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2 I Motivation: What is my quantum computer good for?

Want to buy my quantum
computer?

What can it do?
Can it run random circuit

sampling?
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s 1 Capability learning: a crash course

We can formalize a quantum computer’s ability to run circuits (i.e., programs) with a
capability function:

s(c) = e(ideal implementation of ¢, actual implementation of ¢),

where g(,-) is some quality metric (e.g., total variational distance, process fidelity,
diamond distance).

\ Example: TVD
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» 1 Capability learning: a crash course

Learning s(c) directly is really hard...
« learning the all of the errors in your quantum computer
« and how they interact with each circuit c.

Instead, we try to learn approximate capability models from data.

Characteristics of good capability models

 Accurate
« Scalable

* Interpretable

We present a new quantum physics-aware neural
network architecture for building capability models




s 1 gpa-NNs: How do they work?
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N U(C) = U(Lm) - U(L2)U(L1)
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Many capability metrics can be calculated or approximated by
knowing A(C)!
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Many capability metrics can be calculated
or approximated by knowing A(C)!
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Key insight: For many circuits learning A; is the
hard part




> I qpa-NNs: How do they work?

Many capability metrics can be calculated
or approximated by knowing A(C)!

N U(C) = U(Lm) - U(L2)U(L1)
UC) =Ap-o U_ng) o-=0 Ay oU(Ly) oAy oU(Ly)
UC)=AC)U(C)

Key insight: For many circuits learning A; is the
hard part.

‘ Solution: Use neural networks!
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We can express an error channel as: A; = exp(Xp 1y pHp + Xp7spSp)

ri=ypL . TspL)

/ N

We use multilayered perceptrons
to predict each of these error rates.

Map circuit to an error
rates vector for each
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¢ I qpa-NNs: How do they work?

INnput
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We can express an error channel as: A; = exp(Xp 1y pHp + Xp7spSp)

ri=ypL . TspL)

/ N

We use multilayered perceptrons
to predict each of these error rates.

Map circuit to an error
rates vector for each

Output
Use circuit-dependent We take a 1% order p
signed permutation approximation to
' combine all error
maps. I
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gpa-NNs: How do they work?

Map circuit to an error
rates vector for each

Use circuit-dependent
signed permutation

INnput
' P

We can express an error channel as: A; = exp(Xp 1y pHp + Xp7spSp)

ri=ypL . TspL)

We take a 1st order
approximation to
combine all error

maps.
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We use multilayered perceptrons
to predict each of these error rates.

We predict s(c) from
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20 1 gpa-NNs: How do they work?

INnput
P

Key missing details:

1. What information do we give each MLP?

2. Which error rates should we track?

3. How do we combine the error maps at the end?
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1 1 gpa-NNs: How do they work?

INnput
' P

Key missing details:
1. What information do we give each MLP?
Geometrically localized information based on the device's

topology.
Map circuit to an error 2. Which error rates should we track?
rates vector for each Polynomially few, physically relevant low-weight errors.
3. How do we combine the error maps at the end?
- = o . Baker-Campbell-Hausdorff Approximation.
ry ra s Id g or
Output
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signed permutation appro.X|mat|on to We predict s(c) from
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Prediction accuracy on real quantum computers. (a) The mean absolute error of our

gpa-NNs (¢), the CNNs from Hothem et al. [2023c] (0-CNN, +), and fine-tuned CNNs (ft-CNN, 4)

on the test data. (b) The predictions of the three models for ibmq_vigo on the test data, and (c) the
distribution of each model's absolute error on the test data, including the 50th, 75th, 95th and 100th

percentiles (lines) and the means (points)
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gpa-NNs consistently
outperform CNN-based
capability models.
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Qualitatively superior
predictions
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