP have generally returned points with similar objective values.
Specifically, the objective values for all instances with a € {5.0-107%,2.0 - 1073} are very close;
they differ by less than 1%. Only for the instance with a = 1.25 - 107, block-SLIP returns a
better objective value than SLIP, which is approximately 8.7 % lower than the one produced by
SLIP (consistently across discretizations and number of patches). This behavior is not unexpected

Thttps://github.com/paulmanns/trs4dslip
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since SLIP and block-SLIP are local optimization techniques that compute different steps that
may converge to different (stationary) points. We highlight that due to the nonconvexity and
the nontrivial nature of the optimality condition we do not know how many stationary points the
problem has and how this information could straightforwardly be obtained. Regarding run times,
SLIP outperforms block-SLIP by a wide margin. This is due to the run time complexity of the
topological sorting-based subproblem solver, which is O(N KM ). Here, N is equal to N for SLIP
and is equal to the number of intervals of the patch problem for block-SLIP, which is larger than
N/N, because of the overlap of the patches; K = max{AN,N}, which is equal to AN on all
of our instances for both SLIP and block-SLIP. As a consequence, if the same number of outer
iterations is executed and the steps on the different patches become acceptable for the same trust-
region radius, the run time spent in the subproblem solver for block-SLIP must be higher than
for SLIP. We observe that block-SLIP generally requires more outer iterations on our benchmark,
increasing the run time spent in the subproblem solver even more. Moreover, many additional
evaluations of the control-to-state operator are necessary in block-SLIP, increasing the total run
time of block-SLIP further. A detailed tabulation of the objective values and run times is given in
Table 6.2.

In conclusion, our results for the first test case show that block-SLIP does not pay off for one-
dimensional problems since the subproblem solver is extremely efficient and scales well irrespective
of the specific data. The only reason that we can sensibly think of using block-SLIP in 1D are
extreme cases, where very high values of N are required because the subproblem solver runs out
of memory at some point. For our test case and compute environment with 64 GB RAM, this
happens at N = 216,

Table 6.1: Objective values J(z) and broken down to f(x) and TV(z) and run times t, for x = x4
(solution returned by SLIP) and x = 3¢ (solution returned by block-SLIP) for the different
instances of our one-dimensional benchmark problem. In each row, the winner(s) in terms of
objective and run time up to the reported precision are highlighted with bold-faced text.

N Ny, a- 107° J(z1s) J () f(zps) TV(zrs)  f(ws) TV(zs)  tos ts
12 4 0.125 0.002757 0.003017 0.001257 12 0.001517 12 41 21
0.500 0.006074 0.006074 0.002074 8 0.002074 8 27 13
2.000 0.015788 0.015787 0.003788 6 0.003787 6 13 6
9 0.125 0.002759 0.003017 0.001259 12 0.001517 12 135 21
0.500 0.006074 0.006074 0.002074 8 0.002074 8 54 13
2.000 0.015787 0.015787 0.003787 6 0.003787 6 22 6
14 4 0.125 0.002743 0.003010 0.001243 12 0.001510 12 1579 615
0.500 0.006072 0.006072 0.002072 8 0.002072 8 636 267
2.000 0.015786 0.015786 0.003786 6 0.003786 6 461 119
9 0.125 0.002744 0.003010 0.001244 12 0.001510 12 4671 615
0.500 0.006072 0.006072 0.002072 8 0.002072 8 1659 267
2.000 0.015786 0.015786 0.003786 ©6 0.003786 6 432 119

6.2. 2D Test Case. As our 2D test case, we choose W = {0,1} and a convection-diffusion
equation that is specified as follows. We consider the square domain Q = (0,1)? and for a given
control w with w(z) € W a.e., the state vector u is given by the solution to

—eAu+cy-Vu+cuw=Ff inQ
w=0 on{0,1} x (0,1) U ((0,0.25) U (0.75,1)) x {0}
w=sin(2r(x; — 0.25)) on (0.25,0.75) x {0}
Opu=0 on (0,1) x {1},

(6.2)

where ¢y = 2, ¢1(x) = (sin(rz1) cos(27mxg))T for x € Q, f(x) = sin(2rzy + 27w2) + 3 for z € Q,
and e =4-1072.
Let the solution operator to (6.2) be denoted by S. We choose the objective

1
F=joS with j(u)=glu- ugll7z,
where 1,4 is computed by solving a variant of (6.2), where c; is replaced by ¢ (x) = (—z2  221)7T,

for w = 2.5x4 — 4(x1 — 0.35)3xa — 6(x2 — 0.35)3xp with A = (0,0.35)? and B = Q\ (0,0.35)2.
18



Note that we use a different PDE for computing u4 to ensure that ug cannot be reached or almost
be reached and thus avoid that F'(u) can have values very close to zero, which are more difficult
to compare (with relative error computations which are more influenced by numerical errors when
the denominator becomes close to zero).

Discretization and Subproblem Solution. In order to discretize the control and the PDE and
to assemble the finite-element matrices for the PDE, we use the finite-element package FEniCSx
[2], in which we choose a piecewise constant control ansatz on a uniform N x N of square grid cells
and solve the PDE on the same grid with each grid of the cells being decomposed into 4 triangles,
where we use continuous Lagrange elements of order one for v and ug.

In order to compute VF(w) on the computer, we fix the discretization and then determine
the adjoint using operator calculus and the finite-element system described above so that we
follow a first-discretize, then-optimize principle. We evaluate the total variation directly on the
control functions as described in [32], which may introduce an anisotropic effect on the resulting
w, see the considerations in [?]. Since the convergence properties of the TV-discretization and
accuracy of the geometry of the resulting functions are not the goal of our experiments, we find
this reasonable to avoid much longer compute times that would otherwise be necessary when using
the convergent discretization scheme from [?]. Since this discretization is applied to all instances
over all algorithms, we still achieve a fair comparison. The resulting integer linear programs for
the discretized trust-region subproblems are solved by means of Gurobi [13]; see [?] for a detailed
MIP formulation and the accompanying repository? for a possible implementation using Gurobi’s
python APL

Benchmark. For our experiments, we make the choices N € {64,96} and o € {5-107%,7.5 -
1074,1073,1.25 - 1072,1.5 - 1073,1.75 - 1073,2 - 1073,2.25 - 1073}. We cover this spectrum of
values for a because small and large values of a generally lead to inexpensive instances for integer
programming solvers with a lot of chattering behavior in the resulting functions for small a and
basically constant functions for large values of a. Consequently, we cover several values in between,
where the run times are relatively high. Moreover, we solve one instance for N = 128 with
a = 1073, We restrict to one value of a here because the run time was very high. As initial value
for the optimization, we choose the control w® = 0 for all instances.

For all of these instances, we run SLIP, block-SLIP with IV, = 4 patches, and block-SLIP with
N, = 9 patches. The patches are of uniform size, uniformly distributed over the domain, and
overlap by 0.1 in each axis with the neighboring patches. This is visualized in Figure 6.1.

Algorithm Setup. Regarding the algorithm, we choose Ag = 0.125 and o = 10~%. We can
determine contraction of the trust-region when A falls below the volume of one grid cell so that,
due its discreteness, the subproblem solution coincides with the previous iterate and no progress
is possible. Then we terminate the algorithm. We prescribe a limit of 100 outer iterations, which
has never been reached in our experiments.

Results. SLIP and block-SLIP have returned very similar objective values for all conducted
experiments. The objective values equal to four digits of accuracy in almost all cases. In the three
remaining cases, the point returned by SLIP is slightly better (relative improvement of objective
value < 1%). Figure 6.2 gives a visual impression for the computed solutions for & = 1073, There
are essentially two different points the algorithm variants produced.

For N = 64, the run times of SLIP and block-SLIP are similar but generally low (the most
expensive instance for SLIP has a run time slightly less than 6 minutes). For N = 96, the
comparison between SLIP and block-SLIP is different for the numbers of patches N, = 4 and
N, = 9. For N, = 4, there is no clear winner. While a run of block-SLIP N, = 4 gives the
highest absolute speedup with more than 16750 s run time improvement from 66740 s to 49990 s,
there is also an instance, where block-SLIP takes 10807 s, which is almost twice than SLIP does
on this instance with 5628 s. The reason is that for N = 96 and NN, = 4, the integer programs
resulting from the discretized trust-region subproblems are already quite large on the different
patches and therefore can have relatively long compute times. Moreover, more subproblems are
solved in total due to the domain decomposition approach. This is different for the higher number
of patches N, = 9. Except for one inexpensive instance for the smallest value of «, the run time
of block-SLIP is substantially lower compared to SLIP because the run time of the subproblems
drops substantially now. For the two most expensive instances of SLIP with run times of 9151 s
and 66740 s, the achieved speedups are 25.28 and 7.4 and the run times for block-SLIP are 362 s
and 9017 s. For the instances with N = 128, the effects observed for N = 96 get amplified. The
decomposition into N, = 4 patches is counterproductive and the run time increases from already
very expensive 134313 s for SLIP to 393184 s with block-SLIP for N, = 4. Many trust-region

2https://github.com/INFORMSJoC/2024.0680
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0.

(a) Np = 4 overlapping patches. (b) N, =9 overlapping patches.

Fig. 6.1: Visualization of patch overlap for the domain = (0,1) x (0,1).

subproblems of block-SLIP for IV, = 4 are very expensive in this case. In contrast to this, the run
time of block-SLIP drops to 1053 s for N, = 9, which is a speedup of 127.55. A detailed tabulation
of the objective values and compute times is given in Table 6.2.

The computational effort to solve the trust-region subproblems highly depends on the patch
in our example. For both N, = 4 and N, = 9, the bottom left patch (see Figure 6.1) induces
a much higher computational effort for the integer programming solver than all other patches.
This computational effort is further concentrated to instances with comparatively large trust-
region radii. We provide mean and median runtimes of the trust-region subproblems for the case
a = 1073 in Table 6.3 for N, = 4 and Table 6.4 for N, = 9. This observation is reflected in the
properties of the linear programming relaxation of the trust-region subproblem. Specifically, the
solution to the linear programming relaxation is already integer-valued and thus optimal for the
other patches in almost all instances. We note that it can be expected but not guaranteed that
the linear programming relaxation is integer-valued in large parts of the domain since Theorem
3 in [?] guarantees that there is at most one connected component of grid cells, where it can be
fractional. In such cases, when the number of patches is relatively small and the runtimes vary
greatly between the patches, we firmly believe that parallelization is advisable on the subproblem
solver instead on the level of Algorithm 4.1.

In conclusion, our results show that block-SLIP pays off very well for large problem sizes and
a sufficiently large number of patches so that the integer programs can be solved quickly. When
compute times are already low, block-SLIP generally does not have a beneficial effect.
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Appendix A. Auxiliary Results.
LEMMA A.1. Let A, B, C be sets of finite perimeter in 2, #4~1(CNO*A) =0, and H~1(CN
0*B) =0. Then
H=H O N (AD N BOYU (A 0 BWY)) =34 (Cn(AD A BW)).
Proof. Because A and B are sets of finite perimeter, we have
i1 (Q\ (A<0> UAD Y a*A)) =0 and 4! (Q\ (B<0> uBM Uy a*B)) =0.

Consequently, we obtain

Fd—1 (c N ((A<1> N B(°>) U (A<0> N B<1>))) — i1 (c N ((A(l) \ B<1>) U (B<1> \ A<1>))) .
0

LEMMA A.2. Let A, B, C, F be sets of finite perimeter in Q0 such that
#HIL(O*ANI*B) =0,
#HILO*ANO*C) =0, and
F=(CnA)U(B\A).
Then B
Dxr =Dxp.(Q\ A)+ DxcLA+ DXA\_(C(l) N B(O)) — DXAI_(C(O) N B(l)).

Proof. We first observe that sets of finite perimeter in ) are also sets of finite perimeter in
R?. To distinguish the distributional derivative of a set of finite perimeter G in R¢ from the one
when interpreting it as a set of finite perimeter in €2, we denote the distributional derivative of the
former by pe as in [30] and in contrast to Dy for the latter as introduced in Section 2.

We apply Theorem 16.16 from [30] and obtain from (16.35) in its proof that

Hp = ,uBL(Rd \Z) + oL A+ [LAL(C(U N B(O)) — /LA\_(C(O) N B(l)).

holds when interpreting Dy as the distributional derivative of a set of finite perimeter in R<.
Restricting the measures on both sides to {2, we obtain

preQ = ppL(Q\A) + per A+ pac(CY N BO) — pa(C® n BY)

because A, CH N BO) ¢ 1 BM) ¢ O already. Since the distributional derivatives coincide in €,
we obtain Dyxp = ppL and similar for the other terms so that the claim follows. 0
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